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Unified approach to cyclotron and plasmon resonances in a periodic
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We present theoretical calculations for the cyclotron resonance and various magnetoplasmon modes of a
Coulomb interacting two-dimensional GaAs electron gas (2DEG) modulated as a lateral superlattice of quantum
dots subjected to an external perpendicular constant magnetic field. We use a real-time excitation approach based
on the Liouville–von Neumann equation for the density operator, that can go beyond linear response delivering
information of all longitudinal and transverse collective modes of interest to the same order. We perform an
extensive analysis of the coexisting collective modes due to the lateral confinement and the magnetic field for a
different number of electrons in each dot. In the limit of vanishing dot modulation of the 2DEG we find signs of
the structure of the Hofstadter butterfly in the excitation spectra.
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I. INTRODUCTION

Besides their technological importance, two-dimensional
electron systems in semiconductor heterostructures or quan-
tum wells have served as important test beds for advancing
the understanding of quantum many-body methods and ap-
proaches in condensed matter theory [1]. Fundamental to
this is the ability to change their electron density or modu-
late it spatially into arrays of quasi-one- or zero-dimensional
electron systems. The spatial and dynamical reduction of
dimensions by external electric and magnetic fields or mi-
crostructuring of the semiconductors modifies strongly the
effective interactions of the electrons in the systems and thus
their electronic, optical, and transport properties.

The Kohn’s theorem, published in 1961, states that the
energy of the cyclotron resonance of electrons in a uni-
form external magnetic field is independent of their mutual
interactions if the system is placed in a homogeneous rotat-
ing microwave field [2]. In the early 1990s this result was
extended to explain the two absorption lines appearing in FIR-
infrared spectroscopy of parabolically confined quantum dots,
and the one line observed in quantum wires, in a homogeneous
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external magnetic field [3–6]. It was shown that in the dot
system the two lines are due to the rigid oscillations of the
center of mass of the electron system with the rotation caused
by the magnetic field, or against it. The absorption frequencies
are thus independent of the number of electrons. In the wire
system there is only a linear oscillation of the center of mass in
the effective confining potential renormalized by the magnetic
field.

Subsequently, many research groups studied the effects
of deviations from the parabolic confinement or the circular
shape in individual dots [7–11] and wires [12,13], or in arrays
of them [14–19], just to mention a few groups that modeled or
measured the FIR absorption of these systems.

The 2DEG in a perpendicular homogeneous magnetic field
and a periodic lateral superlattice is known for its frac-
tal energy spectrum, the Hofstadter butterfly [20–23]. The
screening of this spectrum has been investigated at the Hartree
level [24], and its presence in the FIR-infrared absorption of
the system has been investigated with this screening included
in the model [25,26].

The FIR absorption of confined or periodically modulated
electron systems has mostly been modeled with the density-
density response function of linear response [27], but in order
to capture the cyclotron resonance or more general transverse
collective modes one needs to resort to the current-current
response function. The cyclotron resonance has been explored
for magnetopolarons in parabolic quantum dots, where Kohn’s
theorem is broken by the interactions with the phonon modes
of the lattice [28], or by interactions with fluctuations and
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impurities [29,30], or in magnetically confined quantum dots
[31].

Comparison of experimental results and models of the
cyclotron resonance have shown the importance of including
many-body effects in the models [32,33]. Measurements of
the cyclotron resonance in high mobility 2DEGs are known
for bringing into question the properties of this fundamen-
tal excitation mode, especially when interacting with other
modes [34], or in more complex experimental setups, with
reflection spectroscopy in a terahertz band [35], or in com-
bination with transport measurements in low density and
mobility samples under millimeter-wave irradiation [36].

A multitude of different approaches have been used to
explore the time evolution of electron systems subjected to
short or periodic external excitations, but what makes the
linear response or the real-time excitation, described through
the Liouville–von Neumann (LvN) equation, appealing is that
in both approaches it is acknowledged that the the external
perturbation drives the electron system out of equilibrium.

Here we want to present a unified approach that can con-
currently describe the excitation of the longitudinal collective
modes, the plasmons, and the transverse modes, the cyclotron
resonances and transverse plasmons, in periodically laterally
modulated 2DEG in a homogeneous external magnetic field.
We will use the LvN equation for a Hartree interacting 2DEG
with a dot modulation, i.e., in a periodic square array of quan-
tum dots, to investigate the time evolution of the system after
it is excited with a short terahertz pulse with linear or circular
polarization. The mathematical stability of this approach has
been studied by Arnold et al. [37], and it has been used to
investigate various excitation spectra of confined systems in
magnetic field for excitation strength beyond linear response
[38,39].

The external magnetic field and the confinement potentials
mix up the longitudinal and the transverse collective modes
and we will also explore their evolution as the modulation
vanishes, when the system changes from an array of quantum
dots to a periodic 2DEG with vanishing modulation.

We will compare the results for the density oscillations
to corresponding results obtained via the conventional linear
response. Our “real-time” approach could furthermore be used
to access nonlinear response of the system, and as the ex-
citation is with a short temporal pulse it allows us to model
terahertz pump-and-probe approaches.

In Sec. II we present the model for the static system, and
show how the time evolution of it is found after the excita-
tion with an electrical pulse. In the Sec. III we present the
results of the calculations and make a comparison with earlier
approaches. In Sec. IV we draw our conclusions.

