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Persistent destructive quantum interference in the inverted graph method
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We formulate a general criterion that underlies the persistence of conductance zeros induced by destructive
quantum interference under the application of external perturbations in physical systems described by a discrete
nonsingular Hamiltonian H . Our approach uses nonzero matrix elements of H−1 between two lattice points
as edges of a graph to indicate the existence of a nonzero conductance between the same points. A given
conductance zero, or a missing edge in the inverted graph, is preserved when the perturbation, in the form
of on-site or additional interpoint hopping energies, is applied only to points outside the set of first-order graph
neighbors of either the entry lead or the exit lead. We discuss the application of these results to a study of the
robustness of the conductance zeros in the fulvene and benzene molecules.
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I. INTRODUCTION

Understanding the cancellation of the electric conductance
on account of destructive quantum interference (DQI) of the
electron paths in mesoscopic devices, such as molecules and
nanostructures, has been an intense field of study in the past
two decades [1–10]. Controlling this quantum phenomenon
by means of external parameters can potentially lead to the de-
velopment of many interesting applications, such as molecular
switchers, quantum interference transistors, or thermoelectric
devices [11–20].

Previously, it was shown that for some lattice systems the
conductance zeros are robust under new external electrode at-
tachment [12], heteroatom substitutions [15,21–24], Büttiker
probe addition at some lattice positions [13], the addition of
new atom groups at the contact positions [25], or for some
external potentials such as single and multisite perturbations
in bipartite lattices [26] and beyond these [27]. In bipartite
lattices a given conductance zero was found to be invariant
under broad conditions. In these systems, which are composed
of two sublattices, the destructive interferences realized in
transport between the same sublattice points are always zero
[28]. Further, they are not modified by any same-sublattice
site perturbation [22,26]. A generalization of this property in
more complex systems, beyond bipartite lattices, was recently
demonstrated in Ref. [27].

In this paper, we further such considerations by developing
a general criterion regarding the invariance properties of a
given conductance zero in systems described by a nonsingu-
lar, discrete Hamiltonian (i.e., H−1 exists). To this end we
formulate the inverted graph method associated with a dis-
crete Hamiltonian for propagation modes at zero energy. This
approach exploits the equality between the Green’s function
matrix elements between two lattice sites Gi j = [(E − H )−1]i j

evaluated at E = 0 and the matrix elements of −H−1 to
construct a visual representation of the nonzero conductance
paths as edges connecting the vertices of a graph of the lattice
sites. The Green’s function matrix element proportionality
with the measured conductance G between the same points
used as input and output in the Büttiker formalism [27,29,30]
allows a straightforward interpretation of the inverse graph as
a conductance map of the system.

The idea to identify the DQI process using the zero entries
of the H−1 matrix was used in the literature in Refs. [7,31].
There all the zero values obtained for a molecular system
where collected in a graph representation whose lines (i, j)
indicate the DQI process Gi j = 0 (as described in Fig. 1 in
Ref. [31] for benzene and Scheme 18 in Ref. [7] for annulene).
Here we adopt an opposite picture, where we interpret as
edges in a graph the lines (i, j) that correspond to Gi j �= 0,
while the absence of a line denotes a conductance zero. This
inverted graph picture appears to be very useful if one studies
general invariance properties of the conductance zeros.

The gist of our theory is discussed in Sec. II where we
introduce the model and present the general proof regarding
the invariance properties of an arbitrary conductance cancel-
lation. Several ways of lifting this zero are also analyzed.
We illustrate the application of the graphical method to a
nonbipartite molecule and to a bipartite one in Sec. III, while
in Sec. IV we analyze its extension to the E �= 0 case. The
conclusions are presented in Sec. V.

II. MODEL AND DEFINITIONS

As a representation of a physical system of interest, we
consider the set of lattice points M = {n|n = 1, . . . ,N },
which also designates the quantum states of the system {|n〉}.
The electron dynamics is dictated by the noninteracting,
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discrete Hamiltonian:

H =
∑

n,m∈M

hn,m|n〉〈m|, (1)

whose matrix representation has elements equal to hn,m =
〈n|H |m〉. These are hopping or on-site energies of the discrete
model for n �= m or n = m, respectively. The Hamiltonian
matrices discussed in the paper are nonsingular; i.e., they
admit an inverse.

