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The state-of-the-art theoretical description of magnetic materials relies on solving effective Heisenberg spin
problems or their generalizations to relativistic or multi-spin-interaction cases that explicitly assume the presence
of local magnetic moments in the system. We start with a general interacting fermionic model that is often
obtained in ab initio electronic structure calculations and show that the corresponding spin problem can be
introduced even in the paramagnetic regime, which is characterized by a zero average value of the magnetization.
Further, we derive a physical criterion for the formation of the local magnetic moment and confirm that the
latter exists already at high temperatures well above the transition to the ordered magnetic state. The use of
path-integral techniques allows us to disentangle spin and electronic degrees of freedom and to carefully separate
rotational dynamics of the local magnetic moment from Higgs fluctuations of its absolute value. It also allows
us to accurately derive the topological Berry phase and relate it to a physical bosonic variable that describes
dynamics of the spin degrees of freedom. As the result, we demonstrate that the equation of motion in the case
of a large magnetic moment takes a conventional Landau-Lifshitz form that explicitly accounts for the Gilbert
damping due to itinerant nature of the original electronic model.
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I. INTRODUCTION

The problem of magnetism of itinerant electrons [1–4]
seems to be one of the most challenging among all com-
plicated many-body problems relevant for condensed matter.
The key point is the duality between itinerant and localized
(atomiclike) behavior of d electrons in magnetic transition
metals and their alloys. To make the long story (described in
the books cited above) short, direct measurements of Fermi
surfaces and transport properties of iron-group metals clearly
indicate itinerant properties of 3d electrons whereas temper-
ature dependence of the magnetic susceptibility (Curie-Weiss
law) and neutron scattering data are reliable evidences of lo-
calized behavior of magnetic moments, both below and above
the Curie temperatures. This itinerant-localized duality can be
considered as a bright manifestation of generic particle-wave
duality in quantum many-body systems [5] and thus has a
general physical interest.

The finite-temperature state with local magnetic mo-
ments cannot be described within Landau Fermi-liquid theory
since it violates the main Landau postulate on one-to-one
correspondence between the states of bare particles and quasi-
particles [6]. The combination of itinerant band theory based
on a density functional with atomiclike effective impurity
approach based on dynamical mean-field theory (DMFT) [7]
allows one to describe quantitatively this duality and the prop-
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erties of the iron-group metals [8,9]. However, this approach
does not solve the problem completely, not least because the
nonlocal correlation effects beyond DMFT seem to play a
crucial role in elemental iron [10].

Describing the magnetic properties of itinerant systems
with local magnetic moments from the point of view of a
generic quantum many-body theory is quite problematic. For
localized spins, the most convenient technique is based on
the use of path integrals over spin-coherent states [11,12].
Evaluating the path integrals by the saddle-point method leads
to the classical equation of the spin precession, the “kinetic”
term with the first derivative in time originating from the
topological (Berry) phase [13]. For this construction, conser-
vation of the length of the total spin on each site is crucially
important. In itinerant-electron systems, the length of local
magnetic moment is fluctuating which changes dramatically
the mathematical structure of the theory.

In many contemporary works, the problem of fluctuat-
ing length of the local magnetic moment is described in
terms of the “Higgs mode” [14] borrowed from high-energy
physics [15–18]. Indeed, whereas magnons associated to the
spin rotations are Goldstone modes originating from the
broken rotational invariance in spin space, the fluctuating
length of the spin is naturally associated to the massive
Higgs mode. The magnetic Higgs mode has been observed
in quantum dimer systems [19,20]. Recent inelastic neutron
scattering experiments have also revealed Higgs oscillations
of the magnetization in Ca2RuO4 [21,22] and C9H18N2CuBr4

[23,24].
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Theoretically, Higgs fluctuations that are seen in experi-
ments are usually explained on a basis of spin [21,23] or
bosonic Hubbard [25–27] models. However, for fermionic
systems which we are interested in here, it was not possible
to introduce a proper Higgs field that couples to electrons.
Usually, this field was introduced via decoupling of the inter-
action term [28–32]. The problem with this trick is that such
field has no clear physical meaning whereas the free energy of
the system is always plotted as a function of this field and not
of the observed quantity, such as magnetization. The second
problem is that this field is frequently treated in a mean-field
approximation assuming that the magnetization (and the field)
has a nonzero average. This approach is problematic (or even
useless) in paramagnetic phase. In other words, it is not possi-
ble to prove that this field can be connected to a local magnetic
moment because the local magnetization does not necessarily
point in the direction of the field.

Another problem is to derive the equation of motion for ro-
tational dynamics of the itinerant-electron spin. It is not easy
at all to generalize the formalism of spin-coherent states and
related Berry phase for fermionic systems. Usually, one in-
troduces rotation matrices for a quantization axis of fermions
to get a Berry phase [33–36]. However, previously it was not
possible to connect this Berry phase to a proper bosonic vari-
able that describes the modulus of magnetization. In addition,
in a paramagnetic situation one cannot claim that the variation
of magnetization angles is small, which is usually necessary
for these calculations. The difficulty of introducing physical
variables for describing the rotational dynamics of the local
magnetization is directly related to the fact that spin degrees
of freedom that can be associated with the local magnetic
moment cannot be easily separated from electronic degrees
of freedom that form this local moment. Therefore, the equa-
tion of motion in the presence of electrons was possible to
derive (until now) only assuming the existence of a classical
spin [37,38].

