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Shallow dopant pairs in silicon: An atomistic full configuration interaction study
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The two-electron states and exchange couplings are investigated for a phosphorous donor pair in silicon using
an atomistic full configuration interaction method for donor separations spanning from 0.4 to 15 nm. Three
distinct donor separation regimes appear from our large basis calculations, from which the validity of simplified
methods such as Heitler-London and Hartree-Fock type approaches can be assessed. For bulk donors, the
exchange coupling saturates below 5 nm due to excited bonding orbital contributions to the wave functions. Ionic
contributions to the two-electron state decrease between 5 and 14 nm, and a fully correlated Heitler-London-like
state is reached from 14 nm onwards. Oscillations in exchange couplings can be strongly suppressed by placing
the donors in the same z plane and at a small depth, D, from the surface. This is a consequence of the z-valley
terms becoming dominant within the dopant’s wave function and of small changes with x and y separations no
longer having much effect. We find the depth to be an important parameter in determining the exchange coupling
for subsurface dopants, not only through valley repopulation (D < 10 nm) but also through additional interface
effects for ultrashallow depths (D < 2.5 nm). Our full configuration interaction method provides insights in
the exchange interaction for various regimes of donor separation and depths, from the Heitler-London limit at
large distances to the 0.4–5 nm range relevant for scanning tunneling microscope based quantum state imaging
and spectroscopy experiments. The precise control of electron-electron quantum correlations in such engineered
atoms in the solid state is useful to design quantum logic gates and quantum simulators.

DOI: 10.1103/PhysRevB.105.155158

I. INTRODUCTION

Phosphorus donors in silicon have been proposed as the
functional block of a silicon quantum information processor
that can combine the benefits of single-atom quantum sys-
tems with the mature technological platform of silicon [1].
Single-qubit logic has been demonstrated on both electronic
and nuclear spins [2,3] bound to these donors along with
exceptional coherence times and fidelity [4]. Recently, the
first two-qubit logic gate was also demonstrated with dopant
atoms coupled by the exchange interaction between electronic
spins, thereby providing a proof-of-principle demonstration
of universal quantum logic [5]. Coupled dopant atoms are
also amenable to quantum simulation of Fermi-Hubbard sys-
tems [6,7] and coherent transport of quantum information [8].
The development of atomically precise placement technology
for donor atoms in silicon has resulted in a breakthrough
in single-atom electronics, with clusters ranging from sin-
gle to many dopant atoms being realized with deterministic
precision [9]. This technology has led to the realization of
single-atom transistors [10], atomically thin nanowires [11],
single-crystal quantum dots [12,13], and atomically precise
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tunnel junctions [14], opening up the prospect of a myriad of
applications in both classical and quantum electronics.

Direct exchange between electronic spins bound to donors
remains the principal method of coupling dopants out of
different mechanisms explored both theoretically and ex-
perimentally, including long-range dipole-dipole interactions
[15,16]. Soon after the original proposal to use the exchange
coupling as a means to perform two-qubit logic using dopant
atoms [1], it was predicted that the exchange could be highly
sensitive to the exact position of the atoms in the lattice
due to interference between sixfold degenerate conduction
band valley states of silicon [17]. Since then, a body of the-
oretical works on exchange couplings has appeared in the
literature, which mostly focus on the 10- to 20-nm donor sepa-
ration regime and relies on the effective mass Heitler-London
formalism (EMHL) [17–23]. Recent scanning tunneling mi-
croscope (STM) based spectroscopy and imaging experiments
have also probed directly the nature of the two-electron wave
functions of donors separated by a few nanometers and in the
proximity of the silicon surface [23]. This closer separation
regime offers interesting electronic correlations that can be ex-
ploited in quantum simulation [6]. The recently demonstrated
two-qubit logic gate [5] also relies on a separation distance
of 13 nm, as opposed to the original proposal of a 20-nm
separation of Kane [1]. The smaller separations of subsurface
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donors of relevance to experiments call for a more detailed
investigation of the exchange coupling and electronic corre-
lations of the two-electron donor states beyond the EMHL
formalism.

