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A magnetic toroidal moment is a fundamental electronic degree of freedom in the absence of both spatial
inversion and time-reversal symmetries and gives rise to novel multiferroic and transport properties. We elucidate
essential model parameters of the nonlinear transport in the space-time (PT ) symmetric collinear antifer-
romagnetic metals accompanying a magnetic toroidal moment. By analyzing the longitudinal and transverse
components of the second-order nonlinear conductivity on a two-dimensionally stacked zigzag chain based on
the nonlinear Kubo formula, we show that an effective coupling between the magnetic toroidal moment and
the antisymmetric spin-orbit interaction is an essential source of the nonlinear conductivity. Moreover, we find
that the nonreciprocal longitudinal current and nonlinear transverse current in a multiband system are largely
enhanced just below the transition temperature of the antiferromagnetic ordering. We also discuss the relevance
of the nonlinear conductivity to the linear magnetoelectric coefficient and conductivity. Our result serves as a
guide for exploring the microscopic essence and clarifying the parameter dependence of the nonlinear conductive
phenomena in ferrotoroidal metals.
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I. INTRODUCTION

Spontaneous time-reversal symmetry breaking has long
attracted much attention, as it leads to intriguing physi-
cal phenomena, such as the anomalous Hall effect and the
magnetooptical Kerr effect. Modern understanding of these
phenomena has been achieved based on the Berry phase
mechanism [1,2]. Although such phenomena were originally
studied in the ferromagnetic state, it has recently been rec-
ognized that similar phenomena can occur in a certain class
of antiferromagnetic (AFM) states without the uniform mag-
netization [3]. For example, the collinear AFM ordering with
the mirror symmetry breaking as the uniform magnetization,
results in the anomalous Hall effect [4–7]. Thus, the AFM
materials can also exhibit the same physical properties as ordi-
nary ferromagnetic ones, which is advantageous for functional
materials without leakage of a magnetic field.

The AFM state also exhibits multiferroic phenomena when
both spatial inversion (P) and time-reversal (T ) symme-
tries are broken simultaneously while their product (PT )
symmetry is preserved. The typical example is the linear
magnetoelectric effect in the AFM insulators, e.g., Cr2O3 [8],
Ga2−xFexO3 [9,10], LiCoPO4 [11,12], and Ba2CoGe2O7 [13],
and in the AFM metals, e.g., UNi4B [14–16] and Ce3TiBi5
[17,18]. Moreover, the nonreciprocal optical and transport
properties have been studied [19–23]. Among them, mul-
tiferroic phenomena within the linear response theory have
been understood by regarding the fact that the AFM states
accompany the uniform orderings of the electronic odd-parity
magnetic-type multipoles [14,24–39], such as the magnetic
toroidal (MT) dipole [14,25,26,30,33,35,37,40–44].

Meanwhile, the microscopic understanding of the nonlin-
ear transports in AFMs has not been fully achieved except for
several works [22,45,46] and symmetry analyses [39,47]. For
example, it remains unclear which model parameters are es-
sentially important to induce nonlinear transports and how the
odd-parity magnetic-type multipoles are related to them. To be
clear on this point and obtain an intuitive understanding of the
nonlinear transport, it is useful to extract the essential model
parameters, without which the nonlinear transport coefficients
vanish, from various hopping processes, spin-orbit coupling,
and order parameters in the microscopic model Hamiltonian.
Such an understanding provides a guideline to explore new
functional AFM materials with a giant nonlinear transport and
its efficient bottom-up design in combination with the ab initio
calculations.

In this paper, we elucidate the microscopic essential model
parameters for the second-order nonlinear conductivity in the
PT -symmetric collinear AFMs by focusing on the role of
the MT moment. By analyzing a minimal model on a two-
dimensionally stacked zigzag chain based on the nonlinear
Kubo formula, we show that the effective coupling between
the MT moment and one of the antisymmetric spin-orbit
interactions (ASOIs) plays an essential role in inducing the
longitudinal and transverse components of the nonlinear con-
ductivity. Moreover, we find that the nonlinear conductivities
are highly enhanced near the transition temperature in the case
that the AFM molecular field is comparable to the ASOI in
a multiband system. We also discuss the relevance between
the transverse nonlinear conductivity and the linear magneto-
electric coefficient by comparing the ASOI and temperature
dependences.
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FIG. 1. Schematic pictures of (a) a two-sublattice zigzag chain
and (b) its stacking along the z direction. (c) The temperature (T )
dependence of the MT moment T MF

x at α1 = 0.4 and α2 = 0.1. The
AFM structure with the MT moment along the x direction Tx is
shown in the inset. (d) The energy bands measured from the chemical
potential μ at kz = 0 for three temperatures.

The organization of this paper is as follows. In Sec. II, we
introduce a minimal model on a two-dimensionally stacked
zigzag chain. After showing the relation of an MT moment
to the nonlinear conductivity and the linear magnetoelectric
coefficient in Sec. III, the numerical results are presented in
Sec. IV. In Sec. V, we discuss the essential model parameters
and the semi-quantitative evaluation of the nonlinear conduc-
tivity. We summarize this paper in Sec. VI. In Appendix A,
we present the functional forms of the odd-parity magnetic
and MT multipoles. In Appendix B, we show the analytic
expressions for the essential model parameters in the asym-
metric band modulation, nonlinear conductivities, and linear
magnetoelectric coefficient. Finally, we present the numerical
result of the nonlinear transverse conductivity in the presence
of the additional interlayer hopping in Appendix C.

