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Large suppression of spin-relaxation rate in graphene nanoribbons in the
presence of magnetic impurities
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Achievement of low spin-relaxation rate is an important goal for spintronics development. We study the
spin-relaxation rate arising from a low concentration of magnetic impurities in armchair graphene nanorib-
bons (AGNR). Large suppression in the spin-relaxation rate, exhibited as dip structures, is found when the
Fermi energy approaches a subband band edge. This suppression originated from the quasi-one-dimensional
density of states and is manifested via the singular features in the AGNR same-site Green’s function GII ,
where I denotes site locations of magnetic impurities. Analytic analysis of the spin-relaxation rate in the
close vicinity of a subband band edge is performed to further reveal the physical nature of the suppres-
sion. The robustness of the suppression feature in the spin-relaxation rate is demonstrated by systematically
increasing the number of magnetic impurities involved in a coherent multiple scattering with the electrons.
Major peaks in the spin-relaxation rate are analyzed in light of their connection with spin-flipped resonances.
Competition between magnetic impurities with similar resonance energies is found to lead to suppression in
the spin-relaxation rate. Our calculations have taken into account the hydrogen-passivation effects at the AGNR
edges when the hopping constant between edge carbons is modified.
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I. INTRODUCTION

Spin relaxation in graphene has been an subject of intense
interest [1]. This is intended for the use of graphene for spin-
tronics [2–4], where the electronic spin degree of freedom is
to be utilized for information carriers [5,6]. Empowered by
graphene’s very low intrinsic spin-orbit coupling, of order
μeV [4,7], due to the low atomic number of carbon, and
together with its novel transport properties [8,9], graphene has
spawned into a graphene and graphene related novel platform
material for spintronics [2–4,10–13].

Spin-relaxation time, or spin-relaxation rate (SRR), of
graphene systems and structures had been probed experi-
mentally [1,14–26]. Depending on the sample preparation
and system configurations, the spin-relaxation time can vary
from a subnanosecond [1,15,18,19,22,25] to a few nanosec-
onds (nsec) [14,17,20,23,24], and even up to tens of nsec
[16,21,26]. On the other hand, the spin-relaxation time is
expected to be of the order of μsec [10,27], if only effects
from the intrinsic spin-orbit coupling of graphene is con-
sidered. This large discrepancy in the spin-relaxation time
between the experimental findings and the expected intrinsic
results had prompted many theoretical studies on nonintrinsic
spin relaxation mechanisms in graphene [28–38]. These in-
clude spin-relaxation mechanisms associated with adsorbate
induced spin-orbit coupling [28–30,33–35], magnetic mo-
ments from impurities [29,31,38], spin-orbit coupling from
proximity effects [27,36,37], and effects of charged puddles
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due to charge impurities residing in the substrate [27,29,38].
Furthermore, contact-induced spin relaxation was observed
[39–41]. However, the demonstration that reducing pinholes
in the tunnel barriers, the interfacing layer between the spin
injectors/detectors and the graphene sheet, leads to the low-
ering of the spin-relaxation rate [39] has encouraged further
studies. More recent effort along this line has fabricated poly-
mer free spin valves by an encapsulation involving hBN on
graphene [21], which finding is a fivefold enhancement of
the spin-relaxation time. The nonmonotonic dependence of
the spin-relaxation time on the carrier density [21] is another
finding that suggests a resonant characteristics, such as from
magnetic impurities [29,42]. Together with the added fea-
tures, namely, independence of the spin-relaxation time on the
contact resistance area, and the presence of pinholes in the
MgO tunnel barriers [21], a physical picture emerges that an
appropriate encapsulation reduces the polymer residues and
these residues are of the magnetic-scatterer type [4].

That magnetic impurities are much more effective than
spin-orbit coupling in becoming the primary source of spin
relaxation lends support from both experimental [18,22,23,25]
and theoretical [29,31,38,42] results. Isotropy of the SRR for
graphene on silicon oxide provides evidences for the domi-
nance of magnetic-impurities over the spin-orbit coupling on
the SRR [22,23]. Also the dependence of the SRR on the
density of fluorine on graphene also provide another evidence
for the role of magnetic scatterers on spin relaxations [25].
Therefore, to meet the target of reaching as low a SRR as
is possible, elimination of the magnetic impurities is a key.
Yet it is equally important to find ways to lower the SRR
for a given sample, whether or not it has already reached a
decent low level of magnetic-impurity concentration. Thus

2469-9950/2022/105(15)/155422(18) 155422-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6573-4879
https://orcid.org/0000-0002-1050-761X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.155422&domain=pdf&date_stamp=2022-04-28
https://doi.org/10.1103/PhysRevB.105.155422


VAN MINH NGUYEN AND C. S. CHU PHYSICAL REVIEW B 105, 155422 (2022)

we opt, in this work, to study the tuning for a lower SRR of
graphene nanoribbons in the presence of a low concentration
of magnetic impurities.

By turning to graphene nanoribbons, we invoke extra mul-
tiple scattering effects provided by the quasi-one-dimensional
(Q1D) nature of the system for the tuning of the SRR.
Conductance of Q1D quantum channels in the presence of
attractive scatterers is known, both from theoretical [43] and
experimental [44] studies, to exhibit dip structures, and at
energies close to but just below subband band edges. The
singular density of states at subband band edges provides the
impetus for multiple scatterings [43], such that quasibound
states are formed when the scatterers are attractive [45]. Re-
cently, Q1D subband band edge effects have been shown
[46] to lead to a new description for the Ruderman-Kittel-
Kasuya-Yosida (RKKY) type coupling [47–49] between two
magnetic impurities in AGNRs. Multiple scattering in the
vicinity of a subband band edge plays a key contributing
role to RKKY [46]. And large enhancement in the mag-
nitude of the RKKY coupling constant [46], among other
changes in its characteristics, is resulted when comparing with
that of the lowest-order (Born-type approximation) RKKY
coupling constant [50]. Band edge effects on RKKY in-
teraction was found in higher dimension systems such as
graphene Bernal bilayers [51]. The energy dependence of the
RKKY interaction exhibits remarkable characteristics due to
the logarithmic-singular feature in the real-space propagator
at a band edge [51].

Multiple scattering arising from the Q1D nature of the
AGNR system is expected to occur most characteristically
near subband band edges, at energies determined by the
AGNR widths. Resonance at the magnetic impurities [29]
is another multiple scattering phenomenon, which occurs at
energies that depend on the scatterer. The sensitivity of the
SRR on the carrier density, or the Fermi energy, would then
be high if the SRR is peaked at the resonance [29] and dipped
at a subband band edge. It is hence important in this work to
see if the SRR is peaked or dipped at subband band edges and
to reveal the physics therein.

The magnetic impurity we will consider in this work is the
hydrogen adsorbate [29]. It is the simplest adsorbate that is
magnetic when adsorbed on graphene [17,29,31,52], and there
is a well established tight-binding model describing the hydro-
gen adsorbate [29,53]. The simplicity in the model also allows
us to undergo a comprehensive and detail analytic analysis to
reveal the spin-flipping physics for generic magnetic moments
in AGNR systems.

We would like to point out that the physical mechanism
behind our tuning of the Fermi energy for a lower SRR in
AGNRs is conceptually different from the Elliott type “spin
hot spot” mechanism in semiconductors [54,55]. The key
difference is that our target is a lower SRR whereas that of
the spin hot spot is a SRR peak. Another key difference is that
the spin-orbit coupling from the crystal lattice is negligible
in our case while sufficiently significant bulk spin-orbit cou-
pling is readied in semiconductors. From the work of Elliott
[56], the interplay of a spin-diagonal electrostatic interaction,
such as from a normal impurity, and the spin mixing in the
wave function, due to the crystal lattice spin-orbit coupling,
gives rise to spin relaxation in semiconductors [57]. Spin hot

spot occurs on the Fermi surface at the k point where the
crystal lattice spin-orbit coupling becomes comparable with
interband energies [58]. In contrast, the physical mechanisms
in this work take on multiple scatterings arising both from the
Q1D nature of the AGNR system and from magnetic-impurity
resonances.

Spin relaxation in AGNRs had been studied recently, where
physical quantities of interest were spin-flipped and non-spin-
flipped transmissions [59–61] and spin polarizations in the
transmission region [60,61]. Both magnetic moment and spin-
orbit coupling effects arising from hydrogen adsorbates were
considered in a density-functional theory (DFT) based ab ini-
tio transport formalism [59]. Spin-orbit coupling arising from
a Gaussian-type surface in the AGNR due to substrate surface
roughness was considered [60]. The ensemble averaged spin-
polarization in the transmission region and its dependence on
the length of the AGNR were obtained. By fitting this result
to an exponential form, decaying with respect to the length
of the AGNR, a spin diffusion length was obtained [60]. In
a similar way, the spin relaxation length in AGNR doped
with nickel adatoms was studied by an ab initio approach
[61]. The focus was upon the spin-orbit coupling induced
by the adatoms. A segmented-AGNR approach for transport
was invoked, where each segment contains either one or no
adsorbate, such that the entire AGNR, of a given total length
and adsorbate concentration, is constructed from randomly
arranging these AGNR segments [61]. The adsorbates had
been kept from each other by a minimum separation, which
was chosen to be 25 Angstrom [61], in order to have negligible
adsorbate effects on the coupling between segments.

There is, however, no known relation connecting the spin
diffusion (relaxation) length to the spin-relaxation time in
AGNRs [61]. Complications due to the subband nature and
the difference in the regime of interest, ballistic regime in our
case in contrast to strongly disordered regime, have rendered
even a heuristic attempt for such a relation not deemed to be
feasible. A direct microscopic approach to the SRR in AGNRs
is thus lacking and much needed. Such a direct microscopic
approach should provide important insights on the key phys-
ical mechanisms for the SRR. We formulate in this work a
microscopic approach to the SRR in AGNRs and apply it to
the case of dilute magnetic impurities.

Highlights of our key SRR results for AGNRs are pre-
sented in Fig. 1. The AGNR, of width W = 20 (number of
longitudinal carbon chains in the AGNR), has its first and
second subband band edges at, respectively, |μ| = 0.017 and
0.23. Energy is in units of t0. Between these two subband band
edges is a region where there is only one propagating subband.
The energy gap at |μ| = 0.017 is resulted from edge passiva-
tion [62], without which the energy gap would have been zero.
The edge-passivation effects, within the tight-binding descrip-
tion [63,64], have been incorporated to evaluate the AGNR
Green’s function and the finite temperature SRR 1/τs. Our
key result, namely, the large SRR suppression, is shown near
the second subband band edge (indicated by two downward-
pointing arrows), in the |μ| � 0.23 region, where the SRR
exhibits a steep drop to form a dip structure.

The SRR suppression is quantified by a suppression fac-
tor Fsp, defined as the ratio between the 2D SRR (grey
dashed curve) and the finite temperature SRR. In Fig. 1, the
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FIG. 1. Spin-relaxation rate (SRR) suppression shown in the
AGNR SRR vs chemical potential μ plot. Nanoribbon width W =
20. Temperatures shown are 4 (black) and 77 K (red). Incoherent
magnetic impurity (MI) cluster (3 MI per cluster, solid curves)
and independent MI (dotted and dashed-dotted curves) results for
the SRR, given by Eq. (A17), are shown. Energy range 0.017 �
|μ| � 0.23 is the one-propagating-subband region. Two-dimensional
graphene result (grey dashed curve) is shown for comparison. Large
SRR suppression is demonstrated by the rapid drop of the SRR
near |μ| ≈ 0.23. The two downward pointing arrows indicate where
largest SRR suppression occurs. Major SRR peaks around μ ≈
±0.04 exhibit another suppression in the SRR. Magnetic impurity
fraction ηM = 10−6.

temperatures are 4 K (black solid curve) and 77 K (red solid
curve), and the energies for the Fsp are close to the subband
band edge (|μ| = 0.23). From Fig. 1, the 4-K suppression
factor Fsp = 9.7 and 9.3 at, respectively, μ = ∓0.23. And the
77-K suppression factor Fsp = 3.7 and 3.2 at, respectively,
μ = ∓0.23. The concentration of the magnetic impurities is
the same in all curves, given by ηM = 10−6, the fraction of
the AGNR carbon atoms that are adsorbed to by the magnetic
impurities. The values of the SRR suppression factor Fsp,
presented above, is large at 4 K and is quite good even at 77 K.

