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Large suppression of spin-relaxation rate in graphene nanoribbons in the
presence of magnetic impurities

Van Minh Nguyen®” and C. S. Chu®"
Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

® (Received 23 February 2022; revised 15 April 2022; accepted 18 April 2022; published 28 April 2022)

Achievement of low spin-relaxation rate is an important goal for spintronics development. We study the
spin-relaxation rate arising from a low concentration of magnetic impurities in armchair graphene nanorib-
bons (AGNR). Large suppression in the spin-relaxation rate, exhibited as dip structures, is found when the
Fermi energy approaches a subband band edge. This suppression originated from the quasi-one-dimensional
density of states and is manifested via the singular features in the AGNR same-site Green’s function Gzz,
where Z denotes site locations of magnetic impurities. Analytic analysis of the spin-relaxation rate in the
close vicinity of a subband band edge is performed to further reveal the physical nature of the suppres-
sion. The robustness of the suppression feature in the spin-relaxation rate is demonstrated by systematically
increasing the number of magnetic impurities involved in a coherent multiple scattering with the electrons.
Major peaks in the spin-relaxation rate are analyzed in light of their connection with spin-flipped resonances.
Competition between magnetic impurities with similar resonance energies is found to lead to suppression in
the spin-relaxation rate. Our calculations have taken into account the hydrogen-passivation effects at the AGNR
edges when the hopping constant between edge carbons is modified.
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I. INTRODUCTION

Spin relaxation in graphene has been an subject of intense
interest [1]. This is intended for the use of graphene for spin-
tronics [2—4], where the electronic spin degree of freedom is
to be utilized for information carriers [5,6]. Empowered by
graphene’s very low intrinsic spin-orbit coupling, of order
ueV [4,7], due to the low atomic number of carbon, and
together with its novel transport properties [8,9], graphene has
spawned into a graphene and graphene related novel platform
material for spintronics [2—4,10-13].

Spin-relaxation time, or spin-relaxation rate (SRR), of
graphene systems and structures had been probed experi-
mentally [1,14-26]. Depending on the sample preparation
and system configurations, the spin-relaxation time can vary
from a subnanosecond [1,15,18,19,22,25] to a few nanosec-
onds (nsec) [14,17,20,23,24], and even up to tens of nsec
[16,21,26]. On the other hand, the spin-relaxation time is
expected to be of the order of usec [10,27], if only effects
from the intrinsic spin-orbit coupling of graphene is con-
sidered. This large discrepancy in the spin-relaxation time
between the experimental findings and the expected intrinsic
results had prompted many theoretical studies on nonintrinsic
spin relaxation mechanisms in graphene [28-38]. These in-
clude spin-relaxation mechanisms associated with adsorbate
induced spin-orbit coupling [28-30,33-35], magnetic mo-
ments from impurities [29,31,38], spin-orbit coupling from
proximity effects [27,36,37], and effects of charged puddles
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due to charge impurities residing in the substrate [27,29,38].
Furthermore, contact-induced spin relaxation was observed
[39—41]. However, the demonstration that reducing pinholes
in the tunnel barriers, the interfacing layer between the spin
injectors/detectors and the graphene sheet, leads to the low-
ering of the spin-relaxation rate [39] has encouraged further
studies. More recent effort along this line has fabricated poly-
mer free spin valves by an encapsulation involving hBN on
graphene [21], which finding is a fivefold enhancement of
the spin-relaxation time. The nonmonotonic dependence of
the spin-relaxation time on the carrier density [21] is another
finding that suggests a resonant characteristics, such as from
magnetic impurities [29,42]. Together with the added fea-
tures, namely, independence of the spin-relaxation time on the
contact resistance area, and the presence of pinholes in the
MgO tunnel barriers [21], a physical picture emerges that an
appropriate encapsulation reduces the polymer residues and
these residues are of the magnetic-scatterer type [4].

That magnetic impurities are much more effective than
spin-orbit coupling in becoming the primary source of spin
relaxation lends support from both experimental [18,22,23,25]
and theoretical [29,31,38,42] results. Isotropy of the SRR for
graphene on silicon oxide provides evidences for the domi-
nance of magnetic-impurities over the spin-orbit coupling on
the SRR [22,23]. Also the dependence of the SRR on the
density of fluorine on graphene also provide another evidence
for the role of magnetic scatterers on spin relaxations [25].
Therefore, to meet the target of reaching as low a SRR as
is possible, elimination of the magnetic impurities is a key.
Yet it is equally important to find ways to lower the SRR
for a given sample, whether or not it has already reached a
decent low level of magnetic-impurity concentration. Thus
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we opt, in this work, to study the tuning for a lower SRR of
graphene nanoribbons in the presence of a low concentration
of magnetic impurities.

By turning to graphene nanoribbons, we invoke extra mul-
tiple scattering effects provided by the quasi-one-dimensional
(Q1D) nature of the system for the tuning of the SRR.
Conductance of Q1D quantum channels in the presence of
attractive scatterers is known, both from theoretical [43] and
experimental [44] studies, to exhibit dip structures, and at
energies close to but just below subband band edges. The
singular density of states at subband band edges provides the
impetus for multiple scatterings [43], such that quasibound
states are formed when the scatterers are attractive [45]. Re-
cently, Q1D subband band edge effects have been shown
[46] to lead to a new description for the Ruderman-Kittel-
Kasuya-Yosida (RKKY) type coupling [47—49] between two
magnetic impurities in AGNRs. Multiple scattering in the
vicinity of a subband band edge plays a key contributing
role to RKKY [46]. And large enhancement in the mag-
nitude of the RKKY coupling constant [46], among other
changes in its characteristics, is resulted when comparing with
that of the lowest-order (Born-type approximation) RKKY
coupling constant [50]. Band edge effects on RKKY in-
teraction was found in higher dimension systems such as
graphene Bernal bilayers [51]. The energy dependence of the
RKKY interaction exhibits remarkable characteristics due to
the logarithmic-singular feature in the real-space propagator
at a band edge [51].

Multiple scattering arising from the Q1D nature of the
AGNR system is expected to occur most characteristically
near subband band edges, at energies determined by the
AGNR widths. Resonance at the magnetic impurities [29]
is another multiple scattering phenomenon, which occurs at
energies that depend on the scatterer. The sensitivity of the
SRR on the carrier density, or the Fermi energy, would then
be high if the SRR is peaked at the resonance [29] and dipped
at a subband band edge. It is hence important in this work to
see if the SRR is peaked or dipped at subband band edges and
to reveal the physics therein.

The magnetic impurity we will consider in this work is the
hydrogen adsorbate [29]. It is the simplest adsorbate that is
magnetic when adsorbed on graphene [17,29,31,52], and there
is a well established tight-binding model describing the hydro-
gen adsorbate [29,53]. The simplicity in the model also allows
us to undergo a comprehensive and detail analytic analysis to
reveal the spin-flipping physics for generic magnetic moments
in AGNR systems.

We would like to point out that the physical mechanism
behind our tuning of the Fermi energy for a lower SRR in
AGNRs is conceptually different from the Elliott type “spin
hot spot” mechanism in semiconductors [54,55]. The key
difference is that our target is a lower SRR whereas that of
the spin hot spot is a SRR peak. Another key difference is that
the spin-orbit coupling from the crystal lattice is negligible
in our case while sufficiently significant bulk spin-orbit cou-
pling is readied in semiconductors. From the work of Elliott
[56], the interplay of a spin-diagonal electrostatic interaction,
such as from a normal impurity, and the spin mixing in the
wave function, due to the crystal lattice spin-orbit coupling,
gives rise to spin relaxation in semiconductors [57]. Spin hot

spot occurs on the Fermi surface at the k point where the
crystal lattice spin-orbit coupling becomes comparable with
interband energies [58]. In contrast, the physical mechanisms
in this work take on multiple scatterings arising both from the
Q1D nature of the AGNR system and from magnetic-impurity
resonances.