II. MODEL

We consider a minimal two-dimensional system where the
zigzag chain along the x direction [Fig. 1(a)] is stacked along
the z direction [Fig. 1(b)]. The tight-binding Hamiltonian is
given by

H = HAB
hop +Hhop +HASOI +Hint, (1)

HAB
hop =

∑
k

∑
σ

{εAB(k)c†
kAσ

ckBσ + H.c.}, (2)

Hhop =
∑

k

∑
σ

ε(k)(c†
kAσ

ckAσ + c†
kBσ

ckBσ ), (3)

HASOI =
∑

k

∑
σσ ′

g(k) · σσσ ′
(c†

kAσ
ckAσ ′ − c†

kBσ
ckBσ ′ ), (4)

Hint = JAF

∑
〈i j〉

M̂z
iAM̂z

jB, (5)

where c†
klσ (cklσ ) is the creation (annihilation) operator of

electrons at wave vector k, sublattice l = A, B, and spin
σ =↑,↓. The hopping Hamiltonian HAB

hop in Eq. (2) includes
the nearest-neighbor hopping between A and B sublattices as
εAB(k) = −2t1 cos(kxa/2), while Hhop includes the hoppings
within the same sublattices along the x and z directions as
ε(k) = −2t2 cos (kxa) − 2t3 cos (kzc). HASOI in Eq. (4) rep-
resents the ASOI that arises from the relativistic spin-orbit
coupling as g(k) = [−α2 sin (kzc), 0, α1 sin (kxa)]. The ASOI
in Eq. (4) has the sublattice-dependent staggered form satis-
fying the global inversion symmetry [24,48]. Hint in Eq. (5)
represents the Ising-type AFM exchange interaction of the
nearest-neighbor A-B bond with JAF > 0 where M̂z

iA(B) =∑
σσ ′ c†

iA(B)σ σ z
σσ ′ciA(B)σ ′ is the z component of the magnetic

dipole operator and c†
ilσ and cilσ are the Fourier transforms of

c†
klσ and cklσ , respectively. We adopt the Hartree-type mean-

field approximation as

JAF

∑
〈i j〉

M̂z
iAM̂z

jB

→ J̃AF

∑
i

(〈
M̂z

A

〉
M̂z

iB + 〈
M̂z

B

〉
M̂z

iA − 〈
M̂z

A

〉〈
M̂z

B

〉)
, (6)

where 〈· · ·〉 represents the statistical average and J̃AF = 2JAF

is the renormalized coupling constant taking into account the
two nearest-neighbor atomic sites. We set the model param-
eters as (t1, t2, t3, JAF) = (0.1, 1, 0.5, 2.5), electron filling as
1/5, and the lattice constant as a = c = 1 in the following
discussion; t2 is set as the energy unit.

The model in Eq. (1) exhibits the MT moment when the
global inversion symmetry is broken under the staggered
AFM ordering, as shown in the inset of Fig. 1(c) [14,24].
In the present system, the staggered AFM moment along the
z direction is equivalent to the uniform MT moment along
the x direction; T MF

x ≡ (〈M̂z
A〉 − 〈M̂z

B〉)/2 [49]; see also Ap-
pendix A. The T dependence of T MF

x at α1 = 0.4 and α2 = 0.1
is shown in Fig. 1(c), where T MF

x is self-consistently deter-
mined for the two-sublattice unit cell by taking over 2002

grid points in the Brillouin zone. T MF
x becomes nonzero be-

low the transition temperature TN and saturates below T 	
0.2TN. Almost the same behavior is obtained for α1, α2 � 0.5.
Reflecting T MF

x 
= 0, the electronic band structure is asymmet-
rically modulated along the kx direction, as shown in Fig. 1(d)
[24,49]. This asymmetric band modulation is understood from
the effective coupling between T MF

x and the ASOI α1 in the
doubly degenerate bands with the PT symmetry, i.e.,

ε±(k) = ε(k) ± X (k), (7)

X (k) =
√(

α1sx − T̃ MF
x

)2 + α2
2s2

z + 4t2
1 c2

x/2, (8)

where sx = sin kx, sz = sin kz, cx/2 = cos kx/2, and T̃ MF
x =

J̃AFT MF
x . The factor (α1sx − T̃ MF

x )2 includes the coupling
between T̃ MF

x and α1 with the odd function of kx. This asym-
metric band modulation due to the coupling between α1 and
T̃ MF

x becomes a source of the nonlinear transport, as will be
discussed in the following sections; see also Appendix B.
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III. SECOND-ORDER NONLINEAR CONDUCTIVITY
AND LINEAR RESPONSE COEFFICIENT

A. Second-order nonlinear conductivity

The second-order nonlinear conductivity tensor σμνλ de-
fined as Jμ = σμνλEνEλ (μ, ν, λ = x, y, z) is calculated on the
basis of the second-order Kubo formula [22]. In the clean
limit, the intraband contribution is dominant, which is given
by

σμνλ = e3τ 2

h̄3

1

V

∑
k

∑
n

∂2εn(k)

∂kμ∂kν

∂εn(k)

∂kλ

∂ f [εn(k)]

∂εn(k)
, (9)

where e(> 0), τ , h̄, and V are the elementary charge, re-
laxation time, the reduced Planck’s constant, and the system
volume, respectively [50]. f [εn(k)] is the Fermi distribution
function for the nth-band eigenenergy εn(k). The intraband
contribution in Eq. (9) represents the Drude-type one with
the dissipation τ−2 whose expression eventually coincides
with that obtained by the Boltzmann formalism [22,51–53].
Hereafter, we use the scaled σμνλ as σ̄μνλ = σμνλ/(e3τ 2h̄−3).