Robustness of the SRR suppression is demonstrated in
Fig. 1. It is by plotting alongside the independent mag-
netic impurity (MI) results (dashed, dotted, and dashed-dotted
curves) for comparison with our incoherent magnetic-
impurity cluster results (solid curves). The incoherent MI-
cluster results have all intra-cluster electron-MI multiple
scatterings fully treated, whereas intercluster electron-MI
events are treated incoherently. Results for three magnetic
impurities in a cluster are plotted in Fig. 1. As shown in Fig. 1,
the independent MI and the incoherent MI-cluster results for
the same temperature overlap in most of the μ region, includ-
ing the SRR suppression region. This lends strong support
to the robustness of the SRR suppression feature. Another
suppression of the SRR occurs near the two major SRR
peaks, near μ ≈ ±0.04. This is found to associate with the
competition between the magnetic impurities for resonances
when they have close enough resonance energies. Overall,
curves from temperatures 4 and 77 K fall on top of each
other except inside the first gap |μ| � 0.017 and near the
second subband band edge |μ| ≈ 0.23. Appropriate ensemble

average has been performed to obtain all our results, and this
will be discussed in later sections.

The 2D SRR result shown in Fig. 1 is obtained by taking
a large enough W (W = 6 × 105 in Fig. 1) for the evaluation
of Eq. (23), and it matches that reported in Ref. [29]. Equa-
tion (23) is for the independent MI case at zero temperature.
The 2D SRR values at 77 K in the |μ| ≈ 0.23 region is very
close to and slightly greater than the 2D SRR at zero tempera-
ture. For simplicity, it suffices to use the zero-temperature 2D
SRR to obtain the Fsp, when temperatures considered are not
much higher than 77 K.

This paper is organized as follows. In Sec. II, we present
our theoretical framework for independent MIs in AGNRs.
The basic physics associated with the SRR suppression at a
subband band edge will be presented. We present our micro-
scopic approach to the SRR in AGNRs. From this approach,
we obtain an analytic expression for the SRR suppression near
a subband band edge. In addition, we present our analysis
showing the resonance nature of the SRR peaks in the large
and the small W regimes. In Sec. III, we present our the-
oretical framework for many MIs. In particular, we present
our analytic treatment for two magnetic-impurity case, from
which the SRR suppression at a subband band edge remains
intact is evident. Extension of the analysis for the SRR sup-
pression at magnetic impurity resonances is presented. We
present our systematic study of increasing the number of MIs
involved in the multiple scattering. The trend it reveals on the
robustness of the SRR suppression at a subband band edge,
and on our incoherent MI-cluster approach for the SRR will
be presented and discussed. Finally, we present our conclusion
in Sec. IV.

II. COHERENT EFFECTS FROM ONE MAGNETIC
IMPURITY

This section presents the theoretical treatment for the SRR
that arises from independent MIs. In particular, the sec-
tion presents our microscopic SRR calculation. Both the SRR
suppression at a subband band edge, and the resonant nature
of the SRR peaks will be presented. Multiple scattering effects
between MI will be treated in the next section.

The magnetic impurity is modeled as an adsorbate hydro-
gen atom, which Ĥad is given by [29]

Ĥad =
∑

ν

[εhh†
νhν + T (h†

νcHν
+ c†

Hν
hν )]

+ J
∑
ν,ν ′

∑
i

σ i
νν ′�

ic†
Hν

c
Hν′ , (1)

where h† (h) and c†
H

(cH ) are the fermionic creation (annihi-
lation) operators for, respectively, orbitals at the site of the
hydrogen adsorbate and at the carbon atom to which the
hydrogen is adsorbed. The hopping constant between the two
orbitals is T , and the energy of the hydrogen orbital is εh.
The third term is the exchange interaction at the hydrogen-
adsorbate site, with σ and �, both in the form of Pauli matrix
vectors, representing the electron spin and the spin one-half
local moment at the hydrogen adsorbate site, respectively.
The physics of local moment spin flipping during the elec-
tron multiple scattering is thus included. We take the values
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εh = 0.16 eV, T = 7.5 eV, and J = 0.4 eV [29]. In the fol-
lowing, all energies are taken to be in units of t0 = 2.66 eV,
the hopping constant of graphene.

From using the basis | j, m〉 of J2 and Jz, where J = h̄
2 (σ +

�), and eliminating the hydrogen-adsorbate orbital, we get

Ĥad = |I〉〈I| ⊗
[

α0|0, 0〉〈0, 0| + α1

1∑
m=−1

|1, m〉〈1, m|
]
,

(2)
in which α0 = T 2

(E−εh+3J ) and α1 = T 2

(E−εh−J ) [29]. We have
kept the dependencies of α0 and α1 on the electron energy E
implicit for the simplicity in the presentation. By the same
token, whenever a physical quantity is well understood to
depend on energy, we might choose to keep its energy depen-
dence implicit. The singular energy dependencies in α0 and
α1 correctly reflect the hydrogen-adsorbate site energy lev-
els, namely, εh − 3J (singlet level) and εh + J (triplet level),
respectively, when the exchange interaction is included. In
addition, |I〉 = |i, s〉 depicts the site lattice of the carbon
atom to which the hydrogen is adsorbed, where (i, s) = (Ri, s)
are, respectively, the unit-cell position and the site-type (A/B
type) index.

Converting Eq. (2) to the spin configuration basis ket |ν, u〉,
where ν = ± and u = ± are the eigenvalues of σz and �z,
respectively, we have

Ĥad = |I〉〈I|⊗
[∑

ν,u

V nf
νu |ν, u〉〈ν, u| +

∑
ν

V f
0 |ν, ν〉〈ν, ν|

]
,

(3)
in which V nf

νu = T 2[ E−εh+(νu+2)J ]
(E−εh+3J )(E−εh−J ) indicates two types of non-

spin-flipping potential. The u = ν case has non-spin-flipping
potential V nf

0 = (α0 + α1)/2, while the u = ν case has non-
spin-flipping potential V nf

1 = α1. Here ν = −ν. On the other
hand, the spin-flipping potential is V f

0 = (α1 − α0)/2. The
form of Ĥad in Eq. (3) is appropriate for treating cases of
multiple scattering between MIs, as will be used in the next
section.

Spin-flipped multiple scattering of an electron by a single
magnetic impurity in an AGNR is treated below. Equa-
tion (3) shows that spin-flipping occurs only for incident spin
configuration |ν, ν〉, thus we consider an incident state (right-
going) |ψkn〉 ⊗ |ν, ν〉, where the orbital part |ψkn〉 is given by
Eq. (B5). The resulting scattering state |�kn,νν〉 is of the form

|�kn,νν〉 = ∣∣�νν
kn,νν

〉⊗ |ν, ν〉 + ∣∣�ν,ν
kn,ν,ν

〉⊗ |ν, ν〉, (4)

where the first (second) term corresponds to the non-spin-
flipped (flipped) component of the scattering state. The
Lippmann-Schwinger equation is given by∣∣�kn,νν

〉 = ∣∣ψkn

〉⊗ |ν, ν〉 + ĜĤad

∣∣�kn,νν

〉
, (5)

where Ĝ is the AGNR Green’s function presented in Eq. (B6).
Projecting Eq. (5) onto 〈I| ⊗ 〈ν ′ν ′| leads to

�νν
kn,νν (I ) = ψkn (I ) + GII (E )V nf

0 �νν
kn,νν (I )

+ GII (E )V f
0 �νν

kn,νν (I ) (6)

and

�νν
kn,νν (I ) = GII (E )V nf

0 �νν
kn,νν (I ) + GII (E )V f

0 �νν
kn,νν (I ).

(7)

The form of Eq. (6) is physically self-explanatory. It shows
that the non-spin-flipped component at the site |I〉 of the
hydrogen-adsorbed carbon atom is constituted of three terms:
the incident wave at |I〉, the same-site propagation after
the non-spin-flipped component suffers a non-spin-flipped
scattering at |I〉, and the same-site propagation after the spin-
flipped component suffers a spin-flipped scattering at |I〉. One
can apply this physical interpretation to Eq. (7), except that
there are now only two terms.

Solving Eqs. (6) and (7) gives us

�νν
kn,νν (I ) = 1

2

[
1

1 − α1GII
+ 1

1 − α0GII

]
ψkn (I ) (8)

and

�νν
kn,νν (I ) = (α1 − α0) GII

2(1 − α1GII )(1 − α0GII )
ψkn (I ). (9)

Equation (9) can also be cast in a form similar to Eq. (8),
where the sign of the second term in Eq. (8) is reversed.

Subband band-edge features enter Eqs. (8) and (9) via
the same-site Green’s function GII , which carries in it the
quasi-one-dimensional nature of the AGNRs, where density of
states are singular at subband band edges. Additional subband
band-edge feature might enter later in the SRR calculation, but
Eqs. (8) and (9) are sufficient to provide us physical insights
about our key results in this work. The key physics we find
in this work is the large suppression of the spin-relaxation
rate when the electron energy |E | approaches a subband band
edge.

Two important features can be obtained from Eqs. (8) and
(9). The first feature is about the suppression of both �νν

kn,νν (I )
and �νν

kn,νν (I ) when E approaches a subband bottom. As |E |
approaches the nth subband band edge εn,min while staying
within the subband energy range, the corresponding reduced
Green’s function gIIn (E ) increases in its magnitude and dom-
inates the behavior of the GII . This is due to the vanishing
of the longitudinal wave vector Qn, as is shown in Eq. (B7),
given by

gIIn (E ) = −i
π |E |

2βn(1 + �hn)

1

sinQn
. (10)

Here βn = −cos(knxa), and knx = nπ/[(W + 1)a] is the quan-
tized transverse wave vector (see Appendix B). Of particular
interest is the n = n0 = 2(W + 1)/3 subband for the W =
3p + 2 AGNRs, which would be gapless if edge passivation
were not included. On the other hand, for the case when |E |
approaches the subband band edge with |E | � εn,min, it is
outside the nth subband energy range, we have Qn = iγ QnI,
the evanescent wave wave vector. As Qn,I approaches zero,
the reduced Green’s function gIIn also increases in its magni-
tude and dominates GII . Here γ = E/|E |. Explicitly, from
Eqs. (8) and (9), and for E in the close vicinity of a sub-
band band edge, we have �νν

kn,νν (I ) ≈ −α0+α1
2α0α1

G−1
II ψkn (I ),

and �νν
kn,νν (I ) ≈ α1−α0

2α0α1
G−1

II ψkn (I ). The suppression factor is

G−1
II . We emphasis that this suppression is the result of mul-

tiple scatterings. More accurately, it is the above-mentioned
subband band edge singular feature of GII that has demanded
the need of the multiple scattering, and resulting in the sup-
pression.
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The scattered waves are obtained from projecting Eq. (5)
onto 〈J | ⊗ 〈ν ′ν ′|, at an arbitrary lattice site |J 〉, and together
with Eqs. (8) and (9), we get

�νν
kn,νν (J ) = ψkn (J ) + GJI

α1 + α0 − 2α0α1GII
2D(E , I )

ψkn (I )

(11)
and

�νν
kn,νν (J ) = GJI

α1 − α0

2D(E , I )
ψkn (I ), (12)

where D(E , I ) = (1 − α1GII )(1 − α0GII ).
We note that very different subband band-edge suppression

characteristics are exhibited in the two scattered-wave compo-
nents, in Eqs. (11) and (12). The non-spin-flipped component
consists of a G−1

II suppression, arising from the coefficient to
the GJI term in Eq. (11). On the other hand, the spin-flipped
component consists of a G−2

II suppression in Eq. (12). The
propagating channels contained in GJI , when |E | � εn,min

and J is outside the scattering region, do not contribute
additional of the aforementioned near band edge singular
feature. Therefore the source amplitudes of the outgoing scat-
tered waves carry a G−2

II (G−1
II) suppression factor for the

spin-flipped (non-spin-flipped) component. This is due to the
presence (absence) of the interference between the j = 0 and
j = 1 processes, as is evident by the α0α1 factor in Eq. (11),
in the non-spin-flipped (spin flipped) component. Hence the
interplay between the interference processes and the subband
feature of the system has brought forth a stronger suppression
to the outgoing spin-flipped scattered wave than the outgoing
non-spin-flipped scattered wave for the single MI case.

The second feature obtained from Eqs. (8) and (9) is about
the resonance of the MI. Assuming that the resonance condi-
tions are given by Re(1 − α jGII ) = 0, according to Eqs. (8)
and (9), the resonance energies ER could then be determined
approximately as E0

R, j . These resonances are associated with
the spin-configurations, triplet ( j = 1) or singlet ( j = 0).

