
PHYSICAL REVIEW B 105, 155202 (2022)

Energy loss rate of an electron in three-dimensional tilting Dirac semimetals
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We have computed the energy loss rate (ELR) of an intruding electron in three-dimensional tilting Dirac
semimetals in the light of the excitation process. In contrast to two-dimensional electron gas, ELRs contributed
by single-particle excitation (ELRs(SP)) show a nondecreasing tendency as the incidence velocity increases, and
tend to replicate the behavior of the untilt intrinsic ELR(SP), which is described by a cubic polynomial coupling
with a logarithm velocity term. In comparison, ELRs contributed by the plasmon excitation (ELRs(P)) first reach a
maximum in the small velocity region followed by a slow discrepancy. As the contribution of plasmon excitation
is restricted by the vanishing imaginary part of the dielectric function, the ELRs(P) also manifest as an opposite
counterpart to the corresponding ELRs(SP) with different tilts. In addition, the threshold velocities in both ELRs
are tilt and chemical potential dependent, and governed by the interplay of the Pauli exclusion constraints and the
conservation law concealed in the energy loss function. Finally, we briefly discuss the inelastic mean scattering
time. Our results may be verified by investigating the femtosecond electron dynamics in the time-resolved two-
photon photoemission.
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I. INTRODUCTION

Topological materials have occupied a special place in
condensed matter physics due to their nontrivial excita-
tion spectra [1–4]. Two typical representative classes are
three-dimensional (3D) Dirac semimetals (DSMs) and Weyl
semimetals, both of which exhibit linear dispersing energy
bands, but are distinct from each other due to their different
degeneracy degrees of freedom at the zero energy points [5].
Fundamentally, the Hamiltonian of a DSM is described by
only three of the Dirac matrices, giving rise to fourfold de-
generacy in nature. However, there is an additional fourfold
Dirac matrix that can lead to a gap opening [6]. When cer-
tain symmetry-breaking perturbations are introduced to break
the inversion symmetry or the time-reversal symmetry, the
fourfold degenerate Dirac nodes decouple into two sets of
twofold degenerate Weyl nodes with opposite chiralities that
have to be created or annihilated in pairs owing to Kramers’
theorem [7]. This peculiar topological feature of Weyl nodes
plays an important role in inducing the anomaly charity effect
under parallel magnetic and electric fields (i.e., an Adler-Bell-
Jackiw anomaly) [8,9]. Moreover, the projections of Weyl
nodes on the Brillouin zone surface are manifested as the end
points connecting the surface Fermi arcs [10].

A generic effective Hamiltonian of a single Dirac node
can be compactly expressed as [11–16] H (k) = ∑

i, j kivi jσ j ,
where i = (x, y, z), j = (0, x, y, z), k is the wave vector,
vi j’s are the velocity coefficients, and σ j is the identity or
Pauli matrix. The energy spectrum is ε±(k) = ∑

i kivi0 ±√∑
j �=0(

∑
i kivi j )2 = T (k) ± U (k), where U (k) is analo-

gous to the potential and T (k) denotes the kinetic term. A
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finite T (k) leads to tilting Dirac cones, and the values of
U (k) and T (k) determine the degrees of the tilt. With a
suitable diagonal treatment, U (k) can be cast into an up-
per diagonal form [17,18], and a dimensionless parameter

η =
√∑

i=x,y,z(vi0/
∑

j �=0 vi j )2 can be used to describe the

tilt [19]. Several remarks can be made for the case where
a tilt is present. First, if η is finite, the tilting band cross-
ing breaks the particle-hole symmetry [20,21], and beyond
η = 1, the velocities of electrons in both the k and −k states
bear the same sign [22]. Second, when η > 1 the low-energy
fermions violate the Lorentz symmetry in the overtilted Dirac
cone. Fermions of this kind can only exist in solid-state
matter where the space-time that electrons experience is con-
fined to the background crystal they are mounted on [23],
and have no direct counterpart in high-energy physics [24].
Third, as η > 1 the Fermi surface at zero energy deforms
as the tilt is enhanced, and eventually evolves into an open
arc with a finite density of states. This key feature neces-
sarily gives rise to the coexistence of holes and electrons
below the Fermi surface [25]. Finally, it has been proposed
that the flat band appearing in the critical situation of η = 1
(also known as the Lifishitz phase transition) is analogous
to the black hole horizon [26,27], but this condition has
not yet been experimentally synthesized in any compounds.
Fundamentally, tilting DSM materials can host exotic quan-
tum states that lead to interesting physical properties, such
as anisotropic optical conductivity [28], direction-dependent
chiral anomaly [29], kinked plasmon dispersion [30,31],
and so on. Therefore, it is of wide interest to explore the
underlying fundamental nontrivial physics in tilting DSMs
further.

