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Quantum transport through a quantum dot side-coupled to a Majorana bound state
pair in the presence of electron-phonon interaction
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We theoretically study quantum transport through a quantum dot coupled to Majorana bound states confined at
the ends of a topological superconducting nanowire. The topological superconductor forms a loop and is threaded
by a tunable magnetic flux, which allows one to control the electron transport in the system. In particular, we
investigate phonon-assisted transport properties in the device when the central quantum dot interacts with a
single long-wave optical phonon mode. We find that when the two Majorana bound states are unhybridized, the
zero-temperature linear conductance has a 2π periodicity as a function of magnetic flux phase, independent of
the electron-phonon interaction, the quantum dot energy, or the finite values of dot-Majorana couplings. For a
finite overlap between the Majorana bound states, the linear conductance periodicity generally changes to 4π

either due to a finite electron-phonon coupling strength, or a dot energy level that is tuned away from the Fermi
level. Additionally, the differential conductance periodicity changes from 2π to 4π when the Majorana bound
states hybridize and the electron-phonon coupling is finite. Our results provide insight into transport signatures
expected in topological quantum computational platforms that integrate quantum dots as a means for Majorana
qubit readout. The energy exchange with an environmental bath, here a single phonon mode, significantly alters
the current signatures expected from Majorana modes.
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I. INTRODUCTION

Topological materials allow the realization of localized
edge states with zero-energy excitations, called Majorana
bound states (MBSs) [1]. The MBSs obey non-Abelian
statistics and provide nonlocal electronic degrees of free-
dom to encode quantum information. Thus they could serve
as a potential platform for topological quantum computa-
tion [1,2]. Namely, the topological qubits realized by MBSs
store quantum information nonlocally and provide robust
protection against decoherence [1–7]. References [8,9] have
theoretically proposed realizing MBSs in a nanodevice con-
taining a semiconducting nanowire with strong spin-orbit
coupling, deposited in proximity to s-wave superconductors
(SCs) in external magnetic fields. Signatures of MBSs were
first demonstrated in conductance measurements in this het-
erostructure [10]. Such systems host MBSs at the ends of an
InSb or InAs semiconducting nanowire and can be detected
in transport measurements as a zero-bias anomaly in the dif-
ferential conductance. Several theoretical and experimental
studies have proposed alternatives to create MBSs, such as
two-dimensional p-wave SCs [11,12], or s-wave SCs with
topological insulators [13], cold atom wires [14], half-metallic
ferromagnets [15], superfluids [16], nanomagnets [17], chains
of magnetic impurities on s-wave SCs [18], vortex cores
on SCs [19], etc. A plethora of interesting phenomena, in-
duced by MBSs, such as Andreev reflection [20–24] and the
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fractional Josephson effect [25,26], have been demonstrated
theoretically. Unfortunately, the zero-bias peak can be due
to other phenomena such as Kondo resonances [27], An-
dreev bound states [28], disorder [29], confinement potential
[30,31], or weak antilocalization [32].

The most common scheme proposed to probe MBSs in a
topological superconducting nanowire (TSNW) requires em-
bedding the nanowire in a mesoscopic circuit. A minimal
device is made from MBSs coupled to regular fermionic de-
grees of freedom associated with a quantum dot (QD), which
is then connected to normal leads. The presence of MBSs is
seen in the conductance through the QD [33,34]. The study
of transport through a noninteracting QD, symmetrically cou-
pled to metallic leads, and connected to a TSNW, revealed
that the presence of MBSs dramatically influences the linear
conductance [34]. When the dot couples to a regular fermionic
zero mode, the conductance peak value is 0. When the TSNW
is in its topologically trivial phase, the conductance peak is
e2/h, while in the nontrivial phase, a signature of the MBS
appears in the reduction of conductance to e2/2h. It was also
predicted that the linear conductance of a QD, connected to
two MBSs confined at the ends of a TSNW, is a 2π -periodic
function of the threaded magnetic flux when the overlap en-
ergy between the MBSs is zero.

In recent years, numerous QD-MBS devices have been
proposed to detect the signature of MBSs by probing
their transport properties, such as the conductance spec-
trum [35–40], current noise [35,41–46], thermal conductance
[47–51], optical schemes [52–54], the Josephson effect [55],
and Fano resonance [56–66]. Zeng et al. [61] analyzed the
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transport inside a ring system formed by an asymmetrically
biased QD coupled to two MBSs located at the ends of a
TSNW. They found that the differential conductance shows
a 2π -period as a function of the threaded magnetic flux for a
sufficiently long TSNW where MBS wave-function overlap is
neglected. In contrast, for a short TSNW with nonzero overlap
energy between MBSs, the conductance has a 4π periodicity
as a function of magnetic flux phase. In recent works, Calle
et al. [66–68] have demonstrated that quantum transport in
a conventional T-shaped double QD system connected to a
topologically trivial superconducting lead can correspond to
quantum transport in a QD-MBSs ring system when fine-
tuning the systems parameters. Other systems based on shot
noise probing in monolayer graphene QDs [69] or in toroidal
carbon nanotubes [70] have been proposed to detect the sig-
nature of MBSs.

More recently, researchers have demonstrated that entan-
glement can be achieved between two QDs coupled to a pair
of MBSs confined at the ends of a TSNW due to the nonlocal
quantum nature of the MBSs [71–73]. It has also been pre-
dicted that the nonlocality of the MBSs leads to two types
of nonlocal processes, namely electron tunneling (ET) and
crossed Andreev reflection (CAR) [20,73–76]. These nonlocal
processes can be controlled by tuning the energy levels of
the QDs through gate electrodes [76]. Another process, which
takes place in such systems, is local Andreev reflection (LAR)
[20,74–76]. The CAR process occurs when a pair of MBSs
couple to two metallic leads in which an electron (hole) from
one lead tunnels into the SC via one MBS and tunnels out
as a hole (electron) via the other MBS at the other lead by
splitting a Cooper pair over the leads. In a LAR process, an
electron (hole) tunnels from one lead into the SC via one
MBS and is reflected as a hole (electron) in the same lead by
injecting thus a Cooper pair into the SC. In an ET process, an
electron from one lead is transmitted to the other lead without
creating/annihilating Cooper pairs in the SC [20,21,41,74–
76]. It was found that, at sufficiently low excitation energies,
the LAR is suppressed in favor of CAR [20]. Furthermore,
only LAR processes survive when the overlap energy between
the MBSs is zero [76]. A Y-shaped junction device consist-
ing of two metallic leads, each connected to a SC electrode
through two QDs, played the role of a Cooper-pair splitter and
allowed control over CAR and LAR processes when tuning
the gate voltages [77]. The Andreev transport properties of
double-QD Cooper-pair splitters [78–81] or multi-QD-MBS
setups [82–89] have also been theoretically explored. In ad-
dition, the thermoelectric properties in Cooper-pair splitters
with QDs have been explored both theoretically [90–92]
and experimentally with graphene-based QDs [93]. All these
systems show more complicated transport behavior due to
quantum interference and many system parameters [83,89],
and they provide a feasible platform to probe MBSs [89].

Up to now, various experimental realizations based on a
normal lead (N)-SC junction [10,94–98] or a QD-TSNW junc-
tion [99–101] have been proposed to detect MBSs and explore
their transport properties. However, due to the presence of de-
coherence processes in such experimental devices, significant
deviations from theoretical predictions are observed in trans-
port measurements. Decoherence occurs when the TSNW is
coupled to an environmental bath [102–105], which can be

fermionic [106–108] or bosonic [102,103,106,109–114]. In
this way, decoherence can be caused by quasiparticle poison-
ing [108], electromagnetic field [110,115], charge, and ther-
mal fluctuations of the gate voltage [102,110,114,116], etc.

The vast majority of theoretical works in recent years have
focused on the properties of phonon-assisted Andreev tun-
neling in N-SC [117], N-QD-SC [118–124], or ferromagnet-
QD-SC junctions [125–128]. The phonon-assisted Andreev
tunneling was likely observed in experiments for a carbon
nanotube QD coupled to N and Nb SC leads [129]. Moreover,
only a few theoretical works have addressed the mecha-
nisms of phonon-assisted transport at MBSs [130–133]. Dai
and Sun [130] showed that a N-SC junction can be viewed
as an electron-lead/phonon-connected-MBS/hole-lead struc-
ture, which leads to converting an electron into a hole by
absorbing/emitting phonons. The transport properties of a QD
connected to one MBS in the presence of electron-phonon
interaction (EPI) were studied before and resulted in diverging
conclusions about the zero-temperature behavior of zero-bias
conductance. The latter was purportedly shown either as de-
pendent on the electron-phonon coupling strength [133], or
independent [131]. It was found that the zero-temperature
zero-bias conductance can be significantly modified by chang-
ing the strength of EPI or the values of dot-MBS coupling.
At finite temperature, the EPI results in suppression of the
magnitude of zero-bias conductance.

In the present work, we study the transport properties of a
QD connected to two MBSs located at the ends of a TSNW
loop, threaded by a magnetic field, in the presence of a single
long-wave optical phonon mode when an opposite bias be-
tween the leads is applied. The central findings of our work
are the following. We show that, without EPI, the usual line
shape of the spectral function in the presence of MBSs can be
reversed by tuning the gate voltage with respect to the Fermi
level. We have demonstrated that the linear and differential
conductances are due to both ET and LAR processes. The
linear conductance manifests a 2π periodicity as a function of
magnetic flux phase when the dot energy is at the Fermi level,
independent of the MBSs overlap energy. The 2π periodicity
changes to 4π by tuning the QD energy level or introducing
EPI when the MBSs hybridize. In the presence of EPI, a series
of phonon-assisted channels for transport are manifest in the
spectral function as satellite peaks. The linear conductance is
immune to the presence of EPI, the change in dot level, and
finite values of the QD-MBS couplings for degenerate MBSs
at zero temperature. The differential conductance periodicity
switches from 2π to 4π for hybridized MBSs when varying
the electron-phonon coupling strength or dot energy level.
The linear and differential conductance periodicity is invariant
to the QD-lead couplings asymmetry in the absence of EPI.
Therefore, this would represent a robust signature in future
experiments.

The article is structured as follows. In Sec. II A, we intro-
duce the model (see the schematic setup in Fig. 1). We then
turn to a discussion of the relevant transport processes that
take place in such a system, and we derive a current formula
with the help of the spectral function of the QD in Sec. II B.
In Sec. II C, we use the canonical transformation in order to
determine the spectral function via the Keldysh equation, and
then we compute the relevant retarded Green’s functions of
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FIG. 1. Schematic representation of a quantum dot (QD) laterally
coupled to two Majorana bound states (MBSs) located at the ends
of a topological superconducting nanowire (TSNW) loop, threaded
by a magnetic flux �, with coupling strengths λ1 and λ2. The QD
is connected to left (L) and right (R) metallic electrodes with the
coupling strength �L (R). Here, μL (R) is the chemical potential in lead
L(R). The dot level is modulated by the gate voltage Vg at the gate
electrode. The localized electron in the QD interacts with a single
optical phonon mode with frequency ω0 through the electron-phonon
coupling β.

the dot by applying the equation of motion technique (EOM).
In Sec. III, we present the numerical results in the absence
and presence of EPI. Finally, we summarize the main results
of our work in Sec. IV. Appendix A contains the detailed
calculation of conductance in the absence of EPI. We then
calculate the retarded Green’s functions for arbitrary QD-lead
and QD-MBS couplings in Appendix B, and we compute the
phonon-assisted conductance in Appendix C.

II. MODEL AND ANALYTICAL RESULTS

A. Theoretical model

We consider a QD laterally coupled to two MBSs located
at the ends of a TSNW loop, threaded by an external magnetic
flux �, as shown in Fig. 1. It has been theoretically shown
that a TSNW loop can host MBSs at its ends for magnetic
fields applied perpendicularly to the surface enclosed by the
loop [8,134]. This arrangement of the magnetic field allows
one to manipulate the QD system transport by modulating the
magnetic flux. The current through the QD is measured via the
metallic electrodes. To analyze the influence of EPI on trans-
port properties of the system, we consider localized electrons
in the QD interacting with a single optical phonon mode. The
MBSs are coupled to the dot in the Coulomb blockade regime,
such that the QD is modeled as a single fermion level [33,46].
The applied magnetic field should be large enough in order
to drive the nanowire into the topological superconducting
phase, which is achieved when VZ >

√
�2 + μ2, with the

Zeeman energy VZ = gμBB/2, the energy gap of the SC �,
and the chemical potential of the nanowire μ. The Zeeman
splitting is assumed to be the largest energy scale, larger than
the system temperature T , the applied bias to the leads |eV |,
the dot-lead coupling �, or the dot-MBS coupling strength
|λ j |. Therefore, it is enough to consider a spinless single
energy level in the QD [34,35]. In this case, the Hamiltonian
of the system reads [34,40,60,61,135,136]

H = Hleads + HMBS + Hph + HD + HT. (1)

The first term in Eq. (1), Hleads, represents the Hamiltonian
of the metallic electrodes, which describes the free electrons
in the leads, and it reads

Hleads =
∑
α,k

εαk c†
αkcαk, (2)

where c†
αk and cαk denote the creation and annihilation op-

erators for noninteracting electrons with momentum k in the
lead α [α ≡ left (L), right (R)]. The εαk = εk − μα are the
single-particle energies, where μα is the chemical potential in
the lead α and it is assumed to be temperature-independent.
We consider equal temperatures in the leads as Tα = T .

The second term in Eq. (1), HMBS, is the MBSs Hamilto-
nian and models the coupling between the two MBSs, γ1 and
γ2, located at the ends of the TSNW loop,

HMBS = iεMγ1γ2, (3)

where εM is the overlap energy that exponentially depends on
the length of the TSNW loop (L) as εM ∝ e−L/ξ , with ξ being
the superconducting coherence length.

The third term in Eq. (1), Hph, describes the longitudinal
optical phonon mode:

Hph = h̄ω0a†a, (4)

where ω0 is the frequency of the single-level phonon mode,
with the a† (a) phonon creation (annihilation) operator. The
phonon distribution is given by the Bose-Einstein function
Nph = 1/(eh̄ω0/kBT − 1). Throughout the paper, we will set h̄
and the Boltzmann constant kB to unity.

