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The linewidths and the energy shifts of the resonant states of the impurity electron in GaAs-based quantum
wells (QWSs) with infinite barriers are calculated. The two-dimensional Schrodinger equation for the charge
impurity in the QW is solved by the developed finite-difference method combined with the complex-scaling
technique. A dependence of the linewidths and energy shifts on the QW width for the impurity localized in
the center of the QW is studied. The calculated results extend and improve theoretical estimations of these
quantities in the GaAs-based QW by Monozon and Schmelcher [Phys. Rev. B 71, 085302 (2005)]. In particular,
in agreement with their studies we obtain that resonant states originating from the second quantum-confinement
subband have negligibly small linewidths. In contrast to previous estimations, we show that for the QW
widths of the order of the electron impurity’s Bohr radius the linewidths of resonant states associated with
the third quantum-confinement subband linearly depend on the thickness of the QW. We show how the previous
theoretical predictions can be improved for such QW widths. We also calculate linewidths for the case when the
electron impurity is localized away from the center of the QW.
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I. INTRODUCTION

Many studies have been devoted to the charge impurities
and the bound electron-hole pairs, excitons, in semiconductors
with a degenerate valence band [1-4]. The early experimental
works have mainly addressed the fundamental properties of
these quasiparticles, namely the lifetime and the radiative
characteristics, as well as the ways to tune them by confining
in heterostructures with quantum wells (QWs) [5-8]. The
renewed interest in these structures is based on certain appli-
cations, in particular, on the quantum-cascade lasers [9-11] as
the primary sources of the terahertz radiation [12-17].

From the theoretical point of view, charge carriers and
excitons in heterostructures with QWs are interesting model
systems, allowing for an accurate theoretical treatment and
comparison with experiment. Since the first works of Bas-
tard on the charge impurities [18,19] and following numerous
works on excitons in QWs [20-28], the variational cal-
culations of bound state energies have become a standard
approach. Most of the variational studies were devoted to
the ground state energy since the simplest choice of the
trial function in the variational method (see for example
Refs. [21,27,29,30]) allows one to reliably simulate only
the ground state. To calculate the energy levels of the
excited states, for example originating from upper quantum-
confinement subbands in QW, one needs the specially chosen
set of trial functions that complicates numerical solution.

In order to simplify the problem, some works investigated
the bound states in very narrow QWs, when the Coulomb
potential can be effectively treated as a two-dimensional (2D)
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one [31-33]. Another common approximation was to ignore
the Coulomb coupling of the bound states at upper subbands
with the continuum of lower subbands. In fact, this coupling
leads to the resonant (quasibound) states in the continuum
which are characterized not only by the energies, but also by
the nonzero linewidths.

The resonant states of the charge impurities were inves-
tigated both analytically and numerically in several works
[34-39]. The most instructive one is Ref. [38], in which
Monozon and Schmelcher considered resonances in the model
of three quantum-confinement subbands in narrow QW with
infinite barriers. For such a case, the perturbative methods
allowed them to derive the analytical expressions for energy
shifts and linewidths of the resonant states of an impurity
electron as well as of an electron-hole pair in a QW of width L.
In particular, they obtained that the linewidth scales with L as
L*, which is in agreement with the Fano theory of resonances
[40,41]. This result, however, is applicable only for a model
of very narrow QWs, when the QW thickness is much smaller
than the Bohr radius ap of the particle. Thus, the predictions
of Ref. [38] may be inappropriate for more realistic condi-
tions. On the one hand, the model of very narrow QWs may
be rough even for well-studied structures. In particular, for
GaAs-based heterostructures the envelope function approxi-
mation is not accurate enough for the QW thicknesses smaller
than 3 nm [42,43], whereas for bulk GaAs, the Bohr radius
ag = €li*/(m,e?) of the electron impurity is of about 10 nm.
On the other hand, for larger L, a behavior of the linewidth
is more complicated [44]. The steep fourth-order dependence
should quickly mitigate with increase of L, then the linewidth
reaches its maximal value and further decreases. It should
completely vanish for the model of a bulk semiconductor, as
L — oo.
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In the present paper we numerically study the linewidths
of the resonant (quasibound) states of the electron impurity
in a single QW with infinite barriers. The upper quantum-
confinement subbands are coupled to the unrestricted in-plane
electron-impurity motion of lower subbands and lead to a
resonant nature of the upper states. The resonant states are
well known in quantum physics [40,45,46]: the linewidth A"
of the energy level E determines the lifetime of a resonant
state. In semiconductor physics, the quasibound states of the
electron-hole pairs in QWs are in the scope of intensive stud-
ies [26,33,47-49]. There are also works devoted to the bound
states in the continuum [50,51] characterized by very small
nonradiative broadenings [52]. Nevertheless, it is the non-
radiative processes that usually dominate the broadening of
the electron-hole resonances, even for high-quality samples.
Therefore, the theoretical estimations of the radiative and non-
radiative linewidth broadenings are of significant importance
for spectroscopy of heterostructures. Since the electron-hole
pairs in QWs are effectively three-body systems [53,54], they
are more complicated objects than the charge impurities. As
a result, before studying the features of electron-hole reso-
nances, one has to investigate resonant states of the charge
impurities.