Approximate expression E0
R, j obtained in the following

reveals the dependence of the physical nature of the SRR
peaks on W . Assuming the magnitude of E0

R, j to be much less
than the second subband band edge, then from the reduced
Green’s functions in Eq. (B9) and Eq. (B11), we have

GII (E ) ≈ −E ζ1 − iζ2, (13)

where ζ1 =∑n �=n0

ϕ2
n (i)

|4β2
n −(1+�hn )2| , and ζ2 = ϕ2

n0
(i)

2
√

1+�hn0

. The

�hn, given in Eq. (B4), arises from the edge passivation. The
two terms in Eq. (8) are then cast into a resonance form

1

1 − α jGII
= Aj

E − E0
R, j + i�

, (14)

where Aj is a simple coefficient not essential to the resonance
feature, and

E0
R, j = ε j

1 + T 2 ζ1
. (15)

The energy ε j equals εh − 3J and εh + J for, respectively, j =
0 and 1. The resonance width is � = T 2

1+T 2 ζ1
ζ2. It provides us

the condition for the two resonances to be resolved, which is

E0
R,1 − E0

R,0 > �, or the condition

4J

T 2
> ζ2. (16)

At E = E0
R,0, we can drop the term 1

1−α1GII
in Eqs. (8) and

(9) to obtain �νν
kn,νν (I ) = −�νν

kn,νν (I ). Similarly, at E = E0
R,1,

we obtain �νν
kn,νν (I ) = �νν

kn,νν (I ). This is consistent with the
singlet and triplet nature of the j = 0 and j = 1 cases, respec-
tively.

The condition for the two resonances to be resolved is
satisfied at large W cases, since ϕn0 [Eq. (B2)] in ζ2 decreases
with W in the form 1/

√
W + 1. For small W , when Eq. (16)

is not satisfied, the resonance condition becomes

d |D(E , I )|
dE

= 0, (17)

from which the SRR peaks at ER are resonances with a
j-mixed nature. We will present numerical examples for j-
resolved (W = 98) and j-mixed (W = 20) resonance SRR
peaks.

A. Spin-relaxation rate from transport calculation

In this section, we calculate the spin-relaxation rate within
a quantum transport approach. The approach is formally es-
tablished in Appendix A. It involves an extraction of the
spin-flipped transmission and reflection coefficients from
Eq. (12). And it also involves the use of the coefficients to
obtain the spin-relaxation rate Rs(n′,S′; n,S), as defined in
Eq. (A11), for the specific spin-flipping process, from the
initial state (n,S) to final state (n′,S′) at energy E . Here
S denotes the system spin configuration, including that of
the electron and the magnetic impurity, and n (n′) denotes
the incident (outgoing) propagating subband index. The spin-
relaxation rate for a specific spin-flipped process is used for
the calculation of the spin-relaxation rate τ−1

s when thermal
and system configuration averaging are to be performed.

Extraction of the spin-flipped transmission coefficients
from �νν

kn,νν (J ) is done by substituting the Green’s function
[Eq. (B6)] into Eq. (12), focusing on the outgoing propagation
channels (n′) in GJI , choosing the longitudinal coordinate
Nj of the observation point |J 〉 to be greater than Ni of the
magnetic impurity location |I〉, and casting each such terms
into the form t f

n′n(S′,S)ψkn′ (J ).
Using Eqs. (B5) and (B7), and following the method laid

out in Eq. (A8), we get

t f
n′n(S,S) = α1 − α0

4πD(E , I )
ϕn′ (i)ϕn(i) gIIn′ (E )

× Csi (kn)

Csi (kn′ )
eiγ (Qn−Qn′ )Ni , (18)

where S is (νν) when S denotes (νν). We have chosen, for
convenience, that |I〉 and |J 〉 are of the same site type.

The spin-flipped reflection coefficient can be derived simi-
larly, except that we need to choose Nj < Ni and the outgoing
state becomes ψk−

n′ (J ). We obtain

∣∣rf
n′n(S,S)

∣∣2 = ∣∣t f
n′n(S,S)

∣∣2. (19)
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Equation (18) does not depend on ν reflects the symmetry of
the SRR with respect to the reversing of the initial system spin
configuration.

The process-specific SRR, following Eq. (A11), is given
by

Rs(n
′,S; n,S) = 2 vgn′ (E )

Ny

√
3 a

∣∣t f
n′n(S,S)

∣∣2, (20)

which, according to Appendix A, is the spin-flipped current
for the corresponding transition processes. Here vgn′ (E ) is
the group velocity of the outgoing n′th subband. The corre-
sponding zero-temperature SRR R0

s (n′,S;S), as is shown in
Eq. (A13), is given by

R0
s (n′,S;S) =

∑′
n

1
vgn

Rs(n′,S; n,S)∑′
n

1
vgn

. (21)

The SRR 1/τ 0
s at zero temperature and chemical potential μ

is then given by

1

τ 0
s

= NM

NS

∑
S

〈∑
n′

′
R0

s (n′,S;S)

〉
I

, (22)

where we have included averagings over both the incident
system-spin configuration as well as the magnetic impurity
transverse locations |I〉. Here NM = ηMNC is the total num-
ber of magnetic impurity, NC = W Ny is the total number of
carbon atoms in the AGNR, and ηM is the fraction of carbon
atoms being adsorbed to by the MIs. NS is the total number
of spin configurations [4 in this case, when S = (νν) are also
included]. For our case here, the spin-relaxation rate will be
zero when S = (↑⇑) or S = (↓⇓).

We note that Ny/2 is the total number of AGNR unit cells,
Ny

√
3a is the total length of the AGNR, and a is the separation

between adjacent longitudinal carbon chain.
The expression for the zero-temperature SRR 1/τ 0

s is ob-
tained from Eqs. (22), (18), and (20), to give

1

τ 0
s

= ηM

2h̄
(α1 − α0)2|μ|

W −1∑
Mi=0

ξ (μ, I )

|D(μ, I )|2 , (23)

where the summation over Mi arises from the transverse MI-
position average, and

ξ (μ, I ) =
∑

n
′∑

n′
′ ϕ2

n (i)ϕ2
n′ (i)

βn(1+�hn ) sinQn βn′ (1+�hn′ ) sinQn′

16
∑

n
′ 1

βn(1+�hn ) sinQn

. (24)

The primed summation denotes summing only over propagat-
ing subbands.

B. Numerical examples

We plot in Fig. 2 the zero-temperature SRR of two AGNRs.
The plot is intended to display the SRR dip structures near
subband band edges and to provide explicit illustrations of the
resonance nature of the major SRR peaks. For these purposes,
it is sufficient to treat the MIs as independent MIs. Two
AGNRs shown have W = 20 (red curve) and W = 98 (black
curve). The SRR dip structures are found to occur at subband
band edges, where the W = 98 curve has narrower subband

FIG. 2. Zero-temperature SRR 1/τ 0
s due to independent MIs in

AGNRs. Equation (23) has been used for the 1/τ 0
s . Cases for W = 20

(red) and 98 (black) AGNRs are shown. Averaging over impurity
transverse positions, incident subbands, and spin configurations have
been performed to obtain the SRR. All dip structures in the SRR
are aligned with subband band edges. Large SRR suppressions as μ

approaches a subband band edge are shown for both curves. Major
SRR-peak energies in (1) the W = 98 case (depicted by two arrows)
match with the E 0

R, j in Eq. (15), and (2) the W = 20 case match with
the resonance energies obtained from the condition in Eq. (17). The
magnetic impurity fraction ηM = 10−6.

band-edge spacings than that for the W = 20 curve. All the
subband band edges shown in Fig. 2 are the εn,min, the lower
band edge of the nth subband. In particular, the lowest two
band edges (closest to μ = 0) are at |μ| = 0.0036 (n0 = 66)
and |μ| = 0.054 (n1 = 67) for W = 98. As for W = 20, the
lowest two band edges are at |μ| = 0.017 (n0 = 14) and |μ| =
0.247 (n1 = 15). In between these two lowest band edges is
the energy range of our interest, which we depict as the central
region. The n0th subband is the only propagating channel in
the central region.

Expression for the dip structure behavior is presented
below, as μ approaches the close vicinity of the n1th sub-
band band edge from the central region side. We take |μ| =
εn1,min − �, with 0 < � � εn1,min. From Eq. (B12), and as-
suming that the n1 term in GII is the dominating term, and
that the G2

II term in D(μ, I ) of Eq. (23) gives the dominating
contribution, we get

1

τ 0
s

≈ ηM

h̄

[
16Jβn1

T 2

]2 (1 + �hn1 )2√
1 + �hn0

×
W −1∑
Mi=0

[
ϕn0 (i)

ϕ2
n1

(i)

]4

×
[

�

εn1,min

]2

. (25)

Note that Eq. (25) is the limiting dip-structure behavior when
μ is very close to the n1th subband band edge. The SRR
suppression at a subband band edge is explicitly shown by
the factor (�/εn1,min)2 in Eq. (25). When μ moves away
from εn1,min, or as � increases, we will need to include
contributions from other subband terms in GII , and contri-
butions from the other terms in D(μ, I ). As shown in Fig. 2,
when μ increases towards εn1,min, the SRR develops a nice
pre-dip profile before it reaches its limiting dip-structure be-
havior at the subband band edge. In other words, the overall
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dip-structure profile covers a finite �μ width. We stress that
this nice profile causes the large suppression to remain intact
at finite temperatures, and that it is originated from both the
general trend of GII , to be discussed below, and sufficiently
large values of α0 and α1. That the large suppression results
remain intact in finite temperatures is clearly shown in Fig. 1.

In addition, the overall profile of the SRR suppression char-
acteristics remains intact even if the n1th subband transverse
wave function ϕn1 ( j) has nodes. For W = 98, there is no node
in ϕn1 ( j), while for W = 20 the nodes occur at Mj = 6, 13.
The limiting SRR behavior when μ is very close to εn1,min is
then determined by these nodal sites, for the W = 20 case,
given by

1

τ 0
s

≈ ηM

2h̄
(α1 − α0)2|μ|

∑
Mi=6,13

ξ (μ, I )

|D(μ, I )|2 . (26)

Since the singular n1 term in GII becomes zero when Mi

is a node of the n1th subband transverse wave function, we
return to the original expression for 1/τ 0

s in Eq. (23), but
keeping only the nodal Mi terms. It is because the non-nodal
Mi terms in Eq. (23) follow the Eq. (25) behavior and thus
do not contribute to Eq. (26). We note that even though the
limiting SRR value, in Eq. (26), is not zero at the subband
band edge, the overall profile of the SRR suppression charac-
teristics should still remains intact. First, we can draw support
from Fig. 2. That the overall profiles of the SRR suppression
characteristics near εn1,min consist of a finite �μ width for
the W = 98 and W = 20 curves provides a strong evidence.
Second, we can also draw support from a general trend of
GII . All the nonpropagating subband terms in GII , including
the n1 term, contribute constructively to give the general trend
that the magnitude of GII is increasing as μ increases towards
εn1,min. Thus the vanishing of the n1 term in GII for a nodal
Mi could not have changed this general trend in GII .

The major SRR peaks in Fig. 2, and within the central
region, can be used to reveal its resonance nature. For the
W = 98 case, the major SRR peak energies, indicated by
the two arrows, are at −0.029 and 0.015. These energies
are matched by the analytic expression in Eq. (15), and after
averaging over the transverse site Mi, to give E0

R,0 = −0.032
and E0

R,1 = 0.017. With this we see that the resonance nature
of the W = 98 major SRR peaks are j-resolved resonances.

For the W = 20 case, the E0
R, j calculation does not produce

a good match in the major SRR peak energies. Using Eq. (17)
instead, where we determine the energies ER,± numerically,
and after averaging over Mi, we get ER,− = −0.048 and
ER,+ = 0.037. The corresponding major SRR peak energies
in Fig. 2 are −0.043 and 0.037. This excellent matching shows
unequivocally the j-mixed resonance nature of the major SRR
peaks.

We may note in passing the at-the-resonance behavior
of the spin-flipped transmission and reflection coefficients.
From Eq. (19), taking the resonance at, say, E0

R, j , the fac-
tor (α1 − α0)2/|D(μ, I )|2 ≈ 1/(Im GII )2. Also, taking the
n′ = n = n0 condition, because we are referring to the central
region, we obtain

∣∣rf
n0n0

(S,S)
∣∣2 = ∣∣t f

n0n0
(S,S)

∣∣2 ∼= 1
4 . (27)

From this result, we have the spin-flipped current, both reflec-
tion and transmission included, given by vgn0 (μ)/(Ny2

√
3 a).