II. MODEL

A. Time-independent properties

We explore the dynamics of electrons in a square super-
lattice of quantum dots, shown in Fig. 1, described by the
potential

Vper (r) = V0

[
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FIG. 1. The periodic potential Vper (r) [Eq. (1)] describing a
square lattice of quantum dots with lattice length L = 100 nm.

with V0 = −16.0 meV. The lattice is spanned by the lattice
vectors R = nl1 + ml2, with n, m ∈ Z, and the unit vectors
are defined as l1 = Lex and l2 = Ley. The inverse lattice is
spanned by G = G1g1 + G2g2 with G1, G2 ∈ Z, and the unit
vectors are

g1 = 2πex

L
and g2 = 2πey

L
, (2)

with L = 100 nm.
The Hamiltonian of the Hartree-interacting electrons in the

periodic potential (1) and an external homogeneous perpen-
dicular magnetic field is

H = H0 + VH + Vper, (3)

where H0 is

H0 = 1

2m∗ π2, with π =
(

p + e

c
A

)
. (4)

We use a symmetric gauge for the vector potential, A =
(B/2)(−y, x) [25,40,41] in order to make analytical calcula-
tions for the time-dependent excitation of the system more
transparent analytically as the cartesian x and y coordinates
appear in a similar fashion in the natural eigenfunction basis
introduced below. The Hartree Coulomb interaction is

VH(r) = e2

κ

∫
R2

dr′ �n(r′)
|r − r′| , (5)

with �n(r) = n(r) − nb, where +enb is the average back-
ground charge density residing in the plane of the 2DEG and
is needed to keep the total system charge neutral (the average
charge density of the ions in the crystal lattice). For GaAs we
assume κ = 12.4, and the effective mass m∗ = 0.067me. The
mean number of electrons in each dot is noted by Ne.

The external homogeneous magnetic field B = Bez im-
poses a length scale on the 2DEG in the x-y plane, the
magnetic length l = {h̄c/(eB)}1/2. At the same time the 2DEG
is also under the influence of the lattice length L of the square
superlattice. The translation operator T (R) = exp(−iR · p/h̄)
does not commute with H0, [T (R), H0] �= 0, but the magnetic
translation operator S(R) = exp{ie/(h̄c)χ}T (R) with χ ob-
tained from T −1AT = A + ∇χ fulfills

S−1(R)πS(R) = π,

S−1(R)rS(R) = r + R, (6)
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and thus [S(R), H0] = 0 and [S(R), H] = 0. Nevertheless,
generally [S(R1), S(R2)] �= 0, unless, an integer number of
flux quanta �0 = hc/e flows through the lattice unit cell. This
reflects the incommensurability of the two length scales, l and
L. We follow Ferrari [40] and Silberbauer [41] introducing a
sublattice c = l1/p and d = l2/q with p, q ∈ N, where only
one flux quantum �0 flows through the primitive unit cell of
the sublattice, to construct the eigenfunctions of H0,

φμν
nl

(r) = 1√
pq

∞∑
n,m=−∞

[S(c)e−iμ]m[S(d )e−iν]nφnl (r), (7)

where

φnl (r) = 1√
2π l2nl !

(
x + iy√

2l

)nl

exp

(
− r2

4l2

)
, (8)

with the Landau level number nl = 0, 1, 2, . . . and μ = (θ1 +
2πn1)/p, ν = (θ2 + 2πn2)/q, where n1 ∈ I1 = {0, . . . , p −
1}, n2 ∈ I2 = {0, . . . , q − 1}, and θi ∈ [−π, π ]. The eigen-
functions of H0 (7) form a complete orthonormal Hilbert
space Hθ1θ2 , if (μ, ν) �= (π, π ) for all (n1, n2) ∈ I1 × I2. The
eigenfunctions (7) have to be normalized on a primitive unit
cell of the direct lattice with

∣∣∣∣φμν
nl

(r)
∣∣∣∣2 =

∞∑
n,m=−∞

(−1)mnei(μm+νn)

× exp

(
− 1

4l2
|md + nc|2

)
. (9)

The states of the Hamiltonian H [Eq. (3)] are determined
self-consistently within the Hilbert space of the orthonor-
mal eigenfunctions of H0 [Eq. (4)] with the condition that
they remain orthogonal throughout the iterations in accor-
dance with the usual methodology applied in the Hartree
approximation.

The primitive unit cell in the direct lattice will be noted
by A. Its area will also be noted by A = L2 for the square
lattice and the number of magnetic flux units through it is
pq = BA/�0.

B. Real-time excitation

For the time-independent mean-field description of elec-
trons in a two-dimensional doubly periodic problem we
used a basis of states |α〉 = |μ, ν, nl〉 living in each point
(θ1, θ2) of the magnetic Brillouin zone (MBZ). Due to
the properties of the electron-electron Coulomb interaction
the same could be stated for the interacting mean-field
states |α). Note here that 〈r|α〉 = φμν

nl
(r). An external time-

dependent electric field pulse with circular polarization, or its
potential

V ext (r, t ) =Vt{(
t )2e−
t }[cos (kyy) cos (�t )

+ cr cos (kxx) sin (�t )], (10)

with cr = ±1 breaks this symmetry and mixes up states at dif-
ferent points, (θ1, θ2) in the MBZ, as the wave vectors kx and
ky are generally neither commensurate with L nor l . We need
a larger Hilbert space with states |αθ) with θ = (θ1, θ2), and
as the periodic 2DEG is infinite in extent, we have a Hilbert

space of continuous states grouped into discrete energy bands,
a rigged Hilbert space [42].