In order to calculate the linewidths, we use the complex-
scaling technique [55]. It transforms the scattering problem
into the boundary value problem with zero boundary con-
ditions. It was rigorously established for the description of
resonance characteristics in the early 1970s [56-59]. Since
then, many quantum scattering problems in nuclear and
atomic physics have been studied by this technique [60-66].
In semiconductor physics, a feasibility of complex-scaling
calculations of the electron-hole nonradiative linewidths was
first demonstrated in Ref. [67]. Recently, the complex scaling
has also been applied to identify energies and linewidths of
the resonant series of the electron-hole pairs in the transition
metal dichalcogenides [68] and bulk cuprous oxide [69-71].

We study the resonance characteristics using the developed
numerical algorithm combined with the complex-scaling rota-
tion. Our numerical algorithm is based on the finite-difference
discretization of the two-dimensional Schrodinger equation.
A similar approach has already allowed us to obtain precise
exciton energies for a wide range of QW widths and different
potential profiles [27,33,47]. In the current work we readily
determine the spectrum of the bound and resonant states of
the electron impurity localized in the center of the GaAs-
based QW. The bulk GaAs material parameters are used in
calculations [72]. Using the complex-scaling technique, we
distinguish the proper states from the artificially discretized
continuum, and classify the resonant states over the quantum-
confinement subbands. A dependence of the linewidths of
resonant states on the QW width and the index of the subband
is studied. In particular, we obtain that the resonant states as-
sociated with the second quantum-confinement subband have
negligibly small linewidths. Thus, they have very long lifetime
and can be considered as an example of the bound states in the
continuum. We extend the results presented by Monozon and
Schmelcher for very narrow QWs to wider ones by providing
new calculated data on the linewidths of resonant states of the
third quantum-confinement subband for QWs widths L up to
150 nm. We also show that in order to obtain more precise

linewidths for QW widths of order of the Bohr radius one
can use the complete formulas derived in Ref. [38] without
approximations, which the authors then employed to achieve
the final analytical expressions of Ref. [38]. Additionally, we
calculate linewidths for the case when the electron impurity is
localized away from the center of the QW.

II. THEORY

A. The energy levels of the electron impurity in the QW

We consider an electron impurity (a donor center) localized
at the distance b from the center of the QW. The z axis is
chosen along the growth axis and p is the radius vector in
the QW plane. The point z = 0 is in the center of the QW.
Within the effective mass approximation, the wave function
of the electron impurity at the position r(p, z) satisfies the
time-independent Schrodinger equation [38]
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Here A is the three-dimensional Laplace operator, m, is the
electron mass, 2 is the square of the electron charge, and € is
the dielectric permittivity constant. The QW potential V,(z) is
defined as

_]o if |z] < L/2,
‘“@—{m if 12| > L2, @

To simplify Eq. (1), we introduce the polar coordinates p =
(p, ¢) within the QW plane. Separating the angle variable and
taking into account only cylindrically symmetrical solutions,
Eq. (1) is reduced to the two-dimensional equation
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where the function x (p, z) is related to the radial part of the
wave function W(p, z) as x(p, z) = p Y(p, 2).

The energy levels of the electron impurity in the QW are
governed by Eq. (3). The scheme of energy levels can be
easily obtained for the model of a very narrow QW. In such
a case, the initial Coulomb-like potential becomes effectively
two dimensional, —e?/(ep), and the variables in the equa-
tion can be separated. The resulted energy spectrum is shown
in Fig. 1. In the figure, the quantum-confinement subbands,
originating from a quantization in the QW, are shown by long
horizontal lines. They are defined as [73]

E. = 2}2(%)2 )

Corresponding quantum-confinement wave functions are [4]

|2 fcos(jmz/L) if j=1,3,
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155417-2



LINEWIDTHS AND ENERGY SHIFTS OF ...

PHYSICAL REVIEW B 105, 155417 (2022)

e3
(e3,1s)
e2
g —
o
E (e2,1s)
S Resonant states
O el
%nd states
7 (el ls)

FIG. 1. Scheme of the energy levels of the impurity electron in
a very narrow QW with infinite barriers. The quantum-confinement
subbands ej, j = 1, 2, 3, as well as the corresponding branches of the
continuum are shown. The bound and resonant states are explicitly
denoted.