From Eq. (9), one finds the relation σμνν = σνμν by inte-
gration by parts. This indicates that the Drude-type nonlinear
conductivity σμνλ is the totally symmetric rank-3 tensor
with ten independent components: σxxx, σyyy, σzzz, σxyy, σyzz,
σzxx, σxxy, σyyz, σzzx, and σxyz. As σμνλ is a third-rank polar
time-reversal-odd tensor, i.e., σμνλ → −σμνλ under P or T
operation but σμνλ → σμνλ under PT operation, it becomes
nonzero when both the spatial inversion and time-reversal
symmetries are absent. From the multipole viewpoint, the
above symmetry requirement means that the nonzero tensor
components are related to the active odd-parity MT multipoles
[42,54–57]: three rank-1 MT dipoles (Tx, Ty, Tz ) and seven
rank-3 MT octupoles (Txyz, T α

x , T α
y , T α

z , T β
x , T β

y , T β
z ), whose

correspondence is given by [39]

σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σxxx σyxx σzxx

σxyy σyyy σzyy

σxzz σyzz σzzz

σxyz σyyz σzyz

σxzx σyzx σzzx

σxxy σyxy σzxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

↔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3Tx+2T α
x Ty−T α

y −T β
y Tz−T α

z +T β
z

Tx−T α
x +T β

x 3Ty+2T α
y Tz−T α

z −T β
z

Tx−T α
x −T β

x Ty−T α
y +T β

y 3Tz+2T α
z

Txyz Tz−T α
z −T β

z Ty−T α
y +T β

y

Tz−T α
z +T β

z Txyz Tx−T α
x −T β

x

Ty−T α
y −T β

y Tx−T α
x +T β

x Txyz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, (10)

where the functional forms of the dipoles and octupoles are
summarized in Appendix A. The correspondence in Eq. (10)
is obtained by decomposing σμνλ into the tensor components
with the same rotational symmetry to the dipoles and oc-
tupoles (see also Appendix A). When the MT dipole and/or
MT octupole in Eq. (10) are activated in an AFM metal, the
corresponding tensor component of σμνλ becomes nonzero.
From Eq. (10), one finds that the MT dipole Tμ is relevant to
the longitudinal component σμμμ and the transverse compo-

nents σμνν and σνμν (ν 
= μ). It means that both nonreciprocal
conductivity and nonlinear transverse conductivity are ex-
pected to be realized in the presence of the MT dipole, i.e.,
ferrotoroidal metals [39,58,59].

In the present system under the magnetic point-group
m′mm with the nonzero MT moment T MF

x , five components
σxxx, σxyy, σyxy, σxzz, and σzzx can be nonzero since Tx, T α

x ,
and T β

x in Eq. (10) belong to the totally symmetric irreducible
representation [39]. Among them, σxyy and σyxy vanish owing
to ky = 0 in the present two-dimensional system. In addition
to the nonzero contribution from the linear conductivity σxx,
σxxx results in the nonreciprocal current, while σxzz without
linear σxz leads to the pure second-order transverse current,
respectively.

B. Linear response coefficient

In the presence of the MT moment T MF
x , the linear mag-

netoelectric tensor αμν in Mμ = αμνEν (μ, ν = x, y, z) is also
finite. We calculate the linear magnetoelectric tensor by the
linear response theory as

αμν =egμBh̄

2Vi

∑
k

∑
n 
=m

f [εn(k)] − f [εm(k)]

[εn(k) − εm(k)]2 + (h̄δ)2
σ nm

μk �
mn
νk ,

(11)

where g and μB are the g factor (g = 2) and Bohr magneton,
respectively. σ nm

μk = 〈nk|σμ|mk〉 and �mn
νk = 〈mk|�νk|nk〉 are

the matrix elements of spin σμ and velocity �νk = ∂H/(h̄∂kν )
for the eigenstate |nk〉. We use the scaled ᾱμν = αμν/(eμBh̄)
in the following discussion.

As αμν in a PT -symmetric system is relevant to
the rank-0–2 odd-parity multipoles: magnetic monopole
M0, MT dipoles (Tx, Ty, Tz ), and magnetic quadrupoles
(Mu, Mv, Myz, Mzx, Mxy) (see also Appendix A), the relation
is represented as follows [31,32]:

α =
⎛
⎝αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

⎞
⎠ (12)

↔
⎛
⎝M0 − Mu + Mv Mxy + Tz Mzx − Ty

Mxy − Tz M0 − Mu − Mv Myz + Tx

Mzx + Ty Myz − Tx M0 + 2Mu

⎞
⎠.

(13)

Since Tx and Myz become active for T AF
x 
= 0 in the present

system, αyz and αzy are expected to be nonzero. As αzy is zero
due to the two dimensionality, we only consider αyz.

For the following discussion, we also present the linear
Hall conductivity

σxz =e2h̄

Vi

∑
k

∑
n 
=m

f [εn(k)] − f [εm(k)]

[εn(k) − εm(k)]2 + (h̄δ)2
�nm

xk �
mn
zk . (14)

We use the scaled value σ̄xz = σxz/(e2h̄Hy) in the following,
where Hy is the Zeeman field along the y direction.
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FIG. 2. (a) The longitudinal second-order conductivity σ̄xxx for
α1 = 0.1–0.5 as a function of T at α2 = 0.1. The inset shows σ̄xxx/α1.
(b) The upper- and lower-band contributions to σ̄xxx at α1 = 0.4.