The fourth term in Eq. (1), HD, models the QD and it is
expressed as

HD = εd d†d + β(a + a†)d†d, (5)

where εd is the energy of the dot level, and d† (d ) represents
the fermionic creation (annihilation) operator for the localized
electron in the QD. The dot level εd is tuned by the gate volt-
age Vg through the gate electrode. The second term in Eq. (5)
models the interaction between the localized electron in the
dot and the phonon mode, with β being the electron-phonon
coupling strength.

The last term in Eq. (1), HT, is the tunneling Hamiltonian,
and it represents the coupling of the QD to the MBSs and to
the metallic electrodes:

HT = [(λ1d − λ∗
1d†)γ1 + i(λ2d + λ∗

2d†)γ2]

+
∑
α,k

(Vαkc†
αkd + V ∗

αkd†cαk ). (6)

The first term in Eq. (6) describes the coupling between the
dot and the two MBSs (γ1 and γ2) of the TSNW loop with
the coupling strengths λ1 and λ2. Here, we assume that λ1 and
λ2 are complex, setting as λ1 = |λ1|eiφ/4 and λ2 = |λ2|e−iφ/4

[61]. The magnetic flux phase difference between the two
couplings φ is determined by the threading magnetic flux �

via φ = π�/�0 = 2 arg(λ1/λ2), where �0 = h/(2e) is the
magnetic flux quantum. The second term in Eq. (6) models the
coupling between the free electrons in leads and the localized
electron in QD, where the Vαk tunneling amplitude determines
the coupling strength between the QD and the lead α.
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The MBSs are expressed with the help of regular fermionic
operators as γ1 = ( f † + f )/

√
2 and γ2 = i( f † − f )/

√
2 such

that HMBS and HT read

HMBS = εM
(

f †f − 1
2

)
(7)

and

HT = 1√
2

[(λ1 + λ2)df + (λ1 − λ2)df † − (λ∗
1 − λ∗

2 )d†f

− (λ∗
1 + λ∗

2 )d†f †] +
∑
α,k

(Vαkc†
αkd + V ∗

αkd†cαk ). (8)

B. Current formulas

The current from the α metallic electrode is given by
[123,137–139]

Iα = ie

h

∫
dε

{
�α

[
fα (ε)

[
Gr

d (ε) − Ga
d (ε)

] + G<
d (ε)

]}
11, (9)

where Gr(a)
d (ε) is the retarded (advanced) Green’s function

matrix of the dot defined in the Nambu representation as [140]

Gr(a)
d (ε) =

(
Gr(a)

d11 (ε) Gr(a)
d12 (ε)

Gr(a)
d21 (ε) Gr(a)

d22 (ε)

)
, (10)

where the nondiagonal matrix elements, Gr(a)
d12 (ε) and Gr(a)

d21 (ε),
are the anomalous Green’s functions, with the subscript nota-
tion 1 (2) referring to the electron (hole) sector. The QD-lead
coupling matrix is defined as

�α =
(

�e
α 0

0 �h
α

)
, (11)

with �e(h)
α = 2π

∑
k |Vαk|2δ(ε ∓ εαk ) being the coupling

strength between the QD and the metallic lead α for electrons
(holes). Therefore, fα (ε) represents the Fermi-Dirac distribu-
tion matrix in lead α,

fα (ε) =
(

f e
α (ε) 0
0 f h

α (ε)

)
, (12)

where f e
α (ε) = 1/[e(ε−μα )/T + 1] and f h

α (ε) = 1 − f e
α (−ε) are

the Fermi-Dirac distribution functions for electrons and holes
[121,128,137,138]. Here, G<

d (ε) is the lesser Green’s function
matrix. The current formula from Eq. (9) reduces then to

Iα = ie

h

∫
dε �e

α

[
f e
α (ε)G>

d11(ε) − [
f e
α (ε) − 1

]
G<

d11(ε)
]
,

(13)

where G>
d11(ε) is the 11 component of the greater Green’s

function matrix G>
d (ε). We apply the Keldysh equation

G< (>)
d = Gr

d�
< (>)Ga

d and consider that the EPI contribution
to the lesser (greater) self-energy �<(>) [69] is negligible
in the relatively weak electron-phonon coupling limit [135].
Since we are interested in an energy window around the Ma-
jorana zero-energy narrower than the superconducting gap, we
consider only the subgap regime |eV | < �, where the current
from lead α given by Eq. (13) is decomposed as follows:

Iα = IET
α + ILAR

α + ICAR
α , (14)

IET
α = e

h

∫
dε T ee

αα′ (ε)
[

f e
α (ε) − f e

α′ (ε)
]
, (15)

ILAR
α = e

h

∫
dε T eh

αα (ε)
[

f e
α (ε) − f h

α (ε)
]
, (16)

and

ICAR
α = e

h

∫
dε T eh

αα′ (ε)
[

f e
α (ε) − f h

α′ (ε)
]
, (17)

where IET
α represents the current generated in the ET pro-

cess, while ILAR
α and ICAR

α are currents due to the LAR and
CAR processes. Here, T ee

αα′ (ε) = �e
α�e

α′ |Gr
d11(ε)|2, T eh

αα (ε) =
�e

α�h
α|Gr

d12(ε)|2, and T eh
αα′ (ε) = �e

α�h
α′ |Gr

d12(ε)|2 are the corre-
sponding transmission probabilities, with Gr

d11(ε) and Gr
d12(ε)

being the electron-electron and electron-hole parts of the re-
tarded Green’s function Gr

d (ε), respectively. The current IS

flowing from the SC is determined from the Kirchhoff’s law
as IL + IR + IS = 0 [137].

In this article, we work in the wide-band limit by as-
suming electron-hole symmetry in the system, �e

α = �h
α = �α

[40,141], and we restrict the calculations for a symmetri-
cally coupled QD with �α = �. In addition, we investigate
the transport properties of the QD-MBS system in the ab-
sence and presence of EPI. We also consider that the SC is
grounded, i.e., μS = 0, and there is an opposite bias applied
between the metallic electrodes, μL = −μR = eV/2. In such
a case, f e

α (ε) = f h
α′ (ε), which allows only for ET and LAR

processes to occur (and inhibits CAR processes) [64]. Using
Kirchhoff’s law, the current from the SC is expressed as
IS = −(IL + IR). Applying the current formula for metallic
leads, given by Eqs. (14)–(17), with the above restrictions,
one obtains IL = −IR, which implies IS = 0. The calculations
of the corresponding differential and linear conductances are
detailed for finite and zero temperatures, without EPI, in
Appendix A.

We present throughout the paper the EPI-related rel-
evant calculations. Since the total current is IL + IR =
0, and using Eq. (13), we symmetrize the current
as I = (IL − IR)/2,

I = e

h

∫
dεAd (ε)

[
f e
L (ε) − f e

R (ε)
]
, (18)

where Ad (ε) is the spectral function of the QD,

Ad (ε) = i
�

2
[G>

d (ε) − G<
d (ε)]11 = i

�

2

[
Gr

d (ε) − Ga
d (ε)

]
11.

(19)

Consequently, the current is evaluated by performing a decou-
pling treatment for the electron-phonon system on the spectral
function.

C. Canonical transformation: The presence of EPI

In the following, we determine the spectral function for the
dot, Ad (ε), given by Eq. (19). To find the lesser and greater
Green’s functions in the presence of EPI, we eliminate the
electron-phonon coupling term in the Hamiltonian, given by
Eq. (1), by applying a canonical transformation. The trans-
formed Hamiltonian H̄ = eSHe−S is determined by using the
operator S = (β/ω0)d†d (a† − a) [135,136,142]. Thus, the
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new Hamiltonian is decoupled into an electron and phonon
part as H̄ = H̄el + Hph. While the phonon part remains un-
changed, the electron part H̄el reads

H̄el = Hleads + HMBS + H̃D + H̄T, (20)

where

H̄T = 1√
2

[(λ̃1 + λ̃2)df + (λ̃1 − λ̃2)df † − (λ̃∗
1 − λ̃∗

2 )d†f

− (λ̃∗
1 + λ̃∗

2 )d†f †] +
∑
α,k

(Ṽαkc†
αkd + Ṽ ∗

αkd†cαk ) (21)

and H̃D = ε̃d d†d , with the renormalized QD energy level
ε̃d = εd − gω0 with g = (β/ω0)2. Now, H̄T includes the
phonon operators via the renormalized tunneling amplitude
between the QD and lead α as Ṽαk = VαkX and the renor-
malized coupling between the QD and the jth MBS as λ̃ j =
λ jX with X = exp ( − β

ω0
(a† − a)). The operator X is then

replaced by its expectation value in thermal equilibrium, X ≈
〈X 〉 = exp ( − g(Nph + 1

2 )), in a broadly used approximation
[136,142]. Then the Hamiltonian H̄el, given by Eq. (20),
will be decoupled from the phonon operator. One obtains
Ṽαk ≈ Vαk〈X 〉 and λ̃ j ≈ λ j〈X 〉. This approximation is valid
when Vαk, λ j � min(β,�) or β � min(Vαk, λ j,�), which
means that the Vαk and λ j or β are the smallest energy
scale. In addition, it is exact when Vαk = λ j = 0 or β = 0
[118,130,136,142]. Consequently, we separate the greater and
lesser Green’s functions into two parts:

G>
d (t ) = −i〈d (t )d†〉

= −i〈eiH̄elt de−iH̄elt d†〉el〈eiHpht Xe−iHpht X †〉ph

= G̃>
d (t )〈X (t )X †〉ph, (22)

G<
d (t ) = i〈d†d (t )〉 = G̃<

d (t )〈X †X (t )〉ph, (23)

where G̃< (>)
d (t ) is the lesser (greater) Green’s function for the

electron governed by H̄el. The phonon parts are 〈X (t )X †〉ph =
e−ϕ(t ) and 〈X †X (t )〉ph = e−ϕ(−t ) with ϕ(t ) = g[Nph(1 −
eiω0t ) + (Nph + 1)(1 − e−iω0t )] [136,142]. Note here that the
approximation 〈X (t )X †〉ph = 〈X †X (t )〉ph used in previous
works [135,136,143,144], which directly decouples the re-
tarded Green’s function Gr

d (t ), is valid only at high tem-
peratures, where the phonon number Nph is much larger
than 1. At lower temperatures, where Nph ∼ O(1), the ap-
proximation 〈X (t )X †〉ph = 〈X †X (t )〉ph is no longer applicable
[136].

The phonon term is determined via the identity e−ϕ(∓t ) =∑∞
p=−∞ Lpe±ipω0t , where Lp are coefficients, with an integer

index p, that depend on the electron-phonon coupling strength
β and temperature T . At finite temperatures, the Franck-
Condon factor Lp has the form [136,142]

Lp = e−g(2Nph+1)epω0/(2T )Ip(2g
√

Nph(Nph + 1)), (24)

where Ip(z) is the pth-order modified Bessel function
of the first kind. At zero temperature, Lp reduces

to

Lp =
{

e−ggp/p!, p �0,
0, p < 0. (25)

Using the above relations, the Fourier transforms of the
greater and the lesser Green’s functions given by Eqs. (22)
and (23) read

G>
d (ε) =

∞∑
p=−∞

LpG̃>
d (ε − pω0),

G<
d (ε) =

∞∑
p=−∞

LpG̃<
d (ε + pω0),

(26)

which results in the spectral function for the dot:

Ad (ε) = i
�

2

∞∑
p=−∞

Lp[G̃>
d (ε − pω0) − G̃<

d (ε + pω0)]11.

(27)

The dressed lesser (greater) Green’s function G̃< (>)
d is

determined from the corresponding Keldysh equation. The
general relations for the G< (>)

d are also fulfilled by G̃< (>)
d

[142]. Thus the Keldysh equation is G̃< (>)
d = G̃r

d�̃
< (>)G̃a

d ,
where the lesser (greater) self-energy �̃< (>) reads

�̃< (>) =
(

�̃
< (>)
11 0
0 �̃

< (>)
22

)
. (28)

Here, �̃
< (>)
11 and �̃

< (>)
22 are the electron and hole self-

energies, with �̃<
11 = i

∑
α �̃e

α f e
α , �̃<

22 = i
∑

α �̃h
α f h

α , �̃>
11 =

i
∑

α �̃e
α ( f e

α − 1), and �̃>
22 = i

∑
α �̃h

α ( f h
α − 1). Using the

above relations, the dressed greater and lesser Green’s func-
tions take the form

G̃>
d11 = �̃>

11

∣∣G̃r
d11

∣∣2 + �̃>
22

∣∣G̃r
d12

∣∣2
,

G̃<
d11 = �̃<

11

∣∣G̃r
d11

∣∣2 + �̃<
22

∣∣G̃r
d12

∣∣2
. (29)

The retarded G̃r
d11(ε) and G̃r

d12(ε) Green’s functions are cal-
culated using the EOM technique, presented in Appendix B
for arbitrary values of λ̃1 and λ̃2. Here, we give the relevant
Green’s functions for the case when λ̃1 = |λ̃1|eiφ/4 and λ̃2 =
|λ̃2|e−iφ/4:

G̃r
d11(ε) =

{
(ε + ε̃d + i�̃) −

[
|λ̃1|2 + |λ̃2|2

+ 2εM

ε
|λ̃1λ̃2| cos

φ

2

]
K(ε)

}
F̃ (ε)−1, (30a)

G̃r
d12(ε) = (|λ̃2|2eiφ/2 − |λ̃1|2e−iφ/2)K(ε)F̃ (ε)−1, (30b)

F̃ (ε) = (ε − ε̃d + i�̃)(ε + ε̃d + i�̃) − 2(ε + i�̃)

× (|λ̃1|2 + |λ̃2|2)K(ε) + 4|λ̃1λ̃2|2
ε

K(ε) cos2 φ

2

+ 4εM

ε
ε̃d |λ̃1λ̃2|K(ε) cos

φ

2
, (30c)

where K(ε) = ε/(ε2 − ε2
M ) and �̃ = 1

2

∑
α �̃α with the re-

striction �̃e
α = �̃h

α = �̃α . Note that the Green’s function
G̃r

d11(ε) can be written in the following form:
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Gr
d11(ε) =

[
ε − εd + i

�

2
− A(ε) − B(ε)

]−1

, (31a)

A(ε) = K(ε)

[
|λ1|2 + |λ2|2 − 2εM

ε
|λ1||λ2| cos

φ

2

]
, (31b)

B(ε) = K(ε)2
(|λ1|4 + |λ2|4 − 2|λ1|2|λ2|2 cos φ

)
ε + εd + i �

2 − K(ε)
[|λ1|2 + |λ2|2 + 2εM

ε
|λ1||λ2| cos φ

2

] , (31c)

where the EPI has not been taken into account and the chang-
ing of variable � → �/2 has been performed. The form of
Gr

d11(ε) given by Eq. (31a) agrees with the results of Zeng
et al. [61] with the exception of the sign of the overlap energy
εM , which is due to a different choice of the γ1 sign. When
εM = 0, λ1 = |λ|, λ2 = 0, and φ = 0, the system reduces to a
system composed of one QD with EPI connected to one MBS,
and the retarded Green’s functions change to

G̃r
d11(ε) = ε(ε + ε̃d + i�̃) − |λ̃|2

ε(ε − ε̃d + i�̃)(ε + ε̃d + i�̃) − 2|λ̃|2(ε + i�̃)
,

(32a)

G̃r
d12(ε) = −|λ̃|2

ε(ε − ε̃d + i�̃)(ε + ε̃d + i�̃) − 2|λ̃|2(ε + i�̃)
,

(32b)

which agree with the calculations of Wang et al. [133].
The current from Eq. (18) is determined in Appendix C

by substituting the corresponding Green’s functions given by
Eqs. (30a)–(30c) into the formula for the dressed greater and
lesser Green’s functions (29), with the help of the spectral
function relation (27).

