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Symmetry-enforced nodal lines in the band structures of vacancy-engineered graphene
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We elaborate that single-layer graphene with periodic vacancies can have a band structure containing nodal
lines or nodal loops, opening the possibility of graphene-based electronic or spintronic devices with novel
functionalities. The principle is that by removing carbon atoms such that the lattice becomes nonsymmorphic,

every two sublattices in the unit cell will map to each other under glide plane operation. This mapping yields
degenerate eigenvalues for the glide plane operation, which guarantees that the energy bands must stick together
pairwise at a boundary of the Brillouin zone. Moving away from the Brillouin zone boundary causes the
symmetry-enforced nodal lines to split, resulting in accidental nodal lines caused by the crossings of the split
bands. Moreover, the density of states at the Fermi level may be dramatically enhanced if the nodal lines cross
the Fermi level. The nodal lines occur in a variety of vacancy configurations even in the presence of Rashba
spin-orbit coupling. Finally, our theory also explains the nodal loops surrounding the entire Brillouin zone of
chevron-type nanoporous graphene fabricated in a recent experiment.
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I. INTRODUCTION

A nodal-line semimetal (NLSM) is a novel phase of matter,
characterized by band crossings along lines, loops, or even
circles in the Brillouin zone (BZ) [1]. Both theoretical and
experimental results have demonstrated that NLSMs possess
various interesting properties, such as chiral anomaly [2],
extremely large magnetoresistance [3], photoinduced anoma-
lous Hall effects [4], high thermal conductivity, giant intrinsic
charge mobility, non-Abelian statistics, and superconduc-
tivity [5], which have strongly motivated the research on
NLSMs [4,6-8]. Concerning the mechanisms for the forma-
tion of these nodal lines and nodal loops, they can be either
accidental or symmetry-enforced [1,9-11]. The former are
related to various spatial or nonspatial symmetries, such as
the Dirac nodal lines protected by reflection, space-time inver-
sion, or rotation symmetry, and can be adiabatically destroyed
by tuning parameters of the material, such as spin-orbit cou-
pling (SOC). Symmetry-enforced NLSM phases [1,11], on the
other hand, emerge in crystals with nonsymmorphic symme-
tries, which warrants global stability to the associated nodal
lines.

A recent work proves a remarkable principle to engineer
nodal lines in two-dimensional (2D) materials: by periodically
removing atoms such that the lattice becomes nonsymmor-
phic, the material becomes a robust NLSM [12,13]. As a
case study, it was shown that the band structures of a num-
ber of vacancy-engineered borophenes display nodal lines
originated from a nonsymmorphic glide-plane symmetry. In
this paper, we demonstrate that vacancy engineering can in
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fact be applied to another important 2D material, namely, the
single-layer graphene. As the first member of the 2D family,
graphene exhibits a variety of extraordinary properties with
huge impact to applied research, including unprecedented
high strength and flexibility, ultralow weight, ultrahigh carrier
nobilities, high optical transparency, and high thermal con-
ductivity [14]. However, these physical properties rely on the
linear Dirac cones at low energy which are rather frail to SOC,
especially the Rashba SOC, which may hinder its application
in SOC-based devices. In particular, Rashba SOC is known
to be tunable by a gate voltage in graphene/transition-metal
dichalcogenide heterostructures [17-23], which may be used
to engineer a variety of spintronic effects, such as the recently
discovered edge current, edge spin current, and bias-voltage
free spin torque in geometrically confined graphene [24]. A
vacancy-engineered graphene that supports nodal lines even
in the presence of Rashba SOC could thus open up new
possible functionalities. Moreover, we find that the density
of states (DOS) near the Fermi level is dramatically enlarged
if the nodal lines passes the Fermi level, which is expected
to strongly impact the electronic and magnetic properties of
the proposed structures. This connects with studies of twisted
bilayer graphene which hosts superconductivity when tuned
to special “magic angles” at which isolated and relatively flat
bands appear [15].