IV. NUMERICAL RESULT

A. Longitudinal second-order conductivity σxxx

We first show the numerical result of the longitudinal non-
linear conductivity σ̄xxx. Figure 2(a) shows σ̄xxx as a function
of T for various α1 = 0.1–0.5 at α2 = 0.1. The T depen-
dence for different α1 is qualitatively similar; σ̄xxx is largely
enhanced just below T = TN, and shows a maximum with
the decrease of T . While further decreasing T , σ̄xxx shows
the sign change, and then reaches a negative value at the
lowest T .

The nonzero σxxx is closely related to the formation of the
asymmetric band structure under T MF

x 
= 0 since σxxx has the
same symmetry as T MF

x [39]. As the asymmetric band mod-
ulation is caused by the coupling between T̃ MF

x and α1, they
are indispensable for nonzero σxxx. Indeed, σ̄xxx vanishes for
α1 = 0 or T̃ MF

x = 0. Moreover, σ̄xxx is well scaled by σ̄xxx/α1

at low temperatures T � 0.7TN for small α1. See Sec. V A for
the essential model parameters in detail.

Meanwhile, σ̄xxx is not scaled by α1 for 0.7 � T/TN �
1 in the region where σ̄xxx is drastically enhanced. This
is attributed to the rapid increase of T̃ MF

x and the resul-
tant drastic change of the electronic band structure near
the Fermi level. As σ̄xxx in Eq. (9) includes the factors
∂2εn(k)/∂k2

x and ∂εn(k)/∂kx, the small X (k) appearing in
the denominator of ∂2εn(k)/∂k2

x and ∂εn(k)/∂kx gives a
dominant contribution. When considering the small order
parameter compared to the ASOI, i.e., T̃ MF

x � α1, X (k) can
become small when the Fermi wave number kF

x satisfies

FIG. 3. The transverse second-order nonlinear conductivity σ̄xzz

for several α1 and α2 with α1 = α2. The inset represents σ̄zxx/(α1α
2
2 ).

T̃ MF
x 	 α1 sin kF

x , which results in a large enhancement of
σ̄xxx. Such an enhancement is remarkable when the upper
and lower bands are closely located in the paramagnetic state
with small X (k) as shown in Fig. 1(d), which can be real-
ized for small t1 = 0.1 and α2 = 0.1. In short, there are two
conditions for large σ̄xxx: One is the large essential param-
eters, such as α1, T MF

x , and JAF, and the other is to satisfy
T̃ MF

x 	 α1 sin kF
x in a multiband system. These conditions

can be experimentally controlled by electron/hole doping
and temperature.

The sign change of σ̄xxx in T dependence is owing to the
multiband effect. As shown in Fig. 1(d), the band bottom is
shifted in the opposite direction for the upper and lower bands,
which means that the opposite sign of the coupling α1T̃ MF

x
results in the opposite contribution to σ̄xxx. This is demon-
strated by decomposing σ̄xxx into the upper- and lower-band
contributions, as shown in Fig. 2(b). The results indicate that
the dominant contribution of σ̄xxx arises from the upper band
for 0.9 � T/TN � 1, while that arises from the lower band for
T/TN � 0.9. The suppression of the upper-band contribution
for low T is because it becomes away from the Fermi level by
the development of T MF

x .

B. Transverse second-order conductivity σxzz

Next, let us discuss the transverse nonlinear conductivity
σ̄xzz. Figure 3 shows the T dependence of σ̄xzz for 0.02 �
α1, α2 � 0.1 with α1 = α2. The behavior of σ̄xzz against T
is similar to σ̄xxx except for the sign change; σ̄xzz becomes
nonzero below T = TN and shows the maximum near TN.
While decreasing T , σ̄xzz is suppressed and shows an almost
constant value.

Similar to σxxx, the origin of nonzero σxzz is the asymmetric
band modulation under T MF

x 
= 0 via the effective coupling
T̃ MF

x α1. In addition, we find another contribution from α2 for
nonzero σxzz in contrast to σxxx, where σ̄xzz is well scaled by
α1α

2
2 as shown in the inset of Fig. 3, as discussed in Sec. V A.

The additional parameter dependence for α2
2 is owing to an

additional symmetry between kz and kz + π for α2 = 0, which
gives the opposite-sign contribution to σxzz so that totally
σxzz = 0.
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FIG. 4. (a) The magnetoelectric coefficient ᾱyz and (b) the quan-
tity σ̄xzᾱyz with the same parameters as Fig. 3. σ̄xz is calculated
by supposing the magnetic field Hy = 0.01. The insets of (a) and
(b) represent ᾱyz/α2 and σ̄xzᾱyz/(α1α

2
2 ), respectively.

C. Comparison to magnetoelectric coefficient αyz

We also present another MT-moment-driven phenomena,
the magnetoelectric response, and compare its parameter and
T dependence to the nonlinear conductivities obtained in the
previous section. Figure 4(a) shows the T dependence of
ᾱyz for 0.02 � α1, α2 � 0.1 with α1 = α2, whose behavior is
similar to the transverse nonlinear conductivity σxzz in Fig. 3
except for the sign. ᾱyz is nonzero even if α1 = 0 that is dif-
ferent from the nonlinear conductivities, whereas α2 and T̃ MF

x
are essential to obtain the finite ᾱyz, as detailed in Sec. V A.
As shown in the inset of Fig. 3(a), ᾱyz is well scaled as ᾱyz/α2

for small α2.
Moreover, it is noteworthy to comment on the relation

between the transverse nonlinear conductivity and a combina-
tion of the linear magnetoelectric and Hall coefficients since
the nonlinear transverse transport in thePT -symmetric AFMs
can be understood as the Hall transport driven by the induced
magnetization through the linear magnetoelectric response at
the phenomenological level [14,21].