The energy loss rate (ELR), which is closely related to the
stopping power, measures the energy dissipation along the
path of a charged projectile passing through solid materials
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as a consequence of collisions with nuclei and electrons of
the medium [32–36]. It offers a powerful tool for exploring
phonon and plasmon excitation, surface properties, and the
inelastic mean free path in various systems [37–43]. Within
dielectric formalism, the ELRs of a fast charge have been
investigated for the whole velocity range to illustrate the
physical insights of the collective modes and single-particle
excitations during inelastic scattering processes in a two-
dimensional electron gas (2DEG) [44–47], a marginal Fermi
liquid [48], and Rashba spin-orbit coupling systems [49]. The
transient readjustment of electrons in response to a swiftly
moving charged particle can induce polarization and dynamic
screening via Coulomb interaction, which plays an essential
role in the energy degradation and angle deflection of the
particle. If the intruding particle is an electron, one immediate
consequence is that this electron becomes indistinguishable
from those in the medium, which builds strong constraints on
the scattering channels on account of Pauli blocking.

Another interesting consequence of an intruding electron
is the interaction with 3D Dirac plasmons. In contrast to
the gapless plasmon modes in 2D electron systems, plasmon
dispersions in 3D DSMs are generally gapped [50–53]. For
example, Politano et al. reported an experimental observation
on gapped 3D plasmons in PtTe2 with η > 1 (also termed as
“type-II” DSMs) using high-resolution electron energy loss
spectroscopy [54]. Importantly, the gap is proportional to the
chemical potential or n1/3, which affects the threshold velocity
of the ELR significantly.

In this work, based on dielectric formalism, we com-
pute the ELR of an electron passing through 3D undoped
(μ = 0) and doped (μ �= 0) tilting DSMs, and describe the
total inelastic scattering associated with single-particle ex-
citation (SPE), and plasmon excitation (PE). We discuss in
detail the underlying excitation mechanisms, the key features
of both ELR(SP) and ELR(P), as well as the corresponding
threshold velocities and inelastic mean scattering times.

The rest of the paper is organized as follows. In Sec. II,
we introduce a model for describing the interactions between
the intruding electron and the electrons in DSMs, and outline
the formalism for the ELR contributions of SPE and PE.
In Secs. III and IV, we respectively discuss in detail the
underlying excitation mechanisms and behaviors of ELR(SP)

and ELR(P), as well as the corresponding threshold velocities.
Finally, we perform a calculation on the inelastic mean scat-
tering time in Sec. V, followed by a conclusion in Sec. VI.

II. MODEL AND FORMALISM

We consider a swift intruding electron impinging on a
thin-film DSM, with the velocity being fast enough for nona-
diabatic effects to be important [34], but not fast enough
to approach the relativistic regime, so the electrons in
the medium can respond effectively to this intruding pro-
jectile. We also ignore the phonon scattering effect [55], as
we are mainly interested in the energy loss behavior due to
the electron excitations in zero temperature limits. According
to the first Born approximation, the traveling electron with
momentum p interacts with electrons in the DSMs through the
screened Coulomb interaction Vex-e, and scatters to the state
p-q with a well-defined transfer momentum q. The ensuing

energy loss of the intruding electron is � = q · v − q2

2 . Here,
we have adopted the Hartree atomic units h̄ = me = e = 1.
The Hamiltonian describing the above scenario can be written
as

H = H0 + HI, (1)

where H0 is the “minimal” effective Hamiltonian of a Dirac
node with fixed chirality [17,20,25]: H0 = vF (χηkzσ0 + k ·
σ ), where χ = ±1 represents the node index, η is the
tilting parameter, σ = (σx, σy, σz ) is the 3D vector of the
Pauli matrices, and the isotropic Fermi velocity vF = 0.65 ×
106 m/s. This Hamiltonian gives the energy dispersion
εk,s = vF (χηkz + sk), with s = ±1 corresponding to the
conduction and valence bands, respectively. By construct-
ing the field operator �(r) = ∑

k,s ak,sφk,seik·r and �†(r) =∑
k,s a†

k,sφ
	
k,se

ik·r [where a†
k,s (ak,s) is the creation (annihila-

tion) operator for an electron in the medium, and φk,s is
the eigenfunction of H0], the Hamiltonian can be cast in the
second quantized notation: H0 = ∑

k,s εk,sa
†
k,sak,s. It is noted

that H0 is only valid on one of the chiralities; the other is given
by H 	

0 , which produces the same energy loss process as H0 if
we neglect the intervalley coupling. We also assume the tilt is
along the kz direction, and ignore the anisotropic in the kx-ky

plane for simplicity. The second term HI on the right-hand
side of Eq. (1) represents the interaction between the external
electron and the DSM electrons, which is given by [56]

HI =
∑
k,q,s

Vqe−iq·RIφ	
k,sφk−q,sa

†
k,sak−q,s. (2)