Besides nodal lines, here we demonstrate that vacancy
engineering also allows to generate nodal loops surround-
ing the entire boundary of the BZ. Interestingly, the scheme
additionally gives rise to accidental nodal lines and loops
inside the BZ that are robust to Rashba SOC. Regarding the
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feasibility of our proposal, various experimental techniques
such as self-aligned anisotropic etching [25], copolymer
lithography [26], nanonetwork masking [27], nanosphere
lithography [28], and nitrogenation [29] have been employed
to fabricate graphene with vacancies, often called graphene
nanomesh or holey graphene. In particular, we will elaborate
that the nodal loops in fact have already been realized in a
recent experiment that fabricates nonsymmorphic chevron-
type nanoporous graphene [30], although this feature seems
to be overlooked. Additionally, to further illustrate the gen-
erality of our scheme, we show that a vacancy-engineered
square lattice also supports nodal loops. Thus we antici-
pate that the proposed vacancy engineering principle may
be further exploited to design Rashba SOC-active nodal-line
spintronic or electronic devices in a wide variety of 2D
materials.

Naturally nonsymmorphic materials (i.e., that contain
glide-plane or screw-axis symmetries without lattice engi-
neering) are expected to possess symmetry-enforced band
degeneracies [31-34]. Three-dimensional realizations of such
materials have been predicted in hexagonal compounds [35].
Our aim is to put forward a simple and practical method to
create 2D nonsymmorphic materials which contains multi-
ple nodal lines or nodal loops. We argue theoretically and
illustrate numerically that it can done simply by periodically
removing atoms from common monoatomic and nonmagnetic
sheets, using graphene as a concrete example.

II. NLSM PHASES IN VACANCY-ENGINEERED
GRAPHENE

A. Vacancy-engineered graphene with a single glide plane

The lattices engineered from graphene are denoted by Cy,
where N is the number of sublattices in the rectangular unit
cell. We firstly consider a lattice that belongs to the wallpaper
group p2mg [16], which has a glide plane going along ¥, and a
reflection plane along X, as shown in Fig. 1(a) for a C;y config-
uration. In this case, we demonstrate that every two of the N
bands must stick together and form N/2 symmetry-enforced
nodal lines at the BZ boundary k, = . In contrast to the
previous works about vacancy-engineered nodal lines that are
based on analyzing how the pairwise degenerate eigenvalues
of the nonsymmorphic symmetry operator constrain the band
structure [12,13], in this work, we present a new formalism
based on a general feature of these nonsymmorphic vacancy
configurations that enforces the nodal lines irrespective of the
detail of the Hamiltonian. The general feature is that every
two sublattices form a pair that map to each other under
glide-plane operation, which we call a glide pair. Denoting
the position of the unit cell to be (x, y) and each sublattice to
be (A, B, C...), there are two kinds of glide pairs that we call
type I and type II. The electron annihilation operators c;"‘g for a
type-1/1I glide pair (A, B)/(C, D) transform under glide-plane
operation as

. A B B
Type1: sy ™ Coyy €Ly ™ c‘;‘ﬁyﬂ,

. .C D D c
Typell:c®, =)y 2 =y e (D

The above transformations convey that the glide plane reflects
the x coordinate of a type-I pair, whereas in a type-II pair
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FIG. 1. Lattice of Cyq (a) before and (b) after structural optimiza-
tion. There are 10 C atoms in the unit cell defined by lattice vectors
G and b. The lattices have two symmetries: symmorphic reflection
plane R perpendicular to b and nonsymmorphic glide plane G per-
pendicular to 4. (c) Band structure of C;y along the high-symmetry
line I'-X-V-I"-Y -V, with the Fermi level set at zero energy. The black
arrow and circles indicate the symmetry-enforced nodal lines and
the circles indicate accidental nodal lines, respectively. The corre-
sponding density of states is shown to the right of the band structure.
(d) Contour plot of the two kinds of nodal lines by projecting them
on the k.-k, plane, with the color bar indicating the interband energy
gap. The symmetry-enforced nodal line is at the k, = 7 boundary
of the Brillouin zone, while the accidental one is inside.

the glide plane reflects the x coordinate and then translates
to a neighboring unit cell along x. This translation is due
to a shift between the center of the unit cell and the glide
plane along the x direction [cf. Fig. 1(a)]. In both type-I and
type-1I pairs, the reflection of the x coordinate is followed
by a translation along y which lands at the neighboring unit
cell for the B — A and D — C transformations. The presence
of the two orthogonal translations means that the glide plane
is, simultaneously, a nonsymmorphic and an off-centered
symmetry [12,36].