Spin relaxation in AGNRs had been studied recently, where
physical quantities of interest were spin-flipped and non-spin-
flipped transmissions [59-61] and spin polarizations in the
transmission region [60,61]. Both magnetic moment and spin-
orbit coupling effects arising from hydrogen adsorbates were
considered in a density-functional theory (DFT) based ab ini-
tio transport formalism [59]. Spin-orbit coupling arising from
a Gaussian-type surface in the AGNR due to substrate surface
roughness was considered [60]. The ensemble averaged spin-
polarization in the transmission region and its dependence on
the length of the AGNR were obtained. By fitting this result
to an exponential form, decaying with respect to the length
of the AGNR, a spin diffusion length was obtained [60]. In
a similar way, the spin relaxation length in AGNR doped
with nickel adatoms was studied by an ab initio approach
[61]. The focus was upon the spin-orbit coupling induced
by the adatoms. A segmented-AGNR approach for transport
was invoked, where each segment contains either one or no
adsorbate, such that the entire AGNR, of a given total length
and adsorbate concentration, is constructed from randomly
arranging these AGNR segments [61]. The adsorbates had
been kept from each other by a minimum separation, which
was chosen to be 25 Angstrom [61], in order to have negligible
adsorbate effects on the coupling between segments.

There is, however, no known relation connecting the spin
diffusion (relaxation) length to the spin-relaxation time in
AGNRs [61]. Complications due to the subband nature and
the difference in the regime of interest, ballistic regime in our
case in contrast to strongly disordered regime, have rendered
even a heuristic attempt for such a relation not deemed to be
feasible. A direct microscopic approach to the SRR in AGNRs
is thus lacking and much needed. Such a direct microscopic
approach should provide important insights on the key phys-
ical mechanisms for the SRR. We formulate in this work a
microscopic approach to the SRR in AGNRs and apply it to
the case of dilute magnetic impurities.

Highlights of our key SRR results for AGNRs are pre-
sented in Fig. 1. The AGNR, of width W = 20 (number of
longitudinal carbon chains in the AGNR), has its first and
second subband band edges at, respectively, || = 0.017 and
0.23. Energy is in units of #,. Between these two subband band
edges is a region where there is only one propagating subband.
The energy gap at || = 0.017 is resulted from edge passiva-
tion [62], without which the energy gap would have been zero.
The edge-passivation effects, within the tight-binding descrip-
tion [63,64], have been incorporated to evaluate the AGNR
Green’s function and the finite temperature SRR 1/7,. Our
key result, namely, the large SRR suppression, is shown near
the second subband band edge (indicated by two downward-
pointing arrows), in the |u| < 0.23 region, where the SRR
exhibits a steep drop to form a dip structure.

The SRR suppression is quantified by a suppression fac-
tor Fyp, defined as the ratio between the 2D SRR (grey
dashed curve) and the finite temperature SRR. In Fig. 1, the
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FIG. 1. Spin-relaxation rate (SRR) suppression shown in the
AGNR SRR vs chemical potential x plot. Nanoribbon width W =
20. Temperatures shown are 4 (black) and 77 K (red). Incoherent
magnetic impurity (MI) cluster (3 MI per cluster, solid curves)
and independent MI (dotted and dashed-dotted curves) results for
the SRR, given by Eq. (A17), are shown. Energy range 0.017 <
|| < 0.23 is the one-propagating-subband region. Two-dimensional
graphene result (grey dashed curve) is shown for comparison. Large
SRR suppression is demonstrated by the rapid drop of the SRR
near || &~ 0.23. The two downward pointing arrows indicate where
largest SRR suppression occurs. Major SRR peaks around p =
+0.04 exhibit another suppression in the SRR. Magnetic impurity
fraction n,, = 107S.

temperatures are 4 K (black solid curve) and 77 K (red solid
curve), and the energies for the Fy, are close to the subband
band edge (Ju| = 0.23). From Fig. 1, the 4-K suppression
factor Fy, = 9.7 and 9.3 at, respectively, i = 30.23. And the
77-K suppression factor Fy, = 3.7 and 3.2 at, respectively,
@ = F0.23. The concentration of the magnetic impurities is
the same in all curves, given by n,, = 1079, the fraction of
the AGNR carbon atoms that are adsorbed to by the magnetic
impurities. The values of the SRR suppression factor Fyp,
presented above, is large at 4 K and is quite good even at 77 K.

Robustness of the SRR suppression is demonstrated in
Fig. 1. It is by plotting alongside the independent mag-
netic impurity (MI) results (dashed, dotted, and dashed-dotted
curves) for comparison with our incoherent magnetic-
impurity cluster results (solid curves). The incoherent MI-
cluster results have all intra-cluster electron-MI multiple
scatterings fully treated, whereas intercluster electron-MI
events are treated incoherently. Results for three magnetic
impurities in a cluster are plotted in Fig. 1. As shown in Fig. 1,
the independent MI and the incoherent MI-cluster results for
the same temperature overlap in most of the u region, includ-
ing the SRR suppression region. This lends strong support
to the robustness of the SRR suppression feature. Another
suppression of the SRR occurs near the two major SRR
peaks, near u ~ £0.04. This is found to associate with the
competition between the magnetic impurities for resonances
when they have close enough resonance energies. Overall,
curves from temperatures 4 and 77 K fall on top of each
other except inside the first gap |u| < 0.017 and near the
second subband band edge || & 0.23. Appropriate ensemble

average has been performed to obtain all our results, and this
will be discussed in later sections.

The 2D SRR result shown in Fig. 1 is obtained by taking
a large enough W (W = 6 x 10 in Fig. 1) for the evaluation
of Eq. (23), and it matches that reported in Ref. [29]. Equa-
tion (23) is for the independent MI case at zero temperature.
The 2D SRR values at 77 K in the || & 0.23 region is very
close to and slightly greater than the 2D SRR at zero tempera-
ture. For simplicity, it suffices to use the zero-temperature 2D
SRR to obtain the Fyp, when temperatures considered are not
much higher than 77 K.

This paper is organized as follows. In Sec. II, we present
our theoretical framework for independent MIs in AGNRs.
The basic physics associated with the SRR suppression at a
subband band edge will be presented. We present our micro-
scopic approach to the SRR in AGNRs. From this approach,
we obtain an analytic expression for the SRR suppression near
a subband band edge. In addition, we present our analysis
showing the resonance nature of the SRR peaks in the large
and the small W regimes. In Sec. III, we present our the-
oretical framework for many MIs. In particular, we present
our analytic treatment for two magnetic-impurity case, from
which the SRR suppression at a subband band edge remains
intact is evident. Extension of the analysis for the SRR sup-
pression at magnetic impurity resonances is presented. We
present our systematic study of increasing the number of Mls
involved in the multiple scattering. The trend it reveals on the
robustness of the SRR suppression at a subband band edge,
and on our incoherent MI-cluster approach for the SRR will
be presented and discussed. Finally, we present our conclusion
in Sec. IV.

II. COHERENT EFFECTS FROM ONE MAGNETIC
IMPURITY

This section presents the theoretical treatment for the SRR
that arises from independent MIs. In particular, the sec-
tion presents our microscopic SRR calculation. Both the SRR
suppression at a subband band edge, and the resonant nature
of the SRR peaks will be presented. Multiple scattering effects
between MI will be treated in the next section.