In this paper, we solve this problem based on a modifica-
tion and development [39–42] of the dual boson formalism
[43–47]. Our aim is twofold: to derive properly the Berry
phase term describing spin precession for fermionic (that is,
itinerant) systems in terms of the physical bosonic variables,
and to write a physical criterion for the formation of lo-
cal magnetic moments. Our approach is applicable for both
magnetically ordered and paramagnetic phases and does not
assume the smallness of the rotation angles, the standard
assumption in the theory of exchange interactions in mag-
netically ordered phases [48–52]. Thus, we provide a fully
consistent framework to describe both equilibrium and dy-
namical magnetic properties of strongly interacting fermionic
systems.

II. EFFECTIVE BOSONIC ACTION FOR CHARGE
AND SPIN DEGREES OF FREEDOM

In this work we aim at deriving a quantum bosonic action
that describes the behavior of the charge and spin degrees of
freedom of an initially purely fermionic problem. We start
with the lattice action of the extended Hubbard model written

in the coordinate and imaginary-time representation

Slatt =
∫ β

0
dτ

{
−

∑
i j,σσ ′

c∗
iτσ

[
δi jδσσ ′ (−∂τ + μ) − εσσ ′

i j

]
c jτσ ′

+
∑
i,σσ ′

Uniτ↑niτ↓ + 1

2

∑
i j,ς

ρ
ς
iτV ς

i j ρ
ς
jτ

}
. (1)

Fermionic Grassmann variables c(∗)
iτσ describe annihilation

(creation) of an electron with the spin projection σ = {↑,↓}
at the site i and imaginary time τ . μ is the chemical poten-
tial, and εσσ ′

i j is the hopping matrix that has the following

form in the spin space: εσσ ′
i j = εi j δσσ ′ + i �κi j · �σσσ ′ . The spin

component-diagonal part εi j of this matrix corresponds to the
hopping amplitude of electrons between i and j lattice sites.
The off-diagonal part �κi j accounts for the spin-orbit coupling
(SOC) in the Rashba form [53,54], where �σ = {σ x, σ y, σ z}
is a vector of Pauli matrices. U is the onsite Coulomb re-
pulsion and V ς

i j describes the nonlocal (V ς
ii = 0) interaction

between charge (ς = c) and spin (ς = s = {x, y, z}) densities
nς

iτ = ∑
σσ ′ c∗

iτσ σ
ς

σσ ′ciτσ ′ . For convenience we introduce the
variables ρ

ς
iτ = nς

iτ − 〈nς 〉 that describe fluctuations of the
densities around their average value. We assume that the av-
erage densities can be obtained from a certain local reference
system.

In this work the role of the reference system is played by
an effective local site-independent impurity problem of the
dynamical mean-field theory (DMFT) [7]

Simp = −
∫∫ β

0
dτ dτ ′ ∑

σσ ′
c∗
τσ

[
δττ ′δσσ ′ (−∂τ+μ)−�σσ ′

ττ ′
]
cτ ′σ ′

+
∫ β

0
dτ Unτ↑nτ↓. (2)

The advantage of considering this reference system is that
it can be solved numerically exactly, e.g., by means of
the continuous-time quantum Monte Carlo method [55–58].
Therefore, introducing such reference system makes in-
vestigation of local correlation effects more accessible. In
particular, this will help us to address the problem of
the local moment formation in the system. In order to
isolate the impurity problem from the initial action (1), we add
the fermionic hybridization function �σσ ′

ττ ′ = �σσ ′
(τ − τ ′) to

the local part of the lattice problem. To be consistent, the
same hybridization is subtracted from the remaining (nonlo-
cal) part of the lattice problem Srem = Slatt − ∑

i Simp. This
way of introducing the reference system gives some freedom
in choosing the form of the hybridization function [59]. For
instance, �ττ ′ does not necessarily have to be obtained from
the DMFT self-consistency condition, which equates the lo-
cal part of the lattice Green’s function Gσσ ′

ii,ττ ′ to the exact
local impurity Green’s function gσσ ′

ττ ′ [7]. In this work we
stick to the paramagnetic case, which is the most challeng-
ing regime for describing the behavior of the local magnetic
moment. Indeed, in the ordered state the value of the mag-
netic moment is given by the average magnetization, which
in many cases can be obtained from the density-functional
theory in reasonable agreement with the experiment [60,61].
On the contrary, in the paramagnetic regime the average
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magnetization is equal to zero even if the magnetic moment
has already been formed. In the latter case, the average magne-
tization is zero as a consequence of an uncorrelated precession
of the magnetic moment, and distinguishing this situation
from the case when the system does not possess any magnetic
moment at all is a nontrivial task. As has been mentioned
above, in this work the average magnetization is given by
the local reference system (2). For this reason, we consider
a spin-independent hybridization function �σσ ′

ττ ′ = δσσ ′�ττ ′ ,
which ensures that the average local spin density is zero
〈ns〉imp = 0, and therefore ρs

iτ = ns
iτ . As a consequence, the

Green’s function gσσ ′
ττ ′ = δσσ ′gττ ′ of such reference system is

also diagonal in the spin space. At the same time, the lattice
Green’s function can have nondiagonal spin components due
to the presence of the SOC. For this reason, we determine
the hybridization function from the following self-consistency
condition on the diagonal part of the lattice Green’s function
1
2