A destructive quantum interference process at energy E
appears when the probability of the electron propagation be-
tween two lattice sites i, j ∈ M is zero. Physically this occurs
when the interference result of the various electron paths in
the atomic or orbital space is zero [10]. Mathematically, this
is expressed as the cancellation of the matrix element of the
Green’s function operator, G(E ) = 1

E−H , evaluated between
quantum states |i〉 and | j〉,

Gi j (E ) = 0. (2)

On account of the direct relationship between the Green’s
function and transport conductance, obtained either in the
frame of the Landauer-Büttiker formalism [29,32,33] or in
the source and sink potential description [7,34], when two
external transport leads (or electrodes) are connected at the
sites i and j, the DQI also manifests as an electric conductance
zero,

Gi j (E ) = 0, (3)

where energy E is the Fermi energy of the electron propagat-
ing through the attached leads [35]. Our study is focused on
DQI processes at E = 0, a regime analyzed in several other
works [7,28]. Henceforth this is not explicitly declared. A
short analysis of an E �= 0 case is discussed in Sec. IV.

The existence of DQI, as expressed in Eq. (2), can be
deduced in general by various theoretical methods that have
already been developed in the literature [2,3,7,26–28,31,36].
Here, however, we formulate a general algorithm for predict-
ing the robustness features of a given conductance zero when
additional perturbations are added to the system.

Since H is nonsingular, the inverse of its matrix H−1 ex-
ists and can be calculated analytically or numerically. Using
the nonzero matrix elements of H−1 we built the associated
inverted graph, a generic example of which is presented in
Fig. 1. Vertices or nodes are designed by circles and they
represent the lattice points from the set M. The graph edges
or lines (i, j) with i, j ∈ M, drawn with solid lines between
nodes, correspond to nonzero values of the matrix elements
(H−1)i j . Since (H−1)i j = −Gi j (0) the graph lines represent
nonzero values of the Green’s functions at E = 0. Considering
the relation between Green’s function zeros and conductance
zeros discussed above, the lines (i, j) of the inverted graph
give the nonzero values of the electrical conductance Gi j �= 0.
The absence of a line between two points i and j in Fig. 1
indicates the existence of a conductance zero Gi j = 0 that is
realized as a result of a destructive DQI process.

To every point i0 ∈ M one can associate two disjoint sets
of points. One is the neighbor set Ni0 that contains the nearest
points of i0, i.e., all adjacent vertexes in the graph [37]. This
means that there is a graph line (n, i0) between any point n ∈
Ni0 and the point i0, or equivalently a nonzero Green’s function

i

j

k

M

FIG. 1. A schematic representation of the inverse matrix of a
nonsingular discrete Hamiltonian H , which designates the inverted
graph H−1. The graph vertices are the points 1, . . . ,N from the
set M. A graph line (i, k) indicates (H−1)ik = −Gik (0) �= 0, while
its absence indicates the existence of the DQI process (H−1)i j =
−Gi j (0) = 0.

matrix element:

Ni0 = {n ∈ M|Gni0 (0) �= 0}. (4)

All the sites that do not belong to Ni0 form the non-neighbor
set N⊥

i0 = M \ Ni0 . No lines can be drawn between the points
in N⊥

i0 and i0. Correspondingly, this situation is associated with
a zero in the Green’s function matrix element,

N⊥
i0 = {n ∈ M|Gni0 (0) = 0}. (5)

In Fig. 2 the neighbor set of a given point i0, Ni0 , is marked
with black circles, connected with the point i0 by graph edges.
The non-neighbor set, N⊥

i0 , is represented by red circles that
have no edge connection with the point i0.