Here, Vq describes the effective screening potential between
the intruding electron and the Dirac electrons, and RI is the
position vector of the external electron. Although the angle
deflection of the incoming electron is significant and unpre-
dictable in scattering processes where the nuclear ions are
considered to be at rest, the average ELR is energy dependent.
In general, the ELR of a charged particle is defined as

dE

dt
=

∫∫
dω

d3q

(2π )3
ωW (q, ω). (3)

Here, the transition probability function W (q, ω) for finite
temperatures is given by the Fermi’s golden rule:

W (q, ω) = 2π
∑

k,k′,s,s′
| 〈k′| 〈 f | HI |i〉 |k〉 |2δ(ω − εk′,s′ + εk,s).

(4)

The interaction matrix element 〈k′| 〈 f | HI |i〉 |k〉 describes the
general two-body interaction via the Coulomb potential HI.
|i〉 and | f 〉 are, respectively, the initial and final states of the
incident electron, while |k〉 and |k′〉 correspond to the initial
and final electron states in the DSMs. For a swift free elec-
tron, we treat |i〉 and | f 〉 as plane waves, i.e., |i〉 = eip·RI and
| f 〉 = ei(p−q)·RI , respectively. Therefore, within the random
phase approximation (RPA) for the dynamic polarization, the
transition probability function W (q, ω) can be cast into the
form

W (q, ω) = 4πVqIm

(
− 1

κ (q, ω)

)
δ(ω − �). (5)
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It is noted that κ (q, ω) = 1 − VqQ(q, ω) is the dynamic di-
electric function, and Vq = 4π

κr q2 is the 3D Coulomb potential
of electron-electron interaction, with κr being the background
static dielectric constant. The dynamic polarization function
Q(q, ω) in the bubble diagram is defined by

Q(q, ω) = g

(2π )3
lim
η→0

∑
k,s,s′

nk,s − nk+q,s′

εk,s − εk+q,s′ + ω + iη

× | 〈φk+q,s′ | |φk,s〉 |2, (6)

where g = 2 is the valley degeneracy factor and nk,s is the
equilibrium Fermi distribution function. The noninteraction
polarization functions of the intrinsic and extrinsic parts at
zero temperature were calculated analytically in [54,57].

It should also be noted that our formalism of Eq. (3) has
naturally included the trapping process that the intruding par-
ticle (in state |i〉) is captured by the ion and filled to the state
of (| f 〉 = |k ± q〉) below the Fermi surface, since in DSMs
the intruding electrons are indistinguishable from fermions.
However, additional constraints should be imposed on the
scattering matrix in Eq. (4) based on the following consid-
erations. (i) We refer to swift electrons whose velocity is high
enough so that the outgoing energy remains higher than the
chemical potential (μ) of DSMs. That is, we exclude events
where intruding electrons are trapped by the sample, which
would not be observed experimentally. (ii) The electrons in the
medium are not allowed to escape to the vacuum state, which
imposes a limitation on the maximum transfer momentum q.
(iii) The energy loss is irreversible, so � has to be positive.
Applying these constraints into Eq. (5), and substituting into
Eq. (3), we can easily obtain

dE

dt
= 1

π2

∫ π

0
sin θqdθq

∫ q+

0
q2dq VqIm

(
− 1

κ (q,�)

)

×��(�)[1 − �(2μ − |v − q|2)]. (7)

In the derivation of Eq. (7), we integrated over ω taking ad-
vantage of the delta function. It should be pointed out that the
second aforementioned constraint is self-guaranteed within
the nonzero zones of the loss function Im[− 1

κ (q,ω) ], whereas
the positive energy loss also implies an upper limit for
q+: q+ = 2v.

The energy loss function describes the probability of an
excitation associated with energy ω and momentum q, and its
poles define the frequency of the plasmon mode of bulk elec-
trons. Using the identity limη→0

1
x±iη = P 1

x ∓ iπδ(x), one
can separate Eq. (7) into two parts on account of two different
mechanisms:(

dE

dt

)
SP

= 32v4
F α

∫ q+

0
dx

∫ min{1,(x2+ṽ2−μ̃)/2ṽx}

x/2ṽ

dξ

× �̃ Im[κ (x, �̃)]