This is actually one half of the incident current, namely,
vgn0 (μ)/(Ny

√
3 a). In other words, the spin-flipped outgoing

current is the same as the non-spin-flipped outgoing current,
and the spin has then reached an unpolarized outgoing state at
the resonance. Similar at-the-resonance behavior of a MI was
found in graphene [29]. This happens when the initial spin
configurations are | ↑⇓〉 or | ↓⇑〉. The electron experiences
no spin-flip for the initial spin configurations | ↑⇑〉 or | ↓⇓〉.

III. COHERENT EFFECTS FROM MANY MAGNETIC
IMPURITIES

This section presents the many magnetic impurity scat-
tering treatment. Analytic analysis for the case of two MIs
is performed to reveal the physics behind many MI effects
on the two SRR suppressions, at a subband band edge and
at the MI resonance. Comparison with numerical examples
presents a quantitative confirmation of the SRR suppression
at the MI resonance. We also present numerical results for a
systematic increasing of the number of magnetic impurities
involved in the multiple scattering. Both the robustness of the
SRR suppression at a subband band edge, and the trend of the
suppression of the SRR at the MI resonance are demonstrated.

Multiple scattering of a conduction electron by NM mag-
netic impurities in the AGNRs is formulated in the following
to exhibit the structures in the scattering state. Extending Ĥad

in Eq. (3) to this case, and we have V̂ad given by

V̂ad =
∑
I,ν

|I〉〈I| ⊗
[∑

uI

V nf
ν,uI |ν, uI〉〈ν, uI |

+
∑
uI �=ν

V f
0 |ν, uI〉〈ν, uI |

]
, (28)

where a specific Kth realization of the spin configuration
SK is given by SK = (νK ; u1K , u2K , .., uIK , .., uNMK ). We also
have defined functions νK = ν(SK) and uIK = uI (SK) to
extract the components of the system spin configuration SK.

The scattering state |�kn ;Sin〉 resulted from the incident
state |ψkn ;Sin〉 is given by

|�kn ;Sin〉 =
∑
K

′ ∣∣�SK
kn,Sin

〉⊗ |SK〉, (29)

where the primed summation denotes spin configurations SK
of which its total spin along z, given by Mz,K = h̄

2 (νK +∑
I uIK ) is the same as that of Sin. Substituting Eq. (29) into

the Lippmann-Schwinger equation

|�kn ;Sin〉 = |ψkn ;Sin〉 + ĜV̂ad |�kn ;Sin〉, (30)

and projecting onto 〈I| ⊗ 〈SK|, at the location of an magnetic
impurity, gives

�
SK
kn,Sin

(I ) = δin,K ψkn (I ) +
∑
I ′

GII ′V nf
νuI′ (SK)�SK

kn,Sin
(I ′)

+
∑
I ′

∑
K′

′
GII ′V f

0 〈SK|FI ′[SK′]〉�
SK′
kn,Sin

(I ′),

(31)
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where the primed summation has excluded the K′ = K case.
The two subscripts of V nf

νuI (SK) in the second term of
Eq. (31), namely, ν and uI , are the values of ν(SK) and
uI (SK), respectively. The spin configuration FI[SK] is de-
fined as

FI[SK] =
{

0 if νK = uIK ,

(νK ; u1K , . . . , uIK , . . . , uNMK ) if νK = uIK ,

(32)
which is flipping the electron spin and the local moment at I
if they are antiparallel with each other.

Solving the set of equations given by Eq. (31) deter-
mines the scattering state at the locations of all the MIs.
These results can be used to calculate the scattering state at
an arbitrary site |J 〉, and from it we can extract the spin-
flipped transmission and reflection coefficients as well as the
spin-relaxation rate, according to the method illustrated in
Sec. II A.

A. Case of two magnetic impurities

In this section, we present an analytic electron mul-
tiple scattering calculation involving two MIs and for a
specific incident system-spin configuration. The incident
system-spin configuration we consider here is | ↓⇑⇑〉 (la-
beled as |a〉 below for simplicity), and the other system-
spin configurations involved are | ↑⇓⇑〉 (labeled as |b〉)
and | ↑⇑⇓〉 (labeled as |c〉). We will present that the
near subband band edge behavior remain intact in this
analysis.

For an incident state |ψa〉 ⊗ |a〉, where the incident sub-
band n0 and wave vector kn0 have been kept implicit, and
following Eq. (31), we get

M1�̃(1) + � �̃(2) = A,

� �̃(1) + M2�̃(2) = B, (33)

where

M1 =

⎛
⎜⎝

G11V nf
0 − 1 G11V f

0 0

G11V f
0 G11V nf

0 − 1 0

0 0 G11V nf
1 − 1

⎞
⎟⎠, (34)

� = G12

⎛
⎜⎝

V nf
0 V f

0 0

0 0 V nf
1

V f
0 V nf

0 0

⎞
⎟⎠, (35)

A =

⎛
⎜⎝

−ψa(1)

0

0

⎞
⎟⎠, B =

⎛
⎜⎝

−ψa(2)

0

0

⎞
⎟⎠, (36)

and

�̃(1) =

⎛
⎜⎝

�a(1)

�b(1)

�c(1)

⎞
⎟⎠, �̃(2) =

⎛
⎜⎝

�a(2)

�c(2)

�b(2)

⎞
⎟⎠. (37)

The matrix M2 is obtained from Eq. (34) by replacing the

coordinate from I1 to I2. In this analytic analysis, the two
MIs are chosen to locate on the same-site type. Our numerical
calculations, however, are not limited to the same-site-type
case.

To facilitate the comparison with independent MI effects,
we introduce the independent MI scattering solutions �̃(0).
These are the solutions to Eq. (33), when � is set to zero, and
are given by

�̃(0)(1) = M−1
1 A, and �̃(0)(2) = M−1

2 B. (38)

We obtain

�̃(1) = [1 − (M−1
1 �M−1

2 �
)]−1

�̃(0)(1)

−M−1
1 �
[
1 − (M−1

2 �M−1
1 �
)]−1

�̃(0)(2). (39)

Again, the expression for �̃(2) is obtained from Eq. (39) by
interchanging coordinates I1 ↔ I2.

We simplify Eq. (39) by choosing the two MIs to have the
same transverse site location. Then M1 = M2, and we have

�̃(1) = [1 − (M−1
1 �M−1

1 �
)]−1

× [�̃(0)(1) − M−1
1 ��̃(0)(2)

]
, (40)

where �̃(1) carries a suppression factor G−1
II when μ is in

the close vicinity of a subband band edge, as is evident from
Eq. (38).

The robustness of the SRR suppression at a subband band
edge is illustrated in Fig. 3, where results for independent
MIs (red curve) and for incoherent MI clusters (black curve)
are presented for comparison. The MI cluster considered here
has two MIs per cluster. As shown are the central region for
μ, AGNRs with W = 98, and MI fraction ηM = 10−6. The
overlapping of the two curves over a large portion of the
central region, including the n1th subband band edge, provides
a strong indication of the robustness of our SRR suppression
results. The deviation between the two curves occurs in the MI
resonance region, indicated by the arrows. This will be dis-
cussed in the next section. Before we present our discussion
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FIG. 3. Zero-temperature SRR R0
s vs chemical potential μ for

independent MI (red curves) and for incoherent MI-cluster (black
curve, 2 MI per cluster) results. The R0

s , given by Eq. (41), contains
specific configurations. For the independent MI case, the specific
configuration is the transverse-site location M = 7 in (a), and 34
in (b), respectively. Specific configurations for the incoherent MI-
cluster case are the transverse-site locations M1 = M2 = 7 in (a) and
34 in (b). Average over the longitudinal MI-separation L21 includes
all cases within a range 0 � L21 � 3000 for the incoherent MI cluster
case. Incident spin-configuration averaging has been performed for
all the curves. Depicted by arrows are the R0

s suppression, of the in-
coherent MI-cluster results relative to the independent MI results, at
the resonance. The magnetic impurity fraction ηM = 10−6. To make
connection with previous figures, R0

s has included a factor NM/Ncoh,
where Ncoh = 1(2) for independent MIs (two-MI clusters).

on the SRR suppression physics associated with the subband
band edge, an account on our averaging scheme is presented
below. The R0

s plotted in Fig. 3 has included a numerical factor
NM/Ncoh so as to give the relevant orders of magnitude as in
the previous figures. Explicitly, this R0

s is given by

R0
s = NM

Ncoh

1

NS

∑
S

〈∑
S′

′
R0

s (n0,S
′;S)

〉
L

, (41)

where Ncoh = 1(2) for independent MIs (incoherent two-MI
clusters), and the subscripted configuration average 〈· · · 〉L

denotes averaging over longitudinal coordinates.
Averaging in Eq. (41) over all the incident spin configura-

tions S has the number of spin configurations NS = 4 (NS =
8) for the independent MI (incoherent MI cluster) case. Only
final spin configurations S′ that have its electron spin flipped
related to S will be included. The transverse MI site locations
in Eq. (41), however, are kept fixed, with M1 = M2 = 7 in

Fig. 3(a), and M1 = M2 = 34 in Fig. 3(b). This allows us to
make a closer comparison with our analytical results for the
SRR suppression at a MI resonance in the next section.

Averaging in Eq. (41) of the longitudinal coordinates is
over the MI-separation L21 ≡ N2 − N1 for the incoherent MI-
cluster case. The ensemble includes all L21 cases within a
range 0 � L21 � 3000. We note that the typical L21 associated
with ηM between two MIs is �Nη = 1/(ηMW ) ∼ 104, which is
a bit larger than, but within the same order of magnitude as,
our choice of the upper limit for the L21. Meanwhile the inco-
herent MI-cluster results are found to have already reached the
same averaged R0

s curve in Fig. 3 as early as when the upper
limit of the L21 equals 500. Thus our choice of the ensemble
for the L21 average is reasonable. We further note that the
curves in Fig. 3 are smooth. This is an indication that we have
invoked a large L21 ensemble for the L12-ensemble average
of the R0

s . As for the independent MI case, no longitudinal
coordinate averaging is needed.

The overlapping of the independent MI and the incoherent
MI-cluster curves (Fig. 3) covers over a half of the central
region, extending from the n1th subband band edge. It is very
interesting and deserves an in depth discussion. Looking at in-
dividual L12-specified cases (not shown) chosen from among
the L12 ensemble, all the R0

s exhibit the SRR suppression in
the vicinity of the n1th subband band edge. Meanwhile, for a
sufficiently large L21, the overlapping resembles that in Fig. 3.
Hence we call this overlapping region the nonresonance re-
gion. When L21 is not large enough, deviation occurs in the
nonresonance region between the incoherent MI-cluster and
the independent MI curves. However, this deviation is differ-
ent in its physical nature to the deviation in the remaining part
of the central region. We call this remaining part of the central
region, including the lower |μ| part, εn0,min and the MI reso-
nance energies, the resonance region. In the resonance region,
apparent deviations, with rapid fluctuations, occur between
the independent MI and the incoherent MI-cluster curves.
In the nonresonance region, deviations occur for L21 � 100,
while the incoherent MI-cluster curves fall on top of the
independent MI curves for L21 � 100. This shows that a L12-
ensemble average of the R0

s up to the upper L12 limit of 3000
would have largely diminished, in the nonresonance region,
the deviation between the independent MI and the incoher-
ent MI-cluster curves. On the other hand, in the resonance
region, the deviation between the two curves is not removed
by the L12 averaging, except for the fluctuations. Further dis-
cussion of the resonance region will be presented in the next
section.

Presented below is our explanation for the above observed
fact that, in the nonresonance region, the L21-specified R0

s
from incoherent MI-cluster calculations matches nicely with
the independent MIs results when L21 is large enough. It is di-
rectly related to the contributions to G21(μ) and G11(μ) from
the n �= n0 subbands. We add that these are the nonpropagat-
ing subbands and they contribute only to the real part of the
Green’s functions. Consider the situation when contribution
from n �= n0 subbands to G21(μ) can be neglected, for large
enough L21 [see Eq. (B10)], but the corresponding contribu-
tion to G11(μ) is significant. Then the Green’s function ratio
|G21(μ)/G11(μ)| is smaller than unity. Contributions of the
n0th subband to G21(μ) and G11(μ) have the same magnitude,
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though they are complex and pure imaginary, respectively [see
Eq. (B9)].