Below each quantum-confinement subband, there is a set of
the 2D Coulomb potential energy levels [32,33]

c 4Ry
NETaN -1 (6)
Here Ry = m,e*/(2¢h?) is the Rydberg energy of the impurity
electron in bulk GaAs.

As a result, we can classify the energy levels by the index
Jj=1,2,3, ... of the quantum-confinement subband as well
as by the principal quantum number N =1, 2, 3, ... of the
Coulomb-like level: (ej, Ns). For example, the lowest energy
levelis (el, 1s), see Fig. 1. It is worth noting that for the model
of a very narrow QW these numbers are the good quantum
numbers.

Below the lowest quantum-confinement subband el, there
are energy levels corresponding to the square-integrable so-
lutions. They are associated with the discrete part of the
spectrum. The continuous part of the spectrum takes place
above the subband el. Energies of the continuum correspond
to the square-nonintegrable, scattering solutions of Eq. (3),
i.e., solutions which propagate far away from the interaction
domain.

It is important that the Coulomb-like potential of Eq. (3)
couples the quantum-confinement subbands. The above-
proposed classification and the introduced good quantum
numbers are, in fact, approximate. They specify the domi-
nant admixture to a given state. Nevertheless, the introduced
classification is convenient in practice until the quantum-
confinement quantization is stronger than the Coulomb-like
one [33]. This is valid for relatively small L. As L increases,
the quantum-confinement quantization becomes weaker and
the upper subbands gradually descend. At some point, the QW

quantization becomes so small that the Coulomb-like sets of
different subbands start to overlap.

The Coulomb-like energy levels of upper quantum-
confinement subbands are coupled to the continuum of the
lower subbands. Thus, these states are the resonant (qua-
sibound) states. They are characterized not only by the
energy, but also by the linewidth broadening, determining
the lifetime of a resonant state. The time evolution of res-
onant (quasibound) states can be expressed as exp[—i(E —
ihl")t/h]. Therefore, energies E and lifetimes t = i/(2AD")
of these states can be defined by complex values with the
negative imaginary part Im[E] = —AI'. Here I > O is the
half-width at the half-maximum (HWHM) linewidth broad-
ening of a resonance [4,27]. It is related to the full-width at
the half-maximum (FWHM) definition [73] of broadening as
FFWHM =2I.

B. Analytical results on the energy shifts
and linewidth broadenings

Due to the Coulomb coupling of the upper subbands with
the lower ones as well as with the continuum of lower sub-
bands one obtains the shifts of energy levels and the linewidth
broadenings, respectively. In Ref. [38] these quantities were
obtained analytically based on the model of the two and three
quantum-confinement subbands in a narrow QW with infinite
barriers. In the framework of the two-subband model Mono-
zon and Schmelcher obtained the following energies of the
Coulomb-like series associated with the second subband e2.
In our notation they are

EeZ,Ns =Lk + E}S + AE@2,N.¥ - theZ.NSa (7)
where
8 Ry L
Moy = SR (L) ;
2N = N 17 \a (8)
and
hFeZ,NS =0. (9)

Here we fixed b = 0 to significantly simplify the analytical
formulas. We outline the original expressions of Ref. [38]
in the Appendix. The first two terms in Eq. (7) refer to the
model of a very narrow QW, when the Coulomb potential
becomes effectively two dimensional, ~ — p~!. The energy
shift AE,; ys is caused by the effect of the three-dimensional
Coulomb potential ~(p? + z%)~1/2, compared to that from the
two-dimensional one. The zero linewidth Al',, ys originates
from the different parity of the wave function of the subband
e2 with respect to el (and also to e3). The matrix element of
the Coulomb potential calculated for these states is exactly
zero. Meanwhile, for b # 0 such a degeneracy is lifted and
AT .5 ns becomes nonzero.

The energies of the Coulomb-like set of the third quantum-

confinement subband e3 are
Ee3,NS =Egs + E}S + AE€3,N‘Y - th€3,NS7 (10)

where

AE _ (4 4 1+4<L>2 8Ry L
Ns = 2 74 \ap (2N — 1)} \ ap

an
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and

—— 4 . 4 8 Ry L\*
e3Ns = 972 72 | 732N — 13 \az )
(12

Thus, the linewidths of the energy levels associated with the
third subband are nonzero. The quantum-confinement wave
function of this subband is of the same parity as that of the first
one. In fact, the linewidth iT' 3 y, appears to be proportional
to L*, which is in accordance with the Fano theory [38,40].