As the eigenfunctions of H0 [Eq. (4)] φμν
nl

and H [Eq. (3)]
ψα both live at a definite point in the MBZ, we can express
their translation as

ψ∗
αθ (x + R)ψβθ′ (x + R) = {ein(θ1−θ ′

1 )+im(θ2−θ ′
2 )}ψ∗

αθ (x)ψβθ′ (x),

(11)

where we add a reference to the θ = (θ1, θ2) point of the
MBZ. The Hartree-interaction (5) does not break this sym-
metry as it is only a functional of the periodic electron
density. We will now consider the wave function ψαθ (r) =
〈r|αθ) and define the inner product of two Hartree-interacting
states in the periodic potential and the extended Hilbert space
as

(αθ|βθ′) =
∫

R2
dr ψ∗

αθ (r)ψβθ′ (r)

= (2π )2

A δG(θ − θ′)
∫
A

dx ψ∗
αθ (x)ψβθ′ (x), (12)

where the integral over the entire R2 has been folded back into
the primitive unit cell of the lattice, and δG(θ − θ′) is the Dirac
δ function periodic with respect to the inverse lattice. Here we
use the notation that r ∈ R2, but x ∈ A.

The coupling of states between different points in the MBZ
also emerges when linear response formalism is used to cal-
culate the response of the system to an external excitation
with a finite wave vector [24,43,44], but the straightforward
structure of the response function needed can be expressed
without a construction of a larger Hilbert space. Here we want
to be able to go beyond a linear response formalism [27] by
using, without an approximation, the Liouville–von Neumann
equation (LvNE)

ih̄∂tρ(t ) = [H[ρ(t )], ρ(t )]. (13)

It is thus convenient to express the density operator ρ as a
matrix in a larger Hilbert space. The LvNE [Eq. (13)] has been
used to investigate strong excitation of individual quantum
dots in comparison to other methods [38].

The local electron density is evaluated via the density op-
erator through

n(r, t ) = Tr{δ(r̂ − r)ρ(t )}

= 1

(2π )4

∫ π

−π

dθdθ′ ∑
αβ

ψ∗
αθ (r)ψβθ′ (r)ρβθ′,αθ (t ), (14)

where the off-diagonal elements in the density operator play
an essential role as their contribution to the density conveys
the symmetry breaking effects of the external potential (10)
on the 2DEG. The length scale imposed by the external exci-
tation potential (10) breaks the symmetry imposed by the two
commensurate scales, the magnetic length l , and the lattice
length L of the square lattice.

The Hamiltonian in the LvNE (13) is the time-independent
Hamiltonian (3) with a time-dependent term added:

H (t ) = H0 + HH + Vper + HI(t ), (15)

where HI(t ) stands both for the time-dependent external po-
tential (10) and the residual Coulomb potential, the addition

155302-3



VIDAR GUDMUNDSSON et al. PHYSICAL REVIEW B 105, 155302 (2022)

to the Hartree potential stemming from the self-consistent
changes to the electron density inflicted by the time-dependent
external excitation. This dynamical correction to the Hartree
potential is now time dependent due to it being a functional
of the time-dependent density operator ρ(t ), see Appendix A.
The LvNE is then

ih̄∂tραθ,βθ′ (t ) = {Eαθ − Eβθ′ }ραθ,βθ′ (t ) + 1

(2π )2

×
∑

γ

∫ π

−π

dθ′′{(αθ|HI [ρ]|γθ′′)ργθ′′,βθ′ (t )

− ραθ,γθ′′ (t )(γθ′′|HI [ρ]|βθ′)}. (16)

To evaluate the matrix elements in the last terms of the LvNE
(13) we need the translation properties of the wave functions
(11) and the residual Hartree interaction

δVH (r, t ) = e2

κ

∫
R2

dr′ δn(r′, t )

|r − r′| , (17)

with

δn(r, t ) = �n(r, t ) − �n(r, 0)

= n(r, t ) − n(r, 0), (18)

but here we cannot assume δn(r, t ) to have the same period-
icity as the lattice, like was possible for the time-independent
static system.

The translation properties of the wave functions allow the
integral over R2 to be folded back to an integral over the unit
cell A and the matrix elements for the Hartree term become

(μθ|VH (t )|νθ′) = 1

A
∑

G

VH (G + θ̃ − θ̃
′
, t )

×
∫
A

dx ei(G+θ̃−θ̃
′
)·xψ∗

μθ (x)ψνθ′ (x), (19)

where θ̃ = (θ1/l1, θ2/l2), k̃ = (k1l1, k2l2), and

VH (G + k, t ) = 2πe2

κ|G + k|
× 1

(2π )2A
∑
αβ

∫ π

−π

dθ

∫
A

dx e−i(G+k)·x

× ψ∗
αθ (x)ψβθ+k̃(x)�ρβθ+k̃,αθ (t ). (20)

In Eq. (20) a general wave vector q = G + k has been written
in terms of a vector in the reciprocal lattice G, and a residual
k wave vector residing inside the first MBZ (see Appendix A
about the numerical implementation).