We find out that (not shown) the Green’s function ra-
tio |G21(μ)/G11(μ)| � 0.3 in the nonresonance region when
L21 � 100. This Green’s function ratio is reckoned to be the
key factor in M−1

1 � that represents, in the nonresonance re-
gion, the significance of communications between the two
MIs in setting up the scattering wave function [see Eq. (40)].
Deviation between the two curves is given by, in the leading
order, the above Green’s function ratio squared. Summarizing
all we get above for the nonresonance region, the physical
picture is that, when the Green’s function ratio is small for
an inter-MI longitudinal separation L21, the inter-MI commu-
nication will become unimportant so that the R0

s will exhibit
independent-MI characteristics.

As |μ| in the nonresonance region decreases, the afore-
mentioned Green’s function ratio increases, due to decreasing
contributions from the n �= n0 subbands to G11(μ). Mean-
while, as |μ| is getting closer to the MI resonance, the matrix
elements in M−1

1 increases. It is because of the D(μ, I )−1

factor contained in the matrix elements, and that D(μ, I ) is
decreasing. These two developments together drive the system
from the nonresonance to the resonance region. The physical
picture established above holds also for the case of W = 20.
However, additional oscillatory deviation behavior occurs for
W = 20 in the nonresonance region. It is due to the phase
factor attaching to the n0th subband term in G21(μ). It brings
forth oscillatory behaviors, arising from the interference lead-
ing from the superposition in Eq. (40). A larger energy range
for the central region, due to the smaller W , also contributes
to the appearance of this oscillatory behavior. This oscillatory
behavior depends on L21, and is thus subjected to be elimi-
nated by the L21 averaging.

We end this section by getting back to the smooth R0
s profile

we have obtained in our L21 averaging from a large ensem-
ble. This suggests us a �μ-averaging scheme in place of a
real-space L21 averaging. The scheme is to apply a small �μ

averaging to a L21-specific R0
s of incoherent two-MI clusters.

Indeed, we find out that (not shown here) the incoherent MI
cluster results in Fig. 3 can be nicely reproduced by averaging
a L21-specific R0

s over μ within a �μ = 0.001 interval, with
the L21 arbitrary chosen a value L21 = 5000. This is an im-
pressive demonstration of the mesoscopic physics, where �μ

averaging plays the role of a configuration averaging [65]. We
will use this �μ-averaging scheme in place of the real-space
L21-averaging for clusters consisting of larger number of MIs.

B. Suppression of SRR at resonance: case of two magnetic
impurities

In this section, we demonstrate the SRR suppression due
to MI resonance by deriving the SRR R0

s expression at the
MI resonance energies μ = E0

R, j . The resonance energies are
depicted by arrows in Fig. 3. Specifically, the suppression will
be given by the proportionality factor connecting the R0

s for
incoherent two-MI clusters and for independent MIs. The μ

range of our interest is the central region.
Our derivation is based on a resonance approxima-

tion hinted by the form of the matrix elements in
M−1

1 . The nonzero matrix elements of M−1
1 , derived from

Eq. (34), are (M−1
1 )11 = (M−1

1 )22 = − 1
2 [ 1

1−α0G11
+ 1

1−α1G11
],

(M−1
1 )12 = (M−1

1 )21 = 1
2 [ 1

1−α0G11
− 1

1−α1G11
], and (M−1

1 )33 =
− 1

1−α1G11
. These are in the form readied for MI resonances at

E0
s, j .

Consider μ = E0
R,0 in the following. Our resonance ap-

proximation scheme is to drop all 1
1−α1G11

terms in M−1
1 to

give

M−1
1 ≈ −1

2(1 − α0G11)

⎛
⎜⎝

1 −1 0

−1 1 0

0 0 0

⎞
⎟⎠. (42)

Following on the consideration in the previous section,
Eqs. (42) and (38) lead to �̃(0) having only two components,
namely, |a〉 and |b〉 at the location of the first MI (MI-1), and
|a〉 and |c〉 at the location of the MI-2. We note that the two
components of �̃(0) at a MI site correctly reflects the sym-
metry form expected for the E0

R,0 resonance, as is discussed
in the paragraph after Eq. (16). Also, we take the condition
|E0

R,0| � εn1,min for our analysis below. We thus obtain

M−1
1 ��̃(0)(1) ≈ λ0α0�̃

(0)(1), (43)

where λ0α0 = −G12 α0
2(1−α0G11 ) ≈ 1

2 eiγ Qn0 |L12|. Finally, from Eq. (39)

and from the fact that �̃(0)(2) also satisfies Eq. (43), we arrive
at the important relation for �̃(1), given by

�̃(1) ≈ 1

1 − λ2
0α

2
0

[�̃(0)(1) − λ0α0�̃
(0)(2)]. (44)

�̃(2) is obtained when I1 ↔ I2 is performed in Eq. (44).
Before we obtain the spin-flipped transmission and reflec-

tion coefficients from Eq. (44), it is convenient to first obtain
the independent impurity results. Our method follows that pre-
sented in Sec. II A. The spin-flipped coefficient t f(0)

n0n0
(b, a; 1)

from an independent MI-1, which connects only to the |b〉
state in the outgoing wave, is more conveniently expressed
in a form involving �̃(0)(1), rather than in the form given in
Eq. (18). Here we introduce the superscript (0) in t f(0)

n0n0
(b, a; 1)

to stress its independent MI nature, and to separate from
the spin-flipped coefficients for the two-MI case below. The
spin-flipped transmission coefficient for the independent MIs
is given by

t f(0)
n0n0

(b, a; 1) = −i

√
Ny

2(1 + �hn0 )
e−iγ Qn0 N1ϕn0 (1)

× [V nf
0 �

(0)
b (1) + V f

0 � (0)
a (1)

]
. (45)

Similarly, one can show that

rf(0)
n0n0

(b, a; 1) = t f(0)
n0n0

(b, a; 1) e2iγ Qn0 N1 , (46)

and t f(0)
n0n0

(b, a; 1) = t f(0)
n0n0

(c, a; 2), when M1 = M2.
Now, we turn to the incoherent two-MI cluster results.

To extract the spin-flipped transmission and reflection co-
efficients arising from MI-1, we consider projecting the
spin-flipped outgoing wave at an arbitrary site |J 〉 to give
�b(J ) = GJ 1[V nf

0 �b(1) + V f
0 �a(1)]. From this projection

155422-10



LARGE SUPPRESSION OF SPIN-RELAXATION RATE IN … PHYSICAL REVIEW B 105, 155422 (2022)

expression, and together with Eq. (44), we obtain

t f
n0n0

(b, a; 1) = 1 − 1
2 eiγ Qn0 (|L12|−L12 )

1 − 1
4 e2iγ Qn0 |L12| t f(0)

n0n0
(b, a; 1). (47)

Similarly, one can obtain

t f
n0n0

(c, a; 2) = 1 − 1
2 eiγ Qn0 (|L12|+L12 )

1 − 1
4 e2iγ Qn0 |L12| t f(0)

n0n0
(b, a; 1). (48)

The reflection coefficients rf
n0n0

(b, a; 1) and rf
n0n0

(c, a; 2) bear
the same relation form with t f

n0n0
(b, a; 1) and t f

n0n0
(c, a; 2),

respectively, as that given in Eq. (46). Only that the location
N1 in the phase factor on the right-hand side of Eq. (46) should
be changed to N2 if the relation is applied to MI-2.

It is of interest to see that the spin-flipped outgoing waves
from MI-1 do not interfere with that emanating from MI-2,
because of different spin configurations in |b〉 and |c〉. We
note that this is in sharp contrast with normal scatterer, where
all outgoing scattered waves, which would be non-spin-flip
only, of the same energy will certainly interfere and will lead
to deviation from independent-scatterer results. Thus the MIs
would be easier to establish independent MIs characteristics
than normal scatterers.

The zero-temperature total spin-relaxation rate R0
s (n0, a)

for the incident state |ψa〉 ⊗ |a〉 at the resonance energy E0
R,0,

follow Eq. (A11), is given by

R0
s (n0, a) = NM

Ncoh

vgn0

Ny

√
3 a

2∑
α=1

′[∣∣t f
n0n0

(S′, a; α)
∣∣2

+ ∣∣rf
n0n0

(S′, a; α)
∣∣2], (49)

where the primed summation denotes S′ = b and c for, respec-
tively, α = 1 and 2. The factor NM/Ncoh has been introduced
to Eq. (49) for Fig. 3, in order to give the relevant orders of
magnitude as in Figs. 1 and 2. Here Ncoh = 2.

For comparison, the independent MI results for the corre-
sponding total spin-relaxation rate RInd

s (n0, a) is given by

RInd
s (n0, a) = NM

4vgn0

Ny

√
3 a

∣∣t f(0)
n0n0

(b, a; 1)
∣∣2. (50)

Again, the prefactor NM has been added to accommodate the
total contribution from the MIs in Fig. 3.

The important relation between R0
s (n0, a) and RInd

s (n0, a),
for the case of N2 > N1, and at μ = E0

R,0, is then obtained

R0
s (n0, a) = A0 + 1/4

A0 + 9/16
RInd

s (n0, a) (51)

where A0 = sin2(Qn0 L21). The expression clearly shows the
suppression of the spin-relaxation rate at the resonance energy
E0

R,0.
However, the two-MI cluster SRR R0

s shown in Fig. 3 has
been averaged over incident spin configurations and over L21,
while keeping M1 = M2 at fixed values. So, to perform the
incident spin-configuration average, we need to also calcu-
late R0

s (n0, b), R0
s (n0, c) and R0

s (n0, d ). Here |b〉 is the spin
state with all the spins in |b〉 reversed, and |d〉 = | ↓⇓⇓〉
has zero spin-flipping rate. Similar to the method leading
to Eq. (51), we get Rs(n0, b) = Rs(n0, c) = 1

2 Rs(n0, a). The

FIG. 4. Zero-temperature SRR R0
s vs chemical potential μ for

incoherent MI-cluster results. The number of MI in a cluster equals 1
(black dotted), 2 (blue dashed), 3 (red solid), and 4 (black solid), with
incident spin configurations given, respectively, by | ↓⇑〉, | ↓⇑⇑〉,
| ↓⇑⇑⇑〉, and | ↓⇑⇑⇑⇑〉. All transverse site locations are fixed at
M = 7. R0

s is basically given by Eq. (41) except that there is no in-
cident spin configuration averaging. The magnetic impurity fraction
ηM = 10−6.

spin and L21 averaged R0
s shown in Fig. 3 is given by

R0
s = 1

2 〈R0
s (n0, a)〉L21 , whereas the spin-configuration aver-

aged independent-MI SRR is denoted by RInd
s = 1

2 RInd
s (n0, a).

Finally, we obtain the important relation between the two
curves in Fig. 3 at the MI resonance energy E0

R,0, given by

R0
s =

〈
A0 + 1/4

A0 + 9/16

〉
L21

RInd
s . (52)

Excellent matching of the ratio R0
s /RInd

s obtained from
Fig. 3 and from Eq. (52) is presented below. For Fig. 3(a),
when M1 = M2 = 7, the ratio from the figure [Eq. (52)] is
0.66 (0.67). The R0

s /RInd
s ratios in Fig. 3(b), when M1 = M2 =

34, are the same as that in Fig. 3(a).
At the resonance energy E0

R,1, similar analysis gives us

R0
s =

〈
20A0

16A0 + 9

〉
L21

RInd
s . (53)

This expression also agrees very well with our numerical
results. In Fig. 3(a), the ratio from the figure [Eq. (53)] is 0.51
(0.50). The corresponding ratios in Fig. 3(b) are the same as
that in Fig. 3(a).

C. Incoherent MI cluster

In this section, we present incoherent MI-cluster results,
when the number (Ncoh) of MIs in a cluster increases sequen-
tially, from Ncoh = 1 up to Ncoh = 4. The trends, shown in
Fig. 4, exhibit in the SRR R0

s are the robustness of the SRR
suppression in the nonresonance region and the suppression
characteristics of the SRR in the resonance region.