In this work, we investigate the two-electron states of
phosphorus donor pairs in silicon using an atomistic full con-
figuration interaction (AFCI) technique. This method provides
an exact solution to the two-electron problem for all donor
separation regimes within a 20-orbital spin-resolved Slater-
Koster tight-binding (TB) method [24]. This approach enables
us to assess the regimes of validity of Heitler-London and
other simplified many-body approaches for the coupled-donor
problem, as well as to track the evolution of electronic cor-
relations as a function of donor separation. Furthermore, the
atomistic description of the single-electron states of the donor
pairs in TB as a basis for AFCI goes beyond the effective
mass approximations, as it includes an atomistic description
of interfaces and incorporates conduction band momentum
states from a full Brillouin zone (BZ) approach. These con-
siderations are important to reproduce nonbulk experimental
situations [23]. The calculations provide us insights into ex-
change oscillations and how to mitigate these. Lastly, we
present calculation results in the regime of 2- to 5-nm sep-
aration that was probed in a recent experimental work on
STM imaging of exchange-coupled donor pairs [23], showing
both exchange and charging energies as a function of depth
and separation of the pairs. The atomistic study of the depth
dependence of exchange energy down to the sub-Bohr radii
distances from the surface is another aspect of this work.

II. METHODOLOGY

The accuracy of an exchange coupling calculation depends
on two main factors: (i) the dimensions and the quality of the
single-electron basis set, and (ii) the approximations made for
the multielectron wave function. In this section, first we com-
pare and contrast between various methodologies with regards
to points (i) and (ii) before describing the AFCI methodology
in detail.

Even though a hydrogenic donor, such as phosphorus, in
silicon has energy states in the band gap within an energy
window of about 50 meV below silicon’s conduction band
minima (CBM), the shallow nature of these states allows
the application of the effective mass approximation on the
conduction band (CB) with a Coulombic potential well. As a
result, envelope functions can be constructed using the trans-
verse and longitudinal effective masses of the CB of silicon.
However, the sixfold degeneracy of the CB has to be taken
into account in the donor states, and hence, a multivalley
Schrödinger equation needs to be solved [20,21,25–35]. A
core-correction term, involving a few free parameters, is often
introduced to account for the non-Coulombic part of the donor
potential close to the nuclear site and to obtain the correct
coupling between orbital and valley states (valley-orbit cou-
pling) [25]. Hence, the effective mass solution to the donor
wave functions comprises products of hydrogenic envelope
functions and Bloch functions of CBM weighted by the valley
contributions. In several recent variants of this approach, the
Bloch states have been obtained from ab initio calculations
of a bulk silicon unit cell [36–38]. In realistic donor devices,

a nonbulklike scenario often arises from nonuniform local
electric fields, interfaces, and strain. To first order, such effects
can readjust the weight of the wave function asymmetrically
among valley states, an effect known as valley repopulation.
Such effects can also change the form of the envelope func-
tions through hybridization with other states in the device.

Beyond effective mass theories, atomistic TB techniques
can provide an atomically resolved solution of the donor wave
function expanding over several million atoms. The method
takes into account realistic interface geometries built from
atoms at the surface and uses atomic-orbital-based central-cell
corrections for donors which can model different species of
donor atoms [39]. Furthermore, TB is a full BZ method and
does not assume that CB minima states are the only k states
contributing, which are typically important in heterostructures
and disordered super lattices. Once the full TB Hamiltonian is
set up along with proper device geometry, interface, and ap-
plied fields, all the valley-orbital (and spin) states are directly
obtained by eigensolving, with no further optimization or
parametrization. Other atomistic approaches such as density
functional theory are not feasible for exchange calculations
due to size limitations, as overlaps between tails of wave
functions contribute to exchange energy.

For the two-electron interactions, the full configuration
interaction (FCI) method, which solves the two-electron
Schrödinger equation in a basis of Slater determinants con-
structed from the single-electron basis set, is an exact
many-body technique that can capture Coulomb, exchange,
and higher-order correlations. However, the method is com-
putationally resource consuming, and typically simplified
approximations are made. The simplest and most popular
method in the literature is the Heitler-London (HL) approx-
imation, which uses a localized orbital for each donor. This
method is valid for low wave function overlaps and typically
breaks down for close separations and at modest electric
fields. In the other scenario, when the two donors are very
close, and form strong molecular states, electrons may occupy
a superposition of both up- and down-spin configurations of
the lowest molecular orbital, a regime that is well-described
by the single Slater determinant solution corresponding to a
Hartree-Fock (HF)-like approach. A molecular basis config-
uration interaction was also performed with effective mass
wave functions in Ref. [40] but focused on larger donor sep-
arations. A recent work has also applied a time-dependent
Hartree-Fock approach on this problem with the effective
mass wave functions [41]. Our motivation for AFCI therefore
stems from the need for accuracy in both the single electron
basis and the two-electron methodology.