With the transformations in Eq. (1) and arrangement of the
basis functions according to the N, type-I and N, type-II glide
pairs, the N x N glide-plane operator G(k) of the whole sys-
tem is block diagonal, with N; + N, = N/2 blocks of 2 x 2
matrices

G(k) = N; g1(k) ® N> go(k) P,

—ik, —iky—ik,
gl(k>=<1 ‘ ) gz(k>=<e,~kt ‘ ) @)

where ¢, takes k, to —k,. The lattice described by
the Bloch Hamiltonian H(k) has glide-plane symmetry
if [H(k),G(k)]=0. It then follows that there are
{N1, N, N», N,}-fold degenerate glide plane symmetry
eigenvalues  {+e h/2, —e=h/2 yemikmiky/2_p=iki=iky/2}
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The simultaneous eigenstates of G(k) and H (k) satisfy
G| Ym=(K)) = e g [P+ (K)),
G|V (K)) = te 02 gy Y01 (K)),
H()|Y2(K)) = Eyps(ke, ky) Y (k)), 3)

where n = {1, 2, ...} is the band index, I = {1, 2} stems from
the two types of glide pairs. In Appendix A, we elaborate
that combining the appropriate transformation properties of
the eigenstate with the fact that k, = 0 and k, = 27 are the
same point, we arrive at a condition for the eigenenergies

Enp—(ky, 2mr) = Epr4(ky, 0),
En[+ (k.xv 277) =E,;_ (k)n O), (4)

meaning that at a given {k,, n, I}, the two bands with energy
E4(ky, ky) and E,;;_(ky, ky) swap and hence must cross each
other somewhere in 0 < k, < 27. Applying the same argu-
ment to the BZ boundary k, = £ further dictates that the
band crossing must occur at the BZ boundary

Enl+(km 7T) = Enl—(an 77)- (5)

Thus every two bands with parameters {n/+} and {n/—} at
any k, have to stick together at k, = 7, yielding N/2 nodal
lines there.

The validity of the above analysis is further supported by
our first principles calculations for the band structure of var-
ious nonsymmorphic configurations in the p2mg group. The
band structures are obtained using the QUANTUM ESPRESSO
package [37]. The kinetic energies cutoff for wave function
(ecutwfc) and for charge density (ecutrho) are set to 500
and 45 Ry, respectively. Perdew, Burke, and Ernzerhof (PBE)
form of the generalized gradient approximation (GGA) is
adopted for the exchange-correlation energy [38]. Numerical
integrations in the BZ are evaluated with the Monkhorst-Pack
mesh of 10 x 10 x 1. All structures are relaxed until the total
energy converges to within 10™* eV during the self-consistent
loop, with forces converged to 0.1 eV/nm, while employing
the Methfessele-Paxton method with a smearing of 0.2 eV
width. With the optimized geometry of the graphene structure
and the corresponding self-consistent ground state computed
with QUANTUM ESPRESSO, we use WANNIER90 [39] to map the
ground-state wave functions onto a maximally localized Wan-
nier function basis, and employ an adaptive k-mesh strategy
to extract the matrices to build the real-space tight-binding
model in the basis of the s, px, py and p. orbitals of C atoms.
We find that although the vacancy-engineered lattice distorts
after the geometry optimization process as shown in Fig. 1(b)
for Cjp, the relaxed lattice still belongs to the same p2mg
group and satisfies all the requirements in our argument.