∑
σ Gσσ

ii,ττ ′ = gττ ′ .
We point out that ρς is not a suitable variable for address-

ing the problem of charge and spin dynamics. Indeed, it is not
a true bosonic field because it is composed of two fermionic
Grassmann variables. Proper bosonic variables that describe
fluctuations of charge and spin densities can be introduced
performing a set of Hubbard-Stratonovich transformations as
has been shown in Refs. [39,40]. Following the idea of these
works we first rewrite the nonlocal part of the lattice action
Srem in terms of new fermionic f (∗) and truly bosonic φς fields
instead of original fermionic c(∗) and composite ρς variables.
This transformation is explicitly shown in Appendix A for a
general multiorbital case and results in the following lattice
action:

S = −
∫ β

0
{dτi}

∑
i j,σσ ′

f ∗
iτ1σ

g−1
τ1τ2

[ε̃−1]σσ ′
i j,τ2τ3

g−1
τ3τ4

f jτ4σ ′

+
∑

i

Simp − 1

2

∫ β

0
dτ

∑
i j,ς

φ
ς
iτ [V ς ]−1

i j φ
ς
jτ

+
∫ β

0
dτ

∑
i,ς

(
φ

ς
iτ + j ς

iτ

)
ρ

ς
iτ

+
∫∫ β

0
dτ dτ ′ ∑

i,σ

(
c∗

iτσ g−1
ττ ′ fiτ ′σ + f ∗

iτσ g−1
ττ ′ciτ ′σ

)
, (3)

where ε̃σσ ′
i jττ ′ = δττ ′ε

σσ ′
i j − δi jδσσ ′�ττ ′ . In Eq. (3) we have in-

troduced a source field j ς for a composite ρς variable. This
source field will help us to identify the correct variables for
original charge and spin degrees of freedom after multiple
transformations of the initial action.

Static properties of effective bosonic models for spin or
charge degrees of freedom, namely, the exchange interaction
between spin or charge densities, have been studied in previ-
ous works [39,40]. Description of the spin dynamics, which
has not been performed there, is a nontrivial task that requires
a careful separation of the precession of the vector spin field
from the fluctuation of the absolute value of the local magnetic
moment. To this effect, we deviate from the main route of
these works and make a transformation to a rotating frame
for original fermionic variables c∗

iτ → c∗
iτ Riτ and ciτ → R†

iτ ciτ

introducing a unitary matrix in the spin space

Riτ =
(

cos(θiτ /2) −e−iϕiτ sin(θiτ /2)

eiϕiτ sin(θiτ /2) cos(θiτ /2)

)
, (4)

where ciτ = (ciτ↑, ciτ↓)T . As is usually done in other works
[33–36], we introduce additional functional integration over
the rotation angles �R = {θiτ , ϕiτ }. Later on, we will associate
these angles with the direction of the local magnetic moment
and discuss when such an approximation is permitted. There-
fore, at each lattice site i and imaginary time τ the rotation
matrices are intended to adjust the coordinate system such that
the local magnetic moment in new coordinates always points
in the z direction. In this way the accounting for the rotation
dynamics of the local magnetic moment is transferred from
the corresponding bosonic field to a new time- and position-
dependent coordinate system. Under this rotation the impurity
problem transforms as

Simp → Simp +
∫ β

0
dτ Trσ c∗

iτ R†
iτ Ṙiτ ciτ

= Simp +
∫ β

0
dτ

∑
ς

Aς
iτ ρ

ς
iτ , (5)

where Ṙiτ = ∂τ Riτ and Aς
iτ is an effective gauge field in-

troduced as R†
iτ Ṙiτ = ∑

ς A
ς
iτ σ

ς . The explicit form of the
rotation matrix (4) implies thatAc

iτ = 0. Composite variables
for charge and spin degrees of freedom become

ρ
ς
iτ →

∑
ς ′
Uςς ′

iτ ρ
ς ′
iτ , (6)

whereUςς ′
iτ satisfies

R†
iτ σ

ςRiτ =
∑
ς ′
Uςς ′

iτ σ ς ′
. (7)

It can be shown that Uss′
is a unitary matrix, i.e.,

[U−1]ss′ = [UT]ss′
, and that Ucs

iτ = 0 and Ucc
iτ = 1. The last

equality originates from the fact that the charge density nc
iτ is

invariant under rotation in the spin space. Upon collecting all
terms, the lattice action (3) transforms to

S = −
∫ β

0
{dτi}

∑
i j,σσ ′

f ∗
iτ1σ

g−1
τ1τ2

[ε̃−1]σσ ′
i j,τ2τ3

g−1
τ3τ4

f jτ4σ ′

− 1

2

∫ β

0
dτ

∑
i j,ς

φ
ς
iτ [V ς ]−1

i j φ
ς
jτ +

∑
i

Simp

+
∫∫ β

0
dτ dτ ′ Trσ

∑
i

{
c∗

iτ R†
iτ g−1

ττ ′ fiτ ′ + f ∗
iτ g−1

ττ ′Riτ ′ciτ ′
}

+
∫ β

0
dτ

∑
i,ςς ′

(
φ

ς
iτ + j ς

iτ +
∑
ς ′′
Aς ′′

iτ

[
U−1

iτ

]ς ′′ς

)
Uςς ′

iτ ρ
ς ′
iτ .