The magnetic impurity is modeled as an adsorbate hydro-
gen atom, which 7—Alad is given by [29]

Hog = Z[Shhzhv +T(hic,, + C:Uhv)]

+JY ) el Tl e, (1)

where At (h) and c; (c,) are the fermionic creation (annihi-
lation) operators for, respectively, orbitals at the site of the
hydrogen adsorbate and at the carbon atom to which the
hydrogen is adsorbed. The hopping constant between the two
orbitals is 7', and the energy of the hydrogen orbital is e&y.
The third term is the exchange interaction at the hydrogen-
adsorbate site, with o and X, both in the form of Pauli matrix
vectors, representing the electron spin and the spin one-half
local moment at the hydrogen adsorbate site, respectively.
The physics of local moment spin flipping during the elec-
tron multiple scattering is thus included. We take the values
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en =0.16eV, T =7.5eV, and J =0.4¢eV [29]. In the fol-
lowing, all energies are taken to be in units of #) = 2.66¢eV,
the hopping constant of graphene.

From using the basis | j, m) of J? and J,, where J = g(a +
Y), and eliminating the hydrogen-adsorbate orbital, we get

1
Hyq = I)(Z| ® [aol0,0)(0,0|+a1 > ll,m)<1,MI},

m=—1

. . T2 T2 (2)
in which ay = CEr——y and o) = T h [29]. We have
kept the dependencies of ap and «; on the electron energy E
implicit for the simplicity in the presentation. By the same
token, whenever a physical quantity is well understood to
depend on energy, we might choose to keep its energy depen-
dence implicit. The singular energy dependencies in o and
o correctly reflect the hydrogen-adsorbate site energy lev-
els, namely, e, — 3J (singlet level) and e, 4 J (triplet level),
respectively, when the exchange interaction is included. In
addition, |Z) = |i, s) depicts the site lattice of the carbon
atom to which the hydrogen is adsorbed, where (i, s) = (R;, s)
are, respectively, the unit-cell position and the site-type (A/B
type) index.

Converting Eq. (2) to the spin configuration basis ket |v, u),
where v = 4+ and u = % are the eigenvalues of o, and X,
respectively, we have

Ay = |I><I|®[Z Vo [, u) (v, ul + Y Vg [, v) (v, | }

v,u
(3)
nf _ T E—snt(out2)J | }
in which V), = Ea i E—-]) ] indicates two types of non

spin- ﬂ1pp1ng potential. The u = v case has non-spin-flipping
potential VO"f = (oo + «1)/2, while the u = v case has non-
spin-flipping potential Vf‘f = «a. Here v = —v. On the other
hand, the spin-flipping potential is V{ = (a1 — @)/2. The
form of H,q in Eq. (3) is appropriate for treating cases of
multiple scattering between MIs, as will be used in the next
section.

Spin-flipped multiple scattering of an electron by a single
magnetic impurity in an AGNR is treated below. Equa-
tion (3) shows that spin-flipping occurs only for incident spin
configuration |v, V), thus we consider an incident state (right-
going) |Yx,) ® |v, V), where the orbital part |y ) is given by
Eq. (BS). The resulting scattering state | Wy, ,v) is of the form

sl @ v, + (W )@ D), (@)

where the first (second) term corresponds to the non-spin-
flipped (flipped) component of the scattering state. The
Lippmann-Schwinger equation is given by

|‘l’k,,,vv> = |Wk,l> & |v,v) + Gﬁad|\yk”,vi>v ©)

where G is the AGNR Green'’s function presented in Eq. (B6).
Projecting Eq. (5) onto (Z| ® (v'V’| leads to

| \pk,,,vv

WY (D) = Y, (D) + Gzz(E) Vgt W (D)
+Gzz(E)Vy W' (D) (6)
and
WY (D) = Grr(EWS W (D) + Grr(EWL W (D).

N

The form of Eq. (6) is physically self-explanatory. It shows
that the non-spin-flipped component at the site |Z) of the
hydrogen-adsorbed carbon atom is constituted of three terms:
the incident wave at |Z), the same-site propagation after
the non-spin-flipped component suffers a non-spin-flipped
scattering at |Z), and the same-site propagation after the spin-
flipped component suffers a spin-flipped scattering at |Z). One
can apply this physical interpretation to Eq. (7), except that
there are now only two terms.
Solving Egs. (6) and (7) gives us

1
I —a1Gzz

_ 1
WD) = 5[ ]wk @ ®

+ 1 —ayGzz
and

(a1 —ap)Gzz
2(1 — a1 Gzz)(1 — aoGzz)

Equation (9) can also be cast in a form similar to Eq. (8),
where the sign of the second term in Eq. (8) is reversed.

Subband band-edge features enter Egs. (8) and (9) via
the same-site Green’s function Gzz, which carries in it the
quasi-one-dimensional nature of the AGNRs, where density of
states are singular at subband band edges. Additional subband
band-edge feature might enter later in the SRR calculation, but
Egs. (8) and (9) are sufficient to provide us physical insights
about our key results in this work. The key physics we find
in this work is the large suppression of the spin-relaxation
rate when the electron energy |E| approaches a subband band
edge.

Two important features can be obtained from Eqs. (8) and
(9). The first feature is about the suppression of both \Ilk W(I )
and \Ilﬁ” ,5(Z) when E approaches a subband bottom. As |E|
approaches the nth subband band edge &, nmin While staying
within the subband energy range, the corresponding reduced
Green’s function gfI (E) increases in its magnitude and dom-
inates the behavior of the Gzz. This is due to the vanishing
of the longitudinal wave vector Q,, as is shown in Eq. (B7),
given by

Vi (D) =

vk, (@). )

GTE) = i T (10)
Bu(1+ Ah,) sinQ,”

Here 8, = —cos(kya), and k,, = n /[(W + 1)a] is the quan-
tized transverse wave vector (see Appendix B). Of particular
interest is the n = ng = 2(W + 1)/3 subband for the W =
3p + 2 AGNRs, which would be gapless if edge passivation
were not included. On the other hand, for the case when |E|
approaches the subband band edge with |E| < &, min, it is
outside the nth subband energy range, we have Q, = iy Oy,
the evanescent wave wave vector. As O, approaches zero,
the reduced Green’s function g-7 also increases in its magni-
tude and dominates Gzz. Here y = E/|E|. Explicitly, from
Egs. (8) and (9), and for E in the close vicinity of a sub-
band band edge, we have V" (T)~ ‘;‘gjl‘ G+ Y, (),

and \IIE:’W(I) R L% GII Yk, (I ). The suppression factor is

200

GE%. We emphasis that this suppression is the result of mul-
tiple scatterings. More accurately, it is the above-mentioned
subband band edge singular feature of Gz7 that has demanded
the need of the multiple scattering, and resulting in the sup-
pression.
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The scattered waves are obtained from projecting Eq. (5)
onto (7| ® (v'V'|, at an arbitrary lattice site |7 ), and together
with Egs. (8) and (9), we get

ay + oy — 2a001Gz1
v’ V() =Y (J)+ Gz 2DE.T) Vi, (D)
(11
and
) _ o —
Y 5(J)=Gyz —ZD(E 7 Y, (D), (12)

where D(E,Z) = (1 — a;Gzz)(1 — agGz7).

We note that very different subband band-edge suppression
characteristics are exhibited in the two scattered-wave compo-
nents, in Egs. (11) and (12). The non-spin-flipped component
consists of a GE} suppression, arising from the coefficient to
the G 77 term in Eq. (11). On the other hand, the spin-flipped
component consists of a Gg% suppression in Eq. (12). The
propagating channels contained in G7z, when |E| < &, min
and J is outside the scattering region, do not contribute
additional of the aforementioned near band edge singular
feature. Therefore the source amplitudes of the outgoing scat-
tered waves carry a GE% (GE%) suppression factor for the
spin-flipped (non-spin-flipped) component. This is due to the
presence (absence) of the interference between the j = 0 and
Jj = 1 processes, as is evident by the opr; factor in Eq. (11),
in the non-spin-flipped (spin flipped) component. Hence the
interplay between the interference processes and the subband
feature of the system has brought forth a stronger suppression
to the outgoing spin-flipped scattered wave than the outgoing
non-spin-flipped scattered wave for the single MI case.

