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Slowly decaying real-time oscillations in instanton crystals
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Instanton crystal is a fascinating phase which is encountered when the minimum of the free energy corresponds
to a configuration with an imaginary-time-dependent order parameter in the form of a chain of alternating
instantons and anti-instantons. We present the results of the investigation of the real-time correlation functions
of the order parameter in the instanton crystal phase. In order to obtain the correlation functions in real time,
we formulate an original method of analytic continuation from imaginary times, which is easily adapted into an
efficient numerical scheme for the computations. The resulting correlation functions exhibit nontrivial slowly
decaying oscillations in real time, which is reminiscent of prethermal time crystals.
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I. INTRODUCTION

A. Instanton crystal

In standard theories of phase transitions, one uses the con-
cept of the order parameter and spontaneous breaking of the
symmetry in the phase when the order parameter is not equal
to zero [1]. As one considers thermodynamic models starting
with a time-independent Hamiltonian, physical real time t
does not appear in thermodynamic quantities. In contrast, the
imaginary time τ is a usual additional “coordinate” that arises
in the formalism of quantum field theory which is nowadays a
conventional tool for describing many body systems.

In many cases, like spin models, the spin integration vari-
ables S(τ ) contain the single imaginary time variable τ. In
other cases, superconductivity, charge density waves, etc. the
integration variables are functions of two variables of the
type �(τ, τ ′). As concerns the order parameter usually found
from the minimum of the free energy, it does not depend
in all known cases for spin systems on τ at all, while in
the two-time cases it may depend on the difference τ − τ ′.
At the same time, it is not clear whether a function of two
variables τ and τ ′ playing the role of the order parameter may
depend on τ + τ ′, which would violate the imaginary time
translation invariance. This possibility does not contradict to
general principles but one should be sure that the free energy
of such a state is minimal with respect to those of other states.

The question about the possibility of the imaginary time-
dependent order parameter has been raised rather long ago
[2,3]. In these publications, the order parameter was taken as
a train of instantons and anti-instantons but the free energy
turned out to be higher than the one for the static order param-
eter. More recently, the model was extended adding additional
interaction terms in publications [4,5] but the free energies
for the imaginary time-dependent states still exceeded the
free energy of the corresponding state with the static order
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parameter. An attempt to construct soliton trains in imaginary
time has been undertaken in Ref. [6]. In all these cases, how-
ever, the mathematical construction of solitons hinges on the
reflectionless potentials of the underlying scattering problem.
Generation of solitons using a supersymmetry approach has
been discussed in a recent paper [7]. Apparently, in the models
that can be solved exactly, solutions with the imaginary time-
dependent order parameter are energetically unfavorable and
one had to try more sophisticated models.

Fortunately, a proper model has been suggested in our
recent publication [8]. This model contains the fermion part
analogous to the one considered in Refs. [2–5] but the
fermions interact additionally with a boson mode. The cru-
cial difference with conventional electron-phonon models is
that we include into consideration the interaction of currents
created by fermions and bosons rather than interaction of
densities. We have investigated the model in the mean-field
approximation using both analytical and numerical methods
and demonstrated existence of the phase transition from the
static phase into a new state with the order parameter in a form
of an instanton/anti-instanton train in the imaginary time. The
transition can be either of the first or of the second order.

In Ref. [8], we restricted ourselves to the calculation of
thermodynamic quantities. The discussion of the correlations
of physical quantities in real time was left for the future study.
The reason for that was that we deemed this topic highly
nontrivial to deserve a separate work.

As such, this paper is devoted precisely to the study of
real-time correlations in the instanton crystal. We find an inter-
esting behavior which is specific for this thermodynamically
stable state.

The real time t is introduced via the standard quantum
mechanical replacement of the operators

Â(t ) = eit (Ĥ−μN̂ )Âe−it (Ĥ−μN̂ ), (1)

where Ĥ is the full (time-independent) Hamiltonian of the
model and μ is chemical potential. Within this approach,
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we calculate certain correlation functions assuming that the
system itself remains in the thermodynamic equilibrium.

The thermodynamic average 〈. . . 〉 describing these func-
tions equals

〈. . . 〉 = Z−1Tr[(. . . ) exp[−β(Ĥ − μN̂ )]], (2)

while

Z = Tr[e−β(Ĥ−μN̂ )],

is the partition function, and β = 1/T is the inverse tempera-
ture. The brackets in Eq. (2) can contain products of real-time
dependent operators like those, given in Eq. (1).

So, we consider purely thermodynamic model but are go-
ing to obtain nontrivial real-time dependent correlations. Of
course, 〈Â(t )〉 = 〈Â〉 cannot depend on t , and the perpetual
motion is impossible.

B. Instanton crystal versus quantum time crystal

Recently, a lot of attention has been paid to the study
of time crystals in several communities including condensed
matter, atomic physics, quantum optics. This activity was
triggered by Wilczek [9] who proposed a concept of quantum
time crystals using a rather simple model that possessed a state
with a current oscillating in time. However, a more careful
consideration of the model [10] has led to the conclusion that
this was not the equilibrium state. These publications were
followed by discussions of the possibility of realization of a
thermodynamically stable quantum time crystal [11–16].

Meanwhile, it has been realized that long living oscillations
can exist in systems out of equilibrium [17–22]. In particular,
in the systems under periodic pumping from external source.
Several experimental works [23–25] have nicely confirmed
that studying long-living or infinitely living time oscillations
in such a context is a very interesting subject of research as
well. Actually, nowadays, the term “quantum time crystal”
relates to this type of systems. A review on this subject has
appeared recently [26].

This shift of the interest from thermodynamic to nonequi-
librium systems has been greatly affected by the “no-go”
theorem proposed in Ref. [27]. According to the statements
of this theorem, the thermodynamic time crystals are not
possible. The proof looks mathematically convincing and,
therefore, the study of the equilibrium systems was discontin-
ued naturally in favour of the nonequilibrium systems, while
the name for this interesting subject of research stayed the
same.

In this paper, we demonstrate that the real-time correlation
functions of the Instanton Crystal can oscillate without signif-
icant decay for the prolonged periods of time. Unfortunately,
the analysis of the current paper does not allow us to say
conclusively if these oscillations survive in the asymptotic
limit t → ∞. Overall, the instanton crystal is a genuine ther-
modynamic state obtained within a thermodynamic model
using traditional methods of theoretical physics. The oscil-
lating character of the correlation functions in real time is to
some extent a “byproduct” of the equilibrium properties of
this state. This is the reason why we avoid using the notion
“time crystal” for the new phase found in our case.

Whether the observed oscillations are decaying or non-
decaying, the sole fact of their appearance contradicts the

statement of the “no-go” theorem. It turns out that, although
their arguments are rather generally correct, the proof is not
devoid of the problems. In particular, it was discussed in
Ref. [26] that the proof in the case of nonzero temperature
contains certain holes. We discuss the validity of the “no-go”
theorem in regards to the instanton crystal state in Sec. VI.

Finally, we should point out that we perform all the calcula-
tions in the paper using the mean-field approximation, which
is a standard first stage in the analysis of a new phase transi-
tion. We reserve the treatment of the effects of the fluctuations
around the mean-field configurations for the future detailed
study.

C. The structure of the paper

In Sec. II, we formulate the model and recapitulate the
mean-field equations derived previously [8]. In Sec. III, we
discuss the analytical continuation of correlation functions
from the imaginary-time axis to the real-time axis. We show
that the standard method of continuation via frequency do-
main is ambiguous in the case of the instanton crystal. Instead,
we formulate a method of continuation directly in the time
domain, which can be easily adapted into an efficient scheme
for numerical computations. In Sec. IV, we consider the limit
of negligible interaction between the fermions and the boson
modes analytically. In Sec. V, we present the results of the
numerical investigation of the correlation function in real time
using an original scheme of computations. In Sec. VI we
discuss the validity of the “no-go” theorem of Ref. [27] in
the case of the instanton crystal state.