(8)

We find that the bosonic field φs
iτ enters the lattice action (8)

as an effective magnetic field. However, it is important to
emphasize that the local magnetic moment at a given lattice
site does not necessarily point in the same direction as the
polarizing field applied to the same site. Therefore, we prefer
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to keep this freedom and do not relate the polar angles θiτ

and ϕiτ with the direction of the field φs
iτ as commonly used

at similar transformations of the effective action (see, e.g.,
[28–32]). Instead, below we demonstrate an alternative way of
introducing the bosonic field that describes Higgs fluctuations
of the local magnetic moment rather than of its conjugated
field.

After the rotational dynamics of the magnetic moment is
explicitly isolated, original fermionic variables can be inte-
grated out. This allows one to account for local correlation
effects exactly via the reference system (2), which is formu-
lated solely in terms of original variables. It is important that
upon all transformations of the lattice problem the source field
j ς and the effective gauge field Aς be taken into account
exactly without any approximation. For this purpose we make
the following shift of variables:

φ
ς
iτ → φ̂

ς
iτ = φ

ς
iτ − j ς

iτ −
∑
ς ′′
Aς ′′

iτ

[
U−1

iτ

]ς ′′ς
(9)

that excludes j ς andAς fields from the integration of original
fermionic degrees of freedom. When the latter are integrated
out, we transform auxiliary bosonic fields φ̂ς to physical
variables ρ̄ ς that describe fluctuations of charge and spin
densities. For a general multiorbital case, all these steps are
performed in details in Appendix A, which results in the
effective fermion-boson action

S = −
∫ β

0
{dτi}

∑
i j,σσ ′

f ∗
iτ1σ

g−1
τ1τ2

[ε̃−1]σσ ′
i j,τ2τ3

g−1
τ3τ4

f jτ4σ ′

+
∫ β

0
{dτi}Trσ

∑
i

f ∗
iτ1

g−1
τ1τ2

Riτ2
gτ2τ3

R†
iτ3

g−1
τ3τ4

fiτ4

+ 1

2

∫∫ β

0
dτ dτ ′ ∑

i,{ς}
ρ̄

ς1
iτ U

ς1ς2
iτ [χς2 ]−1

ττ ′
[
U−1

iτ ′
]ς2ς3

ρ̄
ς3

iτ ′

+ 1

2

∫ β

0
dτ

∑
i j,ς

ρ̄
ς

iτV ς
i j ρ̄

ς
jτ

+
∫ β

0
{dτi}Trσ

∑
i,ςς ′

f ∗
iτ1

Riτ1
σςR†

iτ2
fiτ2

�ς
τ1τ2τ3

[
U−1

iτ3

]ςς ′
ρ̄

ς ′
iτ3

+
∫ β

0
dτ

∑
i

{∑
ss′
As

iτ

[
U−1

iτ

]ss′
ρ̄ s′

iτ +
∑

ς

j ς
iτ ρ̄

ς
iτ

}
.

(10)

Quantities gττ ′ , χ
ς

ττ ′ , and �ς
τ1τ2τ3

are, respectively, the exact
Green’s function, the susceptibility, and the three-point vertex
function of the reference system (2). They are explicitly de-
fined in Appendix A. In analogy to s-d exchange model [2],
�ς

τ1τ2τ3
can be seen as a renormalized local coupling between

fermions f (∗) and charge or spin densities ρ̄ς .
We find that the source field j ς

iτ enters the new lattice
problem (10) only multiplied by the new bosonic field ρ̄

ς
iτ .

This means that all correlation functions written in terms of
original composite variables ρ

ς
iτ identically coincide with the

ones where the ρ
ς
iτ variables are replaced by the corresponding

bosonic fields ρ̄
ς

iτ . Therefore, the introduced fields ρ̄
ς

iτ have
the same physical meaning as the composite variables ρ

ς
iτ

that describe fluctuations of charge and spin densities. To
emphasize this point hereinafter we omit the bar over the ρ̄

ς
iτ

field.
The dynamics of the bosonic field ρς is described by the

third and sixth terms of Eq. (10). It is convenient to rewrite
the vector bosonic field as ρs

iτ = Miτ es
iτ , where Miτ is a scalar

field that describes Higgs fluctuations of the absolute value
of the local magnetic moment. In turn, �eiτ is the unit vector
field, defined by the angles �M = {θ ′

iτ , ϕ
′
iτ }, that points in

the direction of the local moment on the lattice site i at the
time τ . It can be shown (for details see Appendix B) that
under the adiabatic approximation, for parameters that allow
formation of a sufficiently large well-defined local moment,
the path integral over �eiτ in the saddle approximation yields
that the direction of the vector bosonic field can be pinned to
the z axis of the rotating reference frame. At this point, it is
worth mentioning that the local moment is likely to be large
enough for the saddle approximation to be applicable only in
the multiorbital case. This means that the Berry-phase term
and consequently the Landau-Lifshitz-Gilbert equations of
motion that are derived below work only in that regime. If,
on the other hand, the saddle approximation can not reliably
be applied, the quantum fluctuations play a decisive role in
the dynamics of the local moment, and one can no longer
speak about local moment dynamics in terms of classical
equations of motion.