The second feature obtained from Egs. (8) and (9) is about
the resonance of the MI. Assuming that the resonance condi-
tions are given by Re(1 — o ;Gzz) = 0, according to Egs. (8)
and (9), the resonance energies Er could then be determined
approximately as Ey 0 . These resonances are associated with
the spin- conﬁguratlons triplet (j = 1) or singlet (j = 0).

Approximate expression Eg’ ; obtained in the following
reveals the dependence of the physical nature of the SRR
peaks on W. Assuming the magnitude of El({),i to be much less
than the second subband band edge, then from the reduced
Green’s functions in Eq. (B9) and Eq. (B11), we have

Grz(E) ~ —E §i — ida, 13)
_ 92(0) o
where & = Zn;ﬁng m, and = Z\/#T% The

Ah,, given in Eq. (B4), arises from the edge passivation. The
two terms in Eq. (8) are then cast into a resonance form

1 Aj
CE-EY,+il’

14
1-— Ol_,'GII ( )

where A} is a simple coefficient not essential to the resonance
feature, and

E), = —9 (15)
BT

The energy ¢; equals e, — 3J and ¢y, + J for, respectively, j =
0 and 1. The resonance widthis I" = % &. It provides us
the condition for the two resonances to be resolved, which is

EQ, — Eg , > T, or the condition

47
=S5, (16)

T2
AtE = Eg 0> We can drop the term m in Egs. (8) and
(9) to obtain WY (T) = —Wy" (Z). Similarly, at E = EQ ..
we obtain \IJ‘”‘ (@) = \IJ‘”’ 5(Z). This is consistent with the
singlet and tr1plet nature of the j=0and j = 1 cases, respec-
tively.

The condition for the two resonances to be resolved is
satisfied at large W cases, since ¢,, [Eq. (B2)] in ¢, decreases
with W in the form 1/+/W + 1. For small W, when Eq. (16)
is not satisfied, the resonance condition becomes

d|D(E, 1)

dE
from which the SRR peaks at Er are resonances with a
j-mixed nature. We will present numerical examples for j-

resolved (W = 98) and j-mixed (W = 20) resonance SRR
peaks.

=0, an

A. Spin-relaxation rate from transport calculation

In this section, we calculate the spin-relaxation rate within
a quantum transport approach. The approach is formally es-
tablished in Appendix A. It involves an extraction of the
spin-flipped transmission and reflection coefficients from
Eq. (12). And it also involves the use of the coefficients to
obtain the spin-relaxation rate Ry(n’, S’;n, S), as defined in
Eq. (Al1l), for the specific spin-flipping process, from the
initial state (n, S) to final state (n’, S’) at energy E. Here
S denotes the system spin configuration, including that of
the electron and the magnetic impurity, and n (n’) denotes
the incident (outgoing) propagating subband index. The spin-
relaxation rate for a specific spin-flipped process is used for
the calculation of the spin-relaxation rate 7.”! when thermal
and system configuration averaging are to be performed.

Extraction of the spin-flipped transmission coefficients
from \IJE" ,5(J) is done by substituting the Green’s function
[Eq. (B6)] into Eq. (12), focusing on the outgoing propagation
channels (n') in G 77, choosing the longitudinal coordinate
N; of the observation point |J) to be greater than N; of the
magnetic impurity location |Z), and casting each such terms
into the form ¢!, (S', S)¥, (J).

Using Egs. (B5) and (B7), and following the method laid
out in Eq. (A8), we get

1S, S) = o (D@ (i) g (E)

47 D(E I)
CS'(kn)

’V(Qn*Qn/ N; 18
X G , (1)

where S is (v) when S denotes (V). We have chosen, for
convenience, that |Z) and |J) are of the same site type.

The spin-flipped reflection coefficient can be derived simi-
larly, except that we need to choose N; < N; and the outgoing
state becomes Wk; (J). We obtain

6,8 =6, ). (19)
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Equation (18) does not depend on v reflects the symmetry of
the SRR with respect to the reversing of the initial system spin
configuration.

The process-specific SRR, following Eq. (Al1), is given
by

(20)

which, according to Appendlx A, is the spin-flipped current
for the corresponding transition processes. Here vgy (E) is
the group velocity of the outgoing n'th subband. The corre-
sponding zero-temperature SRR Rg(n’, S; S), as is shown in
Eq. (A13), is given by

Y, =R, S;n,S)
71
20
The SRR 1/ at zero temperature and chemical potential u
is then given by

1 NM / )=
= 2§:<Z Rg(n,S;S)> , (22)

A

R'(n,S;S) = 21

where we have included averagings over both the incident
system-spin configuration as well as the magnetic impurity
transverse locations |Z). Here Ny = n, Nc is the total num-
ber of magnetic impurity, Nc = WN, is the total number of
carbon atoms in the AGNR, and n,, is the fraction of carbon
atoms being adsorbed to by the MIs. Nfg is the total number
of spin configurations [4 in this case, when S = (vv) are also
included]. For our case here, the spin-relaxation rate will be
zero when S = (M) or S = (L |).

We note that N, /2 is the total number of AGNR unit cells,
N, /3ais the total length of the AGNR, and a is the separation
between adjacent longitudinal carbon chain.

The expression for the zero-temperature SRR 1/72 is ob-
tained from Egs. (22), (18), and (20), to give

E(u, I

1
o= —(oq — o)’ |l Z Dl (23)

D, D’

where the summation over M; arises from the transverse MI-
position average, and

Zn/ Zn//

7 1
16 3., svanymo,

23002 (i)
Bu(1+Ah,)sinQ, B, (1+ Ak, ) 5in0,

E(un, 1) =

(24)

The primed summation denotes summing only over propagat-
ing subbands.

B. Numerical examples

We plot in Fig. 2 the zero-temperature SRR of two AGNRs.
The plot is intended to display the SRR dip structures near
subband band edges and to provide explicit illustrations of the
resonance nature of the major SRR peaks. For these purposes,
it is sufficient to treat the MIs as independent Mls. Two
AGNRs shown have W = 20 (red curve) and W = 98 (black
curve). The SRR dip structures are found to occur at subband
band edges, where the W = 98 curve has narrower subband

1010]

[s*]

1/70
-
<

e

10°L— Y
u It]

FIG. 2. Zero-temperature SRR 1/70 due to independent Mls in
AGNRSs. Equation (23) has been used for the 1/70. Cases for W = 20
(red) and 98 (black) AGNRs are shown. Averaging over impurity
transverse positions, incident subbands, and spin configurations have
been performed to obtain the SRR. All dip structures in the SRR
are aligned with subband band edges. Large SRR suppressions as
approaches a subband band edge are shown for both curves. Major
SRR-peak energies in (1) the W = 98 case (depicted by two arrows)
match with the Eg. ; in Eq. (15), and (2) the W = 20 case match with
the resonance energies obtained from the condition in Eq. (17). The
magnetic impurity fraction n,, = 1075

band-edge spacings than that for the W = 20 curve. All the
subband band edges shown in Fig. 2 are the &, nin, the lower
band edge of the nth subband. In particular, the lowest two
band edges (closest to u = 0) are at || = 0.0036 (ny = 66)
and || = 0.054 (n; = 67) for W = 98. As for W = 20, the
lowest two band edges are at |t| = 0.017 (np = 14) and || =
0.247 (n; = 15). In between these two lowest band edges is
the energy range of our interest, which we depict as the central
region. The npth subband is the only propagating channel in
the central region.