[κ (x, 0)]2
, (8)

for the SPE-contributed ELR (ELR(SP)), and
(

dE

dt

)
P

= 32πv4
F α

∫ q+

0
dx

∫ min{1,(x2+ṽ2−μ̃)/2ṽx}

x/2ṽ

dξ

× �̃δ[κ (x, �̃)], (9)

for PE-contributed ELR (ELR(P)). In the above two equations,
we have used the dimensionless notations ξ = cos θq, x =

q
2vF

, �̃ = �

4v2
F

= xξ − x2

2 , ṽ = v
2vF

, μ̃ = μ

4v2
F

, and α = 1
πκrvF

.
For simplicity, in Eq. (8) the effective screening potential
has been treated as static. The step functions appearing in
Eq. (7) have been solved for the integration limit of ξ . For the
cases of finite μ, we will compute the ELR of both types of
DSMs numerically with the help of the full expressions of the
dielectric function given in [54] or [57]. In addition to the step
functions of Eq. (7), the integral is also restricted to run over
all the nonzero zones of the imaginary part of the polarization
function in the �-q plane [54,57]. Notably, the delta function
in Eq. (9) implies the undamped PE, that is,

δ[κ (x, �̃)] = δ[Re κ (x, �̃)]δ[Im κ (x, �̃)]. (10)

Here, Re κ (x, �̃) and Im κ (x, �̃) are the real and imaginary
parts of the dielectric function, respectively. Then, the inte-
gration over the region Im κ (x, �̃) = 0 is regarded as the
opposite counterpart to Eq. (8).

III. SINGLE-PARTICLE EXCITATION-CONTRIBUTED
ENERGY LOSS RATES

A. Scattering angle and excitation mechanisms

In some experimental situations [58], the energy loss of
the intruding electrons is measured via sweeping over an
effective range of angles. We use the angle-resolved ELR(SP)

(AR-ELR(SP)) from Eq. (7):
(

dE

dt

)
SP

(θ ) = sin θq

π2

∫ q+

0
q2dq VqIm

(
− 1

κ (q,�)

)

×��(�)[1 − �(2μ − |v − q|2)]. (11)

In Fig. 1, we show the numerical results of AR-ELR(SP) as
a function of the scattering angle at different tilts. For the
case of μ = 0 and η = 0, the scattering angle is centered at a
peak of 20.7◦, with ∼90% of transmitted electrons contained
in the forward direction out to 30.1◦, the upper angle of the
full width half maximum (FWHM). As the tilt increases, the
scattering peaks broaden and the peak maxima shift to larger
angles, accompanied with higher energy loss. The underlying
mechanisms can be further interpreted using the schematics
depicted in Fig. 2. For instance, when the Dirac cone begins
to tilt (within the range 0 < η < 1), the interband dissipation
path 1© in Fig. 2(b) requires a larger θq in order to fulfill the
momentum and energy conservation compared to the same
path 1© in the upright Dirac cone in Fig. 2(a). Upon closer
inspection in Fig. 2 from (a) to (c), one can find that the
tilt only acts on the band (“DA”) crossing the second and
fourth quadrants with the electron velocity being negative
initially [see Figs. 2(a) and 2(b)]. As the tilt increases, the
band “DA” rotates anticlockwise, and eventually becomes the
one in Fig. 2(c), where the electrons have positive velocities.
Therefore, increasing the tilts would significantly raise the
probabilities of large-angle momentum transitions and the in-
direct (q �= 0) interband transitions. This is in fact a necessary
consequence of the particle-hole symmetry breakage in single
Dirac cones.
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FIG. 1. AR-ELR(SP) due to SPE as a function of the scattering
angle θq, with an incident velocity of about v = 0.5 a.u. The chemical
potentials are (a) μ = 0 and (b) μ = 0.1 eV, respectively.

On the other hand, for η > 1, apart from the normal in-
terband transition of path 1© in Fig. 2(c), two additional
anomalous dissipation paths can occur via paths 2© and 3©.
First, path 2© indicates that the intraband excitation assisted
by a large-angle transfer momentum q becomes permissible
in the clean limit of μ = 0. Such intraband transitions are not
possible in a clean DSM for the lake of itinerant electrons.
Second, a new type of elastic interband transition (path 3©) is
also permitted for electrons near the Fermi surface under in-
finitesimal excitations. The permission of this decay path ( 3©)
is nontrivial because it has no excitation counterpart even in
doped normal DSM systems (i.e., 0 � η < 1 with μ �= 0). We
emphasize that both additional anomalous dissipation paths
are particularly intriguing, as they are only possible in systems
where electrons and holes coexist in both the valence and
conduction bands. This scenario only appears when the low-
energy band crossings are strongly tilted, to the extent that the
Fermi surface deforms into an open Fermi arc. Looking again
at Fig. 1, we notice that there is evidence of such excitation
mechanisms. For the cases of η = 1.2 and η = 1.8, one can
see that the peaks shift to the higher angle of 27◦ in contrast to
that of η = 0. Meanwhile, the FWHMs span up to 70.2◦ and
73.4◦, respectively, which are much wider than those of η < 1,
implying that the electrons are scattered at larger angles at the
cost of higher energy loss.