Figure 1(c) displays the band structure of C;y within a
2.0 eV window centered at the Fermi energy, obtained by
density functional theory (DFT) calculations. Along the Y-V
direction which corresponds to k, = 7, every two pairs of
bands stick together to form a nodal line, as predicted. We
note that, in the absence of spin-orbit coupling, all bands
are completely spin-degenerate throughout the Brillouin zone
(BZ). Hence, the nodal lines formed along the Y-V BZ edge
are fourfold degenerate, with a twofold degeneracy from spin
and a twofold degeneracy enforced by the glide-plane sym-
metry. In addition, from the DOS shown in Fig. 1(c), we see
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FIG. 2. Lattice of Cy4 (a) before and (b) after structural opti-
mization. There are 44 C atoms in the unit cell defined by lattice
vectors @ and b. The lattices have two orthogonal glide-planes G,
and G,. (c) Band structure of C4 along the path I'-X-V-I'-Y-V,
where the black arrows and circles indicate the symmetry-enforced
and accidental nodal loops, respectively. The corresponding density
of states is shown to the right of the band structure. (d) Contour
plot of the two kinds of nodal loops by projecting them on the k,-k,
plane, with the color bar indicating the interband energy gap. The
symmetry-enforced nodal loop surrounds the Brillouin zone bound-
ary, while the accidental one is inside.

that the DOS no longer vanishes linearly near the chemical
potential as in pristine graphene [14], but has a finite value
due to the more complicated band structure. Figure 1(d) shows
the contour plot on the k,-k, plane of the glide-plane-enforced
nodal lines indicated by the arrow in Fig. 1(c), as well as of
accidental nodal lines indicated by the black circles. The latter
arise from the accidental crossing of the splitting bands as they
disperse from the symmetry enforced nodal lines. Accidental
nodal lines have also been observed in holey graphene [40],
but the mechanism therein is unrelated to crystalline sym-
metry, and therefore the resulting nodal lines are unstable
against SOC. In contrast, the accidental nodal lines shown
in the interior of the BZ in Fig. 1(d) arise from splitting the
symmetry enforced ones, and hence are robust against SOC
and any glide-plane symmetry-preserving perturbations.

B. Vacancy-engineered graphene with two orthogonal
glide planes

We proceed to discuss vacancy-engineered graphene that
contain two orthogonal glide planes going along % and §
directions, with the corresponding glide plane operators G,
and G,. Figure 2(a) shows the lattice structure of C44 which
belongs to the wallpaper group p2gg. Even after the lattice re-
laxation, Cy4 still hosts two orthogonal glide planes, as seen in
Fig. 2(b). Because the Hamiltonian commutes with both glide-
plane operators, [H(k), Gy ,(k)] = 0, we are able to label the
common eigenstates by the quantum numbers {n, «, 8}, where
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n is the band index, o = I, = labels the eigenvalues of G,, and
B = I, £ labels the eigenvalues of G,. Through generalizing
the argument for one glide plane to two orthogonal glide
planes, as detailed in Appendix B, we arrive at the condition

Enaly—(kxv T) = Ena[v+(kxa ),

Enleﬁ(ﬂv ky) = EnIer/S (m, ky)v (6)
where E,.g(ky, ky) are the eigenenergies. Thus every two
bands are forced to stick together all around the BZ boundary,
forming N/2 symmetry enforced nodal loops.

The above assertion is verified in the DFT band structure
of Cy4 in Fig. 2(c) which clearly displays band crossings
for every two pairs of spin-degenerate bands along the lines
X-V and Y-V, yielding the outer fourfold degenerate nodal
loop shown in the contour plot of Fig. 2(d), and an enlarged
DOS near the Fermi level. The band structure also exhibits
accidental nodal loops inside the BZ, which are caused by
crossings of bands as they split from the symmetry-enforced
nodal loops at the BZ boundary.