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the numerical results for the
transport properties of our QD-MBS system in the absence
and presence of EPI. As we mentioned above, all the system
parameters should be much smaller than the superconduct-
ing gap �, which in a typical experimental setup is on the
order of 250 μeV for a TSNW realized from InSb with a
strong Rashba-type spin-orbit interaction [10]. The values for
the QD-lead coupling � and the QD-MBS couplings |λ j |
in experiments are on the order of a few μeV [35]. We
consider longitudinal optical phonons with energy on the
order of 100 μeV [118,145,146], smaller than the induced
superconducting gap �. In our case, we work in the limit
where electron-phonon coupling strength β is stronger than
the QD-lead coupling � and the QD-MBS couplings |λ j | (see
Sec. II C). In numerical calculations, all energies are measured
in units of �. In the EPI-related numerical computations, the
phonon energy is fixed as ω0/� = 5.

In such a system, where a QD connects to MBSs and the
leads, different paths are allowed for charge carriers that travel
from one lead to the other one through the dot. Paths involving
Andreev reflection at the TSNW interface can constructively
and destructively interfere with paths that pass only through
the dot, and this produces a Fano line shape in the transport
spectrum [61,63,66]. Such a Fano structure shows up when the

dot couples to the side-attached MBSs and thus the electrons
can resonantly scatter on those. These fractional Fano-type
resonances can give clear evidence of the presence of MBSs
in a QD side-coupled to edges of a TSNW [62].

A. Numerical results in the absence of EPI

As already mentioned above, we first examine the spectral
function and the contributions of the ET and LAR processes to
the total linear and differential conductance when an opposite
bias between the leads (μL = −μR = eV/2) is applied in the
absence of EPI. The spectral function given in Eq. (19) is
also expressed in the form Ad (ε) = −� ImGr

d11(ε), which
is equivalent to Ad (ε) = T ee

LR (ε) + T eh
LL (ε). Note also that in

the approximation scheme employed here within the EOM
method (see Appendix B), the retarded Green’s functions
Gr

d11(ε) and Gr
d12(ε) do not depend on temperature and bias

voltage in the absence of EPI, which results in a temperature-
and voltage-independent spectral function Ad (ε).

Figure 2 shows the spectral function Ad (ε) of the QD
as a function of energy for the case of a sufficiently long
TSNW with vanishing overlap energy between MBSs, i.e.,
εM = 0, for different values of the symmetrical dot-MBS
couplings |λ j | = |λ|, at four different magnetic flux phase
φ values and dot level εd = 0. The Ad (ε) peak position
is approximated analytically from the poles of the retarded
Green’s function Gr

d11(ε) [see Appendix B, Eq. (B26)]. We
see that for small values of the symmetrical QD-MBS cou-
plings |λ|, the spectral function presents two maxima at the
positions ε ≈ ±√

2|λ|√1 + | sin(φ/2)|. With increasing QD-
MBS coupling |λ|, the maxima of Ad (ε) shift to higher
values of |ε|. In particular, the spectral function at ε = 0
vanishes for almost any magnetic phase value except for
φ = (2n + 1)π with n = 0,±1,±2, . . . when Ad (0) = 1/2.
In addition, when the dot-MBS couplings reach the value
|λ|/� ≈ 1/2, the spectral function presents a narrow flat re-
gion near zero energy, i.e., |ε|/� � 1/3, for magnetic flux
phase φ = (2n + 1)π , in agreement with the literature [40].
After the symmetrical dot-MBS coupling exceeds the value
|λ|/� ≈ 1/2, the spectrum shows a robust three-peak struc-
ture for φ = (2n + 1)π . The central peak at ε = 0 is clear
evidence for the presence of MBSs in the system. Conse-
quently, for any finite values of |λ|, at φ = (2n + 1)π , the
zero-energy spectral function Ad (0) is always 1/2 for un-
hybridized MBSs εM = 0, thus yielding a linear conductance
e2/2h. The e2/2h value of linear conductance is a clear signa-
ture of the presence of MBSs [34]. In the cases φ = π/4 and
π/2, when the QD-MBS coupling exceeds the value |λ|/� >

1/2, the two-peak structure begins to evolve into a four-peak
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FIG. 2. The spectral function of the QD Ad (ε) for different values of the magnetic flux phase φ, with unhybridized MBSs εM/� = 0, at
the QD energy level εd/� = 0, when the symmetrical QD-MBS couplings |λ j | = |λ| are (a) |λ|/� = 0.1, (b) |λ|/� = 0.3, (c) |λ|/� = 0.5, (d)
|λ|/� = 0.8, (e) |λ|/� = 1, and (f) |λ|/� = 1.3.

structure. The positions of the side peaks are given by the
relation ε ≈ ±√

2|λ|√1 + | sin(φ/2)| while the new inter-
mediate peaks are located at ε ≈ ±√

2|λ|√1 − | sin(φ/2)|.
As a consequence, the increasing |λ| significantly changes
the peak structure of the spectral function, but remarkably it
shows little influence on the spectrum near zero energy for
φ �= (2n + 1)π . Note that the spectral function Ad (ε) is a
2π -periodic function of the magnetic flux phase φ.

To investigate the influence of dot level εd and overlap
energy εM on the spectral function of the QD, we plot in Fig. 3
Ad (ε) as a function of energy at three different magnetic
flux phase φ values and dot level εd �= 0 energies with finite
MBS-MBS overlap εM �= 0 and weak symmetrical QD-MBS
couplings |λ j | = |λ|. In experiments, the energy level of the
QD is tuned by metallic gate electrodes. When the dot level
shifts away from the Fermi level εd �= εF , where εF = 0, the
line shape in the spectral function profile is clearly modified.
For magnetic flux phase φ = 0 [see Figs. 3(a) and 3(b)], the
antiresonance point of the spectrum always decreases to zero
and shifts to the point of ε ≈ −εM for any values of the dot

level εd [65]. In this case, two maxima of Ad (ε) emerge in the
spectrum [see also Eq. (B26)]. The broadened peak at ε ≈ εd

is due to resonant transmission through a QD at the tuned
dot level (εd �= 0) even in the absence of MBSs. The sharp
peaks are mainly attributed to the regular fermionic states
originating from the MBSs. In addition, for εd = −εM , the
two resonant peaks of spectral function become identical, as
was also found in Ref. [65]. When the magnetic flux phase
is φ = π [see Figs. 3(c) and 3(d)], the two-peak structure in
the spectrum (at εM = 0) evolves when increasing εM into a
three-peak structure showing the presence of the MBSs in the
system [34,54]. Moreover, the zero-energy spectral function
takes the value of 1/2 for unhybridized MBSs (εM = 0) re-
gardless of QD level tuning, while the antiresonance point is
εd -dependent. It shifts to the negative or positive energy re-
gion for εd < 0 or εd > 0, respectively. For hybridized MBSs
(εM �= 0), increasing the value of |εd |, the intermediate peak
magnitude decreases from 1 and its location shifts away from
the zero-energy point ε = 0. Thus, the main peak is shifted
from the lower- to the higher-energy region by tuning the dot

FIG. 3. The spectral function of the QD Ad (ε) for εd and εM with the symmetrical QD-MBS couplings |λ|/� = 0.3 for different magnetic
flux phases φ. The rest of the parameters are (a) φ = 0, εM/� = 0; (b) φ = 0, εM/� = 0.3; (c) φ = π , εM/� = 0; (d) φ = π , εM/� = 0.3; (e)
φ = π/2, εM/� = 0; and (f) φ = π/2, εM/� = 0.3.
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FIG. 4. The spectral function of the QD Ad (ε) as the differently tuned QD energy level εd with unhybridized MBSs εM/� = 0, where the
QD-MBS coupling |λ1|/� = 0.3 is fixed at different values of magnetic flux phase φ and QD-MBS coupling |λ2|. The rest of the parameters
are (a) φ = 0, εd/� = 0; (b) φ = 0, εd/� = −0.5; (c) φ = 0, εd/� = 0.5; (d) φ = π , εd/� = 0; (e) φ = π , εd/� = −0.5; and (f) φ = π ,
εd/� = 0.5.

level from the filled (εd < 0) to the empty region (εd > 0).
Beside the main peak, two side peaks develop in the spectrum
with amplitudes significantly affected by the dot level. The
broadened peaks due to the resonant tunneling of electrons
at the QD energy level εd present an enhanced magnitude
for large values of |εd |. The sharp peaks are destructively
affected by the tuned QD level resulting in smaller ampli-
tude peaks. Note that at εd = 0 for weak QD-MBS couplings
considered here the spectral function presents two minima at
energies ε ≈ ±εM . As |λ| increases, for any nonzero values
of the MBS-MBS coupling εM �= 0, the zero-energy spectral
function always gives Ad (0) = 1 instead of 1/2 (not shown
here). The increase of |λ| results in the minima of Ad (ε)
moving away from ε ≈ ±εM . The full width at half-maximum
of the zero-energy peak is proportional to εM . For magnetic
flux phase φ = π/2 [Figs. 3(e) and 3(f)], the antiresonance
point of Ad (ε) is zero at ε = 0 for unhybridized MBSs and is
independent of εd . At finite values of εM , the antiresonance
point shifts its location to ε ≈ −εM and becomes slightly
dependent on εd . As was discussed above, for εM = 0, the
side peaks locations are analytically determined in Eq. (B26).
In the case of εM �= 0, the spectrum becomes more compli-
cated, showing a three-peak structure. Note that for any φ and
εM = 0, the Fano line shape at finite εd and the one at −εd

are related by a mirror reflection symmetry around the ε = 0
axis [65]. Consequently, the applied magnetic field could be
used in flux-controlled operation in TSNW-based quantum
computation [33,40].

We now study the influence of different QD-MBS coupling
strengths |λ j | on the peak structure of the spectral function
Ad (ε) at two different magnetic flux phase φ values when the
dot level is tuned away from the Fermi level εd �= εF with un-
hybridized MBSs (εM = 0). The numerical results are shown
in Fig. 4. In the following, we analyze the features of the
spectral function by fixing one of the couplings |λ1|/� = 0.3
and varying |λ2|. We observe that when the QD is at the Fermi
level (εd = 0) and the magnetic flux is turned off (φ = 0), two
or four identical resonant peaks develop in the spectrum as a
function of the values of |λ2| [see Fig. 4(a)]. For |λ2| = 0, the

zero-energy spectral function takes the expected 1/2 value,
i.e., Ad (0) = 1/2, which decreases to zero when |λ2| is finite.
With increasing |λ2|, the resonant peaks are shifted from the
antiresonance point ε = 0 and their amplitude has a maximum
at |λ1| = |λ2|. When |λ2| > |λ1|, the antiresonance valley fur-
ther widens, which has been established in a previous work
[65]. With increasing |λ2|, the two-peak structure holds until
|λ2| approaches ≈0.8�. With further increase of |λ2|, the
spectrum of Ad (ε) presents a four-peak structure. In addition,
the minimum of Ad (ε) for |λ2| = 0 shifts from ε = 0 to the
negative energy region for εd < 0 and to the positive energy
region for εd > 0, respectively [see Figs. 4(b) and 4(c)]. The
position of the antiresonance point ε = 0 remains unchanged
when |λ2| �= 0 and εd �= 0. In agreement with the results of
Fig. 3 where symmetrical QD-MBS couplings |λ j | = |λ| are
considered, the amplitude of the broadened peaks attributed to
the resonant tunneling at the dot level εd and the narrow peaks
caused by the MBSs increase to unity when |λ2| = |λ1|. When
|λ2| exceeds |λ1|, the peaks’ amplitude decreases. Addition-
ally, the two-peak structure of Ad (ε) at small |λ2| evolves into
a four-peak structure visible at |λ2|/� ≈ 1. Therefore, when a
magnetic flux threads the MBS ring system with the magnetic
flux phase φ = π [see Figs. 4(d)–4(f)], the zero-energy spec-
tral function at εM = 0 always takes the value 1/2, Ad (0) =
1/2, for any values of |λ2| and εd , respectively. In this case, the
MBS signature is independent of the finite values of couplings
|λ j |, and this can be interpreted as robustness to disorder [82].
Similar to the case φ = 0, the spectrum exhibits two peaks
for small |λ2|, and a clear three-peak structure is visible in
the spectrum at εd = 0 for |λ2|/� � 0.7, while it is visible
at εd �= 0 for |λ2|/� � 0.9. Therefore, when the dot level is
tuned away from the Fermi level (εd �= 0), the antiresonance
point behaves as in the case of φ = 0 for |λ2| = 0. Moreover,
in contrast to the results from Figs. 4(b) and 4(c), here when
εd �= 0, the position of the antiresonance point at small values
of |λ2| changes as in the case of |λ2| = 0.