In addition, we also note that the distribution of the scatter-
ing angle is insensitive to the chemical potential, as shown
in Figs. 1(a) and 1(b). In fact, as the chemical potential is
lifted to the conduction band, the intraband transitions do
not contribute to the AR-ELR(SP) as much as they do to the
onsets of the velocity threshold (see Fig. 3). This is because
the intraband transition is relevant only when the excitation
energy is small. In the case of high incident energy (i.e.,
v = 0.5 a.u., beyond the onsets of interband transitions
marked in Fig. 3), the intraband contribution is weak, while

FIG. 2. Schematics for SPEs in DSMs at different tilts: (a) η = 0,
(b) 0 < η < 1, and (c) η > 1, respectively. For illustrative cases, we
assume the tilt is along the kz direction, and the dots represent the co-
ordinates: A = (±k‖, kz ), B = D = (±k‖,−kz ), and C = (±k′

‖, −k′
z ),

with k‖ = (kx, ky ). Solid and dashed lines represent interband and
intraband transitions, respectively. In (a) and (b), the green paths
refer to indirect transitions, whereas the purple path represents the
direct transition with no need of transfer momentum. For η > 1 in
(c), two additional anomalous dissipation paths, labeled as 2© and 3©,
represent the elastic interband and large-angle intraband transitions,
respectively.

the interband contribution is slightly suppressed by the
increasing chemical potential due to the energy conserva-
tion law (� > 2μ) and reduced phase space. As shown in
Fig. 1(b), the tiny kinks at small angle regime suggest that the
impactions of chemical potential on the distribution of scat-
tering are minute. This is interesting because the AR-ELR(SP)

overlooks the details of chemical potential, but still captures
the information of the tilts. Thus, we suggest that the scatter-
ing angle is a relatively robust topological property that may
be useful for the qualitative characterization of topological
phase transition.

B. ELR(SP) behavior as function of v

To explore the dependence of ELR(SP) on incident velocity
in detail, we next proceed to compute Eq. (8) explicitly in
the limit of μ = 0 and η = 0. The intrinsic (μ = 0) imag-
inary dielectric function of the tilted DSM, Im κ0(x, �̃),
was presented in [54,57]. Using the notations defined above,
we have

Im κ0
χ (x, �̃) = πα

3
�(2�̃ + χηξx − x). (12)

It is noted that, apart from the step function that imposes an
additional limit on ξ : ξ > x+1

2ṽ+χη
, Eq. (12) is x (or equiva-

lently, q) independent. Letting η = 0, Eq. (12) describes a 3D
nontilted Dirac cone. Making use of Eq. (12) together with
the static dielectric function given in [54,57], we leverage
the angle integral in Eq. (8) first to obtain an expression for
ELR(SP) of μ = 0 and η = 0:(

dE

dt

)
μ=0,η=0

= 3πv4
F

4ṽ

∫ 2ṽ−1

0
dx

x3 − 4ṽx2 + (4ṽ2 − 1)x(
ln 2�̃

x

)2 .

(13)

Here, �̃ = �

4v2
F

is the ultraviolet cutoff. The difficulty in
solving Eq. (13) is the logarithm term in the denominator. For-
tunately, with the help of a suitable expansion, we can obtain
a lengthy solution that is composed of a cubic v polynomial
and a logarithm term in v, as given in the Appendix.
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FIG. 3. Velocity dependent ELR(SP) of a charged particle due to
the single-electron excitation with a set of tilting parameters. The
chemical potentials are fixed at: (a) μ = 0, (b) μ = 0.05 eV, (c) μ =
0.1 eV and (d) μ = 0.5 eV, respecitvely. The solid purple lines cut at
the onset of the interband contribution.

The behavior of ELR(SP) is governed by several pa-
rameters: the incidence velocity, the tilting parameter, and
the chemical potential. As illustrative cases, we present in
Fig. 3(a) the ELRs(SP) versus the incident velocity v for μ = 0
and η = 0, together for η = 0.5, 1.2, and 1.8. In the high inci-
dent velocity region, v dependence is dominated by the cubic
polynomial term, whereas in the low incident velocity region,
the ELRs(SP) are determined by a cubic v polynomial coupled
with a logarithmic v term [see Eq. (A2) in the Appendix],
which endows ELRs(SP) with a nondecreasing v dependence
behavior strikingly different from those of parabolic electron
systems [58–60]. In parabolic electron systems such as those
in [59] and [60], the ELRs(SP) generally reach a maximum and
then decrease as the incidence velocity increases. However,
the nondecreasing behavior of ELRs(SP) in the DSMs arises
entirely from the fundamental nature of the linear excita-
tion spectrum and the high Fermi velocity of the massless
Dirac fermions, which subsequently give rise to a dielectric
behavior fundamentally different from that of parabolic elec-
tron systems. For example, the polarization of the ordinary
2DEG decreases with an increasing wave vector for q > 2kF ,
whereas the intrinsic imaginary dielectric function of 3D
DSMs with η = 0 does not contain q [61]. As a result, the lat-
ter contributes to the integral in Eq. (8) continuously as v goes
beyond 2v − 1 > 2μ, leading to the nondecreasing behavior
of ELRs(SP). In fact, a similar v dependency of ELRs has been
previously reported in graphene [46]. However, our results
associated with the Dirac cones in 3D nature are substantially
different from that of a perfect 2D graphene, in which the
intrinsic imaginary dielectric function is linear in q. Thus,
one can expect a much more dramatic ELR increase with v