For the single-electron basis set, we have employed a
20-band spin-resolved sp3d5s* Slater-Koster tight-binding
model to obtain the single-electron states of the donor pair
[42]. This approach has been well calibrated to experimental
measurements of single-donor energy states [39] including the
experimentally observed valley-orbital splitting of the 1s and
higher manifolds [43]. The model has also been validated in
a number of joint experiment-theory works on single donors
including STM imaging experiments [44] and in calculations
of various spin properties, such as hyperfine and spin-orbit
Stark effects [45,46], and of spin-lattice relaxation times [47].
The TB Hamiltonian of 1×106 to 2×106 silicon atoms with
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hydrogen-passivated surfaces and two phosphorus atoms with
central-cell-corrected Coulomb potential wells are solved us-
ing a block Lanczos eigensolver to obtain the molecular states
of the dopant pair located just below the bulk conduction band
of silicon in energy using NEMO3D [48].

For the two-electron calculations with FCI, a selected set of
N low-energy single-electron molecular states are then used to
construct all possible Slater determinants (SDs) representing
ground and excited configurations of the donor molecule as
basis states. The two-electron Hamiltonian [H (2e)] includ-
ing electron-electron Coulomb interaction is then evaluated
between every pair of SDs to obtain a full Hamiltonian of
size CN

2 × CN
2 . Here, CN

2 denotes the number of all possible
2-combinations out of the set of N single-electron states.
H (2e) is then solved with either LAPACK or FEAST

eigensolvers [24] for the total two-electron eigenenergies
[ETotal(2e)]. The eigenvectors of H (2e) are linear combina-
tions of the SDs, from which spin-singlet and spin-triplet
states can be readily identified. The exchange energy �E (also
labeled as J in this work) is defined as the energy difference
between the lowest spin-triplet (ET ) and spin-singlet (ES) en-
ergies, i.e., �E = ET − ES . This definition of the exchange
energy is used all throughout this work irrespective of the
orbital symmetries of the states.

We have tested convergence of the FCI results by progres-
sively increasing N and observing whether the two-electron
energy changes beyond a numerical tolerance of 10−8 eV. For
the P-P molecule studied here, we typically found that N = 24
was sufficient for convergence for closely separated donors.
For far-separated donors, even N = 4 can provide converged
solutions, consistent with the Heitler-London wave functions
analyzed later. The single-electron TB solutions typically take
3–4 h on 48 processors, while the two-electron AFCI calcu-
lations with N = 24 takes 2 h on 300 processors. The most
time-consuming part is evaluating the Coulomb and exchange
integrals between sets of four wave functions each of which
spans over 1×106 to 2×106 atoms and 20 orbitals per atom.

Further implementation details of the AFCI method can
be found in Ref. [24], where the technique was applied to
solve the challenging problem of two electrons bound (D−)
to a single phosphorus donor in silicon. Excellent quantitative
agreement was obtained with experimentally measured bind-
ing and charging energies both for a bulk donor and for donors
closer to an interface and subject to an electric field [49]. The
D− problem is a difficult calculation with FCI because many
single-electron states, even from the higher 2s, 3s, and 4s
manifolds, are needed to build up the expanded valley-orbital
states of the two electrons. Additionally, in Ref. [50], we
have extensively applied the AFCI technique on two elec-
trons bound to a cluster of well-separated donors and showed
how the voltage dependency of the exchange coupling can be
increased by several orders of magnitude. These give us confi-
dence that the AFCI method captures both the single-particle
physics and the two-electron correlations accurately.

III. RESULTS AND ANALYSIS

Figures 1(a) and 1(b) show schematics of the silicon crystal
we investigate. They also define all the geometric parameters
of interest such as the donor separation R, the donor depth

FIG. 1. (a) Schematic of two phosphorus impurity ions (P+) with
two bound electrons embedded in a silicon crystal. The P atoms are
separated by a distance R and are placed at a depth D from the surface
in the z direction. (b) Schematic of an xy plane of the silicon lattice
showing two distinct separation axes of the donors, [110] and [100].
(c) Breakdown of the analysis of the calculations into three regimes
of separation, far (14 nm and larger), intermediate (5–14 nm), and
close (0.4–5 nm) spacings. As we show later, the nature of the two-
electron wave functions differ in these regimes and can be linked
with well-known approximations, such as Heitler-London and Hund
Mulliken (ionic), for certain separations.