Expression for the dip structure behavior is presented
below, as w approaches the close vicinity of the n th sub-
band band edge from the central region side. We take |u| =
Enymin — A, with 0 < A < &5, min. From Eq. (B12), and as-
suming that the n; term in Gzz is the dominating term, and
that the G, term in D(u, ) of Eq. (23) gives the dominating
contribution, we get

1, [16]/3”1 ]2(1 + Ahy, 2

0 hl T2 V1 + Ahy,
w—1 4 2
X Z |:¢'2'°(l_)i| X [ AA i| . (25)

S
i—o L@ @ Eny,min

Note that Eq. (25) is the limiting dip-structure behavior when
wn is very close to the njth subband band edge. The SRR
suppression at a subband band edge is explicitly shown by
the factor (A/enl,min)2 in Eq. (25). When p moves away
from &,, min, Or as A increases, we will need to include
contributions from other subband terms in Gzz, and contri-
butions from the other terms in D(u, Z). As shown in Fig. 2,
when p increases towards &,, min, the SRR develops a nice
pre-dip profile before it reaches its limiting dip-structure be-
havior at the subband band edge. In other words, the overall
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dip-structure profile covers a finite Ay width. We stress that
this nice profile causes the large suppression to remain intact
at finite temperatures, and that it is originated from both the
general trend of Gzz, to be discussed below, and sufficiently
large values of o and «;. That the large suppression results
remain intact in finite temperatures is clearly shown in Fig. 1.

In addition, the overall profile of the SRR suppression char-
acteristics remains intact even if the n;th subband transverse
wave function ¢,, (j) has nodes. For W = 98, there is no node
in @, (j), while for W = 20 the nodes occur at M; = 6, 13.
The limiting SRR behavior when p is very close to &, min 1S
then determined by these nodal sites, for the W = 20 case,
given by

&E(n, 1)

A

1 UM 2

— &~ — (a1 — ag)”|pl E
0

TS 2h M;=6,13

Since the singular n; term in Gzz becomes zero when M;
is a node of the n;th subband transverse wave function, we
return to the original expression for 1/ in Eq. (23), but
keeping only the nodal M; terms. It is because the non-nodal
M; terms in Eq. (23) follow the Eq. (25) behavior and thus
do not contribute to Eq. (26). We note that even though the
limiting SRR value, in Eq. (26), is not zero at the subband
band edge, the overall profile of the SRR suppression charac-
teristics should still remains intact. First, we can draw support
from Fig. 2. That the overall profiles of the SRR suppression
characteristics near &,, min consist of a finite Ay width for
the W = 98 and W = 20 curves provides a strong evidence.
Second, we can also draw support from a general trend of
Gzz. All the nonpropagating subband terms in Gz, including
the n; term, contribute constructively to give the general trend
that the magnitude of Gzz is increasing as u increases towards
€n,.min- Thus the vanishing of the n; term in Gzz for a nodal
M; could not have changed this general trend in Gz7.

The major SRR peaks in Fig. 2, and within the central
region, can be used to reveal its resonance nature. For the
W =98 case, the major SRR peak energies, indicated by
the two arrows, are at —0.029 and 0.015. These energies
are matched by the analytic expression in Eq. (15), and after
averaging over the transverse site M;, to give Eg o = —0.032
and Ey | = 0.017. With this we see that the resonance nature
of the W = 98 major SRR peaks are j-resolved resonances.

For the W = 20 case, the ER0 ; calculation does not produce
a good match in the major SRR peak energies. Using Eq. (17)
instead, where we determine the energies Er + numerically,
and after averaging over M;, we get Er _ = —0.048 and
Er + = 0.037. The corresponding major SRR peak energies
in Fig. 2 are —0.043 and 0.037. This excellent matching shows
unequivocally the j-mixed resonance nature of the major SRR
peaks.

We may note in passing the at-the-resonance behavior
of the spin-flipped transmission and reflection coefﬁcients
From Eq. (19), taking the resonance at, say, E R j, the fac-

tor (a; — ap)?/|D(i, I)|* ~ 1/(Im Gzz)*. Also, taking the
n’ = n = ng condition, because we are referring to the central
region, we obtain

|7t 00 8. S = [eh,, (5. S) = 1. 27)

From this result, we have the spin-flipped current, both reflec-
tion and transmission included, given by vgp, (1t)/ (Ny2«/§ a).
This is actually one half of the incident current, namely,
Vgno (1)/ (Ny«/§ a). In other words, the spin-flipped outgoing
current is the same as the non-spin-flipped outgoing current,
and the spin has then reached an unpolarized outgoing state at
the resonance. Similar at-the-resonance behavior of a MI was
found in graphene [29]. This happens when the initial spin
configurations are | 1) or | | ). The electron experiences
no spin-flip for the initial spin configurations | 1) or | | {}).

III. COHERENT EFFECTS FROM MANY MAGNETIC
IMPURITIES

This section presents the many magnetic impurity scat-
tering treatment. Analytic analysis for the case of two MIs
is performed to reveal the physics behind many MI effects
on the two SRR suppressions, at a subband band edge and
at the MI resonance. Comparison with numerical examples
presents a quantitative confirmation of the SRR suppression
at the MI resonance. We also present numerical results for a
systematic increasing of the number of magnetic impurities
involved in the multiple scattering. Both the robustness of the
SRR suppression at a subband band edge, and the trend of the
suppression of the SRR at the MI resonance are demonstrated.

Multiple scattering of a conduction electron by Ny mag-
netic impurities in the AGNRs is formulated in the following
to exhibit the structures in the scattering state. Extending Hyq
in Eq. (3) to this case, and we have V,q given by

V=) IT I|®[Z VoL v, uz) (v, uz|

Zyv ur

+ ) Vo Iv ) (v, uzl}, (28)
uz#v

where a specific Kth realization of the spin configuration
Sk is givenby S = (Vs Uy oo Ugpes -s uNM,C). We also
have defined functions v, = v(Skx) and u,,. = uz(Sk) to
extract the components of the system spin configuration Sy.

The scattering state |\Wy ;Si,) resulted from the incident
state |y, ; Sin) 18 given by

W, ; Si Z (W% ) ® ISk), (29)

n?

where the primed summation denotes spin configurations Sy
of which its total spin along z, given by M, x = %(v,C +
> 1 U, ) is the same as that of S;,. Substituting Eq. (29) into
the Lippmann-Schwinger equation

[Wk,; Sin) = ¥k,; Sin) + GVad Wi, 5 Sin) (30)

and projecting onto (Z| ® (Si|, at the location of an magnetic
impurity, gives

WSS () = Sinkc Y, D) + Y Gz Vi (SOWEss ()
I/

+ 33 GV Skl Fr ISl Wi, (@),
I/ }C/
(31)
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where the primed summation has excluded the X' = IC case.

The two subscripts of VV“;I(S;C) in the second term of
Eq. (31), namely, v and uz, are the values of v(Sx) and
uz(Sk ), respectively. The spin configuration Fz[Sk] is de-
fined as

0 ifv. =
W Uy, ooy U v

Fz[Skl = {

N7 ...,uNM,C)

(32)
which is flipping the electron spin and the local moment at 7
if they are antiparallel with each other.

Solving the set of equations given by Eq. (31) deter-
mines the scattering state at the locations of all the MIs.
These results can be used to calculate the scattering state at
an arbitrary site |J), and from it we can extract the spin-
flipped transmission and reflection coefficients as well as the

A. Case of two magnetic impurities

In this section, we present an analytic electron mul-
tiple scattering calculation involving two MIs and for a
specific incident system-spin configuration. The incident
system-spin configuration we consider here is | | ) (la-
beled as |a) below for simplicity), and the other system-
spin configurations involved are | P 1ft) (labeled as |b))
and | Mty) (labeled as |c)). We will present that the
near subband band edge behavior remain intact in this
analysis.