in graphene [46].
In addition, it is straightforward to see that the curves with

different tilts will eventually converge to the case of η = 0 in
the region of high v. This is somewhat interesting as it implies

that a swift intruding electron can strongly interact with the
medium Dirac electrons but ignore the tilting details of the
Dirac cones. However, it should not be surprising that, under
a high energy excitation, the information of the tilt is washed
out by the averaging treatment, provided that the topological
phase transition due to the tilt is also a Fermi liquid property
that is typically described by models of effective low-energy
bands near the Fermi surface.

Tilting DSMs with finite μ, as plotted in Figs. 3(b)–
3(d), contain all the energy loss information as that of μ =
0 in the high v region, while in the region where v is
small, two interesting remarks are in order. (i) The intra-
band SPE begins to contribute, as indicated by the solid
purple lines in Figs. 3(b)–3(d), which cuts through all the
turning points. Below these turning points, the ELRs(SP) are
solely contributed by the intraband SPE. (ii) The threshold
velocity becomes a function of μ only, since the intraband
SPE removes the excitation barrier for the interband tran-
sition. We will discuss the threshold velocity further in the
next section.

C. Threshold velocity

Another feature observed in Fig. 3 is that the ELRs(SP) of a
penetrating electron begin with different threshold velocities
related to the tilting strength. In particular, for the case of
μ = 0 and 0 � η < 1, the threshold velocities are propor-
tional to η. For instance, the threshold velocities are about
vth ≈ 0.30 a.u. and vth ≈ 0.16 a.u. for η = 0 and η = 0.5,
respectively. Essentially, this state of affairs arises from the
imaginary part of the dielectric function. With a simple ma-
nipulation on the step function in Eq. (12), we can obtain
an expression for the maximum transfer momentum xm (or
qm/2vF ):

xm = (2ṽξ − v0), (14)

with v0 = 1 − ηξ being a material-dependent parameter. To
ensure xm > 0, the incident velocity must lie above the pa-
rameter v0, corresponding to the onset velocity in Fig. 3(a).
Physically, this condition is necessarily required by the en-
ergy and momentum conservation laws for the particle-hole
transition in a general two-body scattering process, so for the
cases of xm < 0 or v < v0, scattering via a single-electron
process is forbidden. On the other hand, if η > 1, the maxi-
mum transfer momentum xm always picks up a positive value
for arbitrary ṽ (or v). As such, the ELRs(SP) appear with any
infinitesimal incident velocity, as illustrated by the η = 1.2
and 1.8 curves in Fig. 3(a). As a matter of fact, the threshold
velocity of μ = 0 simply corresponds to the onset of the
interband SPE, whereas in the cases of μ > 0, the intraband
SPE contributes to the low-energy excitation. In this case,
one should take into account the condition of [1 − �(2μ −
|v − q|2)], which suggests all the scattering events with inci-
dent velocity below

√
2μ are canceled by the term �(2μ −

|v − q|2). Equivalently, the intraband SPE contribution has to
be excluded if the incident energy is below μ. This is also
required by the assumption that the intruding electron is not
reflected.
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FIG. 4. ELR(P) originating from plasmon as a function of
incident velocity for different tilting parameters.

IV. PLASMON EXCITATION CONTRIBUTION TO
ENERGY LOSS RATES

In the intrinsic limit, the system does not allow bulk PE
due to the lake of free carries supporting the self-sustaining
in-phase density oscillations [62]. Hence, we focus on the
plasmon-contributed ELR (ELR(P)) of an electron to the
DSM systems of finite μ. In the long wave approximation,
the approximate expression for plasmon dispersion has the
form [57]

ωpl ≈ �pl(1 − Dx2) + xηξ. (15)

Here, �pl is defined following Eq. (3) of [54], capturing the
plasmon gap at q = 0, and can be solved self-consistently.
We note that �pl is linear in μ. The factor D is equal to

− 1
8μ̃2 [1 + G(2μ̃,�pl )] with G(z1, z2) = z4

1 (z2
2− 3

5 z2
1 )

z2
2 (z2

1−z2
2 )2 . To calcu-

late Eq. (9), it is convenient to define a modified frequency
y ≡ ωχ = �̃ + xηξ , and change the integral variable ξ to y,
followed with dy = (1 + η