C. Effect of intrinsic and Rashba SOC on nodal lines
and nodal loops

In this section, we use Cy4 to elaborate that in the pres-
ence of Rashba SOC, even though the spin degeneracy of
the band structure is lifted, the glide plane symmetry still
forces every two spin-split bands to stick together at the BZ
boundary, ensuring the existence of nodal lines and nodal
loops, which are now twofold degenerate. To demonstrate this
effect, we consider the nearest-neighbor tight-binding model
of graphene with Rashba SOC described by the Hamiltonian

t : +
H=t Z CixCjo + IAsocC Z c}a(oaﬁ X d,’j)ZCjﬁ
(ij).o (ij)., B

+U Z Cchia~ 7)
ievac,o

Here c;, is the electron annihilation operator of spin ¢ on
the lattice site i, ¢ is the hopping amplitude between nearest
neighbor lattice sites (ij), Asoc is the coupling constant of
Rashba SOC caused by breaking the inversion symmetry in
the out-of-plane direction Z, 0 = (0¥, 07, 0%) are the Pauli
matrices, d;; is the vector connecting site i to site j. A
very large on-site potential U ~ 100¢ is applied on the va-
cancy sites i € vac to conveniently create the desired vacancy
configuration.

We will use this tight-binding model to examine the effect
of Rashba SOC on the C44 configuration in Fig. 2, which
has two orthogonal glide planes. In the pristine Cy44 without
Rashba SOC, the two orthogonal glide planes cause every two
bands to stick together at the BZ boundary, and in addition
there is spin degeneracy, so the nodal loops in Fig. 2(a) are in
fact fourfold degenerate. In contrast, Fig. 3(b) shows that at a
finite Rashba SOC, the spin degeneracy is lifted everywhere
inside the BZ as expected. Nevertheless, every two spin-split
bands still merge together to form a twofold degenerate nodal
loop at the BZ boundary. In short, the Rashba SOC splits
the spin degeneracy of the nodal loops and hence changes
their degeneracy from fourfold to twofold, but the glide-plane
symmetry still ensures the existence of nodal loops at the BZ
boundary.

(3._)2 , Asoc = 0.0 (ti)z ) Asoc = 0.1t

N NN
s -2 . -2 Q% /
: -16 /\ | -16 % K=

r X v r Y v r \ r Y v

>

FIG. 3. (a) The band structure of the Cy4 configuration in Fig. 2
without Rashba SOC simulated by a nearest-neighbor tight-binding
model. The nodal loops in the BZ boundary X-V and Y-V are
fourfold degenerate. (b) The band structure of Cy44 in the presence of
Rashba SOC, which shows that despite the spin-splitting of the bands
inside the BZ, every two bands still stick together at the BZ boundary
to form nodal loops. The nodal loops are twofold degenerate in this
case due to the lifting of the spin degeneracy.

D. Vacancy-engineered NLSM from a square lattice

In this section, we elaborate that our proposal is in fact
a general principle not limited to graphene, but also appli-
cable to other 2D materials with different lattice structures.
Figure 4(a) shows a crystal structure vacancy-engineered from
a square lattice, which belongs to wallpaper group p4gm that
contains two orthogonal glide planes. The band structure ob-
tained by tight-binding model with nearest-neighbor hopping
H =} tc;c; contains nodal loops at BZ boundary just
like Cy4, as shown in Fig. 4(b). This result indicates that
our vacancy engineering principle can be generically applied
to any 2D lattices regardless the structural and chemical de-
tails of the host system, and it is based solely on crystalline
symmetries.

E. Experimental realization in nanoporous graphene

Concerning the experimental realization of our proposal, a
particularly promising route is the so-called bottom-up type
of approach to nanoporous graphene. In this type of approach,
one starts from small clusters of some precursor molecules,
and choose a suitable chemical environment such that they

@ Gy (b)

I N 2
?f‘l f“}

/
Gx‘ g 0.5 |
— u 0
UIJ
% *—o -0.5 |
Ia

b' -1

157
a -2
>—$—I L r X \ r Y v

FIG. 4. (a) A vacancy configuration containing two orthogonal
glide planes G, and G, engineered from a square lattice, and (b) its
tight-binding band structure along high-symmetry lines. The black
arrows and circles indicate the symmetry-enforced and accidental
nodal loops, respectively.