Section VII contains discussion and concluding remarks.
In Appendix A, we discuss the connection between the cor-
relation function studied in this paper and magnetic neutron
scattering. In Appendix B, we outline the details of the nu-
merical scheme used to produce the results of Sec. V. The
scheme is based on the method discussed in Sec. III.

II. INSTANTON CRYSTAL

A. Model

The model exhibiting the instanton crystal state was pro-
posed in Ref. [8] on the basis of the spin-fermion model
with overlapping hot spots (SFMOHS) studied previously in
Refs. [5,28–30]. In the Lagrangian formulation, the grand
canonical partition function is given by the functional integral

Z = Tr{e−β(Ĥ−μN̂ )}

=
∫

exp (−S[χ, χ+, a])DχDχ+Da, (3)

where the action of the model has the structure

S[χ, χ+, a] = S0 + Sint + SB + SFB. (4)

In Eq. (4), the term S0 stands for the action of a system of
noninteracting fermions:

S0[χ, χ+] =
∑

p

∫ β

0
χ+

p (τ )[(∂τ + ε+
p − μ)Ǐ

+ ε−
p �̌3]χp(τ )dτ. (5)
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FIG. 1. Fermi surface (red) and overlapping hot spots (green).

These fermions live in two bands 1 and 2, which correspond to
the two antinodal “hot regions” of SFMOHS (see Fig. 1 for the
schematic representation of Fermi surface with hot regions).
Four-component vectors

χ (+)
p (τ ) = (

χ
1(+)
1p (τ ), χ2(+)

1p (τ ), χ1(+)
2p (τ ), χ2(+)

2p (τ )
)

(6)

contain as components Grasmann fields χ s(+)
αp (τ ) that cor-

respond to destruction (creation) operators for the fermions
from the bands s = 1 and 2 with spin projection labeled by
α = 1 and 2. The energies ε±

p are expressed in terms of the
spectra ε1,2(p) in the bands 1 and 2 as

ε±
p = 1

2 (ε1(p) ± ε2(p)). (7)

The operators �̌i, i = 1, 2, and 3 are Pauli matrices acting
in the subspace of the bands 1 and 2, while Ǐ is the identity
operator acting in the same subspace.

As usual, the imaginary time τ is defined for 0 � τ � β ≡
1/T , where T is the temperature. The fermionic fields χ s

αp(τ ),
χ s+

αp (τ ) obey standard antiperiodic boundary conditions

χ s
αp(τ + β ) = −χ s

αp(τ ), χ s+
αp (τ + β ) = −χ s+

αp (τ ), (8)

The second term Sint in Eq. (4) stands for the interaction
between the fermions from different bands

Sint[χ, χ+] = − U0

4V

∑
p1,p2,q

∫ β

0
dτ (χ+

p1
(τ )�̌2χp1+q(τ ))

× (χ+
p2

(τ )�̌2χp2−q(τ )), (9)

where V is the volume of the system. Physically, this term
corresponds to the local in time attraction of the fermionic
loop currents Aq(τ )

Aq(τ ) = 1√
V

∑
p

χ+
p �̌2χp+q(τ ). (10)

The first two terms in Eq. (4) originate from SFMOHS. The
last two ones, on other hand, were specifically introduced in
Ref. [8] to stabilize the instanton crystal state. The third one,
SB, describes a system of currentlike bosonic modes labeled
by different momenta q:

SB[a] = 1

U2

∑
q

∫ β

0

[∣∣∣∣daq(τ )

dτ

∣∣∣∣
2

+ ω2
q|aq(τ )|2

]
dτ, (11)

where aq(τ ) are periodic complex fields satisfying

(aq(τ ))∗ = a−q(τ ). (12)

The fields aq(τ ) correspond to the coordinates in the language
of oscillator modes, and daq(τ )/dτ correspond to their veloc-
ities.

Finally, the last term, SFB, describes the coupling between
the currentlike bosonic modes and the fermions:

SFB[χ, χ+, a] = −
∑
p,q

∫ β

0
Aq(τ )

daq(τ )

dτ
dτ. (13)

The distinguishing feature of the currentlike modes is that,
instead of the charge of the fermions, they couple to the
fermionic loop currents Aq(τ ).

Starting with Eq. (3), the currentlike modes can be inte-
grated out leading to the appearance of the effective nonlocal
repulsion between the fermionic loop currents in addition to
the local attraction due to the term (9). Then, the overall loop
current interaction can be decoupled by the means of the
Hubbard-Stratonovich transformation. Finally, one can inte-
grate out the fermions to obtain an effective description of the
partition function Z in terms of the functional integral over
the real order parameter field b(τ ). If we neglect the spatial
fluctuations, we can write it as

Z =
∫

D[b(τ )] exp (−βF[b]), (14)

where the free energy functional is

βF[b]

V
=

∫∫ β

0
dτdτ ′K−1(τ − τ ′|ω0)b(τ )b(τ ′)

− 2
∫

dp
(2π )2

Trs,τ [ln((∂τ + ε+
p − μ)Ǐ

+ ε−
p �̌3 − b(τ )�̌2)]. (15)

Nonlocal kernel K−1(τ − τ ′|ω0) is given by

K−1(τ − τ ′|ω0)

= 1

U0 + U2

[
δ(τ − τ ′) + U2

U0
K0(τ − τ ′|ω̃0)

]
, (16)

where

K0(τ − τ ′|ω̃0) = ω̃0 cosh
[
ω̃0

(
β

2 − |τ − τ ′|)]
2 sinh βω̃0

2

(17)

and

ω̃0 =
√

U0

U0 + U2
ω0 (18)

is the renormalized frequency of the currentlike mode. The
order parameter field b(τ ) satisfies the periodic boundary con-
ditions:

b(τ ) = b(τ + β ). (19)
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B. Mean-field analysis

Mean-field solutions correspond to the stationary configu-
rations of the free energy functional F[b(τ )]:

b(τ ) + U2

U0

∫ β

0
dτ ′K0(τ − τ ′|ω̃0)b(τ ′)

= −(U0 + U2)
∫

dp
(2π )d

Tr{�̌2Ǧ(τ, τ )}, (20)

where the fermion Green’s function Ǧ(τ, τ ′) satisfies

[(∂τ + ε+
p )Ǐ + ε−

p �̌3 − b(τ )�̌2]Ǧ(τ, τ ′) = −Ǐδ(τ − τ ′).
(21)

In the absence of nonlocal interaction, i.e., for U2 = 0, the
solutions of Eq. (20) are known analytically. The minimum of
the free energy functional corresponds to the stationary con-
figurations b(τ ) ≡ ±γT , where the static gap γT is determined
from the self-consistency equation

2

U0
=

∫
dp

(2π )2

tanh
β(κ (0)

p +ε+
p )

2 + tanh
β(κ (0)

p −ε+
p )

2

κ
(0)
p

(22)

with

κ (0)
p =

√
(ε−

p )2 + γ 2
T . (23)

Besides that, there is also a series of saddle point solu-
tions which correspond to the alternating chains of instantons
and anti-instantons [2–5,8,31]. These instanton/anti-instanton
solutions are expressed exactly in terms of Jacobi elliptic
function sn(x|k):

b(τ ) = kγ sn(γ (τ − τ0)|k). (24)