For an incident state |v,) ® |a), where the incident sub-
band ny and wave vector k,, have been kept implicit, and
following Eq. (31), we get

MW (1) +T¥Q2) = A,

spin-relaxation rate, according to the method illustrated in ) +M,¥(2) =B, (33)
Sec. ITA. where
|
GVt —1 GnV{ 0
M, = Gu V¢ GVt —1 0 , (34)
0 0 GV —1
ver i 0
=G| O 0 v, (35)
vi vt oo
—a(1) —Va(2)
A= 0 , B= 0 , (36)
0 0
and
W, (1) Wa(2)
Y= W) |, W2 =[v.2) (37
(1) Wy(2)

The matrix M, is obtained from Eq. (34) by replacing the

coordinate from 7, to Z,. In this analytic analysis, the two
MIs are chosen to locate on the same-site type. Our numerical
calculations, however, are not limited to the same-site-type
case.

To facilitate the comparison with independent MI effects,
we introduce the independent MI scattering solutions W(©.
These are the solutions to Eq. (33), when T is set to zero, and
are given by
(38)

vO) =M'A, and ¥?2)=M,'B.

We obtain
¥(l) = [1 — (M;'T™M; ') 8@ 1)
—M;'T[1 — (M;'T™M;'T)] 9 ©2).  (39)

Again, the expression for W(2) is obtained from Eq. (39) by
interchanging coordinates Z; < 7Z,.

We simplify Eq. (39) by choosing the two MIs to have the
same transverse site location. Then M; = M,, and we have

¥(1) = [1 — (M;'T™M;'T)]

x [¥ 1) - M;'TE @ 2)], (40)
where W(1) carries a suppression factor GE% when p is in
the close vicinity of a subband band edge, as is evident from
Eq. (38).

The robustness of the SRR suppression at a subband band
edge is illustrated in Fig. 3, where results for independent
Mils (red curve) and for incoherent MI clusters (black curve)
are presented for comparison. The MI cluster considered here
has two MIs per cluster. As shown are the central region for
i, AGNRs with W = 98, and MI fraction ny = 107°. The
overlapping of the two curves over a large portion of the
central region, including the n; th subband band edge, provides
a strong indication of the robustness of our SRR suppression
results. The deviation between the two curves occurs in the MI
resonance region, indicated by the arrows. This will be dis-
cussed in the next section. Before we present our discussion
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FIG. 3. Zero-temperature SRR R’ vs chemical potential p for
independent MI (red curves) and for incoherent MI-cluster (black
curve, 2 MI per cluster) results. The R?, given by Eq. (41), contains
specific configurations. For the independent MI case, the specific
configuration is the transverse-site location M = 7 in (a), and 34
in (b), respectively. Specific configurations for the incoherent MI-
cluster case are the transverse-site locations M; = M, = 7 in (a) and
34 in (b). Average over the longitudinal MI-separation L,; includes
all cases within arange 0 < Ly; < 3000 for the incoherent MI cluster
case. Incident spin-configuration averaging has been performed for
all the curves. Depicted by arrows are the R? suppression, of the in-
coherent MI-cluster results relative to the independent MI results, at
the resonance. The magnetic impurity fraction n,, = 10~°. To make
connection with previous figures, Rg has included a factor Ny /Neon,
where NV o, = 1(2) for independent MIs (two-MI clusters).

on the SRR suppression physics associated with the subband
band edge, an account on our averaging scheme is presented
below. The Rg plotted in Fig. 3 has included a numerical factor
N /Neon 80 as to give the relevant orders of magnitude as in
the previous figures. Explicitly, this R? is given by

k= Ajy_Mh /\%S > <Z’R2<no, S/;S)> @D
co. L

S N

where Neon = 1(2) for independent MIs (incoherent two-MI
clusters), and the subscripted configuration average (- --)r
denotes averaging over longitudinal coordinates.

Averaging in Eq. (41) over all the incident spin configura-
tions S has the number of spin configurations Ng = 4 (Vg =
8) for the independent MI (incoherent MI cluster) case. Only
final spin configurations S’ that have its electron spin flipped
related to S will be included. The transverse MI site locations
in Eq. (41), however, are kept fixed, with M; = M, =7 in

Fig. 3(a), and M| = M, = 34 in Fig. 3(b). This allows us to
make a closer comparison with our analytical results for the
SRR suppression at a MI resonance in the next section.

Averaging in Eq. (41) of the longitudinal coordinates is
over the Ml-separation L,; = N, — N; for the incoherent MI-
cluster case. The ensemble includes all L,; cases within a
range 0 < L,; < 3000. We note that the typical L,; associated
with n,, between two Mls is AN, = 1/(n,,W) ~ 10*, which is
a bit larger than, but within the same order of magnitude as,
our choice of the upper limit for the L,,;. Meanwhile the inco-
herent MI-cluster results are found to have already reached the
same averaged R curve in Fig. 3 as early as when the upper
limit of the L; equals 500. Thus our choice of the ensemble
for the L,; average is reasonable. We further note that the
curves in Fig. 3 are smooth. This is an indication that we have
invoked a large L,; ensemble for the L|;-ensemble average
of the R?. As for the independent MI case, no longitudinal
coordinate averaging is needed.

The overlapping of the independent MI and the incoherent
MI-cluster curves (Fig. 3) covers over a half of the central
region, extending from the n;th subband band edge. It is very
interesting and deserves an in depth discussion. Looking at in-
dividual L;,-specified cases (not shown) chosen from among
the L, ensemble, all the Rg exhibit the SRR suppression in
the vicinity of the n;th subband band edge. Meanwhile, for a
sufficiently large L, the overlapping resembles that in Fig. 3.
Hence we call this overlapping region the nonresonance re-
gion. When L,; is not large enough, deviation occurs in the
nonresonance region between the incoherent MI-cluster and
the independent MI curves. However, this deviation is differ-
ent in its physical nature to the deviation in the remaining part
of the central region. We call this remaining part of the central
region, including the lower |u| part, €,, min and the MI reso-
nance energies, the resonance region. In the resonance region,
apparent deviations, with rapid fluctuations, occur between
the independent MI and the incoherent MI-cluster curves.
In the nonresonance region, deviations occur for Ly; < 100,
while the incoherent MI-cluster curves fall on top of the
independent MI curves for L,; 2 100. This shows that a L;,-
ensemble average of the RY up to the upper Ly, limit of 3000
would have largely diminished, in the nonresonance region,
the deviation between the independent MI and the incoher-
ent MI-cluster curves. On the other hand, in the resonance
region, the deviation between the two curves is not removed
by the L, averaging, except for the fluctuations. Further dis-
cussion of the resonance region will be presented in the next
section.

Presented below is our explanation for the above observed
fact that, in the nonresonance region, the L,;-specified Rg
from incoherent MI-cluster calculations matches nicely with
the independent MIs results when L, is large enough. It is di-
rectly related to the contributions to G, (x) and Gy (u) from
the n # ng subbands. We add that these are the nonpropagat-
ing subbands and they contribute only to the real part of the
Green’s functions. Consider the situation when contribution
from n # ny subbands to G, (1) can be neglected, for large
enough L,; [see Eq. (B10)], but the corresponding contribu-
tion to Gy;(p) is significant. Then the Green’s function ratio
|G21()/G11(w)] is smaller than unity. Contributions of the
noth subband to Gy (t) and Gy (i) have the same magnitude,
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though they are complex and pure imaginary, respectively [see
Eq. (B9)].

We find out that (not shown) the Green’s function ra-
tio |Go1()/Gr1(u)| < 0.3 in the nonresonance region when
L>; > 100. This Green’s function ratio is reckoned to be the
key factor in Ml_ll" that represents, in the nonresonance re-
gion, the significance of communications between the two
MIs in setting up the scattering wave function [see Eq. (40)].
Deviation between the two curves is given by, in the leading
order, the above Green’s function ratio squared. Summarizing
all we get above for the nonresonance region, the physical
picture is that, when the Green’s function ratio is small for
an inter-MI longitudinal separation L,;, the inter-MI commu-
nication will become unimportant so that the R? will exhibit
independent-MI characteristics.