It is worth noting that Eqs. (7)—(12) are obtained using
the following approximations: (1) a few quantum-confinement
subbands are taken into account; and (2) very narrow QWs,
L <K ap, are considered. In the present work we study QWs
of various widths. We obtain the energy shifts and linewidths
numerically without mentioned approximations. Moreover,
we consider the original Eq. (3), which means that many
quantum-confinement subbands are taken into account.

C. Complex-scaling technique

For simple textbook models, e.g., one-dimensional QWs,
the resonance positions and, in particular, the linewidths can
be determined analytically relatively easy [55,73,74]. For
more complicated systems, the analytical derivation of reso-
nance characteristics is less straightforward (see, for example,
Ref. [38] to realize the faced problems). The main point is
that, unlike the bound states, the quasibound (resonant) ones
are not represented by the square-integrable solutions of the
Schrodinger equation. As a result, their energies are beyond
the discrete spectrum of the Hamiltonian and the conventional
variational methods become inappropriate for treatment of
scattering solutions.

The reliable method for calculation of resonance broad-
enings, the complex-scaling technique, has been established
in Refs. [56-59] in the 1970s. Since then, many quantum
scattering problems in nuclear and atomic physics have been
studied by this technique [55,60-66,75,76]. It states that the
complex energies of resonant states can be identified in the
discrete spectrum of the non-Hermitian Hamiltonian Hy =
H{[rexp(if)], obtained from the initial one H(r) by scaling
of the coordinate as

r — rexp(if). (13)

Here 6 > 0 is the scaling angle, i.e., the angle of a rota-
tion of the coordinate into the complex upper half-plane.
Such a scaling allows one to associate resonant states
with the discrete spectrum by making the outgoing scatter-
ing waves ~exp(ivE r) as r — oo to be square-integrable
~exp(ivE rcos® — +/E rsin0) by the appropriate choice of
the angle 6. As a result, the continuous spectrum becomes
rotated into the complex lower half-plane by the double angle
26. The bound states remain unchanged for arbitrary 6 and
one can distinguish them from the discretized continuum. If
the angle of the rotation 6 is large enough, then the unknown
complex energies also appear in the sector of the double angle
26. If they are independent of the angle of the rotation, they
correspond to the resonance positions.

Figure 2 shows an example of the complex scaling of
variable p of Eq. (3) into the upper complex half-plane. The

5[ « Knots in the complex upper half-plane

)

Im[R(p)] (nm)

[ T E U R E S N |
10 12 14 16 18 20 22

Re[R(p)] (nm)

FIG. 2. Knots of the rotated contour for the variable p. The
smooth exterior complex-scaling rotation is shown. The smooth
curve starts at pg = 11 nm and finishes at p; = 19 nm.

figure shows a so-called smooth exterior rotation [63,77] em-
ployed in the current work. It implies a change of the variable
p to the complex function R(p) according to the formula

P it p < po,
R(p) = { po+ (36, po, p1) if  po < p < pi,
po+(p—po)expif if  p; < p.

In this case, the limiting behavior of R(p) as p — oo is as
it would be for the sharp rotation defined by Eq. (13). How-
ever, comparing to the sharp rotation, for the exterior one the
derivatives of R(p) over p in the vicinity of the point p = 0
are zero. Moreover, we additionally introduced the complex-
valued function s(p;8, po, p1) which matches two limiting
behaviors at the interfaces p = pp and p = p; and guarantees
appropriate smoothness.

D. Numerical method

For the calculation of the linewidths A#I", we implemented
the complex scaling into our finite-difference method of the
numerical solution of Eq. (3). Since our method has already
been described in detail in Refs. [27,33], we only briefly
mention the key points. In the current case, we use the
second-order finite-difference discretization on the equidis-
tant grids over each of two variables of the complex-scaled
Eq. (3). It leads to an eigenvalue problem with the sparse
block-tridiagonal non-Hermitian matrix [78,79]. Several low-
est eigenvalues of this matrix are calculated by the Arnoldi
algorithm [80]. As a result, we were able to compute the
energies and the linewidths of the impurity resonances in QWs
of various widths. We used the material parameters for bulk
GaAs which are given in Refs. [33,72]: m, = 0.067 my and
€ = 12.53.
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FIG. 3. (a) Calculated eigenvalues of the complex-scaled Eq. (3), defining the states of the electron impurity in the infinite-barrier QW
of thickness L = 10 nm. Three different angles of the rotation are demonstrated. The left panel shows eigenvalues associated with the lowest
quantum-confinement level el, i.e., corresponding to the bound states. The central panel shows the eigenvalues of the energy level €2, i.e., the
resonant states. The right panel shows the eigenvalues of the quantum-confinement energy level e3. The discretized branches of the rotated
continuum are also shown. (b) Detailed plots of the calculated eigenvalues of the complex-scaled Eq. (3), defining the electron impurity in the
10-nm QW with infinite barriers. Tangents of the rotation angles 6 are also denoted nearby to the corresponding points. The relatively small
positive imaginary parts of the complex eigenvalues associated with the subbands el and e2 are due to the uncertainty of the numerical method.