A
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self-assemble into lattice structures with periodic vacancies.
This technique has been applied to grow graphene with peri-
odic nanometer size pores [30,41]. In fact, the experimental
vacancy configuration realized in Ref. [30], called chevron-
type nanoporous graphene (C-NPG), is nonsymmorphic. The
lattice belongs to wallpaper group p2gg that contains glide
planes in two orthogonal crystalline directions, similar to the
Cy4 example discussed in Sec. IIB. Therefore the C-NPG
should contain nodal loops surrounding the entire BZ edge
according to our theory, as have also been confirmed by DFT
calculations (see Fig. 3 E of Ref. [30]), although this feature
has not been emphasized. However, this C-NPG contains a
band gap ~eV at the Fermi level, and all the nodal loops
form outside the band gap. Thus we anticipate that some
experimental efforts is needed to search for other nanoporous
configurations that contain nodal lines or loops crossing the
Fermi level, such that the DOS may be enhanced instead of
reduced.

III. CONCLUSIONS

In summary, we elaborate that vacancy-engineered non-
symmorphic graphene exhibits band structures with multiple
symmetry enforced nodal lines or nodal loops at the BZ
boundary. This mechanism is based on the formation of
glide pairs of the sublattices, which manifests regardless the
original material is semimetallic, like graphene, or metal-
lic, like a square lattice. In addition, accidental nodal lines
and nodal loops can also occur inside the BZ. In fact,
such a nonsymmorphic vacancy configurations have been re-
alized experimentally in a nanoporous graphene [30], and
the existence of nodal loops in this configuration has been
confirmed by DFT calculations, although it has not been
emphasized. Our mechanism thus opens a new direction to ex-
plore vacancy-triggered NLSMs which can coexist with other
material properties like Rashba SOC and is even compatible
with other types of vacancy-engineered band structures such
as flat bands [42], hence may be exploited to fabricate novel
NLSM-based electronic or spintronic devices. Moreover, shall
the nodal lines cross the Fermi level, the finite DOS at the
Fermi level is expected to dramatically alter thermal, electric
and magnetic properties of the material compared to those
in pristine graphene. We anticipate that this nonsymmor-
phic vacancy-engineering principle can be widely applied to
change the band structure of a great variety of 2D materials,
with the accompanying change of physical properties that
awaits to be explored.
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APPENDIX A: NODAL LINES ENFORCED BY A SINGLE
GLIDE PLANE

We now give a detailed formalism for the nodal lines and
nodal loops enforced by nonsymmorphic symmetry of the
vacancy engineered lattices, starting from the nodal lines in

the situation that the lattice contains only one glide plane.
We will consider the spinless situation for simplicity, but the
argument can be easily generalized to include spin. First we
elaborate why the eigenvalues of G(k) in Eq. (3) contain
the momentum-swapping operation §, using a simple ex-
ample. Consider the minimal situation of N = 2 sublattice
as an example, in which G(k) = g(k,) $% ., and we intend to
diagonalize it to obtain the eigenvalues A4 (k)

8(K)|¢+ (k) = 1+ (K)|p+(k)). (AD)
Denoting the eigenstate by
_ (ushy, ky)
|¢i(k)> - (vi(kxa ki))a (AZ)
the eigenvalue problem leads to
_( " (k. ky)
g(k)|¢i(k)> = (1 > 1}1& (U:l:(kx’ki))
. e 0 (us(—ky, ky)
1 Vi (—ky, ky)
_ u:l:(kxs k )
= As(ky, k},)(vi . ki)>’ (A3)

we see that this equation in general cannot be solved, be-
cause there needs not be a relation between u (—k,, k) and
u(ky, ky), or between vi(—ky, k) and vi(ky, k). Thus the
correct way to diagonalize it is to maintain the {5, in the
eigenvalues

8K)|p+(K)) = A (k) By, |$+(K)), (A4)

such that the diagonalization leads to

7[](‘.
aoioa0r = () e (160

_ e_ik.\' ui(_k)m k\)
—\1 vi(—kx’ ky)
= Ax(ky, ky) B, (Zigﬁf 23)

—ky, k,
= s (ky, ky)(',fi_k'x, k;;)’

and hence one can solve for the coefficients uy(—ky, k,) and
v4(—ky, ky) with eigenvalues Ay = Fe~%/2. This argument
can be arbitrarily generalize to unit cells that contain more
glide pairs.