We show the T dependence of σ̄xzᾱyz in Fig. 4(b) for the
same parameters in Fig. 3. The small magnetic field Hy =
0.01 is introduced to mimic the induced magnetization in αyz.
Compared to the results in Figs. 3 and 4(b), one finds the
resemblance between the T dependences of σ̄xzz and σ̄xzᾱyz,
both of which are scaled by α1α

2
2 . A good qualitative corre-

spondence in these responses indicates that the interpretation
of dividing the subsequent two linear processes for nonlinear
conductivity is reasonable in the present model. The overall

quantitative difference σ̄xzᾱyz/σ̄xzz ∼ 10−2 may be ascribed to
the magnitude of the used internal magnetic field (Hy = 0.01)
that should be replaced by the true internal field. However, it
is hard to estimate it quantitatively.

V. DISCUSSION

A. Essential model parameters

We discuss the parameter dependences of the asymmet-
ric band modulation, nonlinear conductivity, and the linear
magnetoelectric and Hall coefficients at the level of the micro-
scopic model Hamiltonian. For this purpose, we try to extract
the essential parameters for each response from various hop-
pings, spin-orbit coupling, and internal/external field in the
model Hamiltonian based on the method in Refs. [60,61].
In the following, we discuss the important model parameters
in each case one by one, and the results are summarized in
Table I. The derivation is shown in Appendix B.

First, the essential parameters for the asymmetric band
modulation [60] are given by T̃ MF

x α1, as shown in Ap-
pendix B1. The result is consistent with the eigenvalues in
Eq. (7).

Next, the essential model parameters for σxxx [61] (see also
Appendix B2) are given by

σxxx = α1T̃ MF
x

[
t2
1 F

(
t1, t2, t3, α1, α2, T̃ MF

x

)
+ t2F ′(t1, t2, t3, α1, α2, T̃ MF

x

)]
, (15)

where F and F ′ represent the arbitrary functions. Note that
only the even power of α1 and T̃ MF

x appears in F and F ′. Thus,
one finds that the coupling of α1 and T̃ MF

x is always necessary
to induce σxxx, which is consistent with the numerical result
presented in Sec. IV A. Moreover, σxxx is closely related to
the asymmetric band modulation because both of them are
characterized by the same essential model parameters.

Similarly, the essential model parameters of σxzz are
given by

σxzz = α1T̃ MF
x

[
α2

2t2F
(
t1, t2, t3, α1, α2, T̃ MF

x

)]
, (16)

where the even power of α1, α2, and T̃ MF
x appears in F . Equa-

tion (16) shows that the coupling of α1 and T̃ MF
x is essential

to induce σxzz as similar to σxxx, which is consistent with the
numerical result in Sec. IV B. Moreover, Eq. (16) indicates
that t2 and the even power of α2 are also necessary for σxzz in
the present model in Eq. (1).

In a similar way, the essential model parameters to induce
αyz and σxz are given by

αyz = α2T̃ MF
x

[
t3F

(
t1, t2, t3, α1, α2, T̃ MF

x

)]
, (17)

σxz = α1α2Hy
[
t3F

(
t1, t2, t3, α1, α2, Hy, T̃ MF

x

)]
. (18)

This indicates that nonzero αyzσxz needs nonzero α1α
2
2 T̃ MF

x ,
which shows a good agreement with the condition for σxzz.
The common essential model-parameter dependence in the
small parameter region was already confirmed in Secs. IV B
and IV C.

It is noteworthy that the above approach to extract the
essential model parameters can be straightforwardly applied,
even when introducing the other model parameters. For exam-
ple, let us consider the additional interlayer A-B hopping t4 in
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TABLE I. Model parameters necessary for the asymmetric band modulation and response tensors indicated by the checkmark (�). In the
last two columns, model parameters are decomposed into the essential and semi-essential parts.

t2 t3 α1 α2 T̃ MF
x Hy Essential Semi-essential

Asymmetric band modulation � � α1T̃ MF
x

σxxx (t4 = 0) � � α1T̃ MF
x t2

1 , t2

σxxx (t4 
= 0) � � α1T̃ MF
x t2

1 , t2, t4

σxzz (t4 = 0) � � � � α1T̃ MF
x α2

2t2

σxzz (t4 
= 0) � � α1T̃ MF
x α2

2t2, t4

αyz (t4 = 0) � � � α2T̃ MF
x t3

αyz (t4 
= 0) � � α2T̃ MF
x t3, t4

σxz (t4 = 0) � � � � α1α2Hy t3

σxz (t4 
= 0) � � � α1α2Hy t3, t4

the model Hamiltonian. In this situation, one finds that there
is no longer a simple correlation between σxzz and σxzαyz; the
essential model parameters for the first are α1T̃ MF

x rather than
α1α

2
2 T̃ MF

x , while those for the second still remain the same
as α1α

2
2 T̃ MF

x as discussed in Appendix B. In other words, the
factor α2

2t2 in the square bracket in Eq. (16) is not truly the
essential factor. Indeed, the numerical results in the presence
of t4 give a different temperature dependence from each other,
as shown in Appendix C. Thus, the correspondence between
σxzz and σxzαyz occurs depending on the hopping in the effec-
tive model, which is clarified by performing a procedure in
Appendix B.