III. RESULTS

A. Dependence of the linewidths on the angle of the rotation

Using our numerical method, we calculated several lowest
eigenvalues of the complex-scaled Eq. (3) with b =0 for
different QW widths. The smooth exterior rotation of the vari-
able p was performed. It started at pp = 11 nm and finished
at p; = 19 nm by approaching the straight line inclined by
some angle 6 to the real axis (see Fig. 2). For example, the
numerical results for the QW width L = 10 nm are shown
in Fig. 3(a) by three panels for better visibility. Each panel
corresponds to one set of Coulomb-like energies below the
certain quantum-confinement subband ej, j =1,2,3. One
can see the branches of the discretized continuum rotated by
the double angle 20. The complex eigenvalues, independent
of 6 and corresponding to the bound and resonant states, are
explicitly denoted.

The positions of resonances do not depend on the angle
of the rotation 6 if the numerical scheme is exact. In fact,
due to uncertainty of the numerical method, our calculated

~
[
~

Energy shift (meV) Energy shift (meV)

0 20 40 60 80
QW width (nm)

series of eigenvalues slightly depend on the rotation angle. To
study this dependence we calculated the complex eigenval-
ues E — ihl" as functions of 8. They are shown in detail in
Fig. 3(b). One can see that there is indeed a weak dependence
of the results on the angle of the rotation. Moreover, since the
bound states should have zero linewidths, we can estimate the
accuracy of our calculations as of about 4 x 10™*meV.

B. Dependence of the energy shift and the linewidth
on the thickness of the QW

We calculated the energies of the electron impurity in the
infinite-barrier QW of widths L = 0.6-80 nm. To keep the
symmetry of the system, we localized the impurity electron in
the center of QW (b = 0). Comparing calculated energies with
the energies E,; + ES for j = 1,2,3and N = 1, 2, we found
the shifts of the energy levels due to the Coulomb coupling.
The obtained energy shifts, highlighting the difference of the
impurity energy from that in the model of a very narrow QW,
are shown for bound and resonant states in Fig. 4(a). One can

~

o

~
o
w

Linewidth: -Im[E] (meV)

0 20 40 60 80 100 120 140
QW width (nm)

FIG. 4. (a) Calculated energy shifts of the resonant states as well as of the bound states as functions of the QW width. The upper (lower)
panel shows the data for 1s-like (2s-like) states. The states of the subband el correspond to the bound states, whereas ones of subbands e2
and e3 correspond to the resonant ones. (b) Calculated linewidths (HWHM) of the resonant states (e3, 1s) and (e3, 2s) as functions of the QW

width. The insets show the regions of small QW widths in detail.
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see that energy shifts grow with an increase of the width of
QW. Moreover, for narrow QWs the energy shifts grow faster
than for wide QWs. Such a saturation exhibits the fact that the
rapid change of energies in the model of 2D Coulomb (~p~!)
takes place for narrower QWs, immediately after allowing the
electron impurity to move along z axis. For wide QWs, the
system is broad enough. Thus, further expansion over z axis
weakly affects the energies.

We calculated not only the energies but also the linewidths
of the resonant states. Interestingly enough, the widths of
the resonant states associated with the second quantum-
confinement subband e2 appeared to be of the order of the
uncertainty of calculations for the whole range of studied QW
widths. For example, the complex energy of the state (e2, 1s)
of order of 10~* meV is shown in the central panel of Fig. 3(b).
Therefore, we can numerically confirm the result of Ref. [38]
that magnitudes of il',; ys are negligibly small. Since these
states are effectively uncoupled to the continuous spectrum of
lower subbands, they can be regarded as the bound states in
the continuum [50,52]. By the same reason, they should have
sharper, more distinct peaks in the experimental spectra than
other resonant states.

The linewidths of the resonant states associated with the
third quantum-confinement subband e3 are evidently nonzero.
These quantities for 1s- and 2s-like states of this subband
are shown in Fig. 4(b) for L up to 150 nm. One can see
almost the linear growth of Al for the 1s-like state for QW
widths L = 1.2-50 nm. Thus, in agreement with experiments,
the states associated with the subband e3 should have more
pronounced peaks in the measured spectra for narrower QWs
[27,28,81]. For wide QWs, L ~ 100 nm, the corresponding
peaks should be significantly broadened: for such widths
the linewidth broadening flattens out and saturates at about
0.5 meV for 80-90 nm. With the further increase of L, Ail’
gradually reduces and should completely vanish as the energy
of the quantum state transfers to the discrete part of the spec-
trum, below the scattering threshold el [44].