The matrix elements of the external potential (10) are
calculated with an integral over the entire R2 with the same
backfolding into the unit cell as was employed in Eq. (19) for
the matrix elements of the Coulomb potential (17). To analyze
the effects of the excitation on the periodic 2DEG we calcu-
late the time-dependent induced electron density δn(r, t ) =
n(r, t ) − n(r, 0) and the averages 〈Ô〉 = Tr{Ôρ(t )} for the
dipole operators Ô = x̂ and Ô = ŷ, the quadrupole operator
Ô = ŷx − 〈ŷ〉〈x̂〉, and the monopole operator Ô = x̂2 + ŷ2 −
〈x̂〉2 − 〈ŷ〉2, where the matrix elements of Ô are evaluated with
a spatial integral over just one unit cell. Defined in this way the

last two operators are the relative quadrupole and monopole
operators for the case of Ne = 1 in an individual isolated
quantum dot [45]. The average for the quadrupole operator
we indicate with Q2 and use Q0 for the monopole operator.
All the aforementioned averages can be used to explore and
quantify collective modes with density variations, in order
to detect rotational collective modes (transverse modes) we
need to gauge modes, where the current density j = −eṙ =
−(ie/h̄)[H (t ), r] plays a role [38]. This will be accomplished
by calculating the dimensionless quantity

Q j = 1

l2ωc
〈i(r × ṙ) · ẑ〉, (21)

which is directly proportional to the orbital part of the
magnetization measured in one cell, or the orbital angular
momentum in the cell.

III. RESULTS

For the real-time excitation with a linear polarization we
use the external potential

V ext (r, t ) = Vte
−
t cos (kixi ) sin (�t ), (22)

where kixi = kxx or kyy depending on whether the polarization
is along the x or the y direction in the plane of the 2DEG.
Originally (22) was chosen for the excitation with linear po-
larization, and modified and extended to circular polarization
as (10) in order to have the excitation always starting from 0
at t = 0.

To understand the nature of the confining dot potential, we
can consider a polar coordinate system with origin at the min-
imum of the periodic potential (1) in one cell. An expansion
to the fourth order around the minimum gives

Vper (x, y) ≈ V0

[(
π2

L2

)
r2−

(
π4

12L4

)
r4

{
1+ 3 sin2(2θ )

2

}
−1

]
,

(23)

if r << L. The parabolic part of the expansion (23) would
lead to a confinement energy h̄ω0 ≈ 6.0 meV. As expected the
fourth order term describes a weakening of the confinement
potential, and a square symmetric deviation from the circular
shape at low energy. As the energy is increased the shape of
the square lattice takes over.

If the magnetic field is increased (the number of flux quanta
through the unit cell pq) the magnetic length l becomes
smaller compared to the lattice length L and an electron in
the lowest state becomes better localized in the dot potential
(1). The magnetic length l is then a convenient parameter to
compare to the potential in Fig. 2 in order to determine the
degree of deviation from parabolic confinement felt by an
electron.

A. Comparison to linear response

To compare to the results of the real-time excitation of the
system we use the linear response model developed earlier
for the absorption P(ω) [24] using nl = 10 as the number of
Landau levels and a 32 × 32 grid of unevenly spaced (θ1, θ2)
points for the unit cell in the reciprocal lattice for a repeated
four-point Gaussian quadrature. In order to smear out the
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FIG. 2. The confinement potential defining the dot in each unit
cell as seen along the x axis close to their center. Compared are the
exact potential (orange), the second order expansion from Eq. (23)
(violet), and the fourth order (green) along θ = 0 + nπ , and the forth
order along θ = π/4 + nπ (blue), with n = 0, 1, 2, 3 . . . . The differ-
ence between the max (θ = 0 + nπ ) and the min (θ = π/4 + nπ )
fourth order expansions gives an indication of the deviation from
circular symmetry imposed by the square lattice.

effects of the singularities in the response functions, we use
a constant broadening h̄η = 0.2h̄ωc. The large broadening is
necessary as the lowest states in the dots are well localized
forming very narrow energy bands in the lattice. For the real-
time excitation we employ an 8 × 8 equally spaced grid in
the reciprocal unit cell in combination with a repeated Booles
quadrature and no level broadening. Furthermore, we use nl =
10 for the static part of the calculation, but limit the number of
Landau bands used in the calculation of the time evolution to
nHt = 8. Here we are not aiming at exploring the response of
the system far beyond the linear response regime, and we have
tested the convergence of the results for the strength selected
for the excitation.

In Fig. 3 we compare P(ω) for dipole excitations in the
linear response model with the Fourier power spectrum for
the mean values 〈x〉 and 〈y〉 for the real-time excitation for
three values of the magnetic flux pq through the unit cell. In
all the calculations we use linear polarization of the excitation
with a very low impulse kxL or kyL in order to explore the
Kohn modes for one electron in each quantum dot in the array
[2,4,8,46]. No significance should be given to the change in
relative height of the main peaks in the real-time excitation
as that simply depends on the frequency distribution offered
to the system by the shape of the excitation pulse used. Here
we have taken care of not including too high frequency in the
pulse. In the real-time excitation no broadening is assumed,
but the length of the time series gives the peaks in the Fourier
power spectrum an apparent width. With few exceptions we
have calculated the time series with 10 200 steps of length
0.02 ps each.