As a consequence, we conclude from Figs. 3 and 4 that,
in the case of unhybridized MBSs, εM = 0, the zero-energy
spectral function is Ad (0) = 1/2 if either of the QD-MBS
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FIG. 5. Spectra of the linear G (a)–(c) and differential conductance dI/dV with the bias voltage eV/� = 0.28 (d)–(f) as a function of
magnetic flux phase φ for different values of the overlap energy εM at three different symmetrical QD-MBS couplings |λ j | = |λ| at dot
level εd/� = 0, and zero temperature. The rest of the parameters are (a) |λ|/� = 0.3, (b) |λ|/� = 0.5, (c) |λ|/� = 1, (d) |λ|/� = 0.3, (e)
|λ|/� = 0.5, and (f) |λ|/� = 1. Inset: Zoom at a differential conductance peak.

couplings is finite and the other one is zero for any φ, and
Ad (0) = 1/2 or Ad (0) = 0 if both of the QD-MBS couplings
have finite values, |λ j | �= 0, for φ = (2n + 1)π or φ �= (2n +
1)π , respectively, regardless of the change in εd . We will see
next that also the linear conductance is independent of εd

at εM = 0 and zero temperature, which indicates again the
robustness of MBSs signatures [34,36,48].

Figures 5(a)–5(c) illustrate the zero-temperature total
linear conductance G, and 5(d)–5(f) illustrate the zero-
temperature total differential conductance dI/dV with fixed
eV as a function of magnetic flux phase φ at zero and finite
values of the overlap energy εM between MBSs and for three
different strengths of the symmetrical QD-MBS couplings
|λ j | = |λ| and dot level εd = 0. The linear conductance G
shows a 2π periodicity for εM = 0 [34] and εM �= 0 with
maxima located at φ = (2n + 1)π , with n an integer. When
φ �= (2n + 1)π , the linear conductance is G = 0 for εM =
0, regardless of the finite values of symmetrical QD-MBS
couplings |λ|. The minima of G increase with εM . As |λ|
increases, the minima of G decrease and tend to zero even for
strong MBS-MBS couplings εM , while the conductance peaks
become sharper. Note that εM has an observable influence on
the peaks width when the QD weakly couples to the MBSs.
The peak height is e2/h for εM �= 0 and e2/2h for εM = 0
and is not affected by the symmetrical QD-MBS coupling |λ|.
The differential conductance dI/dV also presents a 2π peri-
odicity for εM = 0 and εM �= 0, with global minima located
at φ = 2nπ , with n an integer, as in the case of G. For small
εM , an additional set of local minima exist at φ = (2n + 1)π .
However, at higher values of εM the local minima evolve into
maxima and the entire dI/dV curve shifts upward. The critical
value of εM where the local minima vanish increases with the
couplings |λ|. With increasing the QD-MBS couplings |λ|, the
dI/dV curves tend to the curve corresponding to εM = 0, and
thus the overlap energy only weakly influences the spectrum
at larger |λ|. In addition, the width of plateaulike maxima
is suppressed and the height is approximately e2/2h. Both
2π and 4π periodicity of the differential conductance as a
function of magnetic flux phase φ have been reported in the

literature for TSNWs, with εM = 0 and εM �= 0, connected to
a QD [61]. To clarify the influence of biasing on the magnetic
flux phase periodicity of differential conductance, we consider
that the system is biased as follows: μL = qeV and μR =
(q − 1)eV such that μL − μR = eV with a choice of 0 �
q � 1. Next, we present our findings for the zero-temperature
differential conductance dIL/dV determined for the current
IL flowing from the left (L) lead. The analytical results for
differential conductance are presented in Appendix A. We
plot the total differential conductance for lead L, dIL/dV , as a
function of the magnetic flux phase φ for εM = 0 and εM �= 0
in Figs. 6(a) and 6(b), respectively. Figure 6(c) shows the
component of the total differential conductance from the CAR
processes, i.e., dICAR

L /dV . To avoid all possible consequences
caused by the symmetry of the system, the bias voltage is set
to eV/� = 0.28. The periodicity of differential conductance
as a function of φ is 2π for εM = 0 and remains invariant
when changing the biasing of the system. However, the dif-
ferential conductance period can be 2π and 4π depending on
the choice of biasing for εM �= 0. Namely, when the system is
biased as μL = eV and μR = 0, all the ET, LAR, and CAR
processes are involved, resulting in an enhancement in the
amplitude of the differential conductance. The contribution
of CAR processes is generally finite except at μL = −μR =
eV/2, as discussed in Sec. II B. Note, therefore, that the dif-
ferential conductance periodicity remains unchanged under
asymmetric dot-lead couplings (�L �= �R).

As we have seen above, when the system is biased as
μL = −μR = eV/2, ET and LAR processes contribute to the
differential and linear conductance. For this reason, we exam-
ine the ET and LAR components of the zero-temperature total
linear conductance for different QD-MBS2 coupling strengths
|λ2| with fixed QD-MBS1 coupling |λ1|. We plot in Fig. 7(a)
the total linear conductance G, together with ET (GET) and
LAR (GLAR) linear conductances, as a function of magnetic
flux phase φ at εM = 0 and zero temperature with εd = 0. The
numerical results show that the linear conductances GET and
GLAR exhibit similar properties to the total linear conductance
presented in Fig. 5. Namely, the ET and LAR linear con-
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FIG. 6. Spectra of the differential conductance from the left (L) lead dIL/dV as a function of magnetic flux phase φ for (a) unhybridized
(εM/� = 0) and (b) hybridized MBSs with εM/� = 0.3. (c) The CAR component of the differential conductance for lead L dICAR

L /dV where
the solid lines correspond to εM/� = 0.3 while the dashed lines correspond to the case of εM/� = 0, respectively. The system is biased for
different values of μL = qeV with μL − μR = eV and eV/� = 0.28. The rest of the parameters are the symmetrical QD-MBS couplings
|λ|/� = 0.3, dot level εd/� = 0, and zero temperature.

ductances oscillate with a 2π period, having maxima at φ =
(2n + 1)π , with magnitudes GET = GLAR = e2/4h, regardless
of the finite magnitude of coupling |λ2|. The total linear con-
ductance reaches the value e2/2h. When the MBS2 is not
coupled to the QD (|λ2| = 0), the ET and LAR linear con-
ductances are equal to e2/4h independently of the magnetic
flux phase φ. When φ �= (2n + 1)π , the linear conductances
are zero for finite values of |λ j |. Note also that the zero-
temperature linear conductances do not depend on εd . This
behavior of GET and GLAR, defined by Eq. (A12), is analyti-
cally verified by using Eqs. (30a)–(30c). If εM = 0 with |λ j | �=
0, in the limit ε → 0, the retarded Green’s functions become

Gr
d11(ε → 0) ≈

[
2(ε + i�) − 4

ε

|λ1λ2|2 cos2 φ

2

|λ1|2 + |λ2|2
]−1

,

Gr
d12(ε → 0) ≈

|λ1|2−|λ2|2
|λ1|2+|λ2|2 cos φ

2 − i sin φ

2

2(ε + i�) − 4
ε

|λ1λ2|2 cos2 φ

2
|λ1|2+|λ2|2

. (33)

We see from Eq. (33) that Gr
d11(ε → 0) = Gr

d12(ε → 0) = 0
when φ �= (2n + 1)π , while at φ = (2n + 1)π , Gr

d11(ε →
0) ≈ 1/2(ε + i�) and Gr

d12(ε → 0) ≈ i(−1)n+1/2(ε + i�),
independent of εd and finite values of |λ j |. If |λ1| �= 0
and |λ2| = 0, the retarded Green’s functions are approx-
imated Gr

d11(ε → 0) ≈ 1/2(ε + i�) and Gr
d12(ε → 0) ≈

e−iφ/2/2(ε + i�), independent of εd , which results in
GET = GLAR = e2/4h. The independence of G with respect to
εd for εM = 0 and at zero temperature was also found in dif-
ferent setups involving QDs connected to TSNWs [34,36,48].
In the case εM �= 0 and εd = 0 at zero temperature [Fig. 7(b)],
the conductance peaks emerge at φ = (2n + 1)π . For εM �= 0,
the retarded Green’s function Gr

d12(ε → 0) ≈ 0, independent
of εd , which leads to a vanishing LAR conductance GLAR ≈ 0.
Thus the total linear conductance G is due to the ET
conductance GET, i.e., G ≈ GET, and it shows a 2π periodicity
in φ for εd = 0. We observe that with the increase of |λ2|,
the minima of G located at φ = 2nπ gradually decrease and
the peaks begin to narrow. Most remarkably, contrary to the
case of εM = 0, the maxima of linear conductance for εM �= 0
approach the value e2/h. Consequently, in the case of unhy-
bridized MBSs, the linear conductance is attributed equally to
the nonlocal (ET) and local (LAR) processes, independently
of the εd value. However, when the MBSs hybridize, the ET
processes contribute dominantly to the linear conductance,
with vanishing contribution from the LAR processes.

To further investigate the regime εd �= 0 and εM �= 0, we
plot in Fig. 8 the zero-temperature total linear conductance
G ≈ GET as a function of magnetic flux phase φ and QD
energy level εd for different values of the coupling strength
|λ2| for fixed |λ1|. First, we find that the linear conductance
depends substantially on the magnetic flux phase and the tun-
ing of QD. It has been established that the linear conductance
becomes strongly εd -dependent when the overlap energy be-
tween MBSs exceeds the system temperature, i.e., εM � T
[48]. According to the results in Fig. 7, one sees that when
the dot level is at the Fermi level, εd = 0, the conductance
presents a 2π periodicity. But when the QD energy level
moves away from the Fermi level εd �= 0, the linear conduc-
tance shows a 4π periodicity as a function of φ, regardless of

FIG. 7. (a) The total linear conductance G as a function of mag-
netic flux phase φ for εM/� = 0 at zero temperature. The left and
right insets show the results for GET and GLAR, respectively, as a
function of φ for different values of |λ2|. (b) The total linear conduc-
tance G as a function of φ for hybridized MBSs, εM/� = 0.3, at zero
temperature. The QD-MBS1 coupling is fixed, |λ1|/� = 0.3, and the
QD-MBS2 coupling |λ2| varies. The QD energy level is εd/� = 0.

155409-10



QUANTUM TRANSPORT THROUGH A QUANTUM DOT … PHYSICAL REVIEW B 105, 155409 (2022)

FIG. 8. The zero-temperature linear conductance G as a function of magnetic flux phase φ and QD energy level εd for εM/� = 0.3 when
the QD-MBS coupling |λ1|/� = 0.3 is fixed for different strengths of the QD-MBS coupling |λ2|. (a) |λ2|/� = 0.1, (b) |λ2|/� = 0.3, (c)
|λ2|/� = 0.5, and (d) |λ2|/� = 1.

the finite values of |λ2|. The conductance map details further
changes with the increase of the coupling strength |λ2|.

The numerical results for the zero-temperature differential
conductance dI/dV as a function of magnetic flux phase φ

and dot energy εd are shown in Fig. 9 with different finite
bias voltages eV and fixed symmetrical QD-MBS couplings
|λ| for either unhybridized or hybridized MBSs. We observe
that dI/dV has a 2π periodicity as a function of φ when
the MBSs do not overlap εM = 0, independent of the dot
energy εd [Figs. 9(a)–9(d)]. In contrast, for εM �= 0, the 2π

periodicity transforms into a 4π one when εd is not at the
Fermi level εd �= 0 [Figs. 9(e)–9(h)]. Note that the differential
conductance maps in the εM �= 0 case are very sensitive to
small changes in biasing and dot energy level. Also note here
that the magnitude of ET and LAR differential conductances
oscillates with a 2π period as a function of magnetic flux
phase φ for unhybridized Majoranas regardless of the value
of the dot level. Observe that the ET component is dominant
compared to the LAR one.

We now investigate the effect of finite temperature on
the linear and differential conductance’s spectra. We plot in
Fig. 10 the linear conductance G as a function of magnetic
flux phase φ and dot energy level εd at different temperatures
T for unhybridized and hybridized MBSs, with two values

of the symmetrical QD-MBS couplings |λ|. We see that for
unhybridized MBSs (εM = 0), the conductance is e2/2h at
magnetic flux phase φ = (2n + 1)π and zero temperature,
independent of the finite strength of |λ|, in agreement with the
results of Fig. 5. The temperature broadens the conductance
peaks, the conductance minima increase significantly with
temperature for weak QD-MBS coupling strength |λ|, and the
maxima exceed the value e2/2h [see Figs. 10(a) and 10(c)].
Moreover, G grows with T and is suppressed again at higher
temperatures in agreement with the literature [39,51]. For
larger values of |λ| the conductance peaks are broadened at
high T but are more narrow in contrast to the case of weak
coupling |λ|. Also, the conductance minima are less sensitive
to the change in temperature for strong QD-MBS coupling
strengths. The enhancement in magnitude of conductance
G peaks with the increase of temperature T is no longer
observed [Figs. 10(b) and 10(d)]. Note that in the case of
strong QD-MBS coupling, the conductance does not exceed
e2/2h for any temperature. In summary, the conductance
has a nonmonotonic behavior with temperature at small
coupling |λ| by surpassing e2/2h, while at large coupling
|λ| the conductance is limited from above by e2/2h and
decays with temperature. The finite interaction between
MBSs dramatically changes the linear conductance spectrum

FIG. 9. The zero-temperature differential conductance dI/dV as a function of magnetic flux phase φ and dot energy εd for (a)–(d) unhy-
bridized MBSs εM/� = 0 and (e)–(h) εM/� = 0.3 when the symmetrical QD-MBS coupling is |λ|/� = 0.3. The rest of the parameters are
(a), (e) eV/� = 0.28; (b), (f) eV/� = 0.55; (c), (g) eV/� = 0.85; and (d), (h) eV/� = 1.05.
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FIG. 10. (a), (b), (e), (f) The linear conductance G as a function of magnetic flux phase φ at εd/� = 0 and (c), (d), (g), (h) as a function
of QD energy level εd at φ = π for different temperatures T and couplings |λ j | = |λ|. The overlap energy εM is (a)–(d) εM/� = 0 and (e)–(h)
εM/� = 0.3. The symmetrical coupling constant |λ|: (a), (c), (e), (g) |λ|/� = 0.3 and (b), (d), (f), (h) |λ|/� = 1.

as shown in Figs. 10(e)–10(h). For εM �= 0, the maxima of G
reach e2/h at zero temperature regardless of the finite values
of |λ|. The linear conductance does not exceed the value e2/h
at any temperature or finite symmetrical QD-MBS couplings
|λ|. Moreover, G decreases rapidly with increasing T when the
QD couples strongly to the MBSs. In contrast to the εM = 0
case, the maxima of linear conductance do not increase with
temperature for finite values of εM . Note that the differential
conductance responds in the same way to the changes in
temperature as the linear conductance discussed in Fig. 10
(not shown here). Namely, for unhybridized Majoranas,
in the case of weak QD-MBS coupling strength, the local
minima located at φ = (2n + 1)π [see Fig. 5(d)] increase
with temperature and become plateaus. A further increase
in temperature leads to the transformation of the differential
conductance plateaus into maxima whose amplitude increases
with T and after a critical temperature it decreases with
temperature. When the QD-MBS coupling strength grows
[see Figs. 5(e) and 5(f)], the local minima of dI/dV transform
into narrow peaks whose amplitude decreases with increasing
temperature. Therefore, in the case of overlapping MBSs, with
weak and strong QD-MBS coupling |λ|, the enhancement of
dI/dV peaks with T is not observed as in the case of G.