B. Quantitative evaluation

Finally, we discuss the order estimate of the nonlinear con-
ductivity for α1 = 0.5 and α2 = 0.1 by the ratio σxxx/(σxx )2

being independent of the relaxation time in the clean limit. By
putting the typical values as a ∼ 0.5 [nm] and |t2| = 0.2 eV,
we obtain σxxx/(σxx )2 ∼ 10−3h̄a2e−1|t2|−1 ∼ 10−18 [m3 A−1]
for T → 0 and 10−17 [m3 A−1] near TN, which is compara-
ble to the value in the two-dimensional nonmagnetic Rashba
system under the magnetic field [51]. Further enhancement
can be achieved by tuning the model parameters and electron
filling.

VI. SUMMARY

In summary, we investigated the microscopic essence for
the second-order nonlinear conductivity in the PT -symmetric
collinear AFM with the MT moment on a two-dimensionally
stacked zigzag chain by focusing on the role of the MT mo-
ment. Based on the nonlinear Kubo formula in the clean limit,
we found that the effective coupling between the ASOI and
the MT moment is essential for the nonlinear conductivity.
By analyzing both the longitudinal and transverse components
of the nonlinear conductivity while changing the ASOI and
the temperature, we showed that their large enhancement can
be achieved near the transition temperature, provided that the
AFM molecular field is comparable to the ASOI in a multi-
band system. We also discussed the similarity and difference
between the transverse nonlinear transport and the combined
response consisting of the linear magnetoelectric and Hall
coefficients.

The present result elucidates the essential model parame-
ters for MT-related physical phenomena, such as the nonlinear

conductivity and the linear magnetoelectric effect, in
PT -symmetric collinear AFMs. The similar analysis can
be applied to examine the role of the MT moment for
any collinear AFMs with the MT moment in the zigzag
structure, e.g., CeRu2Al10 [62,63], Ce3TiBi5 [17,18],
and α-YbAl1−xMnxB4 [64], and other ferrotoroidal
metals/semiconductors with locally noncentrosymmetric
crystal structures, such as Mn2Au [46,65], RB4 (R = Dy,
Er) [66,67], CuMnAs [45,68], PrMnSbO [69], NdMnAsO
[70], and XyFe2−xSe2 (X = K, Tl, Rb) [71–73], once the
model Hamiltonian is given. The measurements of the
linear magnetoelectric effect and the nonlinear conductivity
for these materials are also useful to investigate their
microscopic mechanisms. Moreover, the analysis is
straightforwardly extended to the AFMs with the other
odd-parity magnetic-type multipole moments, such as the
MT octupole, since they are characterized by the same
spatial inversion and time-reversal symmetries. Our study
will stimulate a further investigation of the multiferroic and
conductive phenomena in the PT -symmetric AFM metals.
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APPENDIX A: EXPRESSION OF MULTIPOLES

We show the functional form of multipoles with rank 0–3
except the normalization constant: the rank 0 (monopole) is

X0 ∝ 1, (A1)

the rank 1 (dipole) is

(Xx, Xy, Xz ) ∝ (x, y, z), (A2)

the rank 2 (quadrupole) is

Xu ∝ 3z2 − r2, (A3)

Xv ∝ x2 − y2, (A4)

(Xyz, Xzx, Xxy) ∝ (yz, zx, xy), (A5)
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the rank 3 (octupole) is

Xxyz ∝ xyz, (A6)(
X α

x , X α
y , X α

z

) ∝ [x(5x2 − 3r2), y(5y2 − 3r2), z(5z2 − 3r2)],
(A7)(

X β
x , X β

y , X β
z

) ∝ [x(y2 − z2), y(z2 − x2), z(x2 − y2)], (A8)

where X represents the types of multipoles. When X corre-
sponds to the time-reversal-odd polar (axial) tensor, it stands
for T (M) for MT (magnetic) multipole.

By using the multipole notation, the collinear AFM with
q = 0 on a zigzag chain is represented by the MT dipole Tz

when the AFM moment is along the x direction as

Tz = 1

2

∑
l=A,B

(
Rx

l σ
y
l − Ry

l σ
x
l

) → 1

2

(
σ x

B − σ x
A

)
, (A9)

where σ
μ

l and Rμ

l (μ = x, y, z) are the magnetic moment
and the position vector at the lth atom, respectively [74–76].
Similarly, the AFM with the moment along the y direction is
characterized by the magnetic quadrupole Mu as

Mu =
∑

l=A,B

(
2Rz

l σ
z
l − Rx

l σ
x
l − Ry

l σ
y
l

) → 1

2

(
σ

y
B − σ

y
A

)
,

(A10)

and that along the z direction is by the MT dipole Tx as

Tx = 1

2

∑
l=A,B

(
Ry

l σ
z
l − Rz

l σ
y
l

) → 1

2

(
σ z

A − σ z
B

)
. (A11)

Moreover, the dipole and octupole components of σμνλ in
Eq. (10) are related to the MT dipoles in Eq. (A2) and MT
octupoles in Eqs. (A6)–(A8) as follows:

Tx ↔ 1

15

∑
ν=x,y,z

(σxνν + 2σννx ) (cyclic), (A12)

Txyz ↔ σxyz, (A13)

T α
x ↔ 1

10

(
5σxxx − 3

∑
ν=x,y,z

σxνν

)
(cyclic), (A14)

T β
x ↔ 1

2
(σxyy − σzzx ) (cyclic). (A15)

APPENDIX B: ESSENTIAL MODEL PARAMETERS
IN RESPONSE TENSORS

We show the essential model parameters for the asym-
metric band modulation, the longitudinal and transverse
nonlinear conductivities, and the linear Hall and magnetoelec-
tric coefficients by using the systematic analysis method in
Refs. [60,61]. The results are summarized in Table I.