The magnetic length l ≈ 19.9 nm for pq = 4, 28.2 nm for
pq = 2, and 39.9 nm for pq = 1, and consequently, though
not shown here, the overlap of the electron density is very
small for Ne = 1 at pq = 4, but considerable for pq = 1, and
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FIG. 3. Comparison of the Fourier power spectra for 〈x〉 and 〈y〉
for linearly polarized excitation of a rectangular array of quantum
dots with the linear response absorption P(ω) for the same system
for pq = 4 (top), pq = 2 (center), and pq = 1 (bottom). In the lin-
ear response calculation the broadening in the response function
is h̄η = 0.2h̄ωc and kxL = kyL = 0.01. In the real-time excitation
kxL = 0.0001, kyL = 0, and Vt = 0.01 meV for pq = 4 and pq = 1,
but Vt = 0.1 meV for pq = 2. Ne = 1, V0 = −16 meV, L = 100 nm,
T = 1.0 K, h̄
 = 4.0 meV, and h̄� = 4.5 meV.

not large, but not negligible for pq = 2. Accordingly, we see
in Fig. 3 for pq = 4 (upper panel) rather clean two Kohn
peaks. For pq = 2 (center panel) we see two Kohn peaks, but
the lower one shows a small splitting caused by a slight influ-
ence of the square symmetry of the lattice at this magnetic flux
[11]. At still lower flux pq = 1 (bottom panel) the splitting of
the lower peak is clearly visible.

Not shown here, but a graph of 〈y〉 versus 〈x〉 shows an
extremely simple pattern for the center of mass (CM) motion
known for circular parabolically confined quantum dots for
pq = 4, but with some slight modulation for pq = 3, that is
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FIG. 4. The Fourier power spectra for a rectangular array of quantum dots for pq = 4, cr = +1 (left, top), pq = 3, cr = +1 (right,
top), pq = 4, cr = −1 (left, bottom), and pq = 3, cr = −1 (right, bottom) for Ne = 1, kxL = kyL = 0.785, Vt = 0.001 meV, V0 = −16 meV,
L = 100 nm, T = 1.0 K, h̄
 = 1.5 meV, and h̄� = 4.5 meV.

increased for pq = 2. For pq = 1 the simplicity is lost, but
the pattern is still very regular.

The deviation from parabolic confinement of the dots does
affect their excitation spectra. Roughly estimated, the redshift
caused by the nonparabolicity is 0.5 meV for pq = 4, 1.1 meV
for pq = 2, and 1.8 meV for pq = 1. This nonparabolic red-
shift applies equally to both methods of calculations. There is
a slight deviation between the results of both methods. To the
largest extent, this is a redshift for the linear response results
caused by the large level broadening needed due to the flat
bands produced by the low levels in the dots. A clear exception
to this is the upper Kohn peak for pq = 4 in Fig. 3(a), where
a complex interaction with a classical Bernstein mode around
ω/ωc = 2 takes place [12,47]. In addition, we have to keep
in mind that the linear response calculation includes dipole
and all higher modes like quadrupole modes that are not
shown here for the real-time excitation, and due to the large
broadening in the linear response we cannot resolve a possible
fine structure of the broad peaks.

For collective density modes comprised of dipole active
transitions in arrays of quantum dots in a magnetic field the
real-time excitation method results in higher resolution of
the mode spectrum as no broadening has to be assumed for
the underlying single-electron states of the system. The total
energy is strictly conserved in the real-time excitation after the
pulse has died out, but in linear response nothing can be stated

about the energy conservation since the results are linear in the
excitation potential.

A slightly different approach to real-time excitation of a
single quantum dot with Hartree-Fock interacting electrons
has been compared to results obtained via linear response for
the corresponding system [45,48].

B. Extended mode spectrum for quantum dots

Deviations from circular shape and parabolic confinement
of individual dots in the array and excitation of the system
with pulses that carry a wave vector supplying an impulse
to it makes it important to investigate the mode spectrum
in the relevant energy range. The linear response built on
the density-density response function can supply information
about dipole and quadrupole collective density modes and
in some special situations the monopole or breathing mode
(longitudinal modes), but the external magnetic field can lead
to collective current modes (transverse modes) that need to
be examined through the current-current response function. In
the real-time excitation method all these modes can become
active and their “detection” depends on the expectation values
of which operators are registered through the time evolution
of the system.

This is done in Fig. 4 for an excitation pulse with circular
polarization (10) as it is particularly well suited to excite
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collective current modes in an external magnetic field. In
Fig. 4 the Fourier power spectra for the expectation values
of the monopole operator Q0, the dipole operators 〈x〉 〈y〉,
the quadrupole operator Q2, and the current operator Qj are
displayed. These operators are all introduced in Sec. II, just
before and with Eq. (21). The results are presented for both
directions of the circular polarization cr = ±1. For pq = 4 in
the left panels of Fig. 4 we note the Q1 (〈x〉 and 〈x〉) Kohn
peaks at ω/ωc ≈ 1.18 and 2.18 and in the same location peaks
representing current excitations Qj . Exactly in between the
Kohn peaks is a peak for Qj at ω/ωc ≈ 1.68, below which is
a strong quadrupole peak at ω/ωc ≈ 1.5. Clearly the strength
of the Qj peaks depends on the direction of the circular po-
larization cr . The main Qj peak at ω/ωc ≈ 1.68 is essentially
a manifestation of the cyclotron resonance in a quantum dot
made possible by the breaking of the Kohn theorem by the
confinement potential and the external impulse delivered by
the excitation pulse. The location of the lower quadrupole
peak (the one seen here) is in accordance with the results
shown in Fig. 4 in Ref. [8], and in Fig. 2 in Ref. [49].