The period of instanton/anti-instanton pair is

W = 4K (k)/γ , (25)

where K (k) is the complete elliptic integral of the first kind.
For a solution with m instanton/anti-instanton pairs, the re-
quirement of periodicity leads to the condition

β = m × 4K (k)

γ
. (26)

In order to determine parameters k and γ unambiguously,
Eq. (26) should be supplemented by generalized self-
consistency equation

2

U0

=
∫

dp

(2π )2

|ε−
p |[ tanh β(κp+ε+ )

2 + tanh β(κp−ε+ )
2

]
√(

(ε−
p )2 + γ 2 (1−k)2

4

)(
(ε−

p )2 + γ 2 (1+k)2

4

),
(27)

where

κp = |ε−
p |

√√√√(
(ε−

p )2 + γ 2 (1−k)2

4

)
(
(ε−

p )2 + γ 2 (1+k)2

4

)�(n, k̃)

K (k̃)
, (28)

where

n = γ 2k

(ε−
p )2 + γ 2 (1+k)2

4

, k̃ = 2
√

k

1 + k
. (29)

Here, �(n, k) is the complete elliptic integral of the third
kind. (One can find more details about elliptic integrals and
functions, for example, in Refs. [32,33]). We should also point
out that in the limit k → 1, which corresponds to the dilute
instanton/anti-instanton approximation, Eq. (27) reduces to
Eq. (22).

As we have already mentioned, in the absence of nonlocal
interaction, the minimum of the free energy functional cor-
responds to static order parameter field. However, when U2

is turned on, the energy of the static configuration can get
pushed higher than the energy of instanton configurations.
In this case, the minimum corresponds to a solution with
a particular number m of instanton/anti-instanton pairs. In
Ref. [8], we demonstrated this phenomena both analytically
(for U2/U0 
 1) and numerically. In the latter case, we used an
efficient procedure based on direct minimization of suitably
discretized version of the free energy functional.

III. ANALYTIC CONTINUATION OF THE ORDER
PARAMETER CORRELATION FUNCTION

A. Real- and imaginary-time correlation functions

The experimentally relevant quantity important for the
characterization of the instanton crystal state is the dynamic
correlation function of the loop currents:

CT (t ) = 1

VZ Tr{e−β(Ĥ−μN̂ )Tt Â0(t )Â0}, (30)

where Tt is the time ordering operator along real time and

Â0(t ) = eit (Ĥ−μN̂ )Â0e−it (Ĥ−μN̂ ). (31)

Here, Â0 is the operator counterpart of Aq(τ ) defined in
Eq. (10) at q = 0:

Â0 = 1√
V

∑
p

c†
p�̌2cp, (32)

where c†
p and cp are fermion creation and destruction opera-

tors.
Since Â0 conserves the number of particles, this definition

of time dependency is in fact equivalent to the Heisenberg
representation of operators. The correlation function CT (t )
can be measured, for example, by magnetic neutron scattering
which is sensitive to the magnetic fields produced by the
fluctuating loop currents (see Appendix A).

Analogously, one can define imaginary time counterpart of
Eq. (30):

CM(τ ) = 1

VZ Tr{e−β(Ĥ−μN̂ )Tτ Â0(τ )Â0}, (33)

where Tτ now denotes the ordering operator along the imagi-
nary time and

Â0(τ ) = eτ (Ĥ−μN̂ )Â0e−τ (Ĥ−μN̂ ). (34)
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By directly applying the time ordering operators, one can
also re-express CT (t ) and CM(τ ) as

CT (t ) = Tr{e−β(Ĥ−μN̂ )ei|t |(Ĥ−μN̂ )Â0e−i|t |(Ĥ−μN̂ )Â0}
VZ , (35)

CM(τ ) = Tr{e−β(Ĥ−μN̂ )e|τ |(Ĥ−μN̂ )Â0e−|τ |(Ĥ−μN̂ )Â0}
VZ . (36)

As one may notice from comparing Eqs. (35) and (36),
correlation functions CT (t ) and CM(τ ) are closely related:
they can be obtained from each other by analytic continuation
[34]. To describe it in more precise terms, let us introduce the
following two functions of the complex argument z = τ + it :

C>(z) = Tr{e−β(Ĥ−μN̂ )ez(Ĥ−μN̂ )Â0e−z(Ĥ−μN̂ )Â0}
VZ , (37)

C<(z) = Tr{e−β(Ĥ−μN̂ )e−z(Ĥ−μN̂ )Â0ez(Ĥ−μN̂ )Â0}
VZ . (38)

In the complex z plane, the function CM is defined on the
real axis, while the function CT is defined on the imaginary
axis. The greater function C>(z) is the analytic continuation
of both CM(τ ) and CT (t ) into the first quadrant Rez > 0,
Imz > 0 . Conversely, the lesser function C<(z) is the analytic
continuation of both CM(τ ) and CT (t ) into the third quadrant
Rez < 0, Imz < 0:

CM(τ ) = C>(τ ) τ > 0, (39)

CM(τ ) = C<(τ ) τ < 0, (40)

CT (t ) = C>(it ) t > 0, (41)

CT (t ) = C<(it ) t < 0. (42)

In practice, the connection between real- and imaginary-
time correlation functions is established usually first by
converting everything into the frequency domain, and then
performing the analytic continuation in the transformed do-
main. We shall demonstrate, however, that the procedure of
the analytic continuation in the frequency domain is ambigu-
ous for instanton crystal state. As a result, the function CT (t )
should be obtained from CM(τ ) by analytic continuation di-
rectly in the time domain.

In conclusion of this section, we would also like to point
out that the complex time plane is typically defined in such a
way that the real time corresponds to the real axis while imag-
inary time corresponds to the imaginary axis of the complex
plane. However, we found a complex time plane definition
with interchanged axes more suitable for the presented work.

B. Analytic continuation in the frequency domain

To discuss continuation in the frequency domain, we need
to introduce yet another two real-time correlation functions,

retarded and advanced one:

CR(t ) = − i�(t )

VZ Tr{e−β(Ĥ−μN̂ )[Â0(t ), Â0]}, (43)

CA(t ) = i�(−t )

VZ Tr{e−β(Ĥ−μN̂ )[Â0(t ), Â0]}, (44)

where �(t ) is the Heaviside theta-function.
For the real-time functions, we switch to the frequency

domain by Fourier transform

CT ,R,A(ω) =
∫ +∞

−∞
dteiωt−η|t |CT ,R,A(t ). (45)

The transformed real-time functions are related to each other
by [35]

ReCT (ω) = ∓ImCR/A(ω) coth
βω

2
, (46)

ImCT (ω) = ReCR/A(ω). (47)

On the other-hand, the imaginary-time function CM(t ) is ex-
panded in Fourier series over Matsubara frequencies ωn =
2πT n, n ∈ Z:

CM(iωn) =
∫ β

0
dτeiωnτCM(τ ). (48)

Finally, the retarded correlation function CR(ω) is obtained
from CM(iωn > 0) by analytic continuation to the real axis in
the upper complex frequency half plane: CR(ω) = −CM(ω +
i0). Analogously, the advanced correlation function CA(ω) is
obtained from CM(iωn < 0) by analytic continuation to the
real axis in the lower complex frequency half plane: CA(ω) =
−CM(ω − i0).

There are certain subtleties associated with continuation
from a discrete set of Matsubara frequencies. For concrete-
ness, let us consider the analytic continuation in the upper
complex half plane. The accumulation point for the subset of
Matsubara frequencies in the upper half plane is +i∞. Cor-
respondingly, the uniqueness of the continuation procedure
is normally guaranteed by the regular behavior of CM(iωn)
in the vicinity of the accumulation point, i.e., in the limit
iωn → +i∞.