1. Asymmetric band modulation

First, we give the essential model parameters for the asym-
metric band modulation. Following the method for extracting
the essential model parameters in the thermal average of a
Hermitian operator [60,61], we obtain the momentum distri-
bution of the band modulation and its parameter dependences
by analytically evaluating the low-order contributions of the
following quantity:

�i(k) = Tr
[
hi+1(k)

]
. (B1)

Here hi+1(k) denotes the (i + 1)-th power of the Hamiltonian
matrix at wave vector k, i.e., H in Eq. (1) is represented
as H = ∑

k h(k). The 0th- and 1st-order contributions �0(k)
and �1(k) are explicitly given by

�0(k) = −8(t2 cos kx + t3 cos kz ), (B2)

�1(k) = −8α1T̃ MF
x sin kx +4

[(
T̃ MF

x

)2 + α2
1 sin2 kx +α2

2 sin2 kz

+ 2t2
1 (1 + cos kx ) + 4(t2 cos kx + t3 cos kz )2

]
. (B3)

The odd function of kx appears only in the first term of
Eq. (B3) in the form proportional to α1T̃ MF

x , which means
that the asymmetric band structure is induced by the coupling
between the nonzero T̃ MF

x and α1. It is confirmed at least to
the sixth order. Note that the odd functions of kx included in
the higher-order terms in Eq. (B1) are always proportional to
α1T̃ MF

x . Thus, both α1 and T̃ MF
x are the essential model param-

eters for the asymmetric band structure and their coupling is
also crucial for nonlinear conductivities.

2. Second-order nonlinear conductivity

Next, we elucidate the essential model parameters in
the longitudinal and transverse nonlinear conductivities. The
essential model parameters in the Drude-type nonlinear con-
ductivities can be extracted by evaluating the following
quantity [61]:

Re
[



i jk
μνλ

] =
∑

k

Re
{
Tr

[
�̂μkhi(k)�̂νkh j (k)�̂λkhk (k)

]}
, (B4)

where �̂μk denotes the μ component of the velocity operator
at k.

Here, we introduce the interlayer hopping between the
sublattices A and B [Fig. 5(a)]. The effect of the additional
hopping is taken into account by replacing εAB(k) as
−2t1 cos (kxa/2) → −2[t1 + 2t4 cos (kzc)] cos (kxa/2). The
results of the evaluations are given as follows.

- Longitudinal nonlinear conductivity σxxx

As the essential model parameters are included in any pair
of (i, j, k) in Eq. (B4), we here show two low-order contribu-
tions to Eq. (B4) in the (i, j, k) = (0, 0, 1) and (0,1,3) terms
as representative examples, which are explicitly given by

Re
[

001

xxx

] = α1T̃ MF
x

(
t2
1 + 2t2

4

)
, (B5)

Re
[

013

xxx

] = 4α1T̃ MF
x

(
t2

{
α2

1α
2
2 + t2

1

[
4
(
T̃ MF

x

)2 + 7α2
1 + 2α2

2 + 3t2
1

]}
+ t4

[ − 4
(
T̃ MF

x

)2
t1t3 + 5α2

1t1t3 − α2
2t1t3 − 16t3

1 t3 − 12t1t2
2 t3 − 12t1t3

3

+ 8
(
T̃ MF

x

)2
t2t4 + 14α2

1t2t4 + 2α2
2t2t4 + 36t2

1 t2t4 − 48t1t3t3
4 + 18t2t3

4

])
. (B6)
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FIG. 5. (a) Schematic picture of the interlayer hopping t4 between A and B sublattices. (b), (c) The T dependence of (b) σ̄xzz and (c) σ̄xzᾱyz

for (t4, α2) = (0.1, 0), (0.1,0.1), and (0.05, 0.1).

Then, the essential model parameters in the longitudinal non-
linear conductivity σxxx are α1 and T̃ MF

x , which is consistent
with the fact that the nonzero σxxx is closely related to the
asymmetric band structure under T MF

x 
= 0. Since all the terms
in Eq. (B4) are always proportional to α1T̃ MF

x , σxxx is written
in the form

σxxx = α1T̃ MF
x

[
t2
1 F

(
t1, t2, t3, t4, α1, α2, T̃ MF

x

)
+ t2F ′(t1, t2, t3, t4, α1, α2, T̃ MF

x

)
+ t4F ′′(t1, t2, t3, t4, α1, α2, T̃ MF

x

)]
, (B7)

where the even power of α1 and T̃ AF
x appears in F , F ′, and F ′′,

e.g., α2
1 and (T̃ MF

x )2 in Eq. (B6). By introducing t4 
= 0, the ad-
ditional contribution appears, which results in the alternative
behavior of σxxx.

- Transverse nonlinear conductivity σxzz

Similar to σxxx, we show two low-order contributions to
Eq. (B4) in the (i, j, k) = (0, 1, 0) and (0,1,1) terms, for ex-
ample. The expressions are given by

Re
[

010

xzz

] = −242

25
α1T̃ MF

x t2
4 , (B8)

Re
[

011

xzz

] = 121

25
α1T̃ MF

x

[
α2

2t2 + t4
(
4t1t3 + 8t2t4

)]
. (B9)

Similar to this result, we find that all the terms in Eq. (B4) are
always proportional to α1T̃ MF

x , then σxzz is expressed as

σxzz = α1T̃ MF
x

[
α2

2t2F
(
t1, t2, t3, t4, α1, α2, T̃ MF

x

)
+ t4F ′(t1, t2, t3, t4, α1, α2, T̃ MF

x

)]
, (B10)

where the second term proportional to t4 does not vanish even
for α2 = 0.