The zero-temperature SRR R0
s shown in Fig. 4 has been

averaged over the MIs’ longitudinal separations, while all the
transverse site locations are fixed, at M = 7, and incident
spin configurations are specified. The R0

s is basically given by
Eq. (41) except that there is no incident spin configuration
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averaging. In the order of increasing Ncoh, the incident spin
configurations are | ↓⇑〉, | ↓⇑⇑〉, | ↓⇑⇑⇑〉, and | ↓⇑⇑⇑⇑〉,
respectively. This choice of the incident spin configuration
should be a good representation for each Ncoh to reveal the
trend of the variation of the SRR characteristics as Ncoh in-
creases. On the other hand, a full incident spin configuration
average has been performed for our finite temperature SRR
1/τs result, presented in Fig. 1, for the incoherent three-MI
cluster (Ns = 3) case. The magnetic impurity fraction ηM =
10−6 is the same for all curves.

Two longitudinal separation averaging schemes have been
invoked in Fig. 4. A real-space averaging has been applied
to the Ncoh = 2 curve, with a L21 ensemble including all
L21 within the interval 0 � L21 � 5000. For the Ncoh = 3,

and 4 curves, a �μ-averaging scheme, as is discussed in
section III A, has been used. In the Ncoh = 3 curve, we have
averaged R0

s over μ by a �μ = 0.0018 interval. The choice
for the longitudinal separations between the three MIs, chosen
to be L21 = 5000 and L32 = 7000 for Fig. 4, is found not
crucial to the R0

s curve. Here MIs are labeled in order of their
longitudinal positions. We recall that the typical longitudinal
separation between two MIs is given by �Nη = 1/(ηMW ) ∼
5 × 104 for the case of W = 20 in Fig. 4. Our finding that
the above �μ-averaging scheme gives the same R0

s curve as
long as the above longitudinal separations are greater than
103, which is a reasonable range of choices from the �Nη

perspective, is a strong assurance of the validity of our �μ-
averaging scheme. Even if the longitudinal separation goes
down to 500, the same R0

s curve can still be obtained if we
slightly increase �μ to 0.004 for the averaging. Similarly, the
Ncoh = 4 curve has used the same �μ-averaging scheme with
�μ = 0.0018, L21 = 5000, L32 = 7000, and L43 = 9000.

In Fig. 4, we can see the remarkable overlapping of the
four curves not only near the n1th subband band edge, but
also extends from there to cover more than one half of the
central region. This is a clear demonstration of the robustness
of the SRR suppression features. The region of interest here
is the nonresonance region pointed out in Sec. III A. Dis-
cussions in Sec. III A has shown, for the case of incoherent
two-MI clusters, two physical reasons that helped uphold the
nice overlapping finding. These are the singular feature of
GII (μ), at the subband band edge, and the role of small
|G12(μ)/G11(μ)| as to impose a μ dependent finite range of
communication, via the electrons, between the MIs. The over-
lapping findings here for Ncoh > 2 cases show that the same
two physical reasons remain at work for incoherent multi-MI
clusters.

The SRR suppression characteristics in the resonance re-
gion has shown, in Fig. 4, its trend of modification with the
increasing of the Ncoh. The SRR R0

s peak values are lowered
gradually with the increasing of Ncoh. As a matter of fact, the
SRR peak is modified into a broad shoulder as Ncoh increases.
This suppression has been analyzed, in section III B, for the
Ncoh = 2 case at the MI resonance energies in a W = 98
AGNR, with excellent matching of the analytical results to
the numerical results. From the spin-flipped transmission ex-
pressions, in Eqs. (47) and (48), we see that the suppression
occurs for all L21. Even if one of the MI, say MI-1, would
have, for a particular L21, a spin-flipped transmission which
magnitude is greater than the individual MI’s spin-flipped

transmission, t f(0)
n0n0

(b, a; 1), the spin-flipped transmission of the
MI-2 would be lowered so that the total spin-flipped rate in the
transmission is lowered. This suggests to us a physical picture
for the SRR suppression in the resonance region, namely,
the MIs compete among themselves for their own resonance,
when they have similar resonance energies. To check on this
physical picture explicitly (not shown), we shift one MI’s
resonance energy by changing the MI’s physical parameters,
such as εh, J , and T , and we arrive at a reduced suppression.

A further discussion on our incoherent Ncoh-MI clusters
treatment for the SRR calculation is in order here. We refer
to Fig. 1, our highlighted key figure, for a specific discus-
sion example. Here our focus is on the incoherent three-MI
clusters curve. Full averages have been done for both spin
configurations and transverse-locations (M1, M2, and M3).
The longitudinal-location average of the three MIs have been
done by the �μ-averaging scheme, with the SRR 1/τs aver-
aged over a �μ = 0.00125, while choosing L21 = 5000 and
L32 = 6000. The incoherent three-MI clusters curve describes
the situation when the phase-coherence length Lφ sets in to
render the four-MI cluster not relevant. In other words, the
round trip between the first and the fourth MIs will have to
be greater than Lφ [66]. So, Lφ < 2Ncoh�Nη in the units of√

3a. For the case of Fig. 1, the incoherent three-MI clusters
calculation is appropriate when Lφ < 63 μm. We do not have
enough information on the value of Lφ [66], or its temperature
dependence. Yet it suffices to say that Ncoh � 3 is quite good
for the given ηM . In any case, the 1/τs characteristics in the
nonresonance region remain intact, while the 1/τs profile in
the resonance region is basically known, from our study, albeit
leaving the peak values as a detail subjecting to the values
of Lφ .

IV. CONCLUSION

In conclusion, we have demonstrated two SRR suppres-
sion phenomena in long AGNRs at finite temperatures. One
suppression is in the nonresonance region and the other is
in the resonance region. Physical pictures behind these two
SRR suppressions are different and have been revealed in
our analytical analysis. We have formulated a microscopic
approach for the calculation of the SRR in ballistic nanostruc-
tures. A low concentration of magnetic impurities provides the
spin-flipping source.

In the nonresonance region, large SRR suppression occurs
at a subband band edge. The suppression factor Fsp, a ratio
between the 1/τs in 2D and in AGNRs at a finite temperature,
is large (Fsp = 9.3, 9.7) at 4 K, and is good (Fsp = 3.2, 3.7)
even at 77 K. This is for the W = 20 case. For smaller W , the
suppression factor is even higher.

The singular density of states at a subband band edge
provides the impetus for multiple scatterings, which in turn
suppress the total scattering wave function at the sites of the
MIs, and lead to the suppression in the spin-flipping processes
and to the formation of a dip structure in 1/τs. Our analy-
sis shows that this singular feature is brought forth via the
Green’s function GII (μ). Equally important, for the large
SRR suppression to remain intact in finite temperatures, the
profile of the SRR dip structure also matters. That is, the
1/τs dip structure should have a gradual overall dip profile,
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covering a finite μ region in the vicinity of the subband band
edge. This is shown to be the case because of the contribution
to GII (μ) from all the nonpropagating subbands, and that
these contributions diminish in a gradual manner, when |μ|
decreases from the subband band edge.

We have shown that the 1/τs behavior in the nonresonance
region is robust. It remains intact regardless of the number
Ncoh of MIs being involved in the coherent multiple scat-
tering. This is shown related to the Green’s function ratio
|G21(μ)/G11(μ)| that, when it is sufficiently small, can cause
the communication between MIs via the electrons to become
unimportant. The physical origin of a small |G21(μ)/G11(μ)|
is related to the contribution of the nonpropagating subbands
to both G21(μ) and G11(μ). It is when, for a given μ in
the central region, the contributions to G21(μ) from the non-
propagating subbands becomes negligible for a large enough
L21, but the contribution to G11(μ) from the nonpropagating
subbands is important.

In the resonance region, we have found the suppression of
1/τs at the MI resonance energies. Our analysis of the two-MI
cluster case shows explicitly that the suppression occurs for all
L21 less than the phase-coherence length Lφ . And that even if
one of the MI would have a spin-flipped transmission greater
in magnitude than that of an independent MI, the spin-flipped
transmission of the other MI would be lowered so that the total
spin-flipped rate in the transmission is lowered. This suggests
to us a physical picture of a competition among the MIs
for their own resonances, when they have similar resonance
energies.

Our demonstration of the large suppression of the spin-
relaxation rate from magnetic impurities, the most effective
extrinsic spin-flipping source, by tuning μ to a subband
band edge of the AGNRs opens up similar possibilities in
other nanostructures. Nanostructures such as carbon nan-
otubes [67], AGNR superlattices [68–70], bilayer graphene
nanoribbons [71], and nanoribbons formed from 2D materials
[4] are expected to be of close relevance to the finding of this
work.
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APPENDIX A: SPIN-RELAXATION RATE AND
TRANSPORT COEFFICIENTS

In this Appendix, the relation between the transition rate,
or the spin-relaxation rate, and the transport coefficients is
established via their respective relations with the T̂ matrix.

The transition rate d
dt |〈κ f |κi, t0; t〉S |2, with the effects of a

potential V̂ fully incorporated, up to all orders, is expressed in
terms of the T̂ matrix, given by

d

dt
|〈κ f |κi, t0; t〉S |2 = 2π

h̄
δ(Ei − E f ) |〈κ f |T̂ |κi〉|2. (A1)

Equation (A1) was obtained in quantum mechanics text-
books [72,73] from taking an Ansatz approach. We
show, in the following, that a direct approach for
Eq. (A1) using only the time-dependent perturbation theory

presents a more lucid presentation of the physical details
involved.

Consider the Hamiltonian H = H0 + V̂ eηt for an infinites-
imal positive η. At a sufficiently remote time t0 in the past,
where eηt0 � 1, the initial state in the interaction picture is
given by |κi, t0; t0〉I = |κi〉. The amplitude of the transition
to the state |κ f 〉 at a later time t is given by 〈κ f |κi, t0; t〉S =
〈κ f |e−iH0t/h̄ ÛI(t, t0)|κi〉. Here the subscript S denotes the
Schrödinger picture, ÛI(t, t0) denotes the time-evolution op-
erator in the interaction picture, and |κ f 〉 �= |κi〉 is considered.
The nth order term of the transition amplitude is given by the
form

〈κ f |e− i
h̄ H0t Û (n)

I (t, t0)|κi〉 = e− i
h̄ Eit+nηt

Ei − E f + inh̄η

×〈κ f |V̂ (ĜEiV̂ )n−1|κi〉, (A2)

where Eα is the energy of |κα〉 and the Green’s functions
involved have the form ĜEi = (Ei − H0 + in′h̄η)−1, for 1 �
n′ < n. These Green’s functions are all assumed to be re-
placeable by that for n′ = 1. This is achieved by keeping η

infinitesimal. From Eq. (A2), the transition rate

d

dt
|〈κ f |κi, t0; t〉S |2 =

∞∑
n,n′=1

η(n + n′)e(n+n′ )ηt 〈κ f |T̂n|κi〉
(Ei − E f + inh̄η)

× 〈κ f |T̂n′ |κi〉∗
(Ei − E f − in′h̄η)

, (A3)

where T̂n = V̂ (ĜEiV̂ )n−1. Finally, Eq. (A1) is obtained from
using the relation

(n + n′)η
(ε + inh̄η)(ε − in′h̄η)

= 2π

h̄
δ(ε), (A4)

and that T̂ =∑∞
n=1 T̂n is identified as the T̂ -matrix that ap-

pears in the scattering theory. [72,73] The transition rate is
evaluated at t = 0.

Now that, according to Eq. (A1), we can obtain the
spin-relaxation rate of a specific process in a quasi-one-
dimensional structure. Specifically, the process of an initial
state |κn, ν〉 making transition to a final state |κn′, ν〉
Both |κn, ν〉 and |κn′, ν〉 now denote propagating channels
in the quasi-one-dimensional structure. Here |κα, ν〉 denotes
the electron eigenstates of H0, with α, and ν representing the
subband and spin indices, respectively. And κα denotes the
remaining quantum numbers of the eigenstate, such as the
spin states of all the MIs and the longitudinal wave vector
Qα of the electron. The electron spin state |ν〉 = | − ν〉 is of
opposite spin to the |ν〉 state, and H0 is degenerate in spin as
the MIs effects are contained in V̂ . The spin-relaxation rate of
this specific process is given by∑

Qn′

d

dt
|〈κn′ , ν|κn, ν, t0; t〉S |2 = L |〈κn′ , ν|T̂ |κn, ν〉|2

h̄2 vgn′
, (A5)

where vgn′ is the group velocity and L is the longitudinal
length of the quasi-one-dimensional structure.