This picture gets problematic if one considers the in-
stanton crystal state. If the Instanton Crystal consists of m
instanton/anti-instanton pairs, the period of the corresponding
imaginary-time correlation function is β/m. As a conse-
quence, coefficients CM(iωn) are nonzero only for n = mk,
k ∈ Z. Now, imagine we pick two subsequences of Matsubara
frequencies, iωnk = iωmk and iω′

nk
= iωmk−1, and then per-

form the analytic continuation either using only the values
CM(iωnk ) or using only the values CM(iω′

nk
). On one hand, one

expects from the identity theorem of complex analysis that
the results of these two continuations should coincide with
result of the analytic continuation with the full set of Mat-
subara frequencies CM(iωn). On the other hand, the result of
continuation using CM(iω′

nk
) is constant zero, while the result

of continuation using CM(iωnk ) is some nontrivial function.
This allows us to conclude that analytic continuation in the
frequency domain is ill defined in the case of instanton crystal
state.
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C. Direct analytic continuation in time domain

In the mean-field approximation, the imaginary-time cor-
relation function CM(τ ) has the form

CM(τ )

= 4

β

∫ β

0
dτ0

[∫
dp

(2π )2
Tr{�̌2Ǧp(τ + τ0, τ + τ0)}

]

×
[∫

dp′

(2π )2
Tr{�̌2Ǧp′ (τ0, τ0)}

]
. (49)

Equation (49) contains the averaging over the position τ0 of
the instanton lattice. This is the necessary procedure because
the instanton crystal state configuration is invariant against the
translations in the imaginary time τ (the periodic boundary
conditions on the interval (0, β ) are implied), and one should
properly average over the positions of the instanton lattice
when calculating thermodynamic correlation functions.

In the following, it is convenient to introduce vector-
function

Sp(τ ) = −Tr{ ̌�Ǧp(τ, τ )} (50)

and

S(τ ) =
∫

dp
(2π )2

Sp(τ ). (51)

With the help of this definition we can rewrite Eq. (49) as

CM(τ ) = 4

β

∫ β

0
dτ0S2(τ + τ0)S2(τ0). (52)

The problem of analytic continuation of CM(τ ) hence reduces
to the analytic continuation of the function S2(τ + τ0) . Once
it is done, the real-time function CT (t ) can be expressed as

CT (t ) = 4

β

∫ β

0
dτ0S2(τ0 + it )S2(τ0). (53)

The starting point for the continuation of S2(τ ) is the gap
equation (20). The nonlocal kernel K−1(τ − τ ′|ω0) [see def-
inition (16)] is the inverse to the direct kernel K (τ − τ ′|ω0),
which is equal to (see Ref. [8])

K (τ − τ ′|ω0) = (U0 + U2)δ(τ − τ ′)

− U2K0(τ − τ ′|ω0). (54)

Applying the direct kernel to both sides of Eq. (20), we rewrite
it equivalently as

b(τ ) = (U0 + U2)
∫

dp
(2π )2

S2p(τ )

− U2

∫ β

0
dτ ′K0(τ − τ ′|ω0)

∫
dp

(2π )2
S2p(τ ′), (55)

where we also used the definition (50).
Nonlocal kernel K0 has an important property: it is the

Green’s function for a certain differential operator with pe-
riodic boundary conditions (see Ref. [8]):[

− d2

dτ 2
+ ω2

0

]
K0(τ − τ ′|ω0) = ω2

0δ(τ − τ ′). (56)

Let us apply [−∂2
τ + ω2

0] to the both sides of Eq. (55):

d2b(τ )

dτ 2
+ ω2

0b(τ ) = (U0 + U2)
∫

dp
(2π )2

d2S2p(τ )

dτ 2

+ U0ω
2
0

∫
dp

(2π )2
S2p(τ ). (57)

The obtained differential equation needs to be supple-
mented by another one which relates the derivatives of the
vector-functions Sp(τ ) to the order parameter field b(τ ). To
derive it, let us turn our attention to the fermion Green’s
function Ǧp(τ, τ ′). In addition to Eq. (21), it also satisfies

Ǧp(τ, τ ′)[(−
←
∂ τ ′ + ε+

p )Ǐ + ε−
p �̌3 − b(τ )�̌2] = −Ǐδ(τ − τ ′).

(58)

Subtracting Eq. (58) from Eq. (21) and putting τ ′ = τ , one
obtains

(∂τ + ∂τ ′ )Ǧp(τ, τ ′)|
τ ′=τ

≡ ∂τ Ǧp(τ, τ )

= −[ε−
p �̌3 − b(τ )�̌2, Ǧp(τ, τ )]. (59)

Now, let us multiply both sides of equation (59) by �̌i, i =
1, 2, and 3, and apply trace. Using the cyclic property of
trace and commutation relations for Pauli matrices, one can
write the resulting equations jointly as

d Sp(τ )

dτ
= −2i Bp(τ ) × Sp(τ ), (60)

where

Bp(τ ) = (0, −b(τ ), ε−
p ). (61)

The necessary final touch is to get rid of the second deriva-
tive of C2p(τ ) in Eq. (57). This can be achieved by applying
Eq. (60) twice and leads to

d2b(τ )

dτ 2
= ω2

0

[
U0

∫
dp

(2π )2
S2p(τ ) − b(τ )

]

+ (U0 +U2)
∫

dp
(2π )2

4ε−
p [b(τ )S3p(τ ) + ε−

p S2p(τ )].

(62)

Equations (60) and (62) constitute a closed system which
the functions b(τ ), db(τ )/dτ and Sp(τ ) satisfy: once the val-
ues of b(τ ), db(τ )/dτ and Sp(τ ) at some τ are known, the
functions at other points can be reconstructed by integrating
Eqs. (60) and (62). Correspondingly, the analytic continuation
of these functions can be facilitated by analytic continuation
of the system of Eqs. (60) and (62).

After the analytic continuation of Eqs. (60) and (62) are
done, it is convenient to restrict them to some line parallel to
the imaginary axis (with our definition of complex time, real
time runs along the imaginary axis). The equations along this
line, which can be parametrized as τ + it with fixed τ , are
obtained from Eqs. (60) and (62) by replacing

df (τ )

dτ
→ −i

df (τ + it )

dt
, (63)

where f (τ ) is one of the functions b(τ ) and Sp(τ ).
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The resulting equations take the form

d Sp(τ + it )

dt
= 2 Bp(τ + it ) × Sp(τ + it ), (64)

d2b(τ + it )

dt2

= ω2
0

[
b(τ + it ) − U0

∫
dp

(2π )2
S2p(τ + it )

]

− (U0 + U2)
∫

dp
(2π )2

4ε−
p [b(τ + it )S3p(τ + it )

+ ε−
p S2p(τ + it )

]
. (65)

These equations allow one to determine b(τ + it ), db(τ +
it )/dt and Sp(τ + it ) from their values at t = 0. Moreover,
the initial value of db(τ + it )/dt at t = 0 can be related to
the values of b(τ ) and Sp(τ ). To do that, let us differentiate
Eq. (20) once:

db(τ )

dτ
+ U2

U0

∫ β

0
dτ ′ dK0(τ − τ ′|ω̃0)

dτ
b(τ ′)

= (U0 + U2)
∫

dp
(2π )2

dS2p(τ )

dτ

= −2i(U0 + U2)
∫

dp
(2π )2

ε−
p S1p(τ ). (66)

Here, we used Eq. (60) in the last line. Then, we can write

db(τ + it )

dt

∣∣∣∣
t=0

= i
db(τ )

dτ

= i
U2

U0

∫ β

0
dτ ′ dK0(τ − τ ′|ω̃0)

dτ
b(τ ′)