Wilson et al. published a simple classical model of the
cyclotron resonances of a parabolically confined electron in a
homogeneous magnetic field, in an article exploring possible
electron phases in an Si inversion layer in a strong magnetic
field [50]. They identify two cyclotron modes, the low energy
anticyclotron mode ω1 made possible by the parabolic con-
finement potential, and the normal cyclotron resonance ω2.
With our parameters here, estimating h̄ω0 ≈ 6.0 meV, this
classical model for the flux pq = 4 gives ω1/ωc ≈ 1.66 and
ω2/ωc ≈ 2.66. The lower mode is very close to the main cy-
clotron mode seen in the left panels of Fig. 4, and for pq = 3
the lower peak is at ω1/ωc ≈ 2.34 compared to ≈ 2 in the
right panels of Fig. 4. The larger deviation for the lower flux,
pq = 3, is expected as then the effective confinement is farther
away from the parabolic case. The higher mode, the usual
cyclotron mode, of the classical model does probably have a
low strength due to the rather high confinement that makes the
classical model inadequate, and we notice instead that both
Kohn peaks have a contribution from the Qj excitation. The
confinement potential and the magnetic field are mixing the
purely longitudinal and transverse collective modes.

The right panels of Fig. 4 show the Fourier power spectra
for pq = 3. Still we can identify the Kohn dipole peaks and the
quadrupole peak that is now located just above the cyclotron
resonance peak at ω/ωc ≈ 2.

Important is to notice that generally the cyclotron, the
quadrupole, and the monopole modes are much stronger ac-
tivated by the circularly polarized excitation pulse than the
dipole modes. This reflects the strong role of the external
magnetic field. With increasing magnetic field, and thus pq,
the excitation with circular polarization is more effective in
exciting rotational modes.

In a usual setup of FIR-absorption experiments the wave
vector or the impulse is very small as the wavelength of the ra-
diation is much larger than the lattice length L = 100 nm, but
in Raman scattering measurements and in modeling thereof
the system is excited with a larger wave vector [51–54], as the
radiation is inelastically scattered of the electron system.

A single electron in an isolated quantum dot would not
be well described by the Hartree approximation, but here is

important to have in mind that one electron in a quantum
dot feels the influence of the electrons in the neighboring
unit cells. With our selected parameters each electron feels
the influence of 25 electrons. Its self-interaction is reduced
by the positive charge background representing the ions in
the crystal. Before going to lower magnetic fields we show
in Fig. 5 how the excitation spectrum changes as the number
of electrons is increased in each dot from 1 to 3 and in the
bottom right panel how the mean total energy changes. The
mean total energy can be compared to the confining potential
in Fig. 2 in order to see how the symmetry of the underlying
square lattice affects the potential as the number of electrons
increases in the dots. Not shown here, but for 1 or 2 electrons
in a dot the overlap of the probability density is very small
between neighboring dots, but for the case of three elec-
trons the density between the dots reaches 10% of its peaks
value.

We note that in the right panels of Fig. 4, and in Fig. 5
for Ne = 2 or 3, there appear frequency regions with very
many low intensity peaks. This reflects the energy band
structure of the quantum dot array and is explained in
Appendix B.

We continue with the Fourier power spectra for quantum
dots with Ne = 1 shown in Fig. 4 for a circularly polarized ex-
citation pulse and observe in Fig. 6 the results for pq = 2 (left
panels) and pq = 1 (right panels). For the lower magnetic flux
(pq = 1) we see two clear Kohn peaks, where the lower one is
clearly split due to the square symmetry of the lattice, and the
cyclotron resonance is below the Kohn peaks. For the higher
magnetic flux (pq = 2) the lower Kohn peak is difficult to
resolve clearly due to a fine splitting caused by the lattice and
both Kohn peaks interact strongly with cyclotron resonance
peaks. Interestingly, the monopole peaks are prominent.

C. The limit to a flat system

The presence of the cyclotron resonance peaks in the exci-
tation spectra for the arrays of quantum dots gives rise the
question: What happens when the strength of the modula-
tion defining the dot array V0 → 0? Important is to have in
mind that even though the modulation is set to vanish the
dynamic of the system is not set totally free as the restric-
tions of periodicity are still imposed on the system in the
model. In order to start with results of some familiarity we
display the results for the lowest magnetic flux pq = 1 for
V0 = 0 in Fig. 7. There are small cyclotron resonance peaks
at ω/ωc = 1, 2, and 3 as expected and for a slightly higher
energy split plasmon peaks follow. This situation reminds
us of the absorption spectra shown in Fig. 1 in Ref. [24]
for linear response. There we see dipole plasmon peaks with
increasing oscillator strengths in higher Landau levels as the
impulse kL increases with Bernstein-type splitting [12,47].
Here we cannot identify Bernstein modes as kxL = 10−4 and
kyL = 10−4 is very low, but due to a higher resolution we
can identify higher order plasmon modes. In addition, here
we see the cyclotron resonances and further plasmon details
as the quadrupole and monopole modes. Even though the
excitation pulse here carries a small impulse the periodicity
of the systems represents a larger possible impulse, and as
the Landau level separation for pq = 1 is small the excitation
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FIG. 5. The Fourier power spectra for a rectangular array of quantum dots for pq = 4 and linearly polarized excitation field for Ne = 1 and
Vt = 0.01 meV with kxL = 0.785 and kyL = 0 (left top), Ne = 2 and Vt = 0.001 meV with kxL = 0.524 and kyL = 0 (right top), Ne = 3 and
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nm, T = 1.0 K, h̄
 = 1.5 meV, and h̄� = 4.5 meV.

pulse may couple better to higher cyclotron resonances. Not
shown here, but there is no essential difference between the
spectra for the two directions of circular polarization for the
low magnetic field at pq = 1.