As |u| in the nonresonance region decreases, the afore-
mentioned Green’s function ratio increases, due to decreasing
contributions from the n # ny subbands to Gi;(u). Mean-
while, as || is getting closer to the MI resonance, the matrix
elements in M1_1 increases. It is because of the D(u, Z)~!
factor contained in the matrix elements, and that D(u, Z) is
decreasing. These two developments together drive the system
from the nonresonance to the resonance region. The physical
picture established above holds also for the case of W = 20.
However, additional oscillatory deviation behavior occurs for
W = 20 in the nonresonance region. It is due to the phase
factor attaching to the ngth subband term in Gy (). It brings
forth oscillatory behaviors, arising from the interference lead-
ing from the superposition in Eq. (40). A larger energy range
for the central region, due to the smaller W, also contributes
to the appearance of this oscillatory behavior. This oscillatory
behavior depends on L,;, and is thus subjected to be elimi-
nated by the L,; averaging.

We end this section by getting back to the smooth R? profile
we have obtained in our L,; averaging from a large ensem-
ble. This suggests us a Au-averaging scheme in place of a
real-space L, averaging. The scheme is to apply a small Au
averaging to a Ly;-specific R? of incoherent two-MI clusters.
Indeed, we find out that (not shown here) the incoherent MI
cluster results in Fig. 3 can be nicely reproduced by averaging
a L;-specific Rg over u within a Ay = 0.001 interval, with
the L,; arbitrary chosen a value Lp; = 5000. This is an im-
pressive demonstration of the mesoscopic physics, where Au
averaging plays the role of a configuration averaging [65]. We
will use this Ap-averaging scheme in place of the real-space
L, -averaging for clusters consisting of larger number of MIs.

B. Suppression of SRR at resonance: case of two magnetic
impurities

In this section, we demonstrate the SRR suppression due
to MI resonance by deriving the SRR R? expression at the
MI resonance energies y = E]g’ ;- The resonance energies are
depicted by arrows in Fig. 3. Specifically, the suppression will
be given by the proportionality factor connecting the R? for
incoherent two-MI clusters and for independent MIs. The u
range of our interest is the central region.

Our derivation is based on a resonance approxima-
tion hinted by the form of the matrix elements in
M;"'. The nonzero matrix elements of M;"', derived from

-1 -1 1 1 1
Eq. (34), are (M7 )11 = (M| )2 = —Q[m + m],
M; D =My = %[I_O}W - m], and (M )33 =
_Tll(;“' These are in the form readied for MI resonances at
EY.

s.J°

Consider p = ERO’0 in the following. Our resonance ap-
proximation scheme is to drop all #IGH terms in Ml_] to

give

| 1 -1 0
Mi'l~— -1 1 ol (42)
2(1 — apGry) 0 0 0

Following on the consideration in the previous section,
Egs. (42) and (38) lead to ¥ having only two components,
namely, |a) and |b) at the location of the first MI (MI-1), and
|a) and |c) at the location of the MI-2. We note that the two
components of W at a MI site correctly reflects the sym-
metry form expected for the Eg,o resonance, as is discussed
in the paragraph after Eq. (16). Also, we take the condition
|E370| & &, min for our analysis below. We thus obtain

M TWO (1) & Ao (1), (43)

Sands & 3 " @nlbel, Finally, from Eq. (39)

and from the fact that W (2) also satisfies Eq. (43), we arrive
at the important relation for ¥(1), given by

where Agog =

1

S 2 /()] _ 3 (0)
=22 (1) — oW (2)].  (44)

W(]) ~

W¥(2) is obtained when Z; < T is performed in Eq. (44).
Before we obtain the spin-flipped transmission and reflec-
tion coefficients from Eq. (44), it is convenient to first obtain
the independent impurity results. Our method follows that pre-
sented in Sec. II A. The spin-flipped coefficient 7,9 (b, a; 1)
from an independent MI-1, which connects only to the |b)
state in the outgoing wave, is more conveniently expressed
in a form involving W@ (1), rather than in the form given in
Eq. (18). Here we introduce the superscript (0) in 7, (b, a; 1)
to stress its independent MI nature, and to separate from
the spin-flipped coefficients for the two-MI case below. The
spin-flipped transmission coefficient for the independent MIs

is given by

N, .
o (b, a; 1) = —i [ s———— ™" OuMig, (1)
oo 2(1 + Ahy,)

x [Verw (1) + Vw2 )], (45)
Similarly, one can show that

o) (b, ay 1) = 1, (b, a; 1) 7 %™, (46)

nono nong

and £;%) (b, a; 1) = ;%) (c, a; 2), when M, = M,.

Now, we turn to the incoherent two-MI cluster results.
To extract the spin-flipped transmission and reflection co-
efficients arising from MI-1, we consider projecting the
spin-flipped outgoing wave at an arbitrary site |J) to give
U, (J) = G VW, (1) 4+ Viw,(1)]. From this projection
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expression, and together with Eq. (44), we obtain

1 — LeivQuy(ILizl=Li2)
2 b a1y, (47)

_ %eZi)/Qno [Li2] "0”0

(b,a;1) =

n(] no 1

Similarly, one can obtain

1 — LeivQuy(Lizl+Li)
2 tfO%p a:1).  (48)

— leZiVQ/xo [Li2| l’lo}’lg

(c,a;2) =

nono 1

The reflection coefficients r (b, a; 1) and rm)m) (c, a;2) bear

the same relation form with t,fnno (b,a;1) and 1), (c,a:2),
respectively, as that given in Eq. (46). Only that the location
N, in the phase factor on the right-hand side of Eq. (46) should
be changed to N, if the relation is applied to MI-2.

It is of interest to see that the spin-flipped outgoing waves
from MI-1 do not interfere with that emanating from MI-2,
because of different spin configurations in |b) and |c). We
note that this is in sharp contrast with normal scatterer, where
all outgoing scattered waves, which would be non-spin-flip
only, of the same energy will certainly interfere and will lead
to deviation from independent-scatterer results. Thus the MIs
would be easier to establish independent MIs characteristics
than normal scatterers.

The zero-temperature total spin-relaxation rate R‘S)(no, a)
for the incident state |{,) ® |a) at the resonance energy ERO 0
follow Eq. (A11), is given by ’

Nu o ,
R%(ng, a) = N NU\g/_ Z [|tnun0(S a; a)|
+ |r£0n0(S', a;oc)| ], (49)

where the primed summation denotes S’ = b and ¢ for, respec-
tively, « = 1 and 2. The factor AMy/Non has been introduced
to Eq. (49) for Fig. 3, in order to give the relevant orders of
magnitude as in Figs. 1 and 2. Here Moo = 2.

For comparison, the independent MI results for the corre-
sponding total spin-relaxation rate R™ (ng, @) is given by

4vgn, (0 2
—— |ty (b, a; )| (50)
Ny ﬁ | 070 |
Again, the prefactor Ay has been added to accommodate the
total contribution from the MIs in Fig. 3.
The important relation between R(S)(no, a) and Ri“d (ng, a),
for the case of N, > N, and at © = Elg’o, is then obtained

Ag+1/4
Ap+9/16

R™(ng, a) = Ny

R(ng, a) = R™(no, @) (51)
where Ag = sinz(QnoLgl). The expression clearly shows the
suppression of the spin-relaxation rate at the resonance energy
EQ,.