We then consider the fact that, at a fixed k., the Hamil-
tonian at k, =0 and k, =27 is the same, H(k,0)=
H(k,,2m), and so is the glide-plane operator, G(k,, Q) =
G(ky, 2m). At a fixed k, and band index n, the symmetry
eigenvalues at k, = 0 and k, = 27 are,

Glky, )Y+ (e, 0)) = £ G, [Yr£(ke, 0)),
Glky, 2m0) [+ (ky, 270)) = F Bk, [Wnix(ky, 277)),

Glky, 0)[ Yo (ke, 0)) = ™™ Oy [V (ke 0)),
Gk, 270) Yo (ke 270)) = Fe ™™ P, [Ynow (v, 27)). (A6)

(AS5)

)
)
)
)
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FIG. 5. The numbering of sublattices for (a) the C;y example in
Fig. 1 and (b) the C44 example in Fig. 2.

Combining this with G(k,, 0) = G(k,, 2m) implies that one
must be able to find a gauge in which

V4 (kx, 0)) = [Wns— ke, 270)),
Vi (kx, 0)) = [WYnr4 (ky, 270)).
It then follows that the eigenenergies satisfy
H (ky, 0)[Yrn4-(ky, 0)) = Eng(ky, )[4 (ki 0))
= H (ke, 270) [Yrur 4 (ki, 270))
= Eni—(ky, 270)|Yni— (ky, 277))
= Epj—(ky, 270)| Y14 (ke, 0)), (A)

since H(k,,0) = H(k,,2m). This and a similar argument
leads to

(AT)

Enlf(kxv 27{) = En1+(kx’ O)a
Enri(ky, 27r) = Ep—(ky, 0). (A9)

Thus at given k., n, and I, the two bands E,;, (k;, k,) and
E,;—(ky, ky) must cross each other somewhere in 0 < k, <
2.

We can apply the same argument to the BZ boundary k, =
47, which has symmetry eigenvalues

G(kxa n)“/’nl:t(kxa 7-[)) = :Fl @kx H”nl:l:(kx’ ”)>7
Gk, =70 Ynmie(kye, —7)) = i G, Y+ ke, —7)), (A10)

and similarly for the eigenstate with index I = 2. Because
G(k,, m) = G(ky, —m), there exists a gauge in which the
eigenstates satisfy

(Y14 ke, 7)) = Y1 (ky, —77)),
h”nlf(km ) = |WI11+(kxa —1)). (A]])

Using H (k,, w) = H (k,, —m ), the same procedure in Eq. (A8)
leads to

EnIJr(ka ﬂ) = Enlf(km —T() = Enlf(km ]T), (A12)

where in the last equality we have used the fact that k, = 7
and k, = —m are the same point on the boundary of a rectan-
gular BZ, thus completing the proof to Eq. (5).

To be more concrete about the notion of glide pairs, using
the numbering of sublattices and the glide vector in Fig. 5(a),
the glide pairs defined with respect to the glide plane G for the
C)o configuration in Fig. 1 are

type I : (1, 6),
type II : (2, 7),

(3,8,
4,9).

(5, 10);
(A13)

For each of three type-I pairs, mapping from left to right under
G remains in the same unit cell, but mapping from right to left
under G moves to the next unit cell in 4+§ direction; For each
of two type-II pairs, mapping from left to right moves to the
next unit cell in —X direction while from right to left moves
to the next unit cell along —X + §. As result, the glide plane
operator is that in Eq. (2) with Ny =3 and N, =2, and so
follows the discussion in this section.