From this point on until the end of the section as well as
for the next section, we consider the integral over �eiτ taken
and the two sets of rotation angles are set equal to one another
�R = �M . This results in the following relation for the unit
vector field:

R†
iτ �σ · �eiτ Riτ = σ z. (11)

Using the relation (7), one also finds that∑
s′

[
U−1

iτ

]ss′
es′

iτ = δs,z (12)

which immediately yields the Berry-phase term∑
ss′
As

iτ

[
U−1

iτ

]ss′
ρs′

iτ =
∑
ss′
As

iτ

[
U−1

iτ

]ss′
es′

iτ Miτ = Az
iτ Miτ ,

(13)

where Az
iτ = i

2 ϕ̇iτ (1 − cos θiτ ). Also, one straightforwardly
gets that∑

{s}
ρ

s1
iτ U

s1s2
iτ [χ s2 ]−1

ττ ′
[
U−1

iτ ′
]s2s3

ρ
s3

iτ ′ = Miτ [χ z]−1
ττ ′Miτ ′ . (14)

Remaining rotation matrices can be excluded from the action
(10) by assuming the adiabatic approximation that character-
istic times for electronic degrees of freedom are much faster
than for spin ones. In this framework gτ2τ3

changes much faster
than the rotation matrices Riτ2

. This approximation results in∫∫ β

0
dτ2 dτ3 g−1

τ1τ2
Riτ2

gτ2τ3
R†

iτ3
g−1

τ3τ4



∫ β

0
dτ3 δτ1τ3

Riτ3
R†

iτ3
g−1

τ3τ4
= g−1

τ1τ4
(15)
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because the local reference system (2) is nonpolarized, and
its exact Green’s function gττ ′ is diagonal in the spin space.
A similar trick can be performed for the three-point vertex
function, which leads to (see Appendix A)

Trσ

∑
ss′

f ∗
iτ1

Riτ1
σ sR†

iτ2
fiτ2

�s
τ1τ2τ3

[
U−1

iτ3

]ss′
ρs′

iτ3



∑
s,σσ ′

f ∗
iτ1σ

σ s
σσ ′ fiτ2σ ′�

s
τ1τ2τ3

ρ s
iτ3

. (16)

The action (10) becomes

S = −
∫∫ β

0
dτ dτ ′ ∑

i j,σσ ′
f ∗
iτσ [G̃−1]σσ ′

i j,ττ ′ f jτ ′σ ′

+
∫∫∫ β

0
dτ1 dτ2 dτ3

∑
i,ς,σσ ′

f ∗
iτ1σ

σ
ς

σσ ′ fiτ2σ ′ �
ς
τ1τ2τ3

ρ
ς
iτ3

+ 1

2

∫ β

0
dτ

∑
i j,ς

ρ
ς
iτV ς

i j ρ
ς
jτ +

∫ β

0
dτ

∑
i

Az
iτ Miτ

− 1

2

∫∫ β

0
dτ dτ ′ ∑

i

{
ρc

iτ [χ c]−1
ττ ′ρ

c
iτ ′ + Miτ [χ z]−1

ττ ′Miτ ′
}
.

(17)

Source fields j ς have been introduced only to identify correct
bosonic variables and were excluded from the action (17).
The bare Green’s function of the action (17) is given by
the difference between the DMFT and the impurity Green’s
functions [62,63]

G̃σσ ′
i j,ττ ′ = Gσσ ′

i j,ττ ′ − δi jδσσ ′gττ ′ . (18)

Therefore, this quantity is dressed only in the local impurity
self-energy, which in our case is obtained from the self-
consistent DMFT calculation. For this reason, the developed
formalism does not suffer from a causality problem [7,64]. In
the absence of the SOC the local part of the bare dual Green’s
function is identically zero due to DMFT self-consistency
condition. Therefore, the performed set of transformations
separates spatial electronic fluctuations described by fields
f (∗) from local correlation effects that are accounted for by
the reference system (2). Another advantage of the introduced
fermion boson action (17) is that it allows one to obtain not
only standard correlation functions, such as the electronic
Green’s function and the (charge, spin, etc.) susceptibility, but
also various exchange interactions between charge and spin
densities that cannot be calculated directly from the initial
electronic problem (1). To illustrate this point one can inte-
grate out fermionic fields to get an effective bosonic action

S = −Tr ln

[
[G̃−1]σσ ′

i j,ττ ′ − δi j

∫ β

0
dτ ′′ ∑

ς

σ
ς

σσ ′�
ς

ττ ′τ ′′ ρ
ς

iτ ′′

]

+ 1

2

∫ β

0
dτ

∑
i j,ς

ρ
ς
iτV ς

i j ρ
ς
jτ +

∫ β

0
dτ

∑
i

Az
iτ Miτ

− 1

2

∫∫ β

0
dτ dτ ′ ∑

i

{
ρc

iτ [χ c]−1
ττ ′ρ

c
iτ ′ + Miτ [χ z]−1

ττ ′Miτ ′
}
.

(19)

The first line in this expression describes all possible (nonlo-
cal) exchange interactions that can be obtained expanding this
part of equation in terms of the ρς variables. The first-order
contribution in this expansion results in an effective local
magnetic field

hsoc s
iτ3

= −
∫∫ β

0
dτ1 dτ2

∑
σσ ′
G̃σ ′σ

ii,τ2τ1
σ s

σσ ′�
s
τ1τ2τ3

(20)

which is identically zero in the absence of the SOC due to non-
locality of the bare Green’s function (18), namely G̃σ ′σ

ii,τ2τ1
= 0.