A. The invariance of the conductance zeros

To study the invariance of the conductance zeros, we con-
sider a general transformation defined by

H̃ = H +
∑

n,m∈Minv

wnm|n〉〈m|. (6)

Minv is a subset of the lattice points M perturbed by the pres-
ence of hopping or on-site new energies, wnm. The modified
Hamiltonian H̃ can be used to describe heteroatom substi-
tutions [8,15,21–23], the application of an external voltage
[11], the attachment of new external leads [12], or to simu-
late Büttiker probes [13]. The new energy additions induce
structural changes of the molecule, one relevant example

i0
N

i0
N

T

i0

M

FIG. 2. The two neighborhood sets of an arbitrary point i0 ∈ M.
Ni0 is the neighbor set containing the adjacent points of i0 and is
represented by black circles. N⊥

i0
is the non-neighbor set containing

the remaining points of M, drawn with red circles.
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FIG. 3. The two invariance sets, M (i)
inv in panel (a) and M ( j)

inv in
panel (b), corresponding to a DQI process Gi j = 0 are drawn with
red circles. Perturbations applied to any of these sets invariably keep
the conductance zero.

being the generation of the bicyclic compounds from the
original annulene [7].

The transformation in Eq. (6) leaves invariant a given con-
ductance zero between any two points if the newly obtained
Green’s function defined for H̃ for the same points remains
zero. This implies that if Eqs. (2) and (3) occur, after perform-
ing the above transformation (6) we obtain

G̃i j (E ) = 0. (7)

In this case the set Minv is called the invariance set of Gi j (E ).
A proof of this statement starts by showing that the Green’s

function zero is unchanged under the application of the
perturbation H̃ in Eq. (6) when Minv is identical with the
non-neighbor set of i point N⊥

i . The Dyson equation written
for G̃, G̃ = G + GW G̃, generates

G̃i j = Gi j +
∑

n,m∈N⊥
i

GinwnmG̃m j . (8)

Here, the matrix of the perturbation Hamiltonian W may
have nonzero matrix elements wnm only for points m, n ∈ N⊥

i .
Thus, for n ∈ N⊥

i , Gni = Gin = 0 from definition (5). Intro-
ducing this in Eq. (8) and using Eq. (2) one obtains the
cancellation G̃i j = 0 required in Eq. (7).

Similarly, if we introduce N⊥
j , associated with the point j,

that leaves the Gi j zero unaffected.
The invariance of the Green’s function zero is transferred

to the related conductance cancellation via the Landauer-
Büttiker ansatz [27]. We conclude, therefore, that a certain
conductance zero, Gi j = 0, persists under a perturbation H̃
that involves lattice sites in either of the two sets,

M (i)
inv = N⊥

i or (9)

M ( j)
inv = N⊥

j . (10)

From definitions in Eqs. (4) and (5) the two invariance sets
contain all the vertexes outside the neighbor sets, M (i)

inv = M −
Ni and M ( j)

inv = M − Nj . In Figs. 3(a) and 3(b) they are drawn
with the red circles.

In general, the neighbor sets Ni and Nj , and consequently
the invariance sets M (i)

inv and M ( j)
inv , can be disjoint, partially

disjoint, equal to each other, or one a subset of the other, as
in the generic example of Fig. 3.

The transformations determined by Eq. (6) with Minv in
Eqs. (9) and (10) can be used to identify the invariance proper-

j

i

 invM    inv+M

 senM

M (i) (j)

FIG. 4. The sensitiviy set Msen of the conductance Gi j = 0.

ties of a given conductance zero as we shown in the examples
in Sec. III. If applied to bipartite lattices they recover the
invariance properties previously obtained in Refs. [22,26].

B. Sensitivity

In this section we show that any single-site perturbation ap-
plied outside the invariance sets previously identified, Eqs. (9)
and (10), removes the conductance zero. We define the sensi-
tivity set as

Msen = M − M (i)
inv − M ( j)

inv , (11)

and we show that an additional Hamiltonian perturbation,

H̃ ′ = H + wn|n〉〈n|, with n ∈ Msen, (12)

will induce a nonzero conductance:

Gi j �= 0. (13)

With input from Eqs. (9) and (10) in Eq. (11), the sensitiv-
ity set is thus

Msen = Ni ∩ Nj, (14)

and it contains all the points n for which both Gni and Gn j are
nonzero, represented in green in Fig. 4.

Previously Ref. [22] established that, in the weak-coupling
limit, the addition of an on-site perturbation wn with simul-
taneous nonzero matrix elements Gni and Gn j affects the Gi j

matrix element leading to nonzero transport. Here we general-
ize this result to any coupling constants by writing the Dyson
equations for

G̃′
i j = Gi j + GinwnG̃′

n j

and

G̃′
n j = Gn j + GnnwnG̃′

n j .