However, the two-MI cluster SRR R? shown in Fig. 3 has
been averaged over incident spin configurations and over Ly,
while keeping M; = M, at fixed values. So, to perform the
incident spin-configuration average, we need to also calcu-
late RO(ng, b), R%(np, ) and R%(ng, d). Here |b) is the spin
state with all the spins in |b) reversed, and |d) =| | {y)
has zero spin-flipping rate. Similar to the method leading
to Eq. (51), we get Ry(ng, b) = Ry(ny, ¢) = 1Ry(no, a). The

w=20
104 P )
=
< \: ;'/
2 10°4
4
10%4
10’ T T T T T
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FIG. 4. Zero-temperature SRR R? vs chemical potential u for
incoherent MI-cluster results. The number of Ml in a cluster equals 1
(black dotted), 2 (blue dashed), 3 (red solid), and 4 (black solid), with
incident spin configurations given, respectively, by | | 1), | I 1),
| L), and | L ). All transverse site locations are fixed at
M = 7. R? is basically given by Eq. (41) except that there is no in-
cident spin configuration averaging. The magnetic impurity fraction

=105,

spin and L, averaged R shown in Fig. 3 is given by
R0 l(Ro(no,a))LZI, whereas the spin-configuration aver-
aged independent-MI SRR is denoted by R™™ = IR (ng, a).
Finally, we obtain the important relatlon between the two
curves in Fig. 3 at the MI resonance energy Elg,o, given by

RO = (Aot 12N g (52)
*T\ap 916/,

Excellent matching of the ratio R?/R™ obtained from
Fig. 3 and from Eq. (52) is presented below. For Fig. 3(a),
when M| = M, =7, the ratio from the figure [Eq. (52)] is
0.66 (0.67). The R?/R™™ ratios in Fig. 3(b), when M| = M, =
34, are the same as that in Fig. 3(a).

At the resonance energy qu |» similar analysis gives us

0 _ <—20A° > R, (53)
s 16A0 + 9 Loy s

This expression also agrees very well with our numerical
results. In Fig. 3(a), the ratio from the figure [Eq. (53)] is 0.51
(0.50). The corresponding ratios in Fig. 3(b) are the same as
that in Fig. 3(a).

C. Incoherent MI cluster

In this section, we present incoherent MI-cluster results,
when the number (Vo) of MIs in a cluster increases sequen-
tially, from ANeop = 1 up to Neop = 4. The trends, shown in
Fig. 4, exhibit in the SRR R? are the robustness of the SRR
suppression in the nonresonance region and the suppression
characteristics of the SRR in the resonance region.

The zero-temperature SRR R? shown in Fig. 4 has been
averaged over the MIs’ longitudinal separations, while all the
transverse site locations are fixed, at M = 7, and incident
spin configurations are specified. The R? is basically given by
Eq. (41) except that there is no incident spin configuration
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averaging. In the order of increasing N, the incident spin
configurations are [ | 1), [ {), [ I 11), and [ L AAN1),
respectively. This choice of the incident spin configuration
should be a good representation for each N to reveal the
trend of the variation of the SRR characteristics as N, in-
creases. On the other hand, a full incident spin configuration
average has been performed for our finite temperature SRR
1/t result, presented in Fig. 1, for the incoherent three-MI
cluster (N = 3) case. The magnetic impurity fraction n,, =
107° is the same for all curves.

Two longitudinal separation averaging schemes have been
invoked in Fig. 4. A real-space averaging has been applied
to the Meon = 2 curve, with a Ly, ensemble including all
L»; within the interval 0 < Ly; < 5000. For the Ny = 3,
and 4 curves, a Ap-averaging scheme, as is discussed in
section IIT A, has been used. In the AN, = 3 curve, we have
averaged R? over u by a A = 0.0018 interval. The choice
for the longitudinal separations between the three Mls, chosen
to be Ly; = 5000 and L3, = 7000 for Fig. 4, is found not
crucial to the R? curve. Here MIs are labeled in order of their
longitudinal positions. We recall that the typical longitudinal
separation between two MIs is given by AN, = 1/(n,W) ~
5 x 10* for the case of W = 20 in Fig. 4. Our finding that
the above Ap-averaging scheme gives the same R? curve as
long as the above longitudinal separations are greater than
103, which is a reasonable range of choices from the AN,
perspective, is a strong assurance of the validity of our Apu-
averaging scheme. Even if the longitudinal separation goes
down to 500, the same RS curve can still be obtained if we
slightly increase Au to 0.004 for the averaging. Similarly, the
Neon = 4 curve has used the same A p-averaging scheme with
Ap = 0.0018, Ly; = 5000, L3, = 7000, and Lz = 9000.

In Fig. 4, we can see the remarkable overlapping of the
four curves not only near the n;th subband band edge, but
also extends from there to cover more than one half of the
central region. This is a clear demonstration of the robustness
of the SRR suppression features. The region of interest here
is the nonresonance region pointed out in Sec. III A. Dis-
cussions in Sec. III A has shown, for the case of incoherent
two-MI clusters, two physical reasons that helped uphold the
nice overlapping finding. These are the singular feature of
Gzz(p), at the subband band edge, and the role of small
|G12()/G11 ()| as to impose a o dependent finite range of
communication, via the electrons, between the MIs. The over-
lapping findings here for Ao > 2 cases show that the same
two physical reasons remain at work for incoherent multi-MI
clusters.

The SRR suppression characteristics in the resonance re-
gion has shown, in Fig. 4, its trend of modification with the
increasing of the NV y. The SRR RS peak values are lowered
gradually with the increasing of Non. As a matter of fact, the
SRR peak is modified into a broad shoulder as N, increases.
This suppression has been analyzed, in section III B, for the
Neon = 2 case at the MI resonance energies in a W = 98
AGNR, with excellent matching of the analytical results to
the numerical results. From the spin-flipped transmission ex-
pressions, in Eqgs. (47) and (48), we see that the suppression
occurs for all Ly;. Even if one of the MI, say MI-1, would
have, for a particular L;;, a spin-flipped transmission which
magnitude is greater than the individual MI’s spin-flipped

transmission, 1f©

oy (D @; 1), the spin-flipped transmission of the
MI-2 would be lowered so that the total spin-flipped rate in the
transmission is lowered. This suggests to us a physical picture
for the SRR suppression in the resonance region, namely,
the MIs compete among themselves for their own resonance,
when they have similar resonance energies. To check on this
physical picture explicitly (not shown), we shift one MI’s
resonance energy by changing the MI’s physical parameters,
such as ey, J, and T, and we arrive at a reduced suppression.
A further discussion on our incoherent Nun-MI clusters
treatment for the SRR calculation is in order here. We refer
to Fig. 1, our highlighted key figure, for a specific discus-
sion example. Here our focus is on the incoherent three-MI
clusters curve. Full averages have been done for both spin
configurations and transverse-locations (M, M, and M3).
The longitudinal-location average of the three MIs have been
done by the Ap-averaging scheme, with the SRR 1/7, aver-
aged over a A = 0.00125, while choosing L,; = 5000 and
L3, = 6000. The incoherent three-MI clusters curve describes
the situation when the phase-coherence length Ly sets in to
render the four-MI cluster not relevant. In other words, the
round trip between the first and the fourth MIs will have to
be greater than Ly [66]. So, Ly < 2Noon ANn in the units of

+/3a. For the case of Fig. 1, the incoherent three-MI clusters
calculation is appropriate when Ly < 63 um. We do not have
enough information on the value of Ly [66], or its temperature
dependence. Yet it suffices to say that N, < 3 is quite good
for the given 7,,. In any case, the 1/t characteristics in the
nonresonance region remain intact, while the 1/7¢ profile in
the resonance region is basically known, from our study, albeit
leaving the peak values as a detail subjecting to the values
of L¢ .

IV. CONCLUSION

In conclusion, we have demonstrated two SRR suppres-
sion phenomena in long AGNRs at finite temperatures. One
suppression is in the nonresonance region and the other is
in the resonance region. Physical pictures behind these two
SRR suppressions are different and have been revealed in
our analytical analysis. We have formulated a microscopic
approach for the calculation of the SRR in ballistic nanostruc-
tures. A low concentration of magnetic impurities provides the
spin-flipping source.

In the nonresonance region, large SRR suppression occurs
at a subband band edge. The suppression factor Fy,, a ratio
between the 1/7, in 2D and in AGNRs at a finite temperature,
is large (Fyp = 9.3, 9.7) at 4 K, and is g