+ 2(U0 + U2)
∫

dp
(2π )2

ε−
p S1p(τ ). (67)

IV. ANALYTICAL RESULTS FOR THE REAL-TIME
ORDER PARAMETER CORRELATION FUNCTION IN THE

MEAN-FIELD APPROXIMATION AT U2 = 0

In the previous section, we introduced the correlation func-
tions of the order parameter both on the real-time axis, CT (t ),
Eq. (30), and on the imaginary-time axis, CM(τ ), Eq. (33).
Now, we are going to calculate these functions at U2 = 0.
Of course, we have shown previously [8] that the instanton
crystal state is not thermodynamically stable in the absence
of nonlocal interaction. However, we have also seen [8] that
even a small nonlocal interaction U2 stabilizes the instanton
crystal. As a result, calculations presented in this section allow
us to demonstrate explicitly how the analytic continuation
from τ to t is performed and how the instanton/anti-instanton
train in imaginary time is transformed into oscillations in real
time. In addition to that, for the physically relevant case of
U2/U0 
 1, we may expect that the results are close to the
results at U2 = 0.

With the help of the mean-field equation (20) in the ab-
sence of nonlocal interaction, the correlation function CM(τ ),
Eq. (52), can be written in the form of a correlation function

of the order parameter b(τ ):

U 2
0 CM(τ ) = 1

β

∫ β

0
b(τ + τ0)b(τ0)dτ0. (68)

If we take into account the periodic properties of b(τ ), this
leads to the expression

U 2
0 CM(τ ) = 1

W

∫ W

0
b(τ + τ0)b(τ0)dτ0, (69)

where the period W of the instanton/anti-instanton chain is
given by Eq. (25). The analytical continuation τ → τ + it in
Eq. (69) is straightforward and we write

U 2
0 CM(τ + it ) = 1

W

∫ W

0
b(τ + it + τ0)b(τ0)dτ0. (70)

Now, we use a known Fourier series expansion for Ja-
cobi elliptic function sn(x|k) [33] to write the function b(τ ),
Eq. (24), as

b(τ ) = 4π

W

∞∑
l=0

sin 2π (2l+1)τ
W

sinh π (2l+1)W ′
W

, (71)

where

W ′ = 2K (k′)/γ , k′2 = 1 − k2. (72)

The series expansion (71) can be continued to the strip τ +
it , −W ′/2 < t < W ′/2. This allows us to rewrite Eq. (70) in
the form

U 2
0 CM(τ + it )

= 16π2

W 3

∞∑
l,l ′=0

1

sinh π (2l+1)W ′
W sinh π (2l ′+1)W ′

W

×
∫ W/2

−W/2
sin

2π (2l + 1)(τ0 + τ + it )

W

× sin
2π (2l ′ + 1)τ0

W
dτ0. (73)

Calculating the integral over τ0 for l, l ′ � 0, we obtain

CM(τ + it ) = 8π2

W 2

∞∑
l=0

cos 2π (2l+1)(τ+it )
W

sinh2 π (2l+1)W ′
W

. (74)

It is clear that the function CM(τ + it ) is analytic in the vicin-
ity of zero, and the method of the analytical continuation from
the imaginary time τ to the real one t works. At the same
time, although the function CM(τ + it ), Eq. (74), is explicitly
periodic in τ , its periodicity is not evident in real time t .

The periodicity and divergencies of the Jacobi elliptic func-
tions are well-known. As such, b(τ + it ) has the poles at
iW ′/2 and W/2 + iW ′/2, and the period along t equals W ′.
Hence, we can represent the function CT (t ) in the form of the
Fourier series

CT (t ) =
∞∑

l=0

∞∑
L=0

CL,l cos

(
2πLt

W ′

)
. (75)
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FIG. 2. Instanton lattice configuration and the corresponding real-time correlation function at U2 = 0 and zero temperature. (a) Normalized
order parameter of the instanton lattice b(γ0τ )/γ0 as a function of dimensionless imaginary time γ0τ . The dimensionless period of instanton
lattice is γ0W = 20.0. (b) Normalized correlation function of the order parameter CT (γ0t )/CT (0) as a function of dimensionless real time γ0t
at U2 = 0.

Setting τ = 0 in Eq. (74), we calculate the coefficients CL,l to
be

CL,l = 8πW ′

W 3

(−1)L

sinh π (2l+1)W ′
W

2l + 1

(2l + 1)2 + L2
(76)

and obtain the final expression for the correlation function

CT (t ) = 8πW ′

W 3

∞∑
l=0

∞∑
L=0

(−1)L 1

sinh π (2l+1)W ′
W

× 2l + 1

(2l + 1)2 + L2
cos

(
2πLt

W ′

)
. (77)

In the limit k → 1 of the large period of the instanton/anti-
instanton lattice, K (k′) → π/2, and Eq. (72) transforms into

W ′ → π/γ . (78)

We see from Eqs. (77) and (78) that, in this limit, the correla-
tion function CT (t ) is periodic in real time with the frequency
2γ . This frequency equals to the excitation gap in SFMOHS
studied previously [28–30].

To illustrate this discussion, we provide Fig. 2, where we
present an example of the instanton lattice configuration at
U2 = 0 and the corresponding real-time correlation function
obtained after analytic continuation. Panel (a) displays the
normalized order parameter b(γ0τ )/γ0 as the function of di-
mensionless imaginary time γ0τ . Here, γ0 stands for the static
gap at zero temperature [see Eq. (22)]. The order parameter
configuration shown corresponds to the instanton crystal with
dimensionless period γ0W = 20.0. Panel (b) displays the nor-
malized order parameter correlation function CT (γ0t )/CT (0)
as the function of the dimensionless real time γ0t .

V. NUMERICAL RESULTS

In order to proceed with the actual numerical computa-
tions, we had to specify particular fermion dispersions ε1,2(p)
[see Eq. (7)]. In agreement with our previous work [8], we
chose it in the same form as it appears in SFMOHS:

ε1(p) = αp2
x − βp2

y − μ, ε2(p) = αp2
y − βp2

x − μ, (79)

where μ is the chemical potential. We also introduced an
energy cutoff � limiting the width of the dispersion:

α + β

2

(
p2

x + p2
y

)
< �. (80)

The specific values used throughout the computations were
α = β = 1.0, �/γ0 = 1.0, and μ/γ0 = 0.0.

The configuration of the instanton crystal can be con-
trolled by the following set of dimensionless parameters:
(U0 + U2)/γ0, the ratio U2/U0, the period of the lattice γ0W ,
the modified frequency of the boson mode γ0ω̃0 and the
number of the periods m. Here, γ0 stands for the solution of
the static gap equation (22) at zero temperature and in the
absence of nonlocal term (U2 = 0). We also used the static
self-consistency equation (22) at zero temperature to fix the
value of the parameter (U0 + U2)/γ0.

These parameters are not completely independent. The
period of the lattice γ0W and their number m need to be
determined from the dimensionless inverse temperature γ0β

and other parameters by the condition of the minimum of
the free-energy functional (15). Correspondingly, in the limit
of zero temperature, m → +∞ and we determine only γ0W
from the same condition.

Despite these facts, it is convenient to treat these pa-
rameters as if they are independent for the purposes of the
numeric investigation. Generally, we expect the properties of
the instanton crystal configuration to vary smoothly with the
control parameters, while the phase transitions correspond to
the jumps in the parameter space.

Finally, we should mention that throughout the numerical
calculations we assumed the limit of zero temperature.