The linewidth of the 2s-like state is, at least, by one order
of magnitude smaller than that for the 1s-like state, though it
shows the similar qualitative dependence on L.

C. Comparison with the analytical results

The results by Monozon and Schmelcher [38] predict that
for very narrow QWs, when L <« ag, the linewidth scales with
L as L*. In our calculations we can see such a behavior only
for very small thicknesses L = 0.6—1.2 nm, see the inset in
Fig. 4(b). Since for the electron impurity in bulk GaAs ap ~
10 nm, this range of L indeed satisfies the above-mentioned
criterium. In fact, for these values of L the power-law fit of
calculated data gives the dependence L33+%2 which is similar
to the theoretical prediction.

Figure 5 shows our numerical results for (e3, 1s) reso-
nant state together with the theoretical predictions made by
Monozon and Schmelcher as well as calculations performed
using the intermediate complete expressions in Ref. [38]. Both
theoretical and numerical estimations give relatively small
hl" for L <« ag. However, for L ~ 0.2ap the complex scal-
ing calculations give values one order of magnitude larger

QW width: L (nm)
4 6 8 10

0 2 12 14
012 F——T——T 11—
L Resonant state (€3,1s) /
0.1F
= 0 ;
g 008 r N
g L
g 0.06[
= L
E omf
= L
2
5 0021 complex scaling
< e Monozon and Schmelcher
0 — — complete: -4Ry/(2N-142E)?
[ N T R S S R N
0 0.2 0.4 0.6 0.8 1 1.2 14
L/a,

FIG. 5. Calculated linewidths of the resonant state (e3, 1s) as
functions of L/ag. Results of our calculations using the complex-
scaling technique are shown by the solid line. The linewidths plotted
from the final analytical expression of Ref. [38] are denoted by the
dotted curve. The linewidths plotted from the intermediate complete
expressions of Ref. [38] are shown by the dashed curve.

than the theoretical predictions. Already for such values of L,
the complex scaling results show a clear linear dependence,
whereas the theoretical predictions of Ref. [38] scale as L* for
arbitrary widths. With further increase of L, the fourth-order
dependence quickly surpasses the linear one. As a result, our
numerical data and the values based on the theoretical results
by Monozon and Schmelcher significantly differ for L ~ ag.

A discrepancy of the theoretical predictions and our nu-
merical results arises from several approximations employed
in Ref. [38]. In particular, the authors approximate the com-
plete expression for the resonance complex energy E.3 ys =
—4Ry/(2N — 1 + 2£)? by the perturbation series

4Ry 16Ry &
2N —1)2 (2N —1)}

16Ry &2

(2N — 1)* (14

Ee3,Ns ~

with a small parameter &, which is, in turn, given by the ratio
of perturbation series in powers of L/ag, see the details in
the Appendix. In the leading order, & depends linearly on L,
therefore for L < ap the shift of energy and the corresponding
complex parameter £ in Eq. (14) are assumed to be small.
This allowed the authors of Ref. [38] to take into account only
the linear term in Eq. (14) as well as a few lower orders of
L/ag in the perturbation series in both parts of the ratio for &.
These approximations led finally to the analytical results for
the energy shift (11) and the linewidth (12).

Nevertheless, the complete expressions can be used
directly without the above-mentioned approximations. It ap-
pears that the complete expressions give values [see the
dashed curve in Fig. 5] which are closer to the ones cal-
culated by the complex scaling technique. One can see that
both results differ by no more than 0.02 meV up until L ~
ap, whereas for such a range the originally predicted L*
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FIG. 6. Calculated linewidths of the resonant states belonging to the second and the third quantum-confinement subbands as functions of
the shift b of the impurity from the center of QW. Plot (a) shows data for QW width L = 5 nm, whereas plot (b) shows results for L = 20 nm.

dependence from Ref. [38] exceeds our numerical data by one
order of magnitude.

Interestingly enough, the theoretical predictions in
Ref. [38] evidently do not show a linear dependence of A’
on L/ap, whereas the calculations based on the complete
expressions show a linear behavior for L ~ ag. Moreover, the
obtained slope of the linear part moderately agrees with the
complex scaling result. We can claim that taking into account
higher orders of L/ap in the perturbation series for both parts
of the ratio for £ lead to more pronounced linear dependence
on L/ag. However, the reasons of such a fact require further in
depth theoretical studies. Anyway, our numerical calculations
do not rely on the perturbation theory and provide accurate
results for the whole range of QW widths.