Connections of the matrix elements of the T̂ -matrix to
the transmission or the reflection coefficients are obtained
by a lattice-site projection of the scattered wave, given by
〈J , ν|ĜV̂ |�κnν〉. Here |�κnν〉 is the full scattering state for

155422-13



VAN MINH NGUYEN AND C. S. CHU PHYSICAL REVIEW B 105, 155422 (2022)

the incident state |κn, ν〉. We choose |κn, ν〉 to be right-going.
The lattice-site |J 〉 = | j, s〉 is selected, for the case of trans-
mission (reflection) coefficients, when |κn′ , ν〉 and |κn, ν〉 are
moving in the same (opposite) direction, to have its longitudi-
nal coordinate Nj greater (smaller) than all the longitudinal
coordinates of the MIs. Site indices ( j, s) of, respectively,
the unit cell and the site-type (A/B type), are invoked for
the structures formed out of graphene. In the following, we
present the simpler case when all the MIs and the |J 〉 lattice-
site are of the same-site type. The more general cases, not
shown here, when the MIs occupy different-site types, are also
found to give the same relation between the spin-relaxation
rate of a specific process and the magnitude squares of the
corresponding transmission or reflection coefficients.

On the one hand, from V̂ |�κnν〉 = T̂ |κn, ν〉, we have

〈J , ν|ĜV̂ |�κnν〉 =
∑
J ′

GJJ ′ (E ) 〈J ′, ν|T̂ |κn, ν〉,

= 1

2π

∑
J ′

∑
n′

ϕn′ ( j, j′) gJJ ′
n′ (E )

×〈J ′, ν|T̂ |κn, ν〉, (A6)

where E is the electron energy, and Eq. (B6) has been used
for GJJ ′ . Decoupling of the longitudinal coordinates, Nj

and Nj′ , in gJJ ′
n′ (E ) when Nj is outside the scattering re-

gion (either Nj � Nj′ or Nj � Nj′ for all Nj′ ), and Nj′ is
associated with the magnetic-impurity locations, allows us to
rewrite 〈J , ν|ĜV̂ |�κnν〉prop, the propagating-channel part of
〈J , ν|ĜV̂ |�κnν〉 in Eq. (A6) into the form

〈J , ν|ĜV̂
∣∣�κnν

〉
prop =

∑
n′

′
[ −iNy|E |

2βn′sinQn′

]
〈J , ν|κ±

n′ , ν〉

×〈κ±
n′ , ν|T̂ |κn, ν〉. (A7)

Here |κ±
n′ , ν〉 denotes the right(left)-going state when |J 〉 is

located in the transmission (reflection) regime outside the
scattering region, and the primed summation has restricted
the n′th channel to the propagating ones. Equation (A7)
is obtained from using the expressions of gJJ ′

n′ (E ) and of
the subband wave function 〈J , ν|κ±

n′ , ν〉 in, respectively,
Eqs. (B7) and (B5).

An alternate view on Eq. (A7) provides us the following
form:

〈J , ν
∣∣ĜV̂ |�κnν

〉
prop =

∑
n′

′
t f
n′n(κn′, ν ; κn, ν)

×〈J , ν|κn′ , ν〉, (A8)

where t f
n′n(κn′ , ν ; κn, ν) is the spin-flipped transmission co-

efficient. However, when J is changed from located within
the transmission region to within the reflection region,
t f
n′n(κn′ , ν ; κn, ν) in Eq. (A8) will be replaced by the spin-

flipped reflection coefficient rf
n′n(κ−

n′ , ν ; κn, ν).
For a more compact presentation hereafter, the spin-flipped

transmission coefficient above will be relabeled as t f
n′n(S′,S).

Here S′ and S represent, respectively, the final and the initial
system-spin configurations, into which spin states of all the
MIs and the scattering electron have been included. Same re-
labeling applies also to the spin-flipped reflection coefficient.

These spin-flipped coefficients are restricted to S and S′ of
which the electron spin has been flipped.

From Eqs. (A8) and (A7), we obtain

t f
n′n(S′,S) = −iNy

√
3a

h̄vgn′ (E )
〈κn′ , ν|T̂ |κn, ν〉, (A9)

where the group velocity for the nth propagating channel [see
the paragraph after Eq. (B4)] is given by

vgn(E ) = 2
√

3 aβn(1 + �hn) sinQn/(h̄|E |). (A10)

The expression for rf
n′n(S′,S) is the same as in Eq. (A8) except

that κn′ is replaced by κ−
n′ . Finally, the spin-relaxation rate,

according to Eq. (A5) but now denoted by Rs(n′,S′; n,S) for
the specific processes from (n,S, E ) to (n′,S′, E ), wherein
contributions from both transmission and reflection have been
included, is given by

Rs(n
′,S′; n,S) = vgn′

Ny

√
3 a

[ ∣∣t f
n′n(S′,S)

∣∣2 + ∣∣rf
n′n(S′,S)

∣∣2 ].
(A11)

Here L = Ny

√
3 a has been used, and Ny is an even integer for

AGNRs.
It is important to identify that the spin-relaxation rate

Rs(n′,S′; n,S), given by Eq. (A11), is exactly that of the
outgoing spin-flipped current for the corresponding processes.
The prefactor vgn′/(Ny

√
3 a) in Eq. (A11) is the probability

current due to the subband state |κ±
n′ , ν〉, or simply the |ψk±

n′ 〉
state if we focus on the electron. This nice connection of
the spin-relaxation rate to the outgoing spin-flipped current
reassures us about our result in Eq. (A11). Most importantly,
Eq. (A11) has allowed us to calculate the spin-relaxation rate
by a quantum transport approach.

The thermal average of Rs(n′,S′; n,S), averaging over all
possible incoming particle fluxes from all possible propagat-
ing nth channels, is given by the form

RT
s (n′,S′;S) =

∑′
n

∑
Qn

Rs(n′,S′; n,S) [ fL(E ) − fR(E )]∑′
n

∑
Qn

[ fL(E ) − fR(E )]
,

(A12)
where fα (E ) = fFD(E − μα ) is the Fermi-Dirac distribution
function, the primed summation is over the propagating chan-
nels for the energy E , and Qn is the wave vector in the
nth channel. The left and right electrodes of the quasi-one-
dimensional system are at chemical potentials μL and μR,
respectively, while they are in thermal equilibrium at the same
temperature T . A quasisteady state is maintained, with μL =
μ + �μ and μR = μ. The interchangeability in Eq. (A12) of
the n summation and the energy integral, which is converted
from the Qn summation, is guaranteed when Rs(n′,S′; n,S)
has restricted the nth subband to be a propagating channel
for the energy E . This allows us to express, as shown in the
following, RT

s (n′,S′;S) in terms of its zero-temperature limit
R0

s (n′,S′;S).
The zero-temperature expression R0

s (n′,S′;S) can be de-
rived from Eq. (A12), given by

R0
s (n′,S′;S) =

∑′
n

1
vgn

Rs(n′,S′; n,S)∑′
n

1
vgn

, (A13)
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which, according to the group velocity expression in
Eq. (A10), can also be rewritten in the form

R0
s (n′,S′;S) =

∑′
n

1
βn(1+�hn ) sinQn

Rs(n′,S′; n,S)∑′
n

1
βn(1+�hn ) sinQn

. (A14)

The finite temperature RT
s (n′,S′;S) can then be expressed

in terms of R0
s (n′,S′;S), given by

RT
s (n′,S′;S) =

∫
dE
(− ∂ fFD

∂E

)(∑′
n

1
vgn

)
R0

s (n′,S′;S)∫
dE
(− ∂ fFD

∂E

)(∑′
n

1
vgn

) ,

(A15)
where the integrands are substituted from Eq. (A13) while
identifying its dependence on μ as dependence on E .

Finally, the spin-relaxation rate τ−1
s at temperature T and

chemical potential μ is given by

1

τs
= 1

NS

∑
S

〈∑
S′

′∑
n′

′
RT

s (n′,S′;S)

〉
I

, (A16)

where averages over all possible incident spin configurations
S and over possible magnetic impurity site-location config-
urations I have been included. The primed S′ summation
includes S′ wherein the electron spin is flipped relative to that
in S. Here NS is the total number of system spin configura-
tions. Equation (A16) describes the case when all the MIs are
involved coherently in the spin-flipped multiple scatterings of
the conduction electrons.

On the other hand, when the total number of MIs, NM of
them, forms NM/Ncoh groups of which each group behaves as
a coherent magnetic-impurity cluster that contributes coher-
ently to the spin-flipped multiple scatterings, whereas between
groups the contributions to the spin-flipped scatterings can be
treated as incoherent, then the spin-relaxation rate is given by

1

τs
= NM

Ncoh

1

NS

∑
S

〈∑
S′

′ ∑
n′

′
RT

s (n′,S′;S)

〉
I

. (A17)

Here NS corresponds to the total number of spin configura-
tions that is consistent with a coherent cluster involving Ncoh

MIs and a conduction electron. The average over the magnetic
impurity site-location configuration would then be performed
within a region typically of the effective size of the cluster.

APPENDIX B: AGNR GREEN’S FUNCTION

In this section, we first present the subband wave functions
of AGNRs in the presence of edge passivation, and then
present the Green’s function. This Appendix also serves the
purpose of introducing the physical parameters used in this
work.

An analytic AGNR Green’s function is crucial for the
extraction of important physical insights from complicated
calculations and numerical results [46,74]. We show in the fol-
lowing that an analytic AGNR Green’s function GJJ ′ (E ) can
still be obtained when we include to the AGNRs additional
effects, namely, effects from edge-passivation [62–64]. This
is the saturation of dangling bonds by hydrogen at the AGNR
edges. The most essential edge-passivation effect is to cause
the gapless subband of the W = 3p + 2 AGNRs to open up a

gap [62–64]. Edge passivation also modifies the energy gaps
of gapped subbands. All these subband energy-gap creation
or modification can be captured by a hopping-constant mod-
ification at the AGNR edge-bonding, the bondings at the two
edges that orient parallel to the AGNRs [62,63].

Explicitly, the Hamiltonian describing the edge passivation
is given by

HEP = −δt
∑
Nj

′ ∑
Mj=0,W −1

[ | j, A〉〈 j, B| + | j, B〉〈 j, A|],

(B1)
where δt , the bulk graphene hopping constant, is chosen
the value δt = 0.12 [63], so as to closely reproduce the
AGNR subband energy gaps obtained from first-principle
calculations [62]. The lattice site J of the carbon π -orbital
|J 〉 has J = ( j, s) = (R, s), which depicts, respectively, the
graphene unit-cell position and site-type (A/B type) index.
Position R j = Mjax̂ + Nj

√
3 aŷ has the transverse coordinate

0 � Mj � W − 1, a = 1.23 Å, and W represents the number
of longitudinal carbon chain in the AGNRs. We have chosen
the convention that Mj + Nj are even integers. As such the
primed summation in Eq. (B1) denotes imposing of this con-
vention.

For an ideal AGNR, where the edge passivation is not
included, the subband index n is given by W/2 + 1 � n � W
for even W . The transverse subband wave function ϕn( j) is
given by

ϕn( j) = 2√
W + 1

sin

[
nπ (Mj + 1)

W + 1

]
, (B2)

so that knxa = nπ/(W + 1) gives the quantized transverse
wave vector. Focusing on the W = 3p + 2 AGNRs, we have
the gapless subband denoted by n0 = 2(W + 1)/3, and the
first gapped subband denoted by n1 = n0 + 1. Our major en-
ergy region of interest in this work is wherein the n0 subband
constitutes the sole propagating channel in the AGNRs.

We calculate the subband wave function by treating the
HEP within a perturbation scheme [63]. This is appropriate
because the average δt ∼ δt/(W + 1) per bonding is much
smaller than unity. Assuming the transverse wave function
ϕn( j) to remain intact, the perturbation effects will show up in
the coefficients Cs at the A and B sites. Following Ref. [63],
we define two basis kets

|�kn ; s〉 =
∑

j

1√
Ny

eikyNj

√
3a ϕn( j)| j, s〉. (B3)

Matrix elements of H0 + HEP with respect to these basis kets
are 〈�kn ; s|(H0 + HEP)|�kn ; s′〉, which equals −h̃(kn) when s
(s′) are A (B) sites, respectively, and equal zero when s = s′.
Here, H0 describes the ideal AGNR, and

h̃(kn) = h(kn) + �hn, (B4)

where h(kn) = 1 + 2cos(knxa) eiky

√
3a, and �hn = (4δt/(W +

1)) sin2(nπ/(W + 1)). The dispersion relation for the nth sub-
band is E (kn, γ ) = γ |h̃(kn)|.
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The subband state wave function 〈J |ψk±
n
〉, right (left)-

going in its propagation, is given by

〈
J
∣∣ψk±

n

〉 = e±iγ QnNj√
Ny

ϕn( j)

⎛
⎝CA(k±

n )

CB(k±
n )

⎞
⎠, (B5)

where k±
n = (knx,±γ Qn/(

√
3a)), with Qn chosen to be posi-

tive. The notation Qn has replaced ky when the electron energy
E is our primary physical quantity of interest. Also, CA(k±

n ) =
1/

√
2, CB(k±

n ) = γ h̃∗(k±
n )/(

√
2 |E |), γ = −γ , and Ny is the

total unit cells along ŷ in the system (Ny is even for an
AGNR). All dependencies on E are kept implicit. We also
define βn = −cos(knxa), which is positive, to simplify our
expressions below.