In Fig. 3, we display the computed normalized real-time
correlation functions CT (γ0t )/CT (0) for varying values of the
strength of the nonlocal interaction U2/U0. The values of the
other parameters were kept fixed: γ0W = 20.0 and ω0/γ0 =
0.10. The values of U2/U0 used for the calculations are listed
in the figure. As we may observe, the oscillations with period
W ′ [see Eq. (72)] which were present in the limit U2/U0 = 0
survive for small but finite values of U2/U0. At the same time,
the amplitude of these surviving oscillations gets modulated,
and the magnitude of the modulation grows together with the
strength of the nonlocal interaction U2/U0.
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FIG. 3. Normalized real-time correlation function of the order parameter CT (γ0t )/CT (0) for fixed ω0/γ0 = 0.10 and γ0W = 20.0 but for
varying strength of nonlocal interaction U2/U0.

It is natural to assume that the frequency of the modulation
corresponds to the bosonic mode frequency. In Fig. 3, the
period of the modulation does not change with variation of
U2/U0, which correlates with the fact that we kept ω0/γ0 fixed.
To test this hypothesis, we performed another series of calcu-
lations where the strength of the nonlocal interaction U2/U0

was fixed while we changed the frequency of the bosonic
mode ω0/γ0. The results are displayed in Fig. 4. The period
of the instanton lattice was again fixed at γ0W = 20.0, while
we kept U2/U0 = 0.1. The values of ω0/γ0 are listed in the
figure. As we may observe, the frequency of the modulation
does indeed grow together with the bosonic frequency ω0/γ0.

Finally, we performed a series of more physically realis-
tic computations where the instanton lattice period was not
chosen arbitrarily but was determined from the condition of
the minimum of the free energy. The results are presented in
Fig. 5. We kept the strength of the nonlocal interaction fixed
at U2/U0 = 0.2, while the bosonic frequency was varied. The
values of the modified bosonic frequency ω̃0/γ0 and of the
instanton lattice period γ0W are listed in the figure as usual.
In principle, we may again observe the structure of modulated
oscillations with period W ′ which we noted in Figs. 3 and
4. At the same time, it is important to point out that the
modulation dominates the oscillations in this case.

VI. VALIDITY OF THE “NO-GO” THEOREM IN THE CASE
OF INSTANTON CRYSTAL

In the publication [27] by Watanabe and Oshikawa (WO),
a theorem has been proposed that the time crystal is not pos-
sible in the thermodynamic equilibrium and therefore one can
speak of this phenomenon only including nonequilibrium pro-
cesses like, e.g., pumping, many body localization, etc. (for a
recent review, see Ref. [26]). There are many definitions of the
time crystals but we follow just the one used in Ref. [27]. The
arguments of Ref. [27] are based on scaling and counting pow-
ers of the volume V entering physical quantities. Moreover,
the proof of Watanabe and Oshikawa (WO) excludes even
the possibility of the time dependence of the order parameter
correlation function. However, there are certain problems in
their proof which render the theorem not applicable to the case
of the instanton crystal.

WO consider a correlation function of two quite general
operators Â and B̂ composed of local operators a(r) and b(r)
in a form of integrals over the space

Â = 1

V

∫
V

a(r)dd r, B̂ = 1

V

∫
V

b(r)dd r (81)
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FIG. 4. Normalized real-time correlation function of the order parameter CT (γ0t )/CT (0) for fixed U2/U0 = 0.10 and γ0W = 20.0 but for
varying frequency of bosonic mode ω0/γ0.

(we have normalized here the operators Â and B̂ multiplying
the integrals over r by V −1). With this choice, the operators Â
and B̂ scale with the volume as V 0 and, using the locality of
the operators a(r) and b(r), one can assume that the commu-
tators containing the Hamiltonian Ĥ scale as

[Â, Ĥ ] ∝ V 0, [B̂, Ĥ ] ∝ V 0, [[Â, Ĥ ], Â] ∝ V −1, (82)

where [, ] are commutators. According to the assumption by
WO, the Hamiltonian Ĥ describes a completely general model
with finite range interactions, and one can make estimates
simply starting with Eqs. (81) and (82) without assuming
anything else.

A. Zero temperature

The main part of the proof of the theorem by WO is
based on the use of the Cauchy-Schwarz inequality applied
at zero temperature T = 0 to a general model with a gen-
eral Hamiltonian Ĥ . The main claim of the theorem is that
the nondecaying real-time dependence is impossible in any
macroscopic thermodynamically stable system. According to
the authors, the restriction T = 0 should not be so important,
and they suggest in the second part of the paper a discussion
at finite temperature based on the rigorous bound for spin
systems [36].

However, making scaling with V and putting T = 0 is
not an unambiguous procedure and the result depends on the
problem considered. Generally, one can take either the limit

1) T → 0 and then V → ∞ or 2) first V → ∞ and then
T → 0. What they have in mind is apparently the case 1)
when temperature T can be smaller that the energy of the first
higher level.

If so, one should assume that in the limit V → ∞ the first
excited state is separated from the ground state by a finite
gap �0 that does not vanish in the limit V → ∞. Certainly,
geometrically finite systems having a finite distance between
the levels exist and the limit T 
 � is possible but one cannot
scale time with volume in the way as it was done by WO. In
any case, the model of fermions and bosonic modes consid-
ered by us cannot be described by first putting T = 0 and only
then V → ∞. We start with a model of a metal with a level
separation � = (νV )−1, where ν is the density of states, and
fix a finite T, which means that we consider explicitly the case
2). Studying properties of the system in the thermodynamic
limit V → ∞, we cannot keep the restriction T 
 � because
� → 0. Therefore the proof at T = 0 presented in Ref. [27]
cannot be applied in our model, and the Cauchy-Schwarz
inequality does not help.

We already considered the real-time correlation functions
C>(z) and C<(z) in Sec. III A. For comparison with experi-
ments, it is convenient to use their combination CK(t ):

CK(t ) = C>(t ) + C<(t )

= 1

Z Tr{e−βĤg{Â(t ), Â(0)}}, (83)
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FIG. 5. Normalized real-time correlation function of the order parameter CT (γ0t )/CT (0) for fixed U2/U0 = 0.20 and varying modified
frequency of the bosonic mode ω̃0/γ0. The period of the instanton lattice was determined from the minimum of the free energy.

where Ĥg = Ĥ − μN̂ and Â(t ) is given by Eq. (1). As we
calculate thermodynamic averages, we also need operators
depending on the imaginary time τ :

Â(it ) = eiĤgt Âe−iĤgt . (84)

Estimating bounds is not what is usually done in physics.
In this section we simply want to understand in simple terms
whether our results on the dependence of the function CK(t )
on time t really contradict to the “no-go” theorem [27] that
forbids any time dependence of the function CK(t ) in the limit
V → ∞ or it is a special property of the instanton crystal.

In order to answer this question, we simply consider the
limit of short times t and expand the function CK(t ) in t . The
first terms of the expansion equal

CK(t ) − CK(0) = 1

Z
∑

n

e−βEn

[
− it

2
〈n|[Ĥg, Â]Â|n〉

− it

2
〈n|Â[Ĥg, Â]|n〉

]
− t2

2

〈
n
∣∣[Ĥg, Â]2

∣∣n〉
.