B. Numerical results in presence of EPI

In this subsection, we evaluate the influence of EPI on the
QD-MBS system transport characteristics. This problem is
relevant since the quantum system is in general coupled to an
environment that can induce decoherence effects on quantum
computation with MBSs [102,108–111,114]. In the present
case, we analyze the phonon-assisted Majorana-induced
transport properties and discuss the resulting equilibrium
spectral functions and the linear and differential conductance
at zero and finite temperatures.

Note that in contrast to the case when there is no EPI (see
Sec. III A), the spectral function Ad (ε) given by Eq. (19) now
depends on temperature and bias voltage through the Fermi-
Dirac functions appearing in the Keldysh equations (29). In
the following, we investigate the equilibrium (eV = 0) spec-

tral function of QD Ad (ε). We first illustrate the equilibrium
spectral function dependence on energy for different strengths
of the symmetrical QD-MBS couplings |λ j | = |λ|, at three
values of the magnetic flux phase φ, for εM = 0, with fixed
electron-phonon coupling strength β/� = 2.5, at dot level
εd = 0, and for zero temperature in Fig. 11. The spectral
function in the absence of EPI and MBSs (denoted with
the dot-dashed black line) exhibits a resonant peak with a
Lorentzian line shape located at ε = εd [136]. When EPI is
present in the system, the QD-related parameters are renor-
malized and polaronic effects are induced. In the absence
of MBSs (|λ| = 0, shown by a solid black line), the reso-
nant peak is redshifted at the renormalized QD energy level
ε = ε̃d = εd − gω0 with g = (β/ω0)2. Beside the main peak,
a series of phonon-assisted additional channels develop in
the spectrum of Ad (ε) [54,118,123,136]. The phonon-assisted
channels manifest as satellite peaks emerging in the spectrum
at energies ε = ε̃d ± pω0 with p an integer. The side-bands
in the spectrum of Ad (ε) correspond to tunneling of electrons
through the QD by absorption and emission of phonons with
energy ω0 [135]. At zero temperature, the coefficients Lp dis-
appear for p < 0, the side peaks located in the negative energy
region come from G̃<

d (ε + pω0) in Eq. (27), while those from
the positive energy region result from G̃>

d (ε − pω0) [136].
The discontinuity in the side-peak shape is attributed to the
Heaviside function θ (x) which approximates the Fermi-Dirac
function at zero temperature. Moreover, the height of the
side peaks decreases at large p and disappears entirely away
from the main peak. The phonon side-bands located around
the main resonant peak are not symmetric with respect to
the renormalized QD energy level ε̃d [136]. According to
the results in Fig. 2, when the system is not threaded by
a magnetic flux (φ = 0) and the QD couples to the MBSs,
two maxima in the spectrum develop at ε ≈ ±√

2λ and the
zero-energy spectral function reduces to zero regardless of
the |λ| finite value, in the absence of EPI. In the presence
of EPI, the spectrum of Ad (ε) is modified [see Fig. 11(a)].
The main peak and the satellite ones located in the negative
energy region are redshifted, while those that occur in the
positive energy region are blueshifted with an increase of |λ|.
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FIG. 11. The zero-temperature equilibrium spectral function of the QD Ad (ε) in the presence of EPI with fixed electron-phonon coupling
strength β/� = 2.5 at different values of the symmetrical QD-MBS couplings |λ j | = |λ| with unhybridized MBSs, εM/� = 0, at the QD
energy level εd/� = 0 when the magnetic flux phase is (a) φ = 0, (b) φ = π/2, and (c) φ = π . The right and left insets in each panel zoom in
on the zero-energy features in the spectral function and on the first phonon-induced satellite peak at negative energy, respectively.

The zero-energy spectral function remains always unchanged,
Ad (0) = 0. When the magnetic flux phase is switched on [see
Figs. 11(b) and 11(c)], the spectrum of Ad (ε) becomes more
complicated in the presence of EPI. The value of the zero-
energy spectral function remains unaffected by EPI, i.e., it is
0 for the magnetic flux phase φ = π/2 and 1/2 for φ = π , re-
spectively. For φ = π/2, the four-peak structure, which shows
up for strong QD-MBS couplings |λ| and β = 0 (see Fig. 2), is
highly deformed under EPI. For φ = π , the three-peak struc-
ture located around ε ≈ 0, due to the presence of MBSs in the
system, emerges only for very strong QD-MBS couplings |λ|.

Figures 12(a) and 12(b) show the numerical results for
the equilibrium spectral function Ad (ε) in the presence of
EPI with the influence of overlap energy εM at two different
magnetic flux phases φ, with weak symmetrical QD-MBS
couplings |λ j | = |λ|, for dot level εd = 0, and at zero temper-
ature. As shown in Fig. 3, in the absence of EPI and magnetic
flux, the spectral function has an antiresonance point at the
energy ε ≈ −εM . In the presence of EPI [φ = 0, Fig. 12(a)],
we observe that the location of the antiresonance point is
immune to the EPI. The two main peaks located around
the antiresonance point, corresponding to the MBSs, are

FIG. 12. (a), (b) The QD zero-temperature equilibrium spectral function Ad (ε) at different values of the overlap energy εM with
symmetrical QD-MBS couplings |λ|/� = 0.3 and electron-phonon coupling strength β/� = 2.5 at the QD energy level εd/� = 0 when
the magnetic flux phase is (a) φ = 0 and (b) φ = π . The solid (dashed) lines denote results in the presence (absence) of EPI. (c), (d)
The zero-temperature equilibrium spectral function of the QD Ad (ε) for nonoverlapping (εM/� = 0) and overlapping MBSs (εM/� = 0.5)
with symmetrical QD-MBS couplings |λ|/� = 0.3. In the presence of EPI (solid lines), at εd/� = 0, the electron-phonon coupling strength
β = √

εMω0 with εM/� = 0.5 results in β/� ≈ 1.58. The dashed lines correspond to EPI absence with εd/� = −0.5. The magnetic flux phase
is set to (c) φ = 0 and (d) φ = π . The right and left insets in each panel zoom in on the zero-energy features in the spectral function and on
the first phonon-induced satellite peak at negative energy, respectively.
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FIG. 13. The zero-temperature equilibrium spectral function of the QD Ad (ε) in the presence of EPI for different ε̃d with unhybridized
and hybridized MBSs. The symmetrical QD-MBS couplings are |λ|/� = 0.3 with electron-phonon coupling strength β/� = 2.5 for different
magnetic flux phases φ. The dashed line corresponds to the case of β/� = 0. The rest of the parameters are (a) φ = 0, εM/� = 0; (b) φ = 0,
εM/� = 0.3; (c) φ = π , εM/� = 0; and (d) φ = π , εM/� = 0.3. The right and left insets in each panel zoom in on the zero-energy features in
the spectral function and on the first phonon-induced satellite peak at negative energy, respectively.

redshifted. The broadened peak position is mainly determined
by the electron-phonon coupling strength β via the renor-
malized dot level ε̃d and is weakly affected by the overlap
energy εM . The location of the narrow peak depends strongly
on εM . The magnitude of the main peaks reaches the limit
1. The satellite peaks are also modified by the finite over-
lap energy εM . In the positive energy region, the height of
the side peaks decreases with increasing εM . In the nega-
tive energy region, the satellite peaks split into two peaks,
a broadened and a narrow one. In the presence of magnetic
flux phase φ = π [Fig. 12(b)], the two main peaks located
around the zero-energy in the spectral function evolve into a
three-peak structure for TSNWs with finite overlap energy,
εM �= 0, providing the fingerprints of MBSs in the system.
Most remarkably, in the case of εM = 0, the zero-energy
spectral function is immune to the EPI, Ad (ε = 0) = 1/2.
When εM �= 0, the zero-energy spectral function differs from
the unitary limit, i.e., Ad (ε = 0) �= 1. Besides, the main sharp
peak due to the MBSs is shifted to the lower energies and its
height is reduced relative to the β = 0 case. The broadened
peak again is weakly εM-dependent and takes the unitary
limit. The position of antiresonance points, which originally
occurred in the absence of EPI at ε ≈ ±εM , changes at fi-
nite electron-phonon coupling. The three-peak structures at
the side peaks are truncated at ε ≈ ±|p|ω0 and local min-
ima emerge at ε ≈ ±(|p|ω0 + εM ). Note that for ε̃d = −εM

and εd = 0, the following relation holds for electron-phonon
coupling strength β = √

ω0εM . For stronger MBS-MBS cou-
pling, i.e., εM/� = 0.5, the electron-phonon coupling strength
becomes β/� ≈ 1.58, which is sufficiently strong (β > �).
The numerical results are shown in Figs. 12(c) and 12(d) for

the special case when εM = −ε̃d with εd = 0 in the presence
of EPI and with εd �= 0 in the absence of it. In the absence of
magnetic flux [φ = 0, Fig. 12(c)], when εM = −ε̃d , the two
main peaks in the vicinity of ε ≈ 0, due to the MBSs, become
approximately identical, as was found in the case without EPI
(see also Fig. 3). In the presence of a magnetic flux [φ = π ,
Fig. 12(d)], when εM = −ε̃d , the main sharp peak of the
three-peak structure shows an adequate match relative to the
β = 0 case, as for φ = 0. Therefore, the symmetry of the two
peaks located around the main peak is also broken even for
ε̃d = −εM in the presence of EPI, as was discussed in Fig. 3 in
the absence of EPI. Moreover, the truncation of side peaks is
also present in this special case. Consequently, the signatures
of MBSs depend on the variation of electron-phonon coupling
strength β, MBS-MBS coupling εM , or the dot energy εd .

Figure 13 shows the zero-temperature equilibrium spectral
function Ad (ε) in the presence of EPI when tuning the renor-
malized dot level ε̃d = εd − β2/ω0 for εM = 0 and εM �= 0,
with symmetrical QD-MBS couplings |λ j | = |λ|, at two dif-
ferent magnetic flux phases φ. The features of the main peaks
(p = 0) in the Ad (ε) reproduce the results seen in the absence
of EPI (Fig. 3) under the mapping εd → ε̃d . Independent of
the other parameters, and the absence or presence of EPI,
the antiresonance point remains for φ = 0 at ε ≈ −εM [see
Figs. 13(a) and 13(b)]. When φ = π and εM = 0 [Fig. 13(c)],
the zero-energy spectral function is Ad (ε = 0) = 1/2, and the
Fano line shape spectral asymmetry in the vicinity of ε ≈ 0
vanishes again when the dot level εd matches the energy shift
gω0, i.e., ε̃d = 0. Therefore, for finite εM , the characteristic
three-peak structure becomes manifest [see Fig. 13(d)]. Addi-
tionally, the shapes of the side peaks (p �= 0) are identical but
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FIG. 14. The equilibrium spectral function of the QD Ad (ε) in the presence of EPI at different temperatures T for εM/� = 0 and 0.3 with
symmetrical QD-MBS couplings |λ|/� = 0.3, electron-phonon coupling strength β/� = 2.5, QD level εd/� = 0, for different magnetic flux
phases φ. The rest of the parameters are (a) φ = 0, εM/� = 0; (b) φ = 0, εM/� = 0.3; (c) φ = π , εM/� = 0; and (d) φ = π , εM/� = 0.3. The
right and left insets in each panel zoom in on the first phonon-induced satellite peak at positive and negative energy, respectively.

mirrored when the renormalized QD level matches the Fermi
energy ε̃d ≈ 0 when εM = 0, at any magnetic flux phase φ, or
when εM �= 0 at φ = (2n + 1)π . As before, in the absence of
EPI, the broadened peaks are caused by the renormalized QD
energy level ε̃d while the sharp peaks are attributed to the reg-
ular fermionic states originating from the MBSs. Moreover, if
both ε̃d and εM vanish, the main peaks become approximately
symmetric at any φ [see Figs. 13(a) and 13(c)], as discussed
above in the presence of EPI in Fig. 12, or without EPI in
Fig. 3.

As we have seen in Sec. III A, the spectral function is
temperature-independent when there is no EPI in the system.
We now investigate the influence of temperature on the spec-
tral function in the presence of EPI. The equilibrium spectral
function Ad (ε) at different temperatures T for unhybridized
and hybridized MBSs, with weak symmetrical QD-MBS cou-
plings |λ j | = |λ|, at the dot level εd = 0, for two different flux
phases φ, is plotted in Fig. 14. We see that the main peaks are
less sensitive to the change in temperature than the satellite
peaks. The spectral function in Eq. (C1) is proportional to
the coefficients Lp, such that the peak heights are directly
influenced by Lp. For low temperatures, the Lp coefficients
are weakly dependent on T , which leads only to extremely
small changes in the peak height in the temperature regime
considered here. However at large temperatures, all Lp start
to decay as 1/

√
T , which eventually leads to suppressing all

the peaks. The discontinuity in the shape of the side peaks is
smoothed at finite temperatures because of the Fermi-Dirac
distribution function. The peak width is determined by the
renormalized QD-lead coupling �̃ = �e−g(2Nph+1) with �̃ de-
creasing as T increases. This leads to a narrowing of peaks
with the increase of temperature [130]. Moreover, the location

of peaks is also weakly influenced by the temperature via the
renormalized QD-MBS couplings |λ̃| = |λ|e−g(Nph+1/2).