D below the surface in z, and the separation axes [100] and
[110]. Based on FCI calculations shown later, we can iden-
tify three donor separation regimes as shown in Fig. 1(c). In
the close-separation regime (R < 5 nm) of relevance to STM
imaging experiments, the P-P molecule is in the strongly cou-
pled regime where the electrons are fully delocalized between
the two P atoms and are strongly affected by Coulomb interac-
tions and screening. In the far-separated regime (R > 14 nm),
of relevance to qubits, the electrons are weakly coupled and
are highly localized. The intermediate-separation regime (5–
14 nm), also of relevance to qubits and quantum simulations,
shows a gradual transition between the close-separation and
the far-separation regimes.

A. Exchange saturation at small donor separations

The exchange (J) evaluated for large donor separations
using the HL method is known to increase exponentially with
decreasing donor separations, albeit oscillations in certain
directions [17]. AFCI allows us to explore if this trend also
holds for closer donor separations, where the HL method is
not expected to be valid. Figure 2(a) shows the exchange
energy as a function of donor separation from 0.38 to 15 nm
along [110] for donors at three different depths, 3.5a0, 6.25a0,
and 28.5a0 (or bulklike), where a0 = 0.543 095 nm is the sili-
con crystal lattice constant. We chose the [110] direction as
exchange oscillations are clearly visible for relative donor
positions changing by 1√

2
a0 (0.38 nm) in that direction. From

the log-linear scale of Fig. 2(a), we see the exponential in-
crease and J oscillations down to donor separations of 5 nm,
corroborating the HL trends from literature. However, we find
that the exchange energy saturates for donors closer than a
critical separation distance of 5 nm.
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FIG. 2. (a) Exchange energy of donor pairs obtained from atom-
istic configuration interaction calculations as a function of donor
separation along the [110] crystallographic axis, for three different
donor depths from the surface. The depth 28.5a0 represents a bulk-
like donor, reproduced here from Ref. [50]. The exchange energy
saturates for donor separations below 5 nm, and the oscillations in
exchange are strongly suppressed for shallow depths. (b) Single-
electron energy levels of the donor pairs located at 3.5a0 from the
silicon surface relative to the bulk valence band maxima of silicon
in the tight-binding model (at 0 eV). The conduction band minima is
at 1.131 355 eV. The A1, T2 and E1 states follow labels from group
theory (based on symmetry) for the six 1s-like states of a single donor
in bulk silicon [25]. In a coupled donor molecule, pairs of states can
form bonding (B) or antibonding (AB) states. While the B and AB
states come in pairs for far-separated donors, closer separations lower
the B states in energy due to larger B-AB splittings.

To understand these observed trends, we show the single-
electron energy levels of the two donors at a shallow depth in
Fig. 2(b). In a bulk donor, the six 1s states are split into states
of A1 (1), T2 (3), and E1 (2) symmetry, with energies of 45.6,
33.9, and 32.6 meV below the CB minima, respectively, where
the numbers included in parentheses indicate their degeneracy
excluding spin [25,29]. Each of these states in a donor pair can
form both bonding (B) and antibonding (AB) states through
tunnel coupling. In the large-separation regime, the splitting
between these B and AB states is small, hence the A1-B
and A1-AB states remain far separated from the T2 and E1

manifolds due to the large energy gap between the A1 and
these excited manifolds. However, as the donor separation
decreases, the B-AB splitting increases, and ultimately the
A1-AB state anticrosses the T2-B state, as shown in Fig. 2(b).
As the donor separation decreases, the B-AB splitting in-
creases among all the valley-orbital states, and below 5 nm,
the lowest six states are all bonding states. This changes the
symmetry of the donor molecule since the two electrons now
occupy the bonding states instead of A1-B and A1-AB states.
Further decreasing the donor separation does not affect the
splitting between the A1 and T2 bonding states as much as
that of the A1-B and A1-AB states since the splitting be-
tween the A1 and T2 bonding states mostly depends on the
valley-orbit interaction. Thus, the exchange saturates once the
two-electron states mainly consist of the bonding states.

B. Suppressed exchange oscillations for subsurface donors

The AFCI results in Fig. 2(a) show the variation in ex-
change with donor separations along [110] diminishes as the
depth reduces from 28.5a0 (bulk) to 6.25a0 and ultimately

FIG. 3. (a) Valley population of the lowest bonding state as a
function of the depth of the donor pair separated by R = 13.8 nm
along [110]. The z valleys dominate at shallow depth and saturate to
a moderate value when the depth of the donors is large enough to
be considered bulk. The valley populations are calculated from the
valley peak heights of the Fourier transform of the single-electron
(bonding) ground state obtained in real space. (b) Central wave-
function density between the donors as a function of donor depth for
the same donor pair as in panel (a). This is calculated by summing
the square amplitude of the wave function between the two planes
perpendicular to the donor axis from 1/4 to 3/4 of the separation R.

gets completely suppressed at 3.5a0. It is also observed that
for donor separations larger than 5 nm the magnitude of J
increases with decreasing depth, while a monotonic increase
in J cannot be observed for all the data points for R < 5 nm.
However, the J oscillations with in-plane donor locations still
diminish for all donor separations as depth is decreased.