APPENDIX B: NODAL LOOPS ENFORCED BY TWO
ORTHOGONAL GLIDE PLANES

We proceed to discuss vacancy engineered graphene that
belong to the wallpaper groups that have two orthogonal glide
planes denoted by G, and G,. In these wallpaper groups, a
specific sublattice A is mapped to another one B under G,,
but it is mapped to a different one C under G,. In other
words, the glide pair arrangements are different for G, and
G,. Thus if we arrange the basis according to the glide pairs
of Gy, then G, will take the block-diagonal form of Eq. (2),
but G, will not be block-diagonal in this basis because it
has a different glide pair assignment. Nevertheless, G, will
have {N,, Ni., Nax, Na,} degenerate eigenvalues according to
the numbers of type-I and type-1I glide pairs defined for
this glide plane, and G, will have {Ny,, Ny, N2y, N>y} de-
generate eigenvalues regardless how the basis is arranged.
Because the Hamiltonian commutes with both of them,
[H(k), G:(k)] = 0 and [H (k), Gy(k)] = 0, one must be able
to label the eigenstates by the quantum numbers {n, «, 8},
where n is the band index, o = I, labels the eigenvalues of
G,, and B = I, = labels the eigenvalues of G,. The eigenstates
satisfy

G (K)|Yn1p(K))
G (K)|¥n21p(K))
Gy(K)|Yna1+(K))
)
)

e gy, [Ymap(K)),

ke R g [Yap(K),

e 52 1 [V (K)),
e R TRI2 g1 N Yans(K)),

Enap ()| Vnap (k). (B

Gy (K)| Yoo+ (k)
H (K)[Yrnap (k)

Following the same argument for the p2mg group in the pre-
vious section, we obtain

EnOtIyZF(kxs 2r) = melyzl:(km 0),
Enp+p 2, ky) = En15(0, ky ), (B2)

implying a band crossing in the range 0 < k, < 27 at any
fixed ky, and another band crossing in the range 0 < k, < 27
at any fixed k.. The argument applied to the BZ boundary also
leads to

Enalvf(kxv T) = Ena1).+(kxa —T) = Enalv+(kxv ),
Eup—p(, ky) = Enj (=7, ky) = Epp1p(w, k). (B3)

Thus every two bands are forced to stick together at the
BZ boundary, forming N/2 symmetry enforced nodal loops
surrounding the BZ boundary.

For the C44 example in Fig. 2, using the numbering of
sublattices in Fig. 5(b), the glide pairs defined with respect

155414-6



SYMMETRY-ENFORCED NODAL LINES IN THE BAND ...

PHYSICAL REVIEW B 105, 155414 (2022)

to the glide plane G, are

typel: (1,10), (2,11), (3,12), (7,4),
(8,5), (9,6);

type Il - (13,42), (14,43), (15,44), (40,16),
(41,17), (18,38), (19,39), (35,20),
(36,21), (37,22), (23,32), (24,33),
(25,34), (29,26), (30,27), (31,28).(B4)

For the six type-I pair, mapping from left to right under G,
remains in the same unit cell, but from right to left moves
to the next unit cell in X direction; For the 14 type-II pairs,
mapping from left to right moves to the next unit cell in the
—¥ direction, whereas mapping from right to left moves to the
next unit cell in the K-y direction. As a result, the glide plane

operator is that defined in Eq. (2) with Ny, = 6 and N,, = 14
and swapping {k., k,} — {ky, kc}. On the other hand, the glide
pair assignment is different for the glide plane Gy, which are

(1,26), (2,25), (3,24), (4,23),

(7,32), (8,31), (9,30), (10,29),
(13,38), (14,37), (15,36), (16,35),
(18,42), (19,41), (20,40);

(5,28), (6,27), (11,34), (12,33),
(17,39), (21,44), (22,43), (BS)

type I :

type II :

where the mapping follows that described after Eq. (A13),
yielding the glide plane operator G, given by Eq. (2) with
Niy =15 and N, =7, and so follows the discussion in this
section.
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