In Fig. 15, we plot the equilibrium spectral function
Ad (ε) as a function of energy for different values of the
electron-phonon coupling strength β, for symmetrical QD-
MBS couplings |λ j | = |λ|, at two values of the magnetic
flux phase φ, for εM = 0, at dot level εd = 0, and at finite
temperature. According to the results in Fig. 2, the zero-
energy equilibrium spectral function is Ad (0) = 0 and 1/2
for magnetic flux phase φ = 0 and φ = π , respectively. In
the presence of EPI and at φ = 0, the position of the antires-
onance point at ε = 0 is not affected by the electron-phonon
coupling strength β. The main peak developing in the negative
energy region of the spectrum shifts towards lower ener-
gies with increasing electron-phonon coupling strength β due
to the renormalized QD energy level ε̃d = εd − β2/ω0. The
main peak at the positive energy region, caused by MBSs,
shifts toward zero-energy with the increase of β. The position
of satellite peaks in the spectral function is also modified
by β. Due to the fact that the QD-lead couplings � are
renormalized in the presence of EPI, i.e., �̃ = �e−g(2Nph+1)

at finite temperature, the height and width of the resonant
peaks are directly affected by the electron-phonon coupling
strength β and temperature T . The increase of β suppresses
the QD-lead couplings, which leads to narrow peaks of in-
creased height. This results in a redistribution of side-peak
weights [130]. Moreover, the enhancement of side-peak am-
plitudes with the increase of β is more significant in the
negative energy region than in the positive energy one. Note
that for each p, the coefficient Lp increases with β up to a
maximum, after which it starts to decrease. The QD-MBS
couplings are also renormalized in the presence of EPI and
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FIG. 15. The equilibrium spectral function of the QD Ad (ε) at
different values of the electron-phonon coupling strength β for un-
hybridized MBSs εM/� = 0, with symmetrical QD-MBS couplings
|λ|/� = 0.3, at the QD energy level εd/� = 0, and temperature
T/� = 0.1, when the magnetic flux phase is (a) φ = 0 and (b)
φ = π . The inset in each panel zooms in on the zero-energy features
in the spectral function.

become smaller when the electron-phonon coupling strength
gets stronger, which in turn affects the position of resonant
peaks.

In the following, we investigate the linear conductance G
in the presence of EPI at zero and finite temperature. We
first plot in Fig. 16 the linear conductance G as a function
of magnetic flux phase φ for dot level εd = 0, at zero and
finite temperature, with and without EPI, with either εM = 0
or εM �= 0. As discussed in Sec. III A (see Figs. 7 and 8), in
the absence of EPI and for εM = 0, G becomes independent of
εd and is a 2π -periodic function in magnetic flux phase φ at
zero temperature. In the presence of EPI, when εM = 0, in the
limit ε → 0, the retarded Green’s functions G̃r

d11(ε → 0) and
G̃r

d12(ε → 0) have the approximate expression from Eqs. (33)
with |λ j | replaced with the renormalized |λ̃ j |. Therefore, par-
allel to the discussion in the case without EPI, they do not
depend on the renormalized dot level ε̃d or finite values of
|λ̃ j |. Therefore, at zero temperature when εM = 0, G becomes
independent of the electron-phonon coupling strength β. Such
behavior was also observed in a similar setup where a single
MBS is connected to a normal lead through a QD [131]. At
finite temperatures, the conductance peaks are broadened and
suppressed with β. The periodicity of G remains 2π in the
presence of EPI. As is discussed above, in the absence of
EPI, G has 4π periodicity as a function of φ when εM �= 0
and εd �= 0. In the presence of EPI, at εM �= 0, the linear
conductance depends on εd and β both at zero and finite
temperatures. The electron-phonon coupling strength β sup-
presses the magnitude of G at fixed εd . Most remarkably, when

FIG. 16. The linear conductance G as a function of magnetic
flux phase φ for different electron-phonon coupling strengths β, for
(a) unhybridized εM/� = 0 and (b) hybridized MBSs εM/� = 0.3.
We use symmetrical QD-MBS couplings |λ|/� = 0.3, QD energy
level εd/� = 0, and zero or finite T/� = 0.1 temperature.

εM �= 0, the 2π periodicity of G in φ transforms into 4π in the
presence of EPI due to the renormalized dot level ε̃d .

We now plot in Fig. 17 the linear conductance G as a
function of magnetic flux phase φ and MBSs overlap energy
εM with symmetrical QD-MBS couplings |λ j | = |λ| at the
QD energy level εd = 0, zero temperature, with and without
EPI. The effect of electron-phonon coupling strength β on the
linear conductance G is clearly visible. One observes from
Fig. 17(a) that the linear conductance G shows a 2π period-
icity as a function of magnetic flux phase φ in the absence of
EPI regardless of the value of εM , in agreement with the results
of Fig. 5. Moreover, for strong overlap energy εM , the linear
conductance is significantly enhanced while preserving its 2π

periodicity. When the EPI is switched on [see Fig. 17(b)], the
periodicity of G as a function of φ changes from 2π to 4π ,

FIG. 17. The zero-temperature linear conductance G as a func-
tion of magnetic flux phase φ and MBSs overlap energy εM ,
for symmetrical QD-MBS couplings |λ|/� = 0.3, at the dot level
εd/� = 0, in the (a) absence β/� = 0 and (b) presence of EPI
β/� = 2.5.
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FIG. 18. (a) The zero-temperature linear conductance G as
a function of magnetic flux phase φ and QD energy level εd

with electron-phonon coupling strength β/� = 2.5. (b) The zero-
temperature linear conductance G as a function of electron-phonon
coupling strength β and QD energy level εd at magnetic flux phase
φ = π . (c) The zero-temperature linear conductance G as a func-
tion of magnetic flux phase φ for different values of εd , with and
without EPI (ε̃d = εd − β2/ω0, β/� = 2.5), where the solid lines
correspond to the case β/� = 2.5 and the dashed lines correspond to
β/� = 0, respectively. The rest of the parameters are overlap energy
εM/� = 0.3 and symmetrical QD-MBS couplings |λ|/� = 0.3.

provided that εM is finite. At εM = 0, the linear conductance
shows 2π periodicity with minima at φ �= (2n + 1)π , with n
an integer. Moreover, the linear conductance takes the value
e2/2h at magnetic flux phases φ = (2n + 1)π , independent
of the electron-phonon coupling strength β. For εM > 0, G
has 4π periodicity as a function of φ. At φ = 4nπ , G has
local minima for small values of εM while for larger values
of εM , G presents maxima. Moreover, the further increase of
εM leads to a decrease in the peaks of G. In conclusion, in the
presence of EPI, there is a transition from a 2π -periodic linear
conductance at εM = 0 to a 4π one at εM > 0.

Now we investigate the QD energy level effect on the
linear conductance by plotting the zero-temperature linear
conductance G as a function of magnetic flux phase φ and dot
energy εd for εM �= 0 with symmetrical QD-MBS couplings
|λ j | = |λ| in the presence of EPI [see Fig. 18(a)]. The features
of G are readily understood by recalling that in the absence of
EPI (see Fig. 8), the linear conductance has 2π periodicity as a
function of φ when εd = 0, and it transforms to 4π for εd �= 0
in the case of εM �= 0. In the case when the EPI is switched
on [Fig. 18(a)], the dot energy becomes renormalized
εd → ε̃d = εd − β2/ω0, which therefore leads to a shift in the
conductance map in the positive direction on the εd axis. Thus,
at εd = β2/ω0, G has 2π periodicity as a function of φ. Other-
wise, for εd �= β2/ω0, the linear conductance is a 4π -periodic
function of φ. Figure 18(b) shows the numerical results for
the zero-temperature linear conductance G as a function of
electron-phonon coupling strength β and QD energy level εd ,

at magnetic flux phase φ = π , with symmetrical QD-MBS
couplings |λ j | = |λ|, and εM �= 0. Note that the 2π -periodic G
is obtained only if the effective dot energy ε̃d vanishes, which
requires εd > 0, since β2/ω0 > 0. We plot in Fig. 18(c) the
linear conductance G against the magnetic flux phase φ for
different values of the dot energy εd , without EPI and in the
presence of EPI with fixed electron-phonon coupling strength
β and εM �= 0 at zero temperature. It is readily observed again
that the effect of EPI on G is eliminated at ε̃d = 0 by tuning
εd = β2/ω0. Also note that the oscillations for two opposite
values of ε̃d are in antiphase as seen also in the absence of
EPI (see also Fig. 8). In conclusion, the main message of
Fig. 18 is that in the presence of EPI, for εM �= 0, the linear
conductance periodicity switches between 2π and 4π when
varying ε̃d through εd or electron-phonon coupling β.

In the following, we analyze the temperature effect on
linear conductance in the presence of EPI. In general, the
temperature has a strong effect on the linear conductance since
G ∝ T −1

∫
dεAd (ε) f (ε)[1 − f (ε)], which decays with an

overall prefactor T −1. The results from Fig. 19 expand on the
study in Fig. 16 where a single finite temperature was consid-
ered. Figure 19 shows the linear conductance G as a function
of magnetic flux phase φ and renormalized dot energy level
ε̃d , in the presence of EPI, at different temperatures, for unhy-
bridized and hybridized MBSs, with symmetrical QD-MBS
couplings |λ j | = |λ|. According to the results in Fig. 10, we
see that the increasing temperature broadens the Dirac-comb
structure of the resonant peaks at zero temperature for εM = 0.
In the presence of EPI, beside the increase of minima with
the temperature for weak QD-MBS coupling strength |λ|, an
enhancement of maxima in the spectrum of G is observed
at ε̃d = 0 [Figs. 19(a) and 19(c)]. Thus the increase of T
causes G to exceed e2/2h in the case εM = 0, after which G
drops below e2/2h at higher temperatures. Moreover, at higher
temperatures the peaks of G are suppressed, in agreement with
the results in the absence of EPI from Fig. 10. In contrast,
for strong |λ|, the peaks of G decrease monotonically with T
from e2/2h at T = 0 and ε̃d = 0 [see Figs. 19(b) and 19(d)].
Therefore, the widths of the peaks are more narrow compared
to the small |λ| case. At high temperatures, the peaks are
flattened to the point of masking the periodicity of G. In the
case when εM �= 0, the conductance has a 4π periodicity due
to the finite renormalized dot level ε̃d , regardless of the value
of |λ| [see Figs. 19(e) and 19(f)]. Also, the peaks are sharper
when |λ| is stronger. The maxima of G reach the value e2/h
at T = 0 and ε̃d = 0, after which decrease with increasing
temperature [see Figs. 19(g) and 19(h)]. Note that the maxima
of G do not exceed the value e2/h with the increase of T as
was found in the case of the absence of EPI (Fig. 10).

We now turn our attention to the differential conductance
dI/dV in the presence of EPI. We plot in Fig. 20 the zero-
temperature differential conductance dI/dV as a function of
magnetic flux phase φ, at different values of the electron-
phonon coupling strength β, for unhybridized (εM = 0) and
hybridized (εM �= 0) MBSs, with weak symmetrical QD-MBS
couplings |λ j | = |λ|, at dot level εd = 0, with a fixed bias
voltage eV . The differential conductance has a 2π periodicity
as a function of magnetic flux phase φ when εM = 0, in the
absence of EPI [see also Figs. 5(d)–5(f)]. When the EPI is
taken into account, the minima of dI/dV , located without

155409-17



MÁTHÉ, STICLET, AND ZÂRBO PHYSICAL REVIEW B 105, 155409 (2022)

FIG. 19. (a), (b), (e), (f) The linear conductance G as a function of magnetic flux phase φ at εd/� = 0, and (c), (d), (g), (h) as a function
of renormalized QD energy level ε̃d , at φ = π , for different temperatures T and couplings |λ j | = |λ|, with fixed electron-phonon coupling
strength β/� = 2.5. The overlap energy εM is (a)–(d) εM/� = 0 and (e)–(h) εM/� = 0.3, and the symmetrical coupling constant |λ|, (a), (c),
(e), (g) |λ|/� = 0.3, and (b), (d), (f), (h) |λ|/� = 1.

EPI at φ = 2nπ , with n an integer, begin to increase with
the electron-phonon coupling strength β. When β reaches
the value β/� ≈ 1.685 [see Fig. 20(a), blue line], the local
minima emerging at φ = (2n + 1)π are at the same value as
the minima at φ = 2nπ such that dI/dV is approximately
π -periodic. A further increase of β results in recovering the
2π periodicity, but the maxima are located now at φ = 2nπ .
Finally, the differential conductance is completely suppressed
at large β. In the case of finite overlap energy εM �= 0 [see
Fig. 20(b)], the differential conductance without EPI starts

FIG. 20. The zero-temperature differential conductance dI/dV
as a function of magnetic flux phase φ for different values of the
electron-phonon coupling strength β, with bias voltage eV/� =
0.28, QD energy level εd/� = 0, symmetrical QD-MBS couplings
|λ|/� = 0.3, and overlap energy (a) εM/� = 0 and (b) εM/� = 0.3.

with a 2π periodicity as a function of φ, with minima at
φ = 2nπ , which in the presence of EPI changes to 4π . Half of
the β = 0 minima, namely those occurring at φ = 4nπ , trans-
form into local plateaus when the electron-phonon coupling
strength β reaches the critical value β/� ≈ 1.5. A further
enhancement of β leads to the plateaus changing into maxima
of dI/dV and finally to the suppression of the differential
conductance. In short, under the variation of electron-phonon
coupling strength β, we observe a π -phase shift in dI/dV for
εM = 0 and a transition in the periodicity of dI/dV from 2π

to 4π for εM �= 0.
We now illustrate in Fig. 21 the zero-temperature differen-

tial conductance dI/dV as a function of magnetic flux phase
φ, with and without EPI, with the variation of the QD energy
level εd , for unhybridized (εM = 0) and hybridized (εM �= 0)
MBSs, with symmetrical QD-MBS couplings |λ j | = |λ|, at
a fixed electron-phonon coupling strength β and bias volt-
age eV . We observe that when there is a sufficiently strong
electron-phonon coupling strength β/� = 2.5, the differential
conductance is a 2π -periodic function of φ when ε̃d = 0,
regardless of the value of εM , with minima at the points of φ =
2nπ [see Figs. 21(a) and 21(b)]. For finite values of εM and ε̃d

[see Fig. 21(b)], the dI/dV periodicity becomes 4π . When
the QD energy level matches εd = β2/ω0, the renormalized
dot level vanishes ε̃d = 0, leading to the suppression of EPI
effects on dI/dV periodicity. Thus the dI/dV periodicity as
a function of φ approaches the case of β = 0 with the QD
level εd = 0. Consequently, the periodicity of dI/dV changes
when tuning εd .