Since the SOC enters the problem (1) as a nonlocal hopping
�κi j · �σσσ ′ , the local Green’s function G̃σ ′σ

ii,τ2τ1
is also negligibly

small in the case of a small SOC. Quadratic exchange can be
obtained as the second order of the expansion, which gives

S 
 1

2

∫∫ β

0
dτ dτ ′ ∑

i j,ςς ′
ρ

ς
iτI

ςς ′
i j,ττ ′ ρ

ς ′
jτ ′ +

∫ β

0
dτ

∑
i

Az
iτ Miτ

− 1

2

∫∫ β

0
dτ dτ ′ ∑

i

{
ρc

iτ [χ c]−1
ττ ′ρ

c
iτ ′ + Miτ [χ z]−1

ττ ′Miτ ′
}

−
∫ β

0
dτ

∑
i,s

hsoc s
iτ ρs

iτ . (21)

The total nonlocal quadratic exchange interaction

Iςς ′
i j,ττ ′ = δττ ′δςς ′V ς

i j + Jςς ′
i j,ττ ′ (22)

contains the bare (direct) interaction V ς
i j of the initial action

(1) and the RKKY-type (kinetic) interaction mediated by elec-
trons

Jςς ′
i j,ττ ′ =

∫ β

0
{dτi}

∑
{σi}

�∗ ς
ττ1τ2
G̃σ1σ3

i j,τ1τ3
G̃σ4σ2

ji,τ4τ2
�

ς ′
τ3τ4τ ′ . (23)

Here, the “transposed” three-point vertex �∗ ς
τ1τ2τ3

= �ς
τ3τ2τ1

is
introduced to simplify notations. The diagonal part of the
kinetic interaction is given by the Heisenberg exchange in-
teraction Jss

i j for spin [39] and the Ising interaction Jcc
i j for

charge [40] densities. The nondiagonal Jss′
i j (s �= s′) com-

ponent appears due to the SOC and gives rise to the
antisymmetric anisotropic (Dzyaloshinskii-Moriya) and the
symmetric anisotropic interactions (see, e.g., Ref. [54]). More
involved interaction terms, as for example the chiral three-spin
[65–70] and the four-spin [71–73] exchange interactions, can
be obtained by a straightforward expansion of the first term
in Eq. (19) to higher orders in ρ. We note that the exchange
interaction (22) can also be seen as the nonlocal part of the
inverse of the lattice susceptibility [39,40]. This fact clarifies
the relation between our result (22) and the estimation for the
exchange interaction based on the DMFT approximation for
the susceptibility introduced previously [74–76].

III. EQUATION OF MOTION

In this section we derive equation of motion for the preces-
sion of the local magnetic moment and thus exclude charge
degrees of freedom from consideration. The last term in the
second line of Eq. (21) describes the Higgs dynamics of
the absolute value of the local magnetic moment Miτ . These
fluctuations are fast and the corresponding contribution is
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FIG. 1. Absolute value of the local spin susceptibility χ z
ω of the

reference DMFT impurity problem (2) as a function of the number N
of bosonic Matsubara frequency ωN = 2πN/β. Results are obtained
for U = 8 at different temperatures specified in the legend. For all
considered temperatures the local spin susceptibility shows a rapidly
decaying behavior in the frequency space.

strongly nonlocal in time. This fact is confirmed by a rapidly
decaying behavior of the Fourier transform of the local spin
susceptibility χ s

ω to the Matsubara frequency space ω shown
in Fig. 1. On the contrary, the precession of the local magnetic
moment is slow in time [37,38,77] and can be described by the
Landau-Lifshitz-Gilbert (LLG) equation of motion [78,79].
To derive this equation we assume that the local magnetic
moment has already been formed in the system. The criterion
for the formation of the magnetic moment is discussed in
details in Sec. IV. At this point, we average over fast Higgs
fluctuations and replace the scalar field Miτ by its constant
nonzero average value 〈Miτ 〉 = 2S. In this case the Higgs term
can be neglected in the action because now it only gives a
constant contribution to the energy. The bosonic action (21)
reduces to an effective spin problem

Sspin =
∫ β

0
dτ

∑
j

(iϕ̇ jτ (1 − cos θ jτ ) S − �Sjτ · �h jτ ), (24)

where �Siτ = S�eiτ , and components of an effective magnetic
field �h jτ are

hs
jτ = − 4

∫ β

0
dτ ′ ∑

i,s′
Iss′

ji,ττ ′Ss′
iτ ′ + hsoc s

jτ . (25)

In the general case the equation of motion for the spins is a
set of integrodifferential equations. To simplify the problem,
we make use of the fact that the interaction between spins
is determined by the superexchange processes due to elec-
trons (23) and thus decays fast on the timescales of inverse
bandwidth, while the time dependence of the angle variables
ϕiτ and θiτ is slow. For this reason, we can expand the time
dependence of the spin variable Ss′

iτ ′ in Eq. (25) up to the first
order in powers of τ − τ ′. In the zeroth order the τ ′ time argu-
ment of Ss′

iτ ′ is simply replaced by τ . Then, the τ ′ integration
of Iss′

ji (τ − τ ′) leads to the zero Matsubara frequency Fourier

component of the spin-spin interaction Iss′
i j (ω = 0), and the

zeroth-order contribution to the effective magnetic field (25)
becomes

h0s
jτ = − 4

∑
i,s′
Iss′

ji,ω=0 Ss′
iτ . (26)

We note that the local three-point vertex function that enters
the expression for the kinetic interaction Jss′

i j,ω=0 (23) can be
obtained from the self-energy of the impurity problem as [39]

�s
ν,ω=0 = ∂�

imp
ν

∂Mω=0
+ (

χ s
ω=0

)−1
, (27)

where ν is the fermionic Matsubara frequency. If the inverse
of the local susceptibility is neglected, the equal-time kinetic
interaction reduces to well-known expression