2 )x dξ . Making use of Eq. (15) and
integrating over y, we achieve a simpler form for ELR(P):(

dE

dt

)
P

= 32v4
F απ

(2ṽ + η)2

∫ q+

0
dx(4ṽy0 − ηx2)�(2y0 − x)

× �(min[�1(x),�2(x),�3(x)] − y0)

x|∂yκ (x, y)|y=y0

. (16)

Here, y0 = �pl(1 − Dx2) is the modified plasmon frequency.
�1(x) = 2μ̃ − x/2 and �2(x) = (ṽ + η/2) − x2/2 are ex-
tracted from Im κ (x, y) = 0 and the natural condition ξ < 1,
respectively, whereas �3(x) = (2ṽ + η)(ṽ2 + x2 − μ̃)/4ṽ −
x2/2 is the by-product of the first integral. The step functions
will play critical roles in determining the threshold velocity.

A. ELR(P) behavior

The PE-contributed ELRs were evaluated numerically us-
ing Eq. (16), and are plotted in Fig. 4 as a function of incident

velocity for μ = 0.01 and 0.1 eV, respectively. In contrast
to the nondecreasing behavior of ELR(SP), all ELRs(P) first
reach a maximum and then decrease slowly with v, which
is a tendency similar to the ELR in the 2DEG [60]. In fact,
within the Lindhard formalism, the information of the un-
damped plasmon is accessible only for rather restricted ranges
of the arguments (q,�). As long as the plasmon resonance
peaks cross the boundary of the particle-hole continuum,
the plasmon contribution vanishes due to the bulk-electron
excitation damping into the SPE. However, the region of
Im κ (x, y) = 0, where the plasmon mode is sustained, can be
strongly modified by the tilt (i.e., region 1B in Fig. 1 of [31]).
This is partially the reason that the ELR(P) drops as the tilt
is enhanced. Additionally, as Eq. (15) suggests, the tilting
parameter will also push the plasmon mode to higher energies,
further limiting its contribution to the ELR(P). Therefore, for a
given chemical potential, the discrepancy of the ELR(P) with
tilt can be regarded as the opposite counterpart to the enhance-
ment of the ELR due to the SPE. Finally, we should also point
out that for a given value of η, the ELR(P) is enhanced if the
chemical potential is raised. However, this is not surprising
if one observes Eq. (15), in which the plasmon frequency is
roughly proportional to μ.

B. Threshold velocity

To determine the threshold velocity, we should take
the x → 0 limit for the terms in the step function
�(min[�1(x),�2(x),�3(x)] − y0) in Eq. (16), since the
modified frequency y0 is quadratically dependent on x and
varies much more slowly than �i(x) at this limit. Obviously,
�1(x) is always larger than �2(x) and �3(x) as x → 0. In
addition, as discussed above, the assumption of a “fast intrud-
ing electron” gives rise to the condition vth >

√
2μ. If this

condition is guaranteed, we will have �3(x) > �2(x) → 0.
Then, the step function is reduced to the inequality �2(x)
< y0, which gives rise to the second condition for the thresh-
old velocity:

vth >
√

2�pl(1 − 2D) − η

2
. (17)

Compactly, the threshold velocity in ELRs(P) can be summa-
rized as

vth = max
[√

2μ̃,
√

2�pl(1 − 2D) − η

2

]
. (18)

Although the plasmon gap is μ dependent, it is approximately
one order of magnitude smaller than μ, and thus, the term
2
√

�pl(1 − 2D) is approximately equal to 1. In this situation,
when η < 1, the tilt is the dominant contribution. Otherwise,
the velocity threshold is determined by the chemical potential.
As one can see in Fig. 4(a), the threshold velocities are vth =√

2�pl(1 − 2D) − η/2 ≈ 0.1653 a.u. for η = 0.5 and vth =√
2μ ≈ 0.027 a.u. for both η = 1.2 and η = 1.8.

V. INELASTIC MEAN SCATTERING TIME

In this section, we discuss briefly the inelastic mean scat-
tering time τ . Generally speaking, the inelastic scattering time
plays an important role in investigating electronic relaxation
processes and the femtosecond electron dynamics at solid
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FIG. 5. Inelastic mean scattering time contributed by particle-
hole transitions as a function of incidence velocity at different
chemical potentials.

surfaces [38,63], and it can be evaluated using the defini-
tion [56]

1

τ
=

∫
d3qdω

(2π )3
W (q, ω). (19)

In an approximate treatment, Eq. (19) can be cast into a more
compendious form: τ = Ev

d (Ev )/dt [46,47,49]. Then, one can
expect that the inelastic mean scattering times retain the de-
tailed physics as those of the corresponding ELRs. In Figs. 5
and 6, we present the numerical results of the inelastic mean
scattering time as a function of incident velocity. τ (SP) and
τ (P) correspond to the inelastic mean scattering time related
to the SPE and PE scattering paths, respectively. The initial
drops from infinite in the inelastic mean scattering time reflect
the fact that the quasiparticle lifetime due to electron-electron
interactions near the Fermi surface is infinite within the Born
approximation at T = 0 [64,65].