As Gi j = 0 from our initial choice in Eq. (2), one obtains

G̃′
i j = Gin

wn

1 − wnGnn
Gn j . (15)

As stated above, the Green’s function Gin �= 0 because n ∈ Ni

[see Eqs. (4), (12), and (14)], and Gn j �= 0 because n is also
in Nj . So in Eq. (15) one has G̃′

i j �= 0 as long as wn �= 0. By
using the effective Hamiltonian formalism [27,35] this leads
to a nonzero conductance in Eq. (13) for every coupling of the
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FIG. 5. The fulvene molecule: the direct graph in panel (a) and
the inverted graph in panel (b).

transport leads. This result is independent of the value of wn,
which can be real for a heteroatom substitution [22,24] or can
be complex when a third lead is attached [12].

III. EXAMPLES

In this section we apply the conclusions previously estab-
lished to two different molecular systems, one non-bipartite,
fulvene, and one bipartite, benzene.

A. Fulvene

The fulvene lattice, pictured in Fig. 5(a), is described by
Eq. (1) with the set of points M = {1, . . . , 6}. The hopping
energies hn,m are nonzero only for the edges of the H graph
[solid lines in the Fig. 5(a)] and they all are equal to the energy
unit. The inverse matrix of H is numerically calculated and its
graph representation is shown in Fig. 5(b) where the edges
(n, m) correspond to nonzero matrix elements (H−1)nm.

Previously it was found that G45 represents a conductance
zero of fulvene [27]. Here we investigate its robustness prop-
erties. In Fig. 5(b) there is no graph edge between the points 4
and 5, so indeed one has G45 = 0. From the graph inspection,
the neighbor sets of the contact points 4 and 5 are

N4 = {1, 3} and (16)

N5 = {1, 6}, (17)

and the non-neighbor sets are

N⊥
4 = {2, 4, 5, 6} and (18)

N⊥
5 = {2, 3, 4, 5}. (19)

According to Eqs. (9) and (10) the conductance G45 has
two invariance sets given by the non-neighbor sets N⊥

4 and
N⊥

5 . From Eqs. (18) and (19) one obtains that

G45 = 0 has

{
M (4)

inv = {2, 4, 5, 6} and

M (5)
inv = {2, 3, 4, 5}. (20)

It means that any multisite perturbation, including on-site
energies, hopping energies, or new external leads, concerning
the states indexed by the set M (4)

inv (or M (5)
inv ), invariably keep

the G45 zero.
From Eq. (14) the conductance G45 = 0 has the sensitivity

set N4 ∩ N5. By using Eqs. (16) and (17) one obtains that

G45 = 0 has Msen = {1}. (21)

H

4

6   

(a)

5

3 51

6   2 

2 

3

1

4

−1(b) H

FIG. 6. The benzene molecule: the direct graph in panel (a) and
the inverted graph in panel (b).

It means that the conductance G45 becomes nonzero for
w1 �= 0.

In Ref. [27] the invariance sets of the fulvene conductance
zeros were studied using the interference points method. In
the inverted graph approach the two invariance sets contain-
ing the maximum number of possible sites are immediately
obtained and they are uniquely defined. When applicable, the
method described in Ref. [27] can lead, in principle, to the
determination of any number of invariance sets. In this paper,
however, we show that they can be reduced to a maximum of
2. Moreover the invariance sets thus calculated are not limited
to the quasi-tripartite systems discussed in Ref. [27], since
they have been shown to be a general property of any DQI
process.

B. Benzene

The inverted graph method can be easily applied to a bipar-
tite molecule, such as meta-contacted benzene, the standard
example in this field [2,3,5,10,12,38–40].

Benzene has a hexagonal molecule described by

H =
∑

n,n+1

hn,n+1|n〉〈n + 1| + H.c., (22)

with n = 1, . . . , 6 and |6 + 1〉 = |1〉. The set of all points of
the benzene lattice is M = {1, . . . , 6}, with bipartite subsets
A = {1, 3, 5} and B = {2, 4, 6}. The direct graph is pictured
in Fig. 6(a). The inverted graph is designed using the values
of the H−1 matrix elements calculated in Ref. [41] for general
cyclic chains. In Fig. 6(b) the benzene has a full bipartite
inverted graph as GAA and GBB Green’s functions are zero,
while all GAB Green’s functions are nonzero.