Both suppression of exchange variation and increase in
its amplitude can be explained to first order by an increase
of the confinement along the direction perpendicular to the
interface, z in this case. For donors separated in the xy plane,
the exchange oscillations arise from valley interference of
the x and y valleys. At 28.5a0 depth mimicking a bulklike
scenario, the x, y, and z valleys are all contributing similarly
to the donor wave function, with the z-valley weight slightly
dominating over the x and y (shown later) due to the con-
finement asymmetry of the potential. When the three valley
weights are similar, a small change in the in-plane separation
of the donor affects both the x- and the y-valley interfer-
ence and, thus, the exchange J . At smaller donor depths,
the stronger interface confinement increases the energies of
the x and y valleys more than the z valleys since the x and
y valleys have smaller effective mass along the z direction.
Therefore, the lower energy states of the subsurface donors
are z-valley dominant, as shown in Fig. 3(a) where the valley
population was obtained through the Fourier transform of the
real-space wave function. The x- and y-valley populations are
much smaller, and therefore, the xy-valley interference has
a much smaller effect on J . This valley repopulation also
means that the anisotropic effective mass of the valleys plays
a more prominent role in the xy confinement of the wave
function. When the wave function is equally distributed over
all six valleys, the wave-function confinement is determined
by the heavier longitudinal mass of each valley, which yields
an equal wave-function extent in each direction. However,
for the dominant z-valley contribution, the xy wave-function
extent is dictated by the lighter transverse effective mass of
the z valleys. As a result, the overlap between the two donor
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wave functions increases in the xy direction and causes an
increase in J . This is highlighted in Fig. 3(b), which shows the
integrated electron density over a region centered in between
the two donors, indicative of the wave-function overlap in the
molecular orbital basis.

Suppressed exchange oscillations closer to the surface may
minimize statistical fluctuations of J from qubit to qubit,
particularly when the STM lithography can place the donors
in-plane and minimize straggle in z [22]. Note that J os-
cillations are still expected for depth variations through the
dominant z-valley contributions.

For donor separations smaller than 5 nm, the value of J
does not always increase as the depth decreases, even though
the J oscillations with R are suppressed at smaller depths. In
this small-separation regime, there is J saturation arising from
the excited bonding orbitals that contribute to the two-electron
ground state significantly (shown later). Since these bonding
orbitals from the T2 and E manifolds still have significant
xy-valley population, we do not see the exchange splitting
monotonically increasing due to the single (z)-valley effective
mass anisotropy. There are additional effects beyond valley
repopulation that emerge when the interface is within 2 Bohr
radii of the wave function, as discussed later. Unlike most
other approximate calculation methods, this regime of small
R and small D can be captured by AFCI.

C. Angular dependence of exchange and charging energy

In this section, we perform FCI calculations of exchange
and charging energies in donor pairs as a function of in-plane
angular separations from [100] to [110]. We focus on a sep-
aration regime of 2–5 nm and a typical depth of 4.5a0 for
both donors. These donor configurations are of relevance to
STM imaging and spectroscopy experiments [23], which aim
to resolve wave-function interference and to establish its links
with J coupling. This is a regime where the distinct identities
of the two donors are still preserved, while electron-electron
interactions and J couplings are large enough to be probed.
These theoretical calculations further substantiate the experi-
mental results [23].

The two-electron charging energy (CE) is the energy re-
quired to overcome the electron-electron interaction to load
the second electron to the donor pair. Experimentally, this
can be directly measured from the charge stability diagram
(conductance vs gate bias) using electrostatic lever arms or ca-
pacitances of the gates. The CE is dominated by the Coulomb
repulsion energy of the electrons. Hence, the measurement
of the CE can also be used to identify the number of bound
electrons to the donor pair [13]. For example, the CE of the
third electron is expected to be much less than that of the
second electron, as the wave functions spread out more with
higher number of electrons and the corresponding Coulomb
repulsion reduces. Hence, it is important to know the range
of possible CEs with donor separations. This may also help
to obtain information about donor separations in experiments
directly from transport measurements. The CE is the total en-
ergy difference between the interacting and the noninteracting
two-electron systems,