We finally examine the differential conductance dI/dV as
a function of bias voltage eV , in the presence of EPI, at zero
and finite temperatures, for different values of overlap energy
between MBSs εM , magnetic flux phase φ, and electron-
phonon coupling strength β, when the QD weakly couples
to the MBSs with symmetrical couplings |λ j | = |λ| and at
εd = 0. The numerical results are presented in Fig. 22. In the
absence of EPI, we find at weak |λ| that three resonant peaks
appear in the dI/dV spectra for εM �= 0 [see Figs. 22(b) and
22(d), dashed lines], and only two peaks appear for εM = 0
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FIG. 21. The zero-temperature differential conductance dI/dV
as a function of magnetic flux phase φ for different values of the
QD energy level εd , in the presence and absence of EPI (ε̃d = εd −
β2/ω0, β/� = 2.5), with bias voltage eV/� = 0.28, symmetrical
QD-MBS couplings |λ|/� = 0.3, and overlap energy (a) εM/� = 0
and (b) εM/� = 0.3. The solid (dashed) lines denote results in the
presence (absence) of EPI.

[see Figs. 22(a) and 22(c), dashed lines]. Namely, at eV = 0
a peak develops for εM �= 0 in dI/dV , while there is a min-
imum at eV = 0 for εM = 0. With increasing temperature,
the resonant peaks decrease in amplitude. The central peak
vanishes first and eventually the remaining peaks merge into
a single peak at temperatures higher than the overlap energy
between MBSs (T > εM), as was found in [63] for weak |λ|.
Recall that the behavior of dI/dV at eV = 0 and zero tem-
perature is determined from the zero-energy spectral function
Ad (0). In the presence of EPI, we observe in Fig. 22(a), at
εM/� = 0 and φ = 0, that the two main peaks associated
with the MBSs become narrow compared to the β = 0 case.
Beside the sharp peaks, two broadened resonances appear in
the spectrum at eV ≈ ±2|ε̃d | due to the EPI. Therefore, a
series of additional phonon-assisted channels emerge in the
spectrum of dI/dV at eV ≈ ±2(|ε̃d | + |p|ω0), with p an in-
teger, corresponding to tunneling of electrons through the QD
by absorption and emission of phonons with frequency ω0.
Near the side-band resonances, characteristic MBS-induced
peaks develop at voltages eV ≈ ±2|p|ω0. Note that at zero
temperature, the zero-bias differential conductance is not af-
fected by the EPI, as discussed above for G. When the MBSs
overlap [see Fig. 22(b)], the main three-peak structure (at
β = 0) evolves into a spectrum of two narrow MBS-induced
peaks with broadened side peaks at eV ≈ ±2|ε̃d | due to the
presence of EPI. With increasing T , the two narrow peaks
merge into one. The peaks are totally smeared when the
temperature exceeds the overlap energy, i.e., T > εM . The
phonon-assisted peaks are similar to the central peak shape.

In the case of φ = π with εM = 0 [see Fig. 22(c)], the main
two-peak structure, which develops in the absence of EPI in
the spectrum of dI/dV , transforms into a peak-structure that
consists of a narrow peak at eV = 0 and two side-peaks at
eV ≈ ±2|ε̃d |. The zero-bias peak is immune to the EPI at zero
temperature. In the same way, the phonon side-bands in the
spectrum are characterized by the main MBS-induced peaks.
Therefore, when εM �= 0 [see Fig. 22(d)], the main three-peak
structure evolves into a four-peak one, formed by two sharp
MBS peaks and two broadened resonances. The satellite peaks
follow again the central peak shape. At larger temperatures,
the peaks are completely smeared.

IV. SUMMARY

In this work, we have investigated the transport properties
in a quantum dot system formed by two Majorana bound
states located at the edges of a topological superconducting
nanowire coupled laterally to a dot and in the presence of
electron-phonon interaction. The dot-topological supercon-
ducting nanowire forms a ring system that is threaded by
a tunable magnetic flux, allowing the control of transport
properties. The electrons in the quantum dot interact with
a single long-wave optical phonon mode, which leads to
phonon-assisted processes in electron transport. The elec-
trodes are oppositely biased, which results in a tunneling
current through the dot with two components, one from the
electron tunneling and the other from the local Andreev reflec-
tion. Crossed Andreev reflection is present only when the bias
is asymmetrically applied. The electron-phonon interaction
was incorporated in the model using a canonical transforma-
tion within the nonequilibrium Green’s function formalism.
The relevant retarded Green’s functions have been determined
by using the equation of motion method. The influence of
electron-phonon interaction on transport characteristics in the
presence of Majorana bound states has been analyzed in de-
tail. For comparison, we have studied a system both with and
without electron-phonon interaction.

In the absence of electron-phonon interaction, the quantum
dot spectral function shows a typical line shape character-
izing the presence of Majorana bound states. The location
of antiresonance points that occur in the spectrum is deter-
mined by the overlap energy between Majorana bound states.
We have found that when the Majorana bound states do not
overlap, the linear conductance is in equal manner attributed
to electron tunneling and local Andreev reflection processes
at zero temperature. Therefore, the linear conductance and
its components are 2π -periodic functions of magnetic flux
phase and do not depend on dot energy or finite values of
dot-Majorana bound state couplings at zero temperature. We
have also established that the electron tunneling and local
Andreev reflection components of linear conductance respond
differently to the change of temperature. Namely, the electron
tunneling conductance exceeds the value e2/4h, while the
local Andreev reflection does not, for weak dot-Majorana
couplings at finite temperatures. At finite temperatures, the
linear conductance peaks are broadened with the increase
of temperature and depend on dot energy and finite values
of dot-Majorana couplings even for unhybridized Majorana
bound states. The conductance 2π periodicity becomes 4π at
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FIG. 22. The differential conductance dI/dV as a function of bias voltage eV in the presence of EPI for different values of temperature
T and magnetic flux phase φ. The QD energy level is εd/� = 0 and the symmetrical QD-MBS couplings are |λ|/� = 0.3. The dashed lines
correspond to the case of β/� = 0 and the solid lines correspond to β/� = 2.5. The rest of the parameters are indicated in the figure. The right
and left insets in each panel zoom in on the central and first phonon-induced satellite peak at negative energy, respectively.

finite dot energy εd for hybridized Majorana bound states. We
have also established that the differential conductance has 2π

periodicity for unhybridized Majoranas regardless of the value
of dot energy, and it has 4π periodicity when the dot level is
tuned for hybridized Majorana bound states. The differential
conductance spectrum exhibits an asymmetric line shape as
a function of the dot energy. The differential conductance
peaks attributed to the hybridized Majorana bound states are
smeared when the temperature exceeds the value of Majorana
overlap energy, in agreement with the literature results [63].
The periodicity of the linear and differential conductances
holds also for an asymmetrically coupled quantum dot system,
which would facilitate the experimental verification.

In the presence of electron-phonon interaction, the spec-
tral function of the dot is modified. Alongside the peaks
attributed to the Majorana bound states, a series of peaks,
due to new phonon-assisted transport channels, develop in
the spectrum, with shapes influenced by the electron-phonon
coupling strength, temperature, overlap energy, and quantum
dot energy. Most remarkably, when the Majorana bound states
do not overlap, the linear conductance shows a 2π period-
icity as a function of magnetic flux phase and is immune to
the electron-phonon interaction, dot energy, and finite values
of dot-Majorana bound state couplings at zero temperature.
Moreover, at finite temperatures, the linear conductance de-
pends on dot energy and electron-phonon coupling strength
for unhybridized Majoranas. In the case of hybridized Majo-
rana bound states, the linear conductance has a 4π periodicity
even for dot level εd = 0, due to dot energy being renor-
malized by electron-phonon coupling at zero and finite
temperatures. Consequently, the linear conductance periodic-
ity may change to 4π for hybridized Majorana wave functions
when varying the gate voltage or the electron-phonon cou-

pling strength. Therefore, a transition in the differential
conductance periodicity between 2π and π for perfectly de-
generate Majorana bound states, as well as between 2π and
4π for hybridized Majorana bound states, can be achieved by
changing the electron-phonon coupling strength. The differen-
tial conductance exhibits phonon-assisted satellite peaks due
to the electron-phonon interaction, whose height is sensitive to
the change of electron-phonon coupling strength and temper-
ature. The phonon-assisted peaks of differential conductance
decrease with the increase of temperature and are eventually
suppressed at high temperatures.

The devices studied in the present paper are relevant for
the quest of realizing topological quantum computation, and
they stand within experimental reach. The topological su-
perconducting nanowire loop structures can be engineered
using molecular beam epitaxy techniques [147]. The integra-
tion of quantum dots in such semiconducting-superconducting
heterostructures is also feasible within current technology
[98,99,101,148]. The effects of an environmental phonon
bath, which limits the coherence times in such devices, could
thus be accounted first within theoretical toy models such as
those proposed in Fig. 1. We hope our work sheds light on
the expected behavior for Majorana bound state signatures in
more complex transport experiments where electron-phonon
interaction plays a central role.
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APPENDIX A: CURRENT AND CONDUCTANCES IN THE ABSENCE OF EPI

In this Appendix, we derive formulas for current, and differential and linear conductances in the absence of EPI. We consider
that the SC is grounded, μS = 0, and an opposite bias voltage is applied to the leads, μL = −μR = eV

2 . Following Eq. (14), with
the introduced conditions �e (h)

α = �, the current is symmetrized as

I = IL − IR

2
= IET

L − IET
R

2
+ ILAR

L − ILAR
R

2
≡ IET + ILAR, (A1)

where the currents from the ET and LAR processes read

IET = e

h

∫
dε T ee

LR (ε)
[

f e
L (ε) − f e

R (ε)
]
, (A2)

ILAR = e

h

∫
dε T eh

LL (ε)
[

f e
L (ε) − f e

R (ε)
]
, (A3)

where f e
α (ε) = f h

α′ (ε). The corresponding transmission probabilities are

T ee
LR (ε) = T ee

RL (ε) = �2
∣∣Gr

d11(ε)
∣∣2

, (A4)

T eh
LL (ε) = T eh

RR (ε) = �2
∣∣Gr

d12(ε)
∣∣2

. (A5)

Moreover, the differential conductance corresponding to the ET and LAR currents is expressed as dI/dV = dIET/dV +
dILAR/dV with:

dIET

dV
= e2

2h

1

T

∫
dε T ee

LR (ε)
{

f e
L (ε)

[
1 − f e

L (ε)
] + f e

R (ε)
[
1 − f e

R (ε)
]}

, (A6)

dILAR

dV
= e2

2h

1

T

∫
dε T eh

LL (ε)
{

f e
L (ε)

[
1 − f e

L (ε)
] + f e

R (ε)
[
1 − f e

R (ε)
]}

, (A7)

where we applied the identity
∂ f e

L (R) (ε)
∂V = ± e

2T f e
L (R)(ε)[1 − f e

L (R)(ε)]. Therefore, the linear conductances read

GET = dIET

dV

∣∣∣∣
V →0

= e2

h

1

T

∫
dε T ee

LR (ε) f (ε)[1 − f (ε)], (A8)

GLAR = dILAR

dV

∣∣∣∣
V →0

= e2

h

1

T

∫
dε T eh

LL (ε) f (ε)[1 − f (ε)], (A9)

with the equilibrium Fermi-Dirac function f (ε) = f e
α (ε). The zero-temperature differential conductances become

dIET

dV
= e2

2h

[
T ee

LR (eV/2) + T ee
LR (−eV/2)

]
, (A10)

dILAR

dV
= e2

2h

[
T eh

LL (eV/2) + T eh
LL (−eV/2)

]
, (A11)

where we introduced the notations T ee
LR (±eV/2) = T ee

LR (ε = ±eV/2) and T eh
LL (±eV/2) = T eh

LL (ε = ±eV/2) and used the property
f e
α (ε) = θ (μα − ε), with θ (μα − ε) the Heaviside function. The corresponding zero-temperature linear conductances are

GET = e2

h
T ee

LR (0), GLAR = e2

h
T eh

LL (0). (A12)

In the following, we consider that the system is biased as follows: μL = qeV and μR = (q − 1)eV such that μL − μR = eV
with the choice of 0 � q � 1. This leads to the current

IL = e

h

∫
dε T ee

LR (ε)
[

f e
L (ε) − f e

R (ε)
] + e

h

∫
dε T eh

LL (ε)
[

f e
L (ε) − f h

L (ε)
] + e

h

∫
dε T eh

LR (ε)
[

f e
L (ε) − f h

R (ε)
]
. (A13)

Thus, the zero-temperature differential conductance is expressed as

dIL

dV
= e2

h

[
qT ee

LR (qeV ) + (1 − q)T ee
LR ((q − 1)eV )

] + e2

h
q
[
T eh

LL (qeV ) + T eh
LL (−qeV )

]
+ e2

h

[
qT eh

LR (qeV ) + (q − 1)T eh
LR ((1 − q)eV )

]
. (A14)

APPENDIX B: GREEN’S FUNCTIONS OF THE DOT

In this Appendix, we calculate the dot retarded Green’s functions for arbitrary values of εM , λ1, and λ2 by using the
EOM technique. To do this, we define the retarded Green’s function for fermionic operators A and B as 〈〈A(t )|B(0)〉〉r

t =
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−iθ (t )〈{A(t ), B(0)}〉, where θ (t ) is the Heaviside function [149–151]. The Fourier transform for 〈〈A(t )|B(0)〉〉r
t is given by

〈〈A|B〉〉r
ε. We write down the EOM for the retarded Green’s function in energy space as ε+〈〈A|B〉〉r

ε + 〈〈[H̄el, A]|B〉〉r
ε = 〈{A, B}〉,

where ε+ = ε + iδ, with δ a positive infinitesimal [149–151]. We introduce the electron-electron and electron-hole retarded
Green’s functions for the dot as G̃r

d11(ε) = 〈〈d|d†〉〉r
ε and G̃r

d12(ε) = 〈〈d|d〉〉r
ε by replacing A (B) with d (d†) and d (d ),

respectively.
The EOM for G̃r

d11(ε) is expressed as

(ε+ − ε̃d )〈〈d|d†〉〉r
ε + 1√

2
(λ̃∗

1 + λ̃∗
2 )〈〈 f †|d†〉〉r

ε + 1√
2

(λ̃∗
1 − λ̃∗

2 )〈〈 f |d†〉〉r
ε −

∑
α,k

Ṽ ∗
αk〈〈cαk|d†〉〉r

ε = 1. (B1)