In Fig. 8 the Fourier power spectra for the higher flux pq =
3 are shown for the range 0.9 � ω/ωc � 1.4 for a periodic
system with vanishing modulation V0 = 0 for a different num-
ber of electrons Ne = 1 (top), 2 (center), 3 (bottom) and both
circular polarizations cr = +1 (left) and −1 (right). For this
vanishing modulation at pq = 3 each Landau level is threefold
degenerate. The spectra in Fig. 8 all show a clear cyclotron
fundamental resonance peak with a maximum at ω/ωc = 1,
and all show a set of threefold plasmon peaks at a higher
energy before they become flat. As expected, the plasmon
peaks move to higher energy as the number of electrons in a
unit cell increases. The structure of spectra is more complex,
just above the first cyclotron resonance at ω/ωc = 1 there
are threefold peaks, and in between the main set of peaks
mentioned here, there are two or three peaks still with high
quadrupole contribution.

Not shown here, but for the higher flux pq = 4 we see
sets of three to four peaks appearing in the excitation spectra.
Possibly, longer time series for the Fourier analysis would
result in clear sets of four peaks.

In Fig. 9 the excitation spectrum for the current excita-
tions Qj corresponding to the upper left panel of Fig. 8 is
repeated for vanishing modulation V0 = 0 together with the
results for V0 = −0.5 and −0.1 meV in order to show the
stability of the spectra as the modulation approaches 0. Es-
pecially, the threefold plasmon peak at the higher energy end
of the spectrum is insensitive to the change in the modulation.
The “flat top” of the cyclotron resonance peak in Fig. 9 is
caused by the limited frequency resolution caused by the
length of, and the time step used, in the time series of the
averages.

Note that we have not restricted further the Hilbert space in
any way for the calculation for the flat system. For the static
part we use 11 Landau levels, each split into pq subbands,
and for the dynamical part we use at least three Landau levels.
We have checked the stability of the results for different sizes
of the Hilbert space. Our conclusion is thus that the periodic
boundary conditions built on the magnetic translations are
a sufficient condition for the appearance of the excitation
peak structure or splitting in accordance with the number of
subbands in the Landau levels as reflected by the Hofstadter
butterfly energy spectrum for a rational number of magnetic
flux quanta through a unit cell. Clearly in a physical system
the periodicity and the modulation cannot be separated, so we
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FIG. 6. The Fourier power spectra for a rectangular array of quantum dots for pq = 2, cr = +1 (left, top), pq = 1, cr = +1 (right, top),
pq = 2, cr = −1 (left, bottom), and pq = 1, cr = −1 (right, bottom) for Ne = 1, kxL = kyL = 0.785 for pq = 2, but kxL = kyL = 0.393 for
pq = 1, Vt = 0.001 meV, V0 = −16 meV, L = 100 nm, T = 1.0 K, h̄
 = 1.5 meV, and h̄� = 4.5 meV.

adopt the view here that our results describe the system in the
limit of vanishing modulation.
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FIG. 7. The Fourier power spectrum for electrons in a rectangu-
lar array of flat unit cells for cr = +1, pq = 1, for Ne = 1, kxL =
kyL = 10−4, Vt = 0.01 meV, V0 = 0 meV, L = 100 nm, T = 0.1 K,
h̄
 = 1.5 meV, and h̄� = 4.5 meV. The spectrum for cr = −1 is
identical.

IV. CONCLUSIONS

We have demonstrated that a real-time excitation of a
modulated 2DEG in a homogeneous perpendicular external
magnetic field can be used to explore a wide range of collec-
tive modes in the system including longitudinal and transverse
modes. This cannot be achieved by the linear response ap-
proach if only density-density correlations are considered,
but current-current response can lead to the emergence of
transverse modes. The external magnetic field with its Lorentz
force makes the transverse modes particularly important in
the system investigated here. Furthermore, the real-time ap-
proach opens the possibility to explore modes beyond the
linear response, i.e., nonlinear response, or calculations for
pump-and-probe schemes, though that was not done here.

In the calculations here we have checked for each case that
the excitation only delivers a tiny amount of energy into the
system. This is done in order to have a comparison to earlier
calculations, when establishing our method, and in order not
to put too large requirement on the Hilbert space needed for
the dynamical part of the calculation. We have explored the
excitation of a strong breathing mode in a single quantum
dot, where different modes do not couple due to the simple
symmetry of the system [39]. The band structure of the square
dot array here has made the calculational effort, analytically
and numerically, much more challenging.
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FIG. 8. The Fourier power spectra for electrons in a rectangular array of flat unit cells for cr = +1, Ne = 1 (left, top), cr = −1 Ne =
1 (right, top), cr = +1, Ne = 2 (left, center), cr = −1 Ne = 2 (right, center), cr = +1, Ne = 3 (left, bottom), and cr = −1 Ne = 3 (right,
bottom) for pq = 3, kxL = kyL = 0.785, Vt = 0.001 meV, V0 = 0 meV, L = 100 nm, T = 1.0 K, h̄
 = 1.5 meV, and h̄� = 4.5 meV.

We are able to attain information about the cyclotron res-
onances in an array of quantum dots concurrently with the
better known dipole, quadrupole, and monopole plasmon col-
lective modes. The lack of this information has been pointed
out by experimental researchers for small electronic systems
with confinement that deviates from the parabolic ideal [29].