CE = ETotal-GS(2e) − 2 ∗ ETotal-GS(1e), (1)

FIG. 4. Exchange energy J and 1e− → 2e− charging energy
(CE) of shallow donor pairs. (a) J is shown (in color) at varying donor
separations in the xy plane (from 2 to 5 nm) and separation directions
(from [100] to [110]). The exchange J varies by less than an order of
magnitude for shallow donors due to z-valley repopulation. (b) CE
(in color) for the same distance range is more monotonic compared
to J .

where ETotal-GS(2e) is the total energy of the two-electron
ground state, and ETotal-GS(1e) is the single-electron ground-
state orbital energy. Similarly, the binding energy (BE) of
the second electron relative to the conduction band minima
(CBmin) is given by

BE = ETotal-GS(2e) − CBmin − ETotal-GS(1e). (2)

Hence,

BE = CE + ETotal-GS(1e) − CBmin. (3)

For a bound orbital, ETotal-GS(1e) − CBmin is negative. The
CE, for repulsive electron-electron interaction is, on the other
hand, positive. For the second electron to be bound, BE has to
be negative. Hence, |CE| < |ETotal-GS(1e) − CBmin| for a two-
electron bound state. This means that the electron-electron
interaction obstructs the loading of the second electron, and
the second electron can be bound to the two-phosphorus
molecule if CE does not overcome the negative single-electron
orbital energy.

Figures 4(a) and 4(b) show the exchange and charging en-
ergies, respectively, for all possible in-plane lattice positions
when one donor is located at the origin and the other donor
at the circled positions 2–5 nm away. The color scale indi-
cates the magnitudes of J and CE. The exchange oscillations
are smaller by about an order of magnitude for this shallow
depth compared to bulk, irrespective of the donor separation
direction. The two-electron CE, which is dominated by the
Coulomb repulsion energy, does not oscillate like J . In fact,
the CE changes rather monotonically with the donor separa-
tions and remains nearly constant with the donor separation
direction, as seen from Fig. 4(b).

D. Oscillations in exchange with depth variation

Figure 5(a) shows the exchange energy variations with the
depth D of coplanar donors, for a fixed separation R of 3 nm
along [100]. The depth variation here is within several Bohr
radii of the donor wave function. While valley repopulation
effects are still present, there are excited bonding orbitals at
play in this regime of J saturation. Furthermore, these excited
states do not have the well-defined valley-orbital (1s − T2-
and 1s − E1-like) symmetry of bulk states, as the interface
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FIG. 5. Effect of donor depth on J and CE. (a) J for donors sep-
arated by 3 nm along [100] with increasing donor depths. (b) CE for
the same donor locations as in panel (a) is again more monotonic and
saturates to its corresponding bulk value. (c) J for donor pairs where
one donor is fixed (green dot) at 4.5a0 from the silicon surface, with
varying depth of the second donor. Lattice points circled in black
and blue correspond to slightly different y positions that alternate
between adjacent monolayers by 0.25a0.

significantly modifies both their valley and their orbital com-
ponents. Hence, the trends in J with depth does not follow the
same monotonic behavior as in the case of large R. The rea-
soning based on the single z-valley effective mass anisotropy
is no longer applicable here, as there are still non-negligible
x and y valleys through the excited bonding states. In the
particular case of R and D shown here, we find that as the
depth decreases, J decreases, which is an opposite trend to
the HL regime. Also, we observe that J oscillates with D at
about 2 Bohr radii depth. Such oscillations can emerge from
the sharp confining potential of the interface, which introduces
an additional source of interference through the z-valley phase
in the wave function.

The CE for this donor pair shows a limited increase with
depths of less than 2 meV [Fig. 5(b)]. The CE saturates to the
bulk values as the depth of the donor pair increases, and more
Coulomb-like symmetry is restored.

We also investigated the impact of a relative depth between
the two donors, which modifies the z-valley interference con-
dition. When there is a difference in the relative depths of the
two donors, the z-valley interference is affected by this differ-
ence. Due to high z-valley population in subsurface donors, a
small change in relative donor depths can lead to a significant
change in J . Figure 5(c) shows exchange energy (in color) as
a function of depth of one donor with the other donor fixed
at 4.5a0 from the silicon surface. The exchange energy in
this case is sensitive to the relative depth due to the z-valley
interference, highlighting the relevance of keeping the donors
in the same plane during fabrication.