To determine 〈〈d|d†〉〉r
ε, we need to calculate the new higher-order correlation functions that appear in Eq. (B1). The equation for

the term 〈〈cαk|d†〉〉r
ε reads

〈〈cαk|d†〉〉r
ε = Ṽαk

ε+ − εαk
〈〈d|d†〉〉r

ε. (B2)

Using Eq. (B2), in the wide-band limit, we write [141]∑
α,k

Ṽ ∗
αk〈〈cαk|d†〉〉r

ε ≈ −i�̃〈〈d|d†〉〉r
ε, (B3)

where �̃ = 1
2

∑
α �̃α , with �̃α = 2π

∑
k |Ṽαk|2δ(ε − εαk ) being the coupling between the QD and the lead α, where we assumed

electron-hole symmetry in the system (�α = �e
α = �h

α), as mentioned in Sec. II. Substituting Eq. (B3) into Eq. (B1), we have

(ε+ − ε̃d + i�̃)〈〈d|d†〉〉r
ε + 1√

2
(λ̃∗

1 + λ̃∗
2 )〈〈 f †|d†〉〉r

ε + 1√
2

(λ̃∗
1 − λ̃∗

2 )〈〈 f |d†〉〉r
ε = 1. (B4)

The equations of motion for terms 〈〈 f †|d†〉〉r
ε and 〈〈 f |d†〉〉r

ε are

(ε+ + εM )〈〈 f †|d†〉〉r
ε − 1√

2
(λ̃∗

1 − λ̃∗
2 )〈〈d†|d†〉〉r

ε + 1√
2

(λ̃1 + λ̃2)〈〈d|d†〉〉r
ε = 0, (B5)

(ε+ − εM )〈〈 f |d†〉〉r
ε − 1√

2
(λ̃∗

1 + λ̃∗
2 )〈〈d†|d†〉〉r

ε + 1√
2

(λ̃1 − λ̃2)〈〈d|d†〉〉r
ε = 0. (B6)

We now write an equation for the correlation function 〈〈d†|d†〉〉r
ε appearing in Eqs. (B5) and (B6),

(ε+ + ε̃d )〈〈d†|d†〉〉r
ε − 1√

2
(λ̃1 − λ̃2)〈〈 f †|d†〉〉r

ε − 1√
2

(λ̃1 + λ̃2)〈〈 f |d†〉〉r
ε +

∑
α,k

Ṽαk〈〈c†
αk|d†〉〉r

ε = 0, (B7)

where the equation for 〈〈c†
αk|d†〉〉r

ε is expressed as

〈〈c†
αk|d†〉〉r

ε = − Ṽ ∗
αk

ε+ + εαk
〈〈d†|d†〉〉r

ε. (B8)

Here, assuming again electron-hole symmetry in the system, and substituting Eq. (B8) into Eq. (B7), one obtains

(ε+ + ε̃d + i�̃)〈〈d†|d†〉〉r
ε − 1√

2
(λ̃1 − λ̃2)〈〈 f †|d†〉〉r

ε − 1√
2

(λ̃1 + λ̃2)〈〈 f |d†〉〉r
ε = 0. (B9)

Now, we have a complete set of equations based on the higher-order correlation functions, which leads to expressing an analytical
formula for the retarded Green’s function 〈〈d|d†〉〉r

ε. To do this, we substitute the terms 〈〈 f †|d†〉〉r
ε from Eq. (B5) and 〈〈 f |d†〉〉r

ε

from Eq. (B6) into Eqs. (B4) and (B9), and we obtain{
(ε+ − ε̃d + i�̃) −

[
(|λ̃1|2 + |λ̃2|2) − εM

ε
(λ̃1λ̃

∗
2 + λ̃∗

1λ̃2)

]
K(ε)

}
〈〈d|d†〉〉r

ε + (λ̃∗
1λ̃

∗
1 − λ̃∗

2λ̃
∗
2 )K(ε)〈〈d†|d†〉〉r

ε = 1, (B10){
(ε+ + ε̃d + i�̃) −

[
(|λ̃1|2 + |λ̃2|2) + εM

ε
(λ̃1λ̃

∗
2 + λ̃∗

1λ̃2)

]
K(ε)

}
〈〈d†|d†〉〉r

ε + (λ̃1λ̃1 − λ̃2λ̃2)K(ε)〈〈d|d†〉〉r
ε = 0, (B11)

where we introduced the following notation:

K(ε) = ε

ε2 − ε2
M

. (B12)

Expressing 〈〈d†|d†〉〉r
ε from Eq. (B11) and replacing it into Eq. (B10), we find for the electron-electron contribution of the dot

retarded Green’s function

G̃r
d11(ε) =

{
(ε + ε̃d + i�̃) −

[
(|λ̃1|2 + |λ̃2|2) + εM

ε
(λ̃1λ̃

∗
2 + λ̃∗

1λ̃2)

]
K(ε)

}
F̃ (ε)−1, (B13)
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where

F̃ (ε) = (ε − ε̃d + i�̃)(ε + ε̃d + i�̃) − 2(ε + i�̃)(|λ̃1|2 + |λ̃2|2)K(ε)

+ 2εM

ε
ε̃d (λ̃1λ̃

∗
2 + λ̃∗

1λ̃2)K(ε) + 1

ε
(2|λ̃1|2|λ̃2|2 + λ̃1λ̃1λ̃

∗
2λ̃

∗
2 + λ̃∗

1λ̃
∗
1λ̃2λ̃2)K(ε). (B14)

The EOM for G̃r
d12(ε) reads

(ε+ − ε̃d )〈〈d|d〉〉r
ε + 1√

2
(λ̃∗

1 + λ̃∗
2 )〈〈 f †|d〉〉r

ε + 1√
2

(λ̃∗
1 − λ̃∗

2 )〈〈 f |d〉〉r
ε −

∑
α,k

Ṽ ∗
αk〈〈cαk|d〉〉r

ε = 0, (B15)

where the equation for 〈〈cαk|d〉〉r
ε becomes

〈〈cαk|d〉〉r
ε = Ṽαk

ε+ − εαk
〈〈d|d〉〉r

ε. (B16)

Substituting Eq. (B16) into Eq. (B15), we have

(ε+ − ε̃d + i�̃)〈〈d|d〉〉r
ε + 1√

2
(λ̃∗

1 + λ̃∗
2 )〈〈 f †|d〉〉r

ε + 1√
2

(λ̃∗
1 − λ̃∗

2 )〈〈 f |d〉〉r
ε = 0. (B17)

The equations for terms 〈〈 f †|d〉〉r
ε and 〈〈 f |d〉〉r

ε read

(ε+ + εM )〈〈 f †|d〉〉r
ε − 1√

2
(λ̃∗

1 − λ̃∗
2 )〈〈d†|d〉〉r

ε + 1√
2

(λ̃1 + λ̃2)〈〈d|d〉〉r
ε = 0, (B18)

(ε+ − εM )〈〈 f |d〉〉r
ε − 1√

2
(λ̃∗

1 + λ̃∗
2 )〈〈d†|d〉〉r

ε + 1√
2

(λ̃1 − λ̃2)〈〈d|d〉〉r
ε = 0. (B19)

Here, the equation for the term 〈〈d†|d〉〉r
ε appearing in Eqs. (B18) and (B19) is expressed as

(ε+ + ε̃d )〈〈d†|d〉〉r
ε − 1√

2
(λ̃1 − λ̃2)〈〈 f †|d〉〉r

ε − 1√
2

(λ̃1 + λ̃2)〈〈 f |d〉〉r
ε +

∑
α,k

Ṽαk〈〈c†
αk|d〉〉r

ε = 1, (B20)

where the EOM for 〈〈c†
αk|d〉〉r

ε reads

〈〈c†
αk|d〉〉r

ε = − Ṽ ∗
αk

ε+ + εαk
〈〈d†|d〉〉r

ε. (B21)

Substituting Eq. (B21) into Eq. (B20), one obtains

(ε+ + ε̃d + i�̃)〈〈d†|d〉〉r
ε − 1√

2
(λ̃1 − λ̃2)〈〈 f †|d〉〉r

ε − 1√
2

(λ̃1 + λ̃2)〈〈 f |d〉〉r
ε = 1. (B22)

Now, achieving a complete set of equations, we express an analytical formula for the retarded Green’s function 〈〈d|d〉〉r
ε. First,

we substitute 〈〈 f †|d〉〉r
ε from Eq. (B18) and 〈〈 f |d〉〉r

ε from Eq. (B19) into Eqs. (B17) and (B22), and we find{
(ε+ − ε̃d + i�̃) −

[
(|λ̃1|2 + |λ̃2|2) − εM

ε
(λ̃1λ̃

∗
2 + λ̃∗

1λ̃2)

]
K(ε)

}
〈〈d|d〉〉r

ε + (λ̃∗
1λ̃

∗
1 − λ̃∗

2λ̃
∗
2 )K(ε)〈〈d†|d〉〉r

ε = 0, (B23){
(ε+ + ε̃d + i�̃) −

[
(|λ̃1|2 + |λ̃2|2) + εM

ε
(λ̃1λ̃

∗
2 + λ̃∗

1λ̃2)

]
K(ε)

}
〈〈d†|d〉〉r

ε + (λ̃1λ̃1 − λ̃2λ̃2)K(ε)〈〈d|d〉〉r
ε = 1. (B24)

Substituting 〈〈d†|d〉〉r
ε from Eq. (B24) into Eq. (B23) yields the electron-hole contribution of the dot retarded Green’s function,

G̃r
d12(ε) = −(λ̃∗

1λ̃
∗
1 − λ̃∗

2λ̃
∗
2 )K(ε)F̃ (ε)−1. (B25)

Finally, maxima of the spectral function in the absence of EPI are determined from the poles of the retarded Green’s function
Gr

d11(ε) in the limit � → 0 [152]. The expression for the poles of Gr
d11(ε) when λ1 = |λ1|eiφ/4 and λ2 = |λ2|e−iφ/4 reads

2ε2 ≈ 2(|λ1|2 + |λ2|2) + ε2
d + ε2

M

±
√

[2(|λ1|2 + |λ2|2) + ε2
d + ε2

M]2 − 4{ε2
dε

2
M + 4|λ1||λ2| cos(φ/2)[|λ1||λ2| cos(φ/2) + εdεM]}. (B26)

APPENDIX C: CURRENT AND CONDUCTANCES IN THE PRESENCE OF EPI

The relations (27) and (29) with the constraint �̃e
α = �̃h

α = �̃α = �̃ determine the spectral function

Ad (ε) = ��̃

2

∞∑
p=−∞

Lp
{
P̃d (ε + pω0)

[
f e
L (ε + pω0) + f e

R (ε + pω0)
] + P̃d (ε − pω0)

[
2 − f e

L (ε − pω0) − f e
R (ε − pω0)

]}
, (C1)
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where the identity f e
α (x) = f h

α′ (x) and the following notation are used:

P̃d (x) = |G̃r
d11(x)|2 + |G̃r

d12(x)|2. (C2)

At zero temperature, the spectral function given by (C1) reduces to

Ad (ε) = ��̃

2
e−g

∞∑
p=0

gp

p!
{P̃d (ε + pω0)[θ (eV/2 − (ε + pω0)) + θ ( − eV/2 − (ε + pω0))]

+ P̃d (ε − pω0)[2 − θ (eV/2 − (ε − pω0)) − θ ( − eV/2 − (ε − pω0))]}. (C3)

Moreover, the current formula given by Eq. (18) in the presence of EPI becomes

I = e

2h
��̃

∞∑
p=−∞

Lp

∫
dε

[
f e
L (ε) − f e

R (ε)
]{
P̃d (ε + pω0)

[
f e
L (ε + pω0) + f e

R (ε + pω0)
]

+ P̃d (ε − pω0)
[
2 − f e

L (ε − pω0) − f e
R (ε − pω0)

]}
. (C4)

At finite temperature, the differential conductance is expressed as

dI

dV
= e2

4h

��̃

T

∞∑
p=−∞

Lp

∫
dε

[
P̃d (ε + pω0)

{
�e

+(ε)
[

f e
L (ε + pω0) + f e

R (ε + pω0)
] + �e

−(ε + pω0)
[

f e
L (ε) − f e

R (ε)
]}

+ P̃d (ε − pω0)
{
�e

+(ε)
[
2 − f e

L (ε − pω0) − f e
R (ε − pω0)

] − �e
−(ε − pω0)

[
f e
L (ε) − f e

R (ε)
]}]

, (C5)

where we introduced the notation

�e
±(x) = f e

L (x)
[
1 − f e

L (x)
] ± f e

R (x)
[
1 − f e

R (x)
]
. (C6)

In the absence of EPI, the relation (C5) reduces to Eqs. (A6) and (A7). The linear conductance reads

G = dI

dV

∣∣∣∣
V →0

= e2

h

��̃

T

∞∑
p=−∞

Lp

∫
dε f (ε)[1 − f (ε)]{P̃d (ε + pω0) f (ε + pω0) + P̃d (ε − pω0)[1 − f (ε − pω0)]}, (C7)

with the equilibrium Fermi-Dirac function f (x) = f e
α (x). For β = 0, Eq. (C7) changes to the relations (A8) and (A9). The

zero-temperature differential conductance reads

dI

dV
= e2

4h
��̃e−g

{
2

[
P̃d

(
eV

2

)
+ P̃d

(
− eV

2

)]
+

∞∑
p=1

gp

p!

[
θ (−eV − pω0)P̃d

(
eV

2
+ pω0

)
+ θ (eV − pω0)P̃d

(
−eV

2
+pω0

)

+ [1 − θ (−eV + pω0)]P̃d

(
eV

2
− pω0

)
+ [1 − θ (eV + pω0)]P̃d

(
− eV

2
− pω0

)

+ [1 − θ (−eV + pω0) + θ (−eV − pω0)]P̃d

(
eV

2

)
+ [1 − θ (eV + pω0) + θ (eV − pω0)]P̃d

(
− eV

2

)]}
, (C8)

where f e
α (x) = θ (μα − x), with θ (μα − x) the Heaviside function. In the absence of EPI, the relation (C8) reduces to Eqs. (A10)

and (A11). From Eq. (C8), the zero-temperature linear conductance becomes

G = dI

dV

∣∣∣∣
V →0

= e2

h
��̃e−gP̃d (0), (C9)

which then reduces to Eq. (A12) for β = 0.
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