Jss′
i j,ω=0 =

∑
ν,{σ }

(
∂M�s

iν

)
G̃σ1σ3

i j,ν

(
∂M�s′

jν

)
G̃σ4σ2

ji,ν (28)

that has been derived in Refs. [48–51] for the exchange inter-
action in a magnetically ordered state based on magnetic force
theorem. For a paramagnetic case this form for the exchange
interaction has been obtained in Ref. [80] using Hubbard-I
approximation. Within this approximation the local reference
system (2) is considered in the atomic limit that corresponds
to a zero fermionic hybridization function � = 0. In the pres-
ence of the SOC, the simplified form (28) of the effective
exchange (23) gives a result for the Dzyaloshinskii-Moriya
and the symmetric anisotropic interactions similar to the ones
derived in Refs. [51,81] using the magnetic force theorem.

The first-order expansion of Ss′
iτ ′ in τ − τ ′ in Eq. (25) would

lead to a term proportional to the time derivative of the spin
in the effective field (25), which would be the Gilbert damp-
ing. But, this term vanishes in the imaginary time due to the
exchange Iss′

ji (τ − τ ′) being an even function of time. This is
not really surprising as one can not expect dissipation effects
to be visible in the equilibrium formalism. On the other hand,
if at this point we perform analytical continuation to real times
t , the exchange transforms to a retarded function IR ss′

ji (t − t ′),
and the contribution with the first-order time derivative of the
spin in Eq. (25) does not vanish. Up to this order we can write

�hj (t ) = �hsoc
j (t ) + �h 0

j (t ) − 4
∑

i

(
∂� Im IR ss

ji,�

)∣∣
�=0

�̇Si(t ),

(29)

where the second term describes the Gilbert damping for
which we keep only the leading diagonal (s = s′) component
of the exchange interaction. IR ss′

ji (�) is a Fourier transform

of the retarded exchange interaction IR ss′
ji (t − t ′) to real fre-

quency �. We note that a similar expression for the Gilbert
damping has been derived in Refs. [37,38] for the case of a
classical spin coupled to the system of conduction electrons.

The derived effective magnetic field (29) allows one to
obtain the equation of motion for the spin precession in the
conventional Landau-Lifshitz-Gilbert form directly varying
the action (24):

�̇Sj (t ) = − �h j (t ) × �Sj (t ). (30)

A more general expression for the equation of motion that
accounts for all components of the exchange interaction can
be found in Appendix D.
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At this point we should emphasize again that our aim was
a mapping of the initial interacting fermionic problem onto
and effective Hamiltonian problem (24) that is stationary in
time. This effective problem describes the dynamics of spin
degrees of freedom, which is supposed to be much slower
than the electron hopping and other fast electron processes, in
particular, related to the Hubbard U energy scale. Within this
approach, we should take into account only low-frequency
part of the exchange term (23), which is approximately lim-
ited by the value of the exchange interaction. Actually, the
exchange term (23) has a complicated frequency dependence;
in fact it diverges for high frequencies, but taking into ac-
count such nonadiabatic effects is not allowed in the derived
Landau-Lifshitz-Gilbert equation of motion (30). In the high-
frequency region the separation of spin and electron dynamics
is, generally speaking, impossible. In the latter case, the dy-
namics of charge and spin degrees of freedom can only by
described by the derived fermion-boson (17) or boson (19)
actions that have no restriction on the regime of frequencies,
but are nonstationary in time.

IV. LOCAL MAGNETIC MOMENT FORMATION

The introduced equation of motion (30) is valid only when
the local magnetic moment exists. Otherwise, there is no way
to discuss a specific spin dynamics separated from general
dynamics of electron-hole excitations. In this section we de-
rive the corresponding condition for the formation of the local
magnetic moment in the system.

According to Landau phenomenology [82], a transition
from a paramagnetic to a magnetically ordered state occurs
due to a spontaneous symmetry breaking. The latter results
in the change of the free energy F [m] from a paraboloid-like
form with a minimum at m = 0 to a Mexican-hat potential
characterized by a continuous set of minima at m �= 0. This
change in the free energy can be seen in the sign change

of the second variation of the free energy ∂2
mF [m]|m=0 with

respect to the corresponding order parameter m (see, e.g.,
Ref. [83]). As an example, let us consider a half-filled Hub-
bard model on a three-dimensional (3D) cubic lattice, where
the spontaneous symmetry breaking is associated with the
formation of the antiferromagnetic (AFM) ordering with the
wave vector �Q = {π, π, π}. The free energy of our problem is
given by the action derived above (19) that is written in terms
of the physical bosonic variables ρς describing fluctuations of
charge and spin densities. Thus, the second variation of the
free energy with respect to the AFM order parameter ρs

Q,ω=0
results in the inverse of the AFM susceptibility X s

Q,ω=0 [39]
that becomes zero at the transition point

− ∂2S[ρs]

∂ρs
Q,ω=0∂ρs

−Q,ω=0

=(
X s

Q,ω=0

)−1 = (
χ s

ω=0

)−1−Iss
Q,ω=0=0.