E. Regimes of validity of approximate calculation methods
for exchange energy

The AFCI method helps to evaluate the contributions of
various molecular orbital states to the two-electron ground
state as a function of donor separation. This is shown in
Fig. 6(a) for a donor pair at 4.5a0 depth and separated along
[110]. The eigenvectors solved from AFCI are normalized
linear combinations of two-electron SDs composed of spin-
resolved molecular orbitals of the system. Hence, from the
coefficients of these SDs, we can obtain the percentage con-
tributions. It is observed that the lowest (A1) bonding and

FIG. 6. Assessment of approximate methods for calculating the
two-electron ground state of a donor pair from AFCI. The donors
are located 4.5a0 below the silicon surface, separated along [110].
(a) Contributions of bonding states, antibonding states, and all the
remaining (excited) states to the ground state. For donor separations
larger than 14 nm (the Heitler-London regime) the bonding and anti-
bonding contributions are equal and there are no contributions from
any other (excited) states of the donors. (b) Contributions from the
Heitler-London wave function, the ionic (two-electron on the same
site) wave function, and all the remaining (excited) wave functions.
For separations below 5 nm, there is a significant contribution from
the excited states of the donor that is not captured in a Hartree-Fock-
like single Slater determinant approximation.

antibonding orbitals have almost equal (50% each) contribu-
tions for large donor separations of about 14 nm and more.
Hence, this large-separation regime is given by a linear com-
bination of two SDs, reminiscent of a HL regime. As the
donor separation decreases, the contribution of the bonding
SD increases and that of the antibonding SD decreases. Be-
tween 3 and 5 nm, we observe the bonding SD contribution
is so dominant (above 80%) that the ground state can almost
be approximated with a single SD comprising the bonding
orbital with up and down spins. This is, therefore, more in
the regime of a HF-like solution, where a single SD is a
good approximation to the many-body ground state. However,
AFCI also shows that this approximation is also not fully
correct for the donor-pair problem, as excited orbitals from
other valley symmetries (T2, E ) begin to contribute to the
ground state. At donor separations smaller than 4 nm, we
observe that the excited SD contributions grow considerably
(while the antibonding SD contributions drop to zero). At
about R = 2 nm, these excited SD contributions even exceed
those of the A1 bonding SD. This causes a change in the
valley-orbit symmetry of the donor molecule at very small
separations.

Electron interactions are often evaluated in literature using
approximate methods such as HL or HF type approaches.
AFCI helps to assess the validity of these approximations as a
function of donor separations. This is shown in Fig. 6(b). The
HL approximation assumes that the electrons are localized in
different donors, and uses a two-electron wave function of the
form

ψ (r1, r2) = 1
2 [φL(r1)φR(r2) + φR(r1)φL(r2)]

× (↑1↓2 − ↓1↑2), (4)

where φL and φR are orbitals localized to the left and right
donors, respectively. Here, the spatial coordinates of the
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electrons are represented as r1 and r2, and their spins are ↓
and ↑ with subscripts 1 and 2. The orbital part of this state
is symmetric and the spin part is antisymmetric, making the
total wave function antisymmetric. In an orthogonal molecular
orbital basis, this same state is given as a linear combination
of two SDs of the form

ψ (r1, r2) = 1√
2

[φB(r1)φB(r2)](↑1↓2 − ↓1↑2)

+ 1√
2

[φAB(r1)φAB(r2)](↑1↓2 − ↓1↑2), (5)

where φB and φAB are the bonding and the antibonding or-
bitals. By making the substitutions φB = 1√

2
(φL + φR) and

φAB = 1√
2
(φL − φR), Eq. (5) reduces to the HL form of

Eq. (4).
The HL wave function, however, ignores ionic contribu-

tions in which both electrons are located either on the left
donor or on the right donor. These ionic contributions are
stronger for smaller separations of donor pairs and are given
by a Hartree-Fock type wave function, such as

ψ (r1, r2) = 1

2
√

2
[φL(r1)φL(r2) + φL(r1)φR(r2)

+ φR(r1)φL(r2) + φR(r1)φR(r2)]

× (↑1↓2 − ↓1↑2). (6)

The single SD with bonding orbitals yields a wave function
of this form,

ψ (r1, r2) = 1√
2

[φB(r1)φB(r2)](↑1↓2 − ↓1↑2). (7)

Again, Eq. (7) reduces to Eq. (6) when we make the sub-
stitution φB = 1√

2
(φL + φR). In other words, we obtain the

single SD Hartree-Fock type solution when the antibonding
SD contribution diminishes from the HL wave function.