(85)

The linear in t terms cancel each other as they should. The
quadratic in t term is more interesting. Using the standard
Heisenberg equation in the imaginary time

dÂ(τ )

dτ
= [Ĥg, Â(τ )], (86)

we bring Eq. (85) to the form

CK(t ) − CK(0) ≈ − t2

2Z
∑

n

e−βEn〈n|[Ĥg, Â]2|n〉

= − t2

2Z
∑

n

e−βEn〈n|[Ĥg, Â(τ )]2|n〉

= − t2

2Z
∑

n

e−βEn〈n|dÂ(τ )

dτ

dÂ(τ )

dτ
|n〉. (87)

Now, using Eq. (81) and introducing a correlation function
L(r − r′)

L(r − r′) = 1

Z Tr

[
e−βĤg

da(τ, r)

dτ

da(τ, r′)
dτ

]
, (88)

we bring Eq. (87) to the form

CK(t ) − CK(0) = − t2

2

1

V

∫
L(r − r′)dr′. (89)

The function a(τ, r) in our model corresponds to the local
loop currents which are local quantities. Local quantities are
also assumed in Ref. [27]. At first glance, this should lead to a
finite value of the integral over r′ in Eq. (89) in any thermody-
namic system, which would give in the limit V → ∞ the zero
value of CK(t ) − CK(0).

The only possibility to avoid this scenario is formation of
a long range order in space such that the correlation function
L(r) → const in the limit |r| → ∞. Then, the integration over
r′ in Eq. (89) would give an additional volume V and the
CK(t ) − CK(0) would become time-dependent. At the same
time, the function L(r − r′), Eq. (88), contains finite deriva-
tive of the order parameter a(τ ) with respect to the imaginary
time τ . To the best of our knowledge, only the instanton
crystal proposed in Ref. [8] possesses this property.

Of course, the consideration suggested in this section is not
sufficient for proving the existence of the slowly decaying real
time oscillations but it does indicate what has been missed in
the arguments presented in Ref. [27]. For the explicit proof,
one should perform calculations like those carried out in the
previous sections.

We emphasize that the very possibility of the existence of
the slowly decaying real time oscillations is the consequence
of the existence of the instanton crystal and one cannot expect
them in other systems.
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B. Finite temperature

The proof of second part of “no-go” theorem of Ref. [27],
which deals with the case of finite temperature, is based on
the exact Lieb-Robinson bound for spin systems [36]. Cru-
cially, Watanabe and Oshikawa assume that Lieb-Robinson
bound necessarily implies the existence of a similar bound
in the Fourier representation. However, as it is pointed out in
Ref. [26], this assumption is incorrect because Lieb-Robinson
bound is satisfied only at finite times. This fact renders the
proof for the second part of the “no-go” theorem invalid.

VII. DISCUSSION AND OUTLOOK

A. Summary

In this paper, we considered the model of instanton crystal,
i.e., spontaneously broken state characterized by a periodic
structure of the order parameter in imaginary time. Staying
in the context of the mean-field approximation, we have fo-
cused on the dynamical autocorrelation function CT (t ) of
the order parameter. In the model we studied, the said func-
tion describes the dynamical correlations of a macroscopic
arrangement of loop currents. As such, the relevant correlation
function can be, in principle, accessed by means of magnetic
neutron scattering which should be sensitive to the magnetic
fields induced by the loop currents.

In order to compute the dynamical correlation function,
we have performed the analytical continuation from imagi-
nary to real times. As we have shown, the typical procedure
based on the fourier representation of correlation functions
is ambiguous in this case. Instead, we proposed the method
of continuation directly in time domain, which is based
on analytical continuation of a system of differential equa-
tions satisfied by the mean-field configuration. The important
feature of the method is that it is straightforward to implement
numerically.

The results of our calculations indicate that CT (t ) exhibits
nontrivial slowly decaying oscillations. Peculiar feature of
these oscillations is that their amplitude is periodically modu-
lated, moreover, the period of the modulation corresponds to
the bosonic mode frequency. Unfortunately, these results are
not enough to make a definitive conclusion about the behavior
of CT (t ) in the limit t → +0. One possibility is that the decay
saturates at some point and the oscillations survive at long
times. Another possibility, which is rather plausible, is that the
oscillations die out, however the correlation function saturates
at some nonzero constant. In this scenario, an instanton crystal
in imaginary time would behave like a prethermal time crystal
in real time.

B. Discussion

All the considerations in the paper are rather theoretical
and highly involved. To somewhat remedy that, we suggest
the following qualitative picture of what is going on.

Our picture follows from the initial loop currents statical
picture. The system in the ordered phase can be either in
the +1 and −1 states (depending on the direction of the
loop currents) forming classical macrosopic bits. The phase
of the instanton crystal is characterized by an imaginary-time-
dependent order parameter b(τ ). We interpret its oscillating

behavior as a possibility for the system to be in both +1 and
−1 states simultaneously forming a state

|ψ〉 = α|1〉 + β|−1〉 (90)

with real α and β satisfying the normalization condition
α2 + β2 = 1. In the language of the order parameter b(τ ) the
degeneracy with respect to α and β corresponds to an arbitrary
position τ0 of the instanton/anti-instanton lattice. In the limit
of a large period of the lattice, the probability of the finding
system either in the state |1〉 or in state | − 1〉 is close to unity
but, generally, it is a superposition of the both.

The period of the oscillations can rather easily be ex-
tracted from the picture presented here. In the case k → 1
corresponding to the large period 4K (k)/γ of the instanton
lattice, the gap in the spectrum 2γ in the limit k → 1 should
produce oscillations in real time with the period πγ −1, which
is standard for a 2-level system. Our result obtained in this
limit is 2K (k′)/γ . Using the limiting value K (k′ → 0) = π/2
we obtain the same period πγ −1.

So, the properties of the real-time behavior of the instan-
ton crystal correlate with those of a macroscopic qubit. The
slowness of oscillation decay corresponds to the suppression
of the decoherence. It is a collective effect originating from
the special long-range order present in the instanton crystal.

C. Outlook

Since all the results have been obtained using the mean-
field approximation, the important open question is: what is
the influence of the fluctuations around the mean-field config-
uration?

As we have argued in Ref. [8], the fluctuations should
not destroy the instanton crystal state: We have considered a
system with at least two spatial dimensions, and the imaginary
time acts as an additional dimension as well. At the same time,
the order parameter in the absence of instantons corresponds
to discrete Z2-symmetry breaking.

However, the form of the dynamical correlation function
may be influenced by the inclusion of fluctuations. We believe
that the important role in this regards may play specifically
fluctuations in imaginary time. As we have mentioned, in the
absence of nonlocal interaction, the instanton configuration
is a saddle point: there are fluctuation modes with nega-
tive energy. In the limit of large period of instanton lattice,
these modes correspond to the displacement of instantons
and anti-instantons relative to each other. The introduction of
nonlocal interaction stabilizes the instanton configuration and
brings the energies of these “displacement” modes above zero.
Nevertheless, we expect these modes to play the role of the
important low-energy excitations. In conclusion, we should
say that we are hoping to touch the subject of the fluctuations
in the future work.
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APPENDIX A: MAGNETIC NEUTRON SCATTERING
AND CORRELATION FUNCTION CT (t )

In this section, we show that the correlation function CT (t )
computed previously can in principle be directly measured.
The model for the instanton crystal considered here has been
suggested for interacting loop currents and a boson mode
that both oscillating in space with the vector QAF. Studying
experimentally inelastic magnetic neutron scattering might be
a proper tool to measure such magnetic structures and we
show now that the correlation function CT (t ) is just what is
needed to obtain the scattering cross-section.