3. Linear responses

We further clarify the essential model parameters for the
linear Hall and magnetoelectric coefficients. The essential
model parameters in the interband contribution of the electric-
field-induced response tensors can be extracted by evaluating
the following quantity [61]:

Im
[

i j

μν

] =
∑

k

Im
{
Tr

[
Âμkhi(k)�̂νkh j (k)

]}
, (B11)

where Âμk denotes the μ component of an arbitrary hermitian
operator at k.

- Magnetoelectric coefficient αyz

The magnetoelectric coefficient αyz corresponds to the case
with Âμk = σy in Eq. (B11). Similar to the nonlinear conduc-
tivities, the essential model parameters are included in any
pairs of (i, j) in Eq. (B11). We show two cases by taking
(i, j) = (0, 2) and (1,3), which are given by

Im
[

02

yz

] = −44

5
α2T̃ MF

x t3, (B12)

Im
[

13

yz

] = 11

5
α2T̃ MF

x

{
t3

[
4
(
T̃ MF

x

)2 + 6α2
1 + α2

2 + 8t2
1 − 24t2

2

− 12t2
] + t4(16t1t2 + 24t3t4)

}
. (B13)

We also find that all the terms in Eq. (B11) are always propor-
tional to α2T̃ MF

x , then αyz is expressed as

αyz = α2T̃ MF
x

[
t3F

(
t1, t2, t3, t4, α1, α2, T̃ MF

x

)
+ t4F ′(t1, t2, t3, t4, α1, α2, T̃ MF

x

)]
. (B14)

Therefore, the essential model parameters are α2 and T̃ MF
x ,

while αyz also depends on the spin-independent hopping pro-
cess t3 or t4.

- Hall coefficient σxz

To discuss σxz, we introduce the small magnetic field along
the y direction Hy. Then, we evaluate the essential model
parameters for the Hall coefficient σxz with Âμk = �̂xk in
Eq. (B11). We show two low-order contributions to Eq. (B11)
in the (i, j) = (0, 3) and (1,3) terms, for example, which are
given by

Im
[

03

xz

] = 44

5
α1α2Hy(3t2t3 + 5t1t4), (B15)

Im
[

13

xz

] = 88

5
α1α2Hy

[
2t2

1 t3 + t4(8t1t2 + 7t3t4)
]
. (B16)

All the terms in Eq. (B11) are always proportional to α1α2Hy,
then σxz is expressed as

σxz = α1α2Hy
[
t3F

(
t1, t2, t3, t4, α1, α2, Hy, T̃ MF

x

)
+ t4F ′(t1, t2, t3, t4, α1, α2, Hy, T̃ MF

x

)]
. (B17)
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Therefore, the essential model parameters are α1, α2, and
Hy, while σxz also depends on the spin-independent hopping
along the z direction, t3 or t4.

By combining the results, Eqs. (B14) and (B17), σxzαyz has
the form

σxzαyz = α1α
2
2 T̃ MF

x Hy
[
t2
3 F

(
t1, t2, t3, t4, α1, α2, Hy, T̃ MF

x

)
+ t2

4 F ′(t1, t2, t3, t4, α1, α2, Hy, T̃ MF
x

)
+ t3t4F ′′(t1, t2, t3, t4, α1, α2, Hy, T̃ MF

x

)]
, (B18)

which clearly shows that σxzαyz ∝ α1α
2
2 T̃ MF

x Hy irrespective of
the additional parameter of t4.

When t4 = 0, we find that both σxzz and σxzαyz are propor-
tional to α1α

2
2 T̃ MF

x . On the other hand, such a relation does not
hold when t4 
= 0; σxzz ∝ α1T̃ MF

x , whereas σxzαyz ∝ α1α
2
2 T̃ MF

x .

APPENDIX C: EFFECT OF ADDITIONAL
INTERLAYER HOPPING

We compare the transverse component of the nonlinear
conductivity σxzz and the quantity σxzαyz in the presence

of the interlayer hopping t4 between the sublattices A
and B.

Figures 5(b) and 5(c) show σ̄xzz and σ̄xzᾱyz as functions
of T , respectively, for t4 = 0.1, 0.05 and α2 = 0, 0.1, where
α1 = 0.4 is used. As shown by the red dashed line in Fig. 5(b),
σ̄xzz still remains nonzero even for α2 = 0, while σ̄xzᾱyz in
Fig. 5(c) vanishes. Furthermore, the nonzero t4 enhances
σ̄xzz, while it suppresses σ̄xzᾱyz while increasing t4. This is
because the essential model parameters discussed in the pre-
vious section are different for σxzz and σxzαyz. Indeed, in the
presence of t4 and α2, the essential model parameter of σxzz

is represented as α1T̃ MF
x [α2

2t2F (t1, t2, t3, t4, α1, α2, T̃ MF
x ) +

t4F ′(t1, t2, t3, t4, α1, α2, T̃ MF
x )], which clearly shows that

σxzz has the additional contribution from t4 and does
not vanish for α2 = 0. On the other hand, the essen-
tial model parameters of σxz and αyz do not show the
change from σxz → α1α2HyF (t1, t2, t3, t4, α1, α2, Hy, T̃ MF

x )
and αyz → α2T̃ MF

x F (t1, t2, t3, t4, α1, α2, T̃ MF
x ), respectively;

the hopping t4 is not the essential model parameter for
σxz and αyz. Thus, there is no simple relation between
them.
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