Figure 6(b) decomposes the FCI wave function solution as
comprising HL, ionic (HF), or excited two-electron config-
urations. For donors separated by 14 nm and above, a true
HL state is formed with two SDs in the molecular orbital

(MO) basis. This correlated regime cannot be expressed by a
single SD in the MO basis. As the donor separation decreases,
the ionic contributions build up while the HL contributions
diminish in the FCI wave function. This amounts to a cancel-
lation of the antibonding SDs from the HL wave function by
the ionic contributions, and between 3 and 5 nm, we witness
an uncorrelated, Hartree-Fock-like regime. However, FCI also
shows, as discussed earlier, significant contributions from ex-
cited SDs from other valley-orbit symmetries contributing to
the wave function for very close donor separations.

We have restricted our analysis in this section to the singlet
state only, as it is trivial to do the same analysis on the triplet
state. The essential difference between the two states are the
sign changes to interchange the symmetric and antisymmetric
parts of the wave function. For the triplet state, the orbital
part of the wave function is antisymmetric and the spin part
is symmetric, which preserves the antisymmetry of the entire
wave function over both spin and charge.

IV. CONCLUSION

We have developed a computational framework to calcu-
late exchange and charging energies using a full configuration
interaction method which solves an interacting 2e Hamilto-
nian using an atomistic tight-binding based single-electron
basis. Using this approach, the validity of approximate meth-
ods can be assessed as a function of the separation between
the donors. The Heitler-London state becomes fully valid for
donor separations beyond 14 nm. A single Slater determinant
solution in the molecular orbital basis in the spirit of Hartree-
Fock gives a good representation of the wave function for a
range between 3 and 5 nm of interest in STM imaging and
spectroscopy experiments. However, AFCI calculations reveal
the growing influence of excited states in the wave functions
in the small-separation regime of 3 nm and below. Approx-
imate methods for J calculations do not typically account
for these states. In this close distance regime, the influence
of higher bonding orbitals causes the exchange to saturate.
The oscillations in exchange with donor separation along
[110] are also shown to be suppressed for shallow donors

TABLE I. Summary of R and D dependence of J . The symbol WF denotes wave functions, HL denotes Heitler-London, and HF denotes
Hartree-Fock.

���������D
R

Small (0.4–5 nm) Intermediate–large (>5 nm)

Small (<5 nm) J: Oscillating with D, J: Larger magnitude compared to large D,
suppressed oscillations with R, strongly suppressed oscillations with R,
saturation in average magnitude with R exponential drop with R
WF: Excited orbital contributions WF: HL at large R to ionic (HF-like) at
Valleys: Case-by-case analysis intermediate R, large overlap due to small D
needed based on R and D Valleys: z-valley dominant

Large (>5 nm) J: Pronounced oscillations with R, J: Noticeable oscillations with R,
saturation in average magnitude with R exponential drop with R
WF: Large contribution from WF: HL at large R to ionic (HF-like)
excited bonding orbitals at intermediate R, small WF overlap due to large D
Valleys: z-valley dominant in ground orbital, Valleys: Slight asymmetry in valley populations
x and y valleys from excited orbitals due to separation axis
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located close to the interface. This is due to an increase in
the z-valley population that makes exchange more immune to
donor separation along the x and y directions, but the exchange
oscillations remain present with varying donor depths due to
the associated changes in the z-valley interference condition.
Relative donor depths and close proximity of interfaces are
also seen to induce oscillations in exchange coupling, which
emphasizes the need to precisely control the vertical straggle
in donor positions. Table I summarizes the main features of
the two-electron states as observed from the FCI simulations.

Although the methodology developed here is applied to
phosphorus donors, the same technique can be applied to
other shallow donor and acceptor pairs (groups III and VI)
in silicon and germanium. The main difference will arise
from the single-electron wave functions of the dopants. For
example, the deeper the binding energy of the dopant, the
stronger the electron density in the central cell, which means
that the tail of the wave function will reduce in its extent.
This will also reduce the exchange splitting, but one can
still observe the various regimes of exchange energy. They
will only occur at slightly reduced separations. For very deep
donors, the tight-binding method may no longer be applica-
ble due to the subatomically confined wave functions and

more complicated electron-electron interactions in the core
of the impurity species. For shallow acceptor pairs, such as
boron [51], exchange oscillations are not expected as the
valence-band maxima states occur at k = 0. The method is
also applicable directly to such dopants embedded in realistic
devices, which may have applied gate voltages or strain, and
requires no additional computational costs.
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