With the real-time approach we have been able to see how
the cyclotron resonances evolve into their well known form as
the confinement potential vanishes in the 2DEG. In the flat,
but periodic, system we see peak structures for the plasmons
and the cyclotron resonances that reflect the underlying de-
generacies of the band structure of the Hofstadter butterfly.

We show that this structure of the excitation spectra is rather
stable as the modulation of the 2DEG approaches 0, and can
be seen for different numbers of electrons in the unit cell.
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APPENDIX A: INFORMATION ABOUT
THE NUMERICAL IMPLEMENTATION

In the dynamic Hartree approximation the Hamiltonian for
the system has to be updated in each time step. At a time t > 0
the Hamiltonian is

H (t ) = H0 + Vper + H ext (t ) + VH[�n(0)] + δVH[δn(t )],

(A1)

where Eq. (15) has been elaborated, and δn(t ) = n(t ) − n(0).
Shortly after, the density can be approximated by

δn(t + δt ) = n(t + δt ) − n(0) ≈ δn(t ) + δn(δt ) (A2)

for a very short time step δt with respect to all timescales in
the system. Thus, the Hamiltonian at the later time will be

H (t + δt ) = {H0 + VH[�n(0)] + δVH[δn(t )]}
+ Vper + H ext (t + δt ) + δVH[δn(δt )], (A3)

where the terms in the curly bracket on the right side in the
first line can be considered as the time updated or renormal-
ized Hamiltonian of the original static system. The effect of
the positive homogeneous background charge of the system
nb is to cancel out all terms with q = G + k = 0, just like is
done for the term with G = 0 in the calculation for the static
system.

In order to increase the numerical accuracy for the matrix
elements of the dynamical Hartree interaction in Eqs. (19) and
(20) the Fourier transform is done after the construction of
the variation in the density. This means that we consider the
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integrals

δn(G + k) =
∫

A
dx ei(G+k)·x δn(x, k) (A4)

and

δn(x, k) = 1

(2π )2

∑
αβ

∫ π

−π

dθ ψ∗
αθ (x)ψβθ+k(x)

× �ρβθ+k,αθ. (A5)

In addition, this approach simplifies the monitoring of sym-
metries during the calculations.

Integrations over q = G + k in the reciprocal space are
divided into sums over the inverse lattice vectors G and
numerical integrations over k with a equispaced grids con-
structed from repeated applications of the five point Booles

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1.6  1.8  2  2.2  2.4  2.6  2.8

F
ou

rie
r 

P
ow

er
 S

pe
ct

ru
m

ω/ωc

30〈x〉
30〈y〉
Qj
Q2
(1/2)Q0

FIG. 11. The Fourier power spectra for a rectangular array of
quantum dots for pq = 3, cr = −1 for Ne = 1, kxL = kyL = 0.785,
Vt = 0.001 meV, V0 = −16 meV, L = 100 nm, T = 1.0 K, h̄
 =
1.5 meV, and h̄� = 4.5 meV. The figure represents a zoom-in on the
spectrum shown in the right bottom panel of Fig. 4.
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quadrature. The equispaced grid is essential in order to ac-
count for all transitions fulfilling q = G + k. The discreteness
of the mesh for k and computational costs for a higher
number of points make it difficult to represent the dispersion
of excitation spectra as continuous functions of k.

APPENDIX B: CORRESPONDENCE OF EXCITATIONS TO
THE ENERGY BAND STRUCTURE OF THE DOT ARRAY

In the right panels of Fig. 4, and in Fig. 5 for Ne = 2
or 3, there appear many excitation peaks, especially around
ω/ωc ≈ 2. These peaks reflect structures in the energy spec-
trum of the 2DEG. Here we will show the correspondence for
the case of pq = 3 shown in the right panels of Fig. 4. The
corresponding energy band structure is displayed in Fig. 10.

The excitation spectrum shown in the lower right panel of
Fig. 4 is repeated in Fig. 11 for a narrower range for the fre-
quency. The lowest energy band in Fig. 10 looks flat due to the
effective localization of one electron in each dot, the higher
bands show increasing dispersion that leads to several possible
transitions or bands of transitions forming. The fact that kxL =
kyL = 0.785 further complicates the excitation structure here

as it promotes not only dipole excitations. Actually, the lowest
band has a regular structure not seen on the scale selected for
the figure here. The transitions will have different strengths
due to variations in the local density of states caused by local
extrema of the bands. In addition, the matrix elements depend
on their location in the magnetic Brillouin zone of reciprocal
space θ and the values for kxL and kyL.

A comparison of the spectra in Figs. 10 and 11 shows that
the lowest main peak in the excitation spectrum occurs for
ω/ωc slightly higher than 1.6, but the energy distance between
the two lowest bands in Fig. 10 corresponds to ω/ωc just over
1.0. This difference is the well known depolarization shift for
collective oscillations. The small dispersion visible for the
second energy band in Fig. 10 produces the splitting of this
lowest peak that is caused by effects of the square symmetry
of the dot lattice creeping in. Now it is clear that the complex
structure in Fig. 10 for the third to the sixth bands is bound to
lead to a complex structure of excitations that are not easily
assigned to individual transitions when kxL = kyL = 0.785.

Here we have considered pq = 3 and seen how the disper-
sion of the energy bands increases for the higher bands. This
behavior is more pronounced for lower magnetic flux pq, but
a bit weaker for pq = 4.
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