In Figs. 5(a) and 5(b), we see that, in the region of v

below 0.6 a.u., τ (SP) varies from a few femtoseconds to hun-
dreds of femtoseconds for both cases of μ = 0 and 0.1 eV.
Although the neglect of surface-excitation effects and the
plasmon broadening may lead to an overestimation of the
inelastic lifetime [62], our results for the η = 0 case quan-
titatively match the values reported for periodically rippled
graphene [63], in which the lifetimes of single graphene layers
on Ru(0001) measured using time-resolved two-photon pho-
toemission (2PPE) range from 10 to 85 fs, with energies lying
in the range from 0.9 to 4.7 eV [63]. Therefore, our results
may be verified by studying femtosecond electron dynamics
using 2PPE. Moreover, such a wide range of variation in τ (SP)

is sensitive to the chemical potential only in the regions where
intraband SPE contributes. On the other hand, τ (P) is remark-
ably dependent on the chemical potential. For μ = 0.01 eV,

FIG. 6. Inelastic mean scattering time contributed by plasmon as
a function of incident velocity at different chemical potentials.

the values of τ (P) are about 150–250 fs, varying slightly for the
four types of tilts [see Fig. 6(a)], whereas they are significantly
reduced to about 10–15 fs as the chemical potential is raised
to 0.1 eV [Fig. 6(b)].

VI. CONCLUSION

In this work, the ELRs of a fast intruding electron in tilting
3D DSMs were calculated based on the excitation process
within the RPA dielectric formalism. The inelastic scatter-
ing angle of SPE is dominated by small-angle scattering.
The maximum scattering peaks are broadened with tilt due
to the particle-hole symmetry breakage and the emergence
of versatile dissipation channels, raising the probabilities of
large-momentum intra- and interband transitions. In strik-
ing contrast with those in parabolic electron systems, the
ELRs(SP) exhibit a nondecreasing v-dependent behavior due
to the fact that the imaginary part of the dielectric function
contains q-independent terms. In the high incident velocity
limit, ELRs(SP) with different tilts reduce to those of untilted
intrinsic DSMs, which is described by a cubic polynomial and
a logarithmic v term. On the other hand, the ELRs(P) first
reach a maximum and then decrease slowly as v. Because
the tilts will push the plasmon mode to higher frequencies,
the ELRs(P) show discrepancy as the tilts are enhanced and
manifest as an opposite counterpart to ELRs(SP). The thresh-
old velocities are strongly dependent on the tilt and chemical
potential. As tilts vary, the threshold velocities are mainly
determined by the interplay of the Pauli exclusion constraints
and conservation laws concealed in the energy loss function.
Finally, we perform a numerical calculation on the inelastic
scattering times. Within the first Born approximation, the in-
elastic scattering times in tilting DSMs are estimated to range
from a few femtoseconds up to hundreds of femtoseconds
with respect to tilt.
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FIG. 7. Numerical result of Eq. (13) (empty red circle) and the
analytical plot of Eq. (A2) (solid black line).
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APPENDIX

To solve Eq. (13), we make use of the expansion for ln t :

ln t = 2

[
t − 1

t + 1
+ 1

2

(
t − 1

t + 1

)2

+ · · ·
]
, t > 0. (A1)

Here, we have t = 2�̃/x � 1. The main contribution to the
integral is the large limit of t , in which case t−1

t+1 ∼ 1. There-
fore, we replace ln t with the first order approximation of
Eq. (A1). After integrating in Eq. (13), we obtain a lengthy
expression for the ELR(SP) at μ = 0 and η = 0:

(
dE

dt

)
μ=0,η=0

= 3πv4
F

16(A − 1)2ṽ

{
2ṽ − 1

12
[8ṽ3 + 4(9 − 8B)ṽ2

− 2(27 − 88B + 66B2)ṽ

+ 2B(14 + 33B − 30B2) − 31]

+ (B − 1)[4(3B − 1)ṽ2 + 8B(2B − 1)ṽ

+5B3 − 3B2 − 3B + 1] ln

∣∣∣∣B + 2ṽ − 1

B

∣∣∣∣
}
,

(A2)

where B = (A + 1)/(A − 1) and A = ln 2�̃/2. The logarithm
in the last term can be expanded again using Eq. (A1),
and the corresponding results imply that the leading order
in ṽ is cubic. To verify our analytical solution, we present
the numerical result of Eq. (13) and the analytical plot
of Eq. (A2) in Fig. 7. The two solutions are in perfect
agreement.
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