Considering neutrons scattered by the instanton crystal, we
start with a Hamiltonian H containing both the neutrons and
the instanton crystal. We write it in the form

H = Ĥn + Ĥ + V̂int. (A1)

In Eq. (A1), Ĥn is the Hamiltonian of free neutrons

Ĥn =
∑

p

Epd+
p dp, (A2)

where Ep = p2/2M is the kinetic energy, and d+
p , dp, are cre-

ation and destruction operators of neutrons. The Hamiltonian
Ĥ describes the system of interacting electrons and bosonic
mode studied here, and V̂int stands for the interaction of neu-
tron magnetic moments with the magnetic field created by
electron currents. At the moment, we write this term without
going into details of the interaction in the form

V̂int = �
∑

q

d+
q dq+QAF

Â0, (A3)

where operator Â0 has been introduced in Eq. (30).
We assume that the interaction constant � is small and use

for calculation of transition rate the perturbation theory in �.
The initial state of neutron and system at t → −∞ is given

by a function �0 = |p〉 ⊗ |�i〉, where p is the initial momen-
tum of neutron, and �i is the initial state of the instanton
crystal. We write the Schrödinger equation for the function
|�(t )〉 in the interaction representation as

i
d|�(t )〉

dt
= V̂int (t )|�(t )〉, (A4)

where

V̂int (t ) = �eλt
∑

q

eiĤnt d+
q dq+QAF

e−iĤnt Â0(t ). (A5)

The parameter λ is infinitesimally small, λ → +0 and is, as
usual, introduced as adiabatic switching of the interaction at
t = −∞. Time-dependent operator of loop currents Â0(t ) has
been defined in Eq. (31).

Equation (A4) is solved representing |�(t )〉 as

|�(t )〉 = T e−i
∫ t
−∞ dt ′V̂int (t ′ )|�0〉

≈
[

1 − i
∫ t

−∞
dt ′V̂int (t

′)
]
|�0〉. (A6)

We are interested in a matrix element a f i of the transition
between the initial state i and the final state f of the form

|� f 〉 = |p′〉 ⊗ |� f 〉 and we write

a f i = −i�
∫ t

−∞
dt ′eλt ′

ei(Ep′ −Ep )t ′ 〈� f |Â0(t ′)|�i〉. (A7)

Then, we obtain

|a f i|2 = �2
∫ t

−∞
dt ′eλt ′

∫ t

−∞
dt ′′eλt ′′

e−i(Ep′ −Ep )(t ′−t ′′ )

× 〈�i|Â0(t ′)|� f 〉〈� f |Â0(t ′′)|�i〉. (A8)

Up until now, we considered particular initial and finite
states of instanton crystal. In reality, we need to sum over un-
observed final states |� f 〉 and perform thermal averaging over
initial states |�i〉, which leads us to the following expression:

|a f i|2 = lim
λ→+0

�2

Z

∫∫ t

−∞
dt ′dt ′′eλ(t ′+t ′′ )

× e−i(Ep′ −Ep )(t ′−t ′′ )Tr{e−β(Ĥ−μN̂ )Â0(t ′)Â0(t ′′)}

= lim
λ→+0

�2V
∫∫ t

−∞
dt ′dt ′′eλ(t ′+t ′′ )

× e−i(Ep′ −Ep )(t ′−t ′′ )C>(t ′ − t ′′). (A9)

Now we want to take the limit t → +∞ and calculate
the transition rate. It is convenient to start with the Fourier
transform C>(ω) of the function C>(t ′ − t ′′):

C>(t ′ − t ′′) =
∫ +∞

−∞

dω

2π
Cω(ω)e−iω(t ′−t ′′ ), (A10)

where

C>(ω) =
∫ ∞

−∞
dteiωtC>(t ). (A11)

Then, we have

lim
λ→+0

∫∫ t

−∞
dt1dt2eλ(t1+t2 )ei(Ep−Ep′ )tCT (t1 − t2)

= 1

2π
lim

λ→+0

∫ ∞

−∞
dω

∫∫ t

−∞
dt1dt2eλ(t1+t2 )e−iω(t1−t2 )

× ei(Ep−Ep′ )(t1−t2 )CT (ω)

= 1

2π
lim

λ→+0

∫ ∞

−∞
dω

2λe2λt

λ2 + (ω − Ep + Ep′ )2 CT (ω),

(A12)

and, finally,

d

dt
|a f i|2

= �2V

2π

∫ ∞

−∞
dωC>(ω) lim

λ→+0

2λ

λ2 + (ω − Ep + Ep′ )2

= �2V
∫ ∞

−∞
dωC>(ω)δ(ω − Ep + Ep′ )

= �2VC>(Ep − Ep′ ).

This is actually the standard way of derivation of the scat-
tering cross-section in quantum mechanics. One can conclude
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that the magnetic neutron scattering cross-section is directly
given by the function C>(Ep − Ep′ ) and can be written as

d2σ (q,E )

dEd�
∝ �2VC>(E )δ(q − QAF), (A13)

where E is transferred energy and q transferred momentum.
In its turn, C>(t ) is directly related to the function CT (t ), as
we have discussed in Sec. III.

APPENDIX B: NUMERICAL SCHEME FOR ANALYTIC
CONTINUATION

For an instanton crystal consisting of m instanton/anti-
instanton pairs, we denote the period of the pair as W = β/m.
The numerical scheme that we developed in our previous
paper [8] can be used to compute b(τi ) and Cp(τi ) for a discrete
set of N equidistant points τi belonging to a single period:
0 � τi < W . Consequently, solving the system of Eqs. (64)
and (65) for each of τi, one obtains the values of b(τ ) and
Sp(τ ) at points τi + it j . With this knowledge, the correlation
function can be approximated as

CT (t j ) = 4

N

∑
i

S2(τi + it j )S2(τi ), (B1)

which is the discretized version of Eq. (52). Note also that we
used the periodicity of the instanton crystal to reduce the sum
to a single period.

The important technical detail which deserves to be men-
tioned is the way the initial conditions for db(τ + i0)/dt are
computed. Using the periodicity in the imaginary time, we
rewrite Eq. (67) as

db(τ + it )

dt

∣∣∣∣
t=0

= i
U2

U0

∫ W

0
dτ ′ dK̃0(τ − τ ′|ω̃0)

dτ
b(τ ′)

+ 2(U0 + U2)
∫

dp
(2π )2

ε−
p S1p(τ ), (B2)

where

K̃0(τ − τ ′|ω̃0) =
m−1∑
k=0

K0(τ − τ ′ − kW |ω̃0)

= ω̃0 cosh
[
ω̃0

(
W
2 − |τ − τ ′|)]

2 sinh W ω̃0
2

. (B3)

Note that the functional form of K̃0(τ − τ ′|ω̃0) is identical to
the functional form of K0(τ − τ ′|ω̃0). The only difference is
that the inverse temperature β is replaced with the instanton
crystal period W .

Correspondingly,

dK̃0(τ − τ ′|ω̃0)

dτ
= −sign(τ − τ ′)

× ω̃0 sinh
[
ω̃0

(
W
2 − |τ − τ ′|)]

2 sinh W ω̃0
2

. (B4)

Finally, we can write the discretized version of Eq. (B2) as

db(τi + it )

dt

∣∣∣∣
t=0

= i
U2

U0

W

N

∑
j

dK̃0(τi − τ j |ω̃0)

dτ
b(τ j )

+ 2(U0 + U2)
∫

dp
(2π )2

ε−
p S1p(τi ), (B5)

where it is assumed that sign(0) = 0.
In the absence of nonlocal interaction, U2 = 0, functions

b(τ + it ) has the poles along the lines τ = 0 and τ = W/2.
This poles survive even for finite U2. In order to avoid them,
we chose the set of time points τi to be τ = W/N (i − 1/2)
for 1 � i � N . As in our previous work [8], we used pro-
gramming language JULIA [37] to perform the numerical
calculations presented in the paper.
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