The tight-binding model AGNR Green’s function
GJJ ′ (E ), in a subband summation form, is given by [46,74]

GJJ ′ (E ) = 1

2π

∑
n

ϕn( j)ϕn( j′) gJJ ′
n (E ). (B6)

The same-site type reduced Green’s function gJJ ′
n (E ) for

an energy E that falls within the subband, that is εn,min <

|E | < εn,max, is given by

gJJ ′
n (E ) = −i

π |E |
2βn(1 + �hn)

eiγ Qn|L j j′ |

sinQn
. (B7)

Here J and J ′ are either of the AA-type or BB-type, and
Lj j′ = Nj − Nj′ . The nth subband band edges are εn,min =
|1 + �hn − 2βn| and εn,max = 1 + �hn + 2βn. In particular,
εn0,min = �hn0 .

In our energy region of interest εn0,min � |E | � εn1,min, we
have Qn0 � 1, such that for |E | = f �hn0 ( f > 1), we have

gJJ ′
n0

(E ) ≈ −i
π√

1 + �hn0

eiγ Qn0 |L j j′ |√
1 − 1/ f 2

, (B8)

which clearly shows that

gJJ ′
n0

(E ) ≈ −iπ
eiγ Qno |L j j′ |√
1 + �hn0

, (B9)

is quite a good approximation for Eq. (B8), even when |E |
is close to the subband band edge, with f � 2. We note that
Eq. (B9) will be used for the discussion of the SRR resonance.

When the energy E falls outside the subband energy range,
the same-site type reduced Green’s function gJJ ′

n (E ) exhibits
exponential decay behavior in its longitudinal-location de-
pendence. Specifically, in the lower energy-gap region of a
gapped subband, namely, 0 < |E | < εn,min, we have

gJJ ′
n (E ) = − πE

2βn(1 + �hn)

e−QnI|L j j′ |

sinhQnI
. (B10)

In the low-energy (|E | � εn,min) regime, we have E2 = (1 +
�hn)2 + 4β2

n − 4βn(1 + �hn)coshQnI ≈ 0, such that

gJJ ′
n (E ) ≈ − 2πE∣∣4β2

n − (1 + �hn)2
∣∣ e−QnI|L j j′ |. (B11)

This form in Eq. (B11) will be used for the SRR resonance
discussion.

On the other hand, when |E | approaches εn,min from below,
that is, |E | = εn,min − �, we have

gJJ ′
n (E ) ≈ −π

2
sgn(E )

√
εn,min

� · βn(1 + �hn)

× e−
√

�·εn,min
βn (1+�hn ) |L j j′ |. (B12)

Equation (B12) will be used for the SRR suppression discus-
sion near subband band edges. The condition � � εn,min has
been assumed to obtain Eq. (B12). The function sgn(x) returns
the sign of x. It is clear from Eq. (B12) that the magnitude
of GJJ ′ (E ) increases as � is decreasing, this is due to the
dominating contribution from the nth subband to GJJ ′ (E ).

The different-site type reduced Green’s function gJJ ′
n,BA(E )

for an energy E that is within the subband is given by

gJJ ′
n,BA(E ) = − iπ |E |√

2βn(1 + �hn)

eiγ Qn|L j j′ |

sinQn

× CB(knx, γ sgn(Lj j′ )Qn), (B13)

where |Lj j′ | > 1 is assumed. The AB-type reduced Green’s
function can be obtained from gJJ ′

n,AB(E ) = gJ
′J

n,BA(E ).
Finally, the different-site type reduced Green’s function, at

an energy E that is outside the subband energy range, and also
in the region 0 < |E | < εn,min, is given by

gJJ ′
n,BA(E ) = π

2βn(1 + �hn)

e−QnI|L j j′ |

sinhQnI

× [ 1 + �hn − 2βn e−sgn(Lj j′ )QnI ]. (B14)

[1] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J.
van Wees, Electronic spin transport and spin precession in sin-
gle graphene layers at room temperature, Nature (London) 448,
571 (2007).

[2] W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian,
Graphene spintronics, Nat. Nanotechnol. 9, 794
(2014).

[3] S. Roche, J. Åkerman, B. Beschoten, J.-C. Charlier, M.
Chshiev, S. P. Dash, B. Dlubak, J. Fabian, A. Fert, M.
Guimarães, F. Guinea, I. Grigorieva, C. Schönenberger, P.

Seneor, C. Stampfer, S. O. Valenzuela, X. Waintal, and B. van
Wees, Graphene spintronics: the European Flagship perspec-
tive, 2D Mater. 2, 030202 (2015).

[4] A. Avsar, H. Ochoa, F. Guinea, B. Özyilmaz, B. J. van Wees,
and J. J. Vera-Marun, Colloquium: Spintronics in graphene and
other two-dimensional materials, Rev. Mod. Phys. 92, 021003
(2020).

[5] I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fun-
damental and applications, Rev. Mod. Phys. 76, 323
(2004).

155422-16

https://doi.org/10.1038/nature06037
https://doi.org/10.1038/nnano.2014.214
https://doi.org/10.1088/2053-1583/2/3/030202
https://doi.org/10.1103/RevModPhys.92.021003
https://doi.org/10.1103/RevModPhys.76.323


LARGE SUPPRESSION OF SPIN-RELAXATION RATE IN … PHYSICAL REVIEW B 105, 155422 (2022)

[6] M. W. Wu, J. H. Jiang, and M. Q. Weng, Spin dynamics in
semiconductors, Phys. Rep. 493, 61 (2010).

[7] Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, Spin-orbit
gap of graphene: First-principles calculations, Phys. Rev. B 75,
041401(R) (2007).

[8] Castro Neto, A. H. F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, The electronic properties of graphene, Rev.
Mod. Phys. 81, 109 (2009).

[9] N. M. R. Peres, Colloquium: The transport properties of
graphene: An introduction, Rev. Mod. Phys. 82, 2673 (2010).

[10] D. A. Pesin and A. H. MacDonald, Spintronics and pseudospin-
tronics in graphene and topological insulators, Nat. Mater. 11,
409 (2012).

[11] M. Shiraishi, Electrically-generated pure spin current in
graphene, Jpn. J. Appl. Phys. 51, 08KA01 (2012).

[12] S. Roche and S. O. Valenzuela, Graphene spintronics: Puzzling
controversies and challenges for spin manipulation, J. Phys. D
47, 094011 (2014).

[13] J. H. Garcia, M. Vila, A. W. Cummings, and S. Roche,
Spin transport in graphene/transition metal dichalcogenide het-
erostructures, Chem. Soc. Rev. 47, 3359 (2018).

[14] W. Han and R. K. Kawakami, Spin Relaxation in Single-Layer
and Bilayer Graphene, Phys. Rev. Lett. 107, 047207 (2011).

[15] R. G. Mani, J. Hankinson, C. Berger, and W. A. de Heer, Obser-
vation of resistivity detected hole spin resonance and zero-field
pseudo-spin splitting in epitaxial graphene, Nat. Commun. 3,
996 (2012).

[16] B. Dlubak, M.-B. Martin, C. Deranlot, B. Servet, S. Xavier, R.
Mattana, M. Sprinkle, C. Berger, W. A. De Heer, F. Petroff, A.
Anane, P. Seneor, and A. Fert, Highly efficient spin transport in
epitaxial graphene on SiC, Nat. Phys. 8, 557 (2012).

[17] M. Wojtaszek, I. J. Vera-Marun, T. Maassen, and B. J. van Wees,
Enhancement of spin relaxation time in hydrogenated graphene
spin-valve devices, Phys. Rev. B 87, 081402(R) (2013).

[18] M. B. Lundeberg, R. Yang, J. Renard, and J. A. Folk, Defect-
Mediated Spin Relaxation and Dephasing in Graphene, Phys.
Rev. Lett. 110, 156601 (2013).

[19] M. V. Kamalakar, A. Dankert, J. Bergsten, T. Ive, and S. P.
Dash, Enhanced tunnel spin injection into graphene using
chemical vapor deposited hexagonal boron nitride, Sci. Rep. 4,
6146 (2014).

[20] M. V. Kamalakar, C. Groenveld, A. Dankert, and S. P. Dash,
Long distance spin communication in chemical vapour de-
posited graphene, Nat. Commun. 6, 6766 (2015).

[21] M. Drögeler, C. Franzen, F. Volmer, T. Pohlmann, L. Banszerus,
M. Wolter, K. Watanabe, T. Taniguchi, C. Stampfer, and B.
Beschoten, Spin lifetimes exceeding 12 ns in graphene nonlocal
spin valve devices, Nano. Lett. 16, 3533 (2016).

[22] B. Raes, J. E. Scheerder, M. V. Costache, F. Bonell, J. F. Sierra,
J. Cuppens, J. Van de Vondel, and S. O. Valenzuela, Determi-
nation of the spin-lifetime anisotropy in graphene using oblique
spin precession, Nat. Commun. 7, 11444 (2016).

[23] S. Ringer, S. Hartl, M. Rosenauer, T. Völkl, M. Kadur, F.
Hopperdietzel, D. Weiss, and J. Eroms, Measuring anisotropic
spin relaxaton in graphene, Phys. Rev. B 97, 205439
(2018).

[24] Z. M. Gebeyehu, S. Parui, J. F. Sierra, M. Timmermans,
M. J. Esplandiu, S. Brems, C. Huyghebaert, K. Garello, M. V.
Costache, and S. O. Valenzuela, Spin communication over

30 μm long channels of chemical vapor deposited graphene on
SiO2, 2D Mater. 6, 034003 (2019).

[25] S. Wellnhofer, A. Stabile, D. Kochan, M. Gmitra, Y. W.
Chuang, J. Zhu, and J. Fabian, Spin relaxation in fluori-
nated single and bilayer graphene, Phys. Rev. B 100, 035421
(2019).

[26] B. G. Márkus, P. Szirmai, K. F. Edelthalhammer, P. Echerlein,
A. Hirsch, F. Hauke, N. M. Nemes, J. C. Chacón-Torres, B.
Náfrádi, L. Forró, T. Pichler, and F. Simon, Ultralong spin
lifetime in light alkali atom doped graphene, ACS Nano 14,
7492 (2020).

[27] C. Ertler, S. Konschuh, M. Gmitra, and J. Fabian, Electron spin
relaxation in graphene: The role of the substrate, Phys. Rev. B
80, 041405(R) (2009).

[28] D. V. Fedorov, M. Gradhand, S. Ostanin, I. Maznichenko, A.
Ernst, J. Fabian, and I. Mertig, Impact of Electron-Impurity
Scattering on the Spin Relaxation Time in Graphene: A First-
Principles Study, Phys. Rev. Lett. 110, 156602 (2013).

[29] D. Kochan, M. Gmitra, and J. Fabian, Spin Relaxation Mecha-
nism in Graphene: Resonant Scattering by Magnetic Impurities,
Phys. Rev. Lett. 112, 116602 (2014).

[30] J. Bundesmann, D. Kochan, F. Tkatschenko, J. Fabian, and K.
Richter, Theory of spin-orbit-induced spin relaxation in func-
tionalized graphene, Phys. Rev. B 92, 081403(R) (2015).

[31] M. R. Thomsen, M. M. Ervasti, A. Harju, and T. G. Pedersen,
Spin relaxation in hydrogenated graphene, Phys. Rev. B 92,
195408 (2015).

[32] A. W. Cummings and S. Roche, Effects of Dephasing on Spin
Lifetime in Ballistic Spin-Orbit Materials, Phys. Rev. Lett. 116,
086602 (2016).

[33] D. V. Tuan and S. Roche, Spin Manipulation in Graphene by
Chemically Induced Pseudospin Polarization, Phys. Rev. Lett.
116, 106601 (2016).

[34] D. V. Tuan, J. M. Marmolejo-Tejada, X. Waintal, B. K. Nikoli
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