D. Linewidths of the resonant states when the impurity
is away from the center of the QW

We additionally studied the case when the electron impu-
rity is away from the center of the QW, i.e., b # 0. In such a
case, a symmetry of the system is broken and, in particular, the
linewidths il ns [Eq. (9)] of resonant states associated with
the second quantum-confinement subband become nonzero.
To show this, we calculated the linewidths as functions of the
shift from the center b for different QW widths. The obtained
dependencies for L =5 nm and for L = 20 nm are shown
in Fig. 6. These particular QW widths address the situations
when the QW is two times narrower than the electron impu-
rity’s Bohr radius and when it is two times wider, respectively.
The forms of the dependencies corresponding to the same
subbands are approximately the same over the whole range of
studied QW widths and differ only by magnitudes. The values
of magnitudes for 1s- and 2s-like states are denoted in the
plots by the left scale and by the right scale, respectively.

A constant-factor difference in magnitude for 1s- and 2s-
like states of the same subbands originates from the general
theoretical ratio of the linewidth broadenings I';;/T vy, which
equals to (2N — 1)? for the limiting case of the very narrow
QW and to N3 for the bulk semiconductor. In the approxi-
mation of Ref. [38], this ratio is independent of b, see exact

formulas in the Appendix. Then, for 1s- and 2s-like states the
theoretical ratios in limiting cases should be 3* and 23. Since
the considered values of L account for the intermediate situa-
tions, we numerically obtained for these widths the values of
the ratio to be of about 18 and of about 10, respectively. The
decrease of the ratio for larger L indicates the crossover from
the narrower QW to the wider one.

The detailed analysis of the plots shows that for small
b~ 0.1 nm the linewidths Al',, y; for N = 1,2 grow with
the increase of b. For larger values of b, the dependencies are
nonlinear. They are qualitatively reproduced by the interme-
diate complete expressions from the paper by Monozon and
Schmelcher, whereas further approximations employed by the
authors to obtain the analytical formulas lead to less precise
results. There are maxima as well as minima of the linewidth
broadenings. By varying b one can achieve the situation when
the state associated with the subband e2 has the maximal
linewidth or when that one belonging to the subband e3 has
the minimal one. The common feature of both plots is that
the linewidths become small, when the impurity is localized
near the barrier. As it is shown in Ref. [38], the calculated
linewidths are related to the matrix elements of the potential.
The reduction of Al v, originates from the shift of the min-
imum of the potential close to the barrier, i.e., to the domain
where values of the quantum-confinement wave functions in
the matrix element are relatively small. Thus, the coupling of
the resonant states also becomes small.

IV. CONCLUSIONS AND OUTLOOK

In summary, we calculated the energies and the linewidths
AT of resonant states of the impurity electron in a single
QW with infinite barriers. These resonant states originate
from the Coulomb coupling of upper quantum-confinement
subbands with the continuum of the lower subbands. The two-
dimensional Schrodinger equation describing the impurity
electron states was solved by the finite-difference discretiza-
tion method combined with the complex-scaling technique. A
dependence of the linewidth broadenings and the energy shifts
on the QW width and the index of the quantum-confinement
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FIG. 7. (a) Values of £ as a function of L/ag. (b) The imaginary part of the complex energy, i.e., the linewidth, calculated using the
complete expressions derived in Ref. [38], see Egs. (14) and (A1), and different applied approximations, also including the original result by

Monozon and Schmelcher.

subband was studied. We obtained that the resonant states cor-
responding to the second quantum-confinement subband have
negligibly small linewidths. Thus, they can be regarded as
examples of the bound states in the continuum. The linewidths
of the states associated with the third quantum-confinement
subband are nonzero. For L < 1 nm, the calculated values of
the linewidth scale with L approximately as L*, which is in
agreement with results obtained by Monozon and Schmelcher
in Ref. [38]. For QW widths L = 1.2-50 nm, the linewidth
broadens linearly with an increase of L, then it flattens out
and saturates at about 0.5 meV for L ~ 100 nm. With the
further growth of L, the linewidth diminishes and should
completely vanish when the energy of the corresponding state
transfers to the discrete part of the spectrum. We extended
the results obtained in Ref. [38] for very narrow QWs, L «
ap to the QW of the thickness of order of the impurity’s
Bohr radius ap and larger by providing new numerical data
on A" of resonant states of the third quantum-confinement
subband. We also showed how one can apply the complete
expressions derived in Ref. [38] without approximations to
obtain more precise magnitudes of the linewidths of the res-
onant states for QW widths of order of the Bohr radius.
Additionally, we calculated the linewidths for the case when
the electron impurity is localized away from the center of
the QW.