As an example we analyze the robustness properties of G13,
a GAA type conductance. From the inverted graph the neighbor
sets of the contact points 1 and 3 are equal to each other:

N1 = N3 = {2, 4, 6}. (23)

The non-neighbor sets are

N⊥
1 = N⊥

3 = {1, 3, 5}. (24)

Introducing Eq. (24) in Eqs. (9) and (10) one obtains that
the two invariance sets M (1)

inv and M (3)
inv are equal to each other,

and therefore, the meta-contacted conductance

G13 = 0 has Minv = {1, 3, 5}. (25)

Consequently, any combination of on-site and hopping ener-
gies w1, w3, w5, w13, w31, w15, w51, w35, and w53 maintains
the zero values of transport.

What remains outside the invariance set in Eq. (25) is the
set of points whose perturbation destroys the given G13 zero.
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FIG. 7. The inverted graph at E = √
2 for the benzene molecule.

The sensitivity set is derived from Eqs. (14) and (23). One
obtains that

G13 = 0 has Msen = {2, 4, 6}, (26)

which contains the B points of the lattice. The G13 becomes
nonzero for w2 �= 0, w4 �= 0, or w6 �= 0. This perturbations
may include external leads attached at the B lattice points
as was proposed for the quantum interference transistor in
Ref. [12], new added atoms as in Refs. [42,43], or atomically
precise gating as done in Ref. [44].

The results obtained for benzene are applicable to any
4K + 2 circular molecule. Based on the E = 0 Green’s func-
tions calculated in Ref. [41] they have a fully bipartite inverted
graph as in Fig. 6(b).

IV. THE E �= 0 CASE

The algorithm presented here is valid for all instances when
the Green’s function and the conductance cancel, even if the
cancellation does not happen at E = 0. The difference is that
in this case the inverted graph is the lattice representation of
(E − H )−1. One such example is the DQI process for the
ortho configuration in a benzene molecule at E = ±√

2 [6],
when one has

G12(
√

2) = 0. (27)

To determine the robustness properties of this zero, we calcu-
late the inverse matrix (

√
2 − H )−1 with H from Eq. (22).

The presence of a line (i, j) in the graph of Fig. 7 means
that Gi j (

√
2) �= 0 and the absence means the opposite, that

Gi j (
√

2) = 0.
From Fig. 7 one determines the neighbor sets of 1 and 2:

N1 = {1, 3, 4, 5} and (28)

N2 = {2, 4, 5, 6}. (29)

By using the formula of the two invariance sets from
Eqs. (9) and (10) and calculating the non-neighbor sets as
M − N1 and M − N2, one obtains that

G12(
√

2) = 0 has

{
M (1)

inv = {2, 6} and

M (2)
inv = {1, 3}.

(30)

It means, for instance, that any multisite perturbations of the
sites 2 and 6 (or sites 1 and 3) preserve the conductance zero
from Eq. (27).

Introducing Eqs. (28) and (29) in Eq. (14) one obtains that

G12(
√

2) = 0 has Msen = {4, 5}. (31)

This result indicates that if one wants to lift up the ortho-
contacted conductance from Eq. (27) a single site perturbation
w4 �= 0 or w5 �= 0 can be used.

V. CONCLUSIONS

In this paper we discuss the general robustness features of
the conductance cancellations in quantum systems described
by a discrete nonsingular Hamiltonian H . A graphic method
which permits the direct visualization of the nonzero conduc-
tance paths between two lattice points is introduced to analyze
the effect of additional perturbation of a given conductance
zero.

It is found that any Gi j = 0 conductance cancellation is
invariant under external perturbations, be those on-site or hop-
ping energies, applied to lattice points that belong to the two
invariance sets called M (i)

inv or M ( j)
inv . By using the topological

features of the inverted graph, these are found to be the non-
neighbor sets of the lead contact points i and j, respectively.
Moreover, we showed that any single-site perturbation acting
on a site outside the reunion of the invariance sets leads to a
nonzero output of transport.

Beyond the theoretical interest, knowing the way to
fully control the conductance cancellations in molecules and
physical lattices, as shown in this paper, helps in further
developments of the reliable devices based on the quantum
interference phenomena.
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