The numerical methods of this paper can be applied
to the model of the excitons in cuprous oxide QWs
[82]. The obtained results are also important for con-
temporary experimental studies of Cu,O-based heterostruc-
tures [83]. The estimations and the dependencies of the
linewidth broadenings on the QW width provide valu-

J

_ &

1+ %T(gll +8») — 7—2811822

able information for spectroscopy measurements of these
structures.
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APPENDIX

Here we outline the theoretical results of Ref. [38] and
show in detail how they can be improved for L ~ ap if one
calculates the linewidths using the complete expressions in
Ref. [38] instead of taking the lowest-order approximations
to obtain the analytical results.

In Ref. [38] the model of three quantum-confinement sub-
bands in QW with infinite barriers was solved. Within this
model, the complex energies of the electron impurity are
defined by the parameter & via Eq. (14). For L < ag, this
parameter is assumed to be small enough to approximate the
energies by the constant and the linear in £ terms, see the
right-hand side of Eq. (14). Monozon and Schmelcher found
that £ can, in turn, be given by the ratio of perturbation series
in the small parameter L/ap:

&=
Here the integrals are given as

gjk = <Wj(Z)

2 14 Feu + ) — 5(85 + 83) — T (68 +818%) — Tegnen

4|z — b|
ag

(AD)

Yk (Z)>-
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For QW with infinite barriers, the integrals include the well-known wave functions (5) and are evaluated exactly:

L 4 5 5
1+—2[(t/2) —cos” (1/2)] |,
T

o

|
A~~~
s |

oQ
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Il
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[ 1
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oo
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&}

Il
e

oQ
g
Il
A~
= S~ § &=

N— N— \/ N— \/
q,

18
P [E sin (5¢/2) — 8sin (t/2)i|
4 4
g = (=)= cos’(t/2),
ag
where t = 2nb/L. For L < ap, the series in Eq. (A1) can be truncated leaving only the leading orders of L/ag which are
necessary to obtain the unknown quantity analytically. By doing likewise, as well as by using the linear approximation in
Eq. (14), Monozon and Schmelcher obtained the following approximations for the real part of the complex energy (the energy

AER - g
€ (2N - 1)3 33

1+ )] =

4
and for the imaginary part (the linewidth)'

ap

irRy i
AEy, = — mg%[gng%] +8228§2] =-

o ()

1/L\[16 1 (8 . . ?
X {1 +—(—> [F cos (t/2)+;(g 51n(5t/2)—851n(t/2)> ]}

4
v [

73 2N
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9?2

(A2)

%[(3; /2)* — cos® (3t /2)]}

2
x {[1 + %[(r/z)2 — cos® (t/2)]j| cos®(t/2) + [1 + %(:2 - sinzt)] [% sin (5¢/2) — 2sin (t/2)i| } (A3)

These are Eqgs. (11) and (12) for arbitrary b. The generaliza-
tions of Egs. (8) and (9) can be found in Ref. [38].

Using all the terms in Eq. (Al) we can evaluate & for
different ratios L/ap. The dependence &(L/ap) is shown in
Fig. 7(a). One can see that already for L/ag = 0.3, the quan-
tity 2¢ in the denominator of E3 ys = —4Ry/(2N — 1 + 2£)?
is of about 0.3, which is not so small comparing to unity.
Simultaneously, the last, quadratic in &, term in Eq. (14) starts
playing a role for such L, because, due to the large real part,
its imaginary part becomes of the order of Im[£]. Thus, the
linear in & approximation becomes reasonably inappropriate.

We evaluate the complex energies for L < ap by different
ways to compare. To do it, we calculate £ using all the terms
in Eq. (A1) and use it further to calculate the complex energy
by the complete equation E,3 y; = —4Ry/(2N — 1 4 2£)? as
well as by the linear and quadratic approximations on the

IPlease note the two times difference with I in Ref. [38] due to the definition of the complex energy as E —

(

right-hand side of Eq. (14). The comparison of the imaginary
parts, the linewidths, of the obtained values with the result by
Monozon and Schmelcher is shown in Fig. 7(b). For small val-
ues of L/ag both shown curves coincide, however for L ~ ag
there is a significant difference. Using all the available terms
in Eq. (A1) to evaluate £ and calculating exactly the energy as
E;ns = —4Ry/(2N — 1 + 2£)? allows us to significantly im-
prove the approximation of the imaginary part of the complex
energy for L ~ ag. We see in Fig. 5 that for L ~ ag the results
obtained from the total expression for £ and the complete
equation for E. n; give linewidths which agree better with
our numerical data. There is also the linear-like dependence
of this quantity for such values of L.

As a result, we see that the complete expressions for &
and E,3 y;, significantly improve theoretical predictions for the
linewidths for L ~ ag.
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