(31)

Above the AFM phase boundary fluctuations of magnetic
moments are uncorrelated at large distances, which means that
the moments on different lattice sites fluctuate independently
on each other, assuming that the distance between sites is
larger than the magnetic correlation length. It can be expected
that the formation of the local magnetic moment can be cap-

tured in the same way as the formation of the AFM ordering
but looking at the corresponding local free energy. Impor-
tantly, this local free energy is different from the one of the
local reference system (2). Indeed, the impurity problem Simp

describes local correlation effects of both itinerant electrons
and local magnetic moments. In order to isolate the energy
related to the magnetic moment only, one has to find a way
to subtract the contribution of itinerant electrons from the
local free energy of the reference system (2). As we argue
in Appendix C, this procedure can be done by excluding
nonlocal terms from Eq. (10) and integrating out fermionic
variables f (∗). This procedure is reminiscent of the mapping
of the s-d model on the Anderson impurity model for the d
electrons [84,85]. Let is emphasize again that the discussion of
local moments and their separate dynamics makes sense only
at timescales much larger than typical electron times, such as
the inverse of the hopping amplitude, or 1/U . As the result we
get the local problem written in terms of only physical bosonic
variables ρ:

Sloc = −Tr ln

[
g−1

ττ ′δσσ ′ +
∫ β

0
dτ ′′ ∑

ς

σ
ς

σσ ′�
ς

ττ ′τ ′′ ρ
ς

iτ ′′

]

− 1

2

∫∫ β

0
dτ dτ ′ ∑

ς

ρς
τ [χς ]−1

ττ ′ρ
ς

τ ′ . (32)

Note that the derivation of this local problem does not rely on
the saddle-point approximation for rotation angles because no
transformation of fermionic variables to a rotating frame (4)
has been performed in this case.

In analogy to the formation to the AFM state the formation
of the local magnetic moment in the system can be seen in the
sign change of the second variation of the local action (32)
with respect to the local magnetic moment

−∂2Sloc[ρs]

∂ρs
τ ∂ρs

τ ′
= [χ s]−1

ττ ′ − J loc
ττ ′ . (33)

Importantly, and contrary to the case of the true phase transi-
tions for the infinite system, we keep times τ and τ ′ different
since in the static limit local magnetic moment does not exist,
it is screened by Kondo effect, or by intersite exchange-
induced spin flips (in paramagnetic phase), or by both these
factors. At the same time, as was already stressed, local
magnetic moment exists at relatively long times in compar-
ison with basic electron processes. In this sense, its existence
means symmetry breaking at intermediate timescales.

The expression (33) corresponds to a “slow” exchange cou-
pling of the local moment to itself at a different time point that
can be obtained by subtracting the contribution of itinerant
electrons given by a local analog of the exchange interaction
(23):

J loc
ττ ′ =

∫ β

0
{dτi}

∑
σ

�∗ s
ττ1τ2

gσ
τ1τ3

gσ
τ4τ2

�s
τ3τ4τ ′ (34)

from the total exchange interaction χ−1
ττ ′ of the local ref-

erence system (2). The moment when this self-exchange
becomes diamagnetic clearly marks the instability of the truly
paramagnetic phase without a developed local moment. Re-
markably, by direct numerical calculations we find that the
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FIG. 2. C−1
ω as a function of the number N of bosonic Matsubara

frequency ωN = 2πN/β. Results are obtained for U = 8 in a broad
range of temperatures specified in the legend. Cω has an opposite sign
in regions characterized by zero and nonzero local magnetic moment
and is nearly a delta function in the frequency space.

self-interaction of the local moment (33) evaluated at equal
times τ = τ ′ never changes sign, at least for the considered
model. This fact suggests that the formation of the local mag-
netic moment is not a real physical transition and should rather
be seen as a crossover. In other words, although the electronic
response is fast in time, electrons cannot react immediately
to the polarization created by themselves. In confirmation
of that we find that at the critical temperature the second
variation of the local free energy (33) changes sign at any
times except τ = τ ′. In this sense, the formation of the local
moment drastically differs from the formation of the AFM
ordering on a lattice that fulfills an equal-time criterion (31).
To illustrate this point, let us separate the static contribution
in Eq. (33) that is contained in the inverse of the local suscep-
tibility χ s −1

ττ ′ = [�s imp]−1
ττ ′ − δττ ′U s. In this expression �

s imp
ττ ′

is the polarization operator of the impurity problem (2) and
U s = −U/2 is the bare interaction in the spin channel. Then,
Eq. (33) becomes

−∂2
ρsSloc[ρs] = Cττ ′ − δττ ′U s, (35)

where Cττ ′ = [�s imp]−1
ττ ′ − J loc

ττ ′ is an effective dynamical self-
exchange coupling of the local magnetic moment. The Fourier
transform of C−1(τ − τ ′) to Matsubara frequency ω space is
shown in Fig. 2. This quantity has a delta-functional behavior
for all considered temperatures, which means that the second
variation of the local action (35) is nearly constant in time
except a delta-function peak at τ = τ ′ due to δττ ′U s term.
Therefore, the criterion for the local moment formation can
be obtained by excluding this static contribution δττ ′U s from
Eq. (35), which results in the condition

Cω=0 = 0 (36)

that is more convenient to write in the frequency space. As
we show in Appendix E, the sign change of the self-exchange
coupling Cω can be related to the sign change of the first
variation of the local electronic self-energy with respect to the
magnetization. The negative value of the variation indicates
that the formation of the local magnetic moment is energeti-

cally favorable because it minimizes the energy of electrons.
This condition can then serve as an approximate criterion for
the formation of the local magnetic moment in the system.

V. APPLICATION TO 3D HUBBARD MODEL

In this section we explore the formation of the local mag-
netic moment in the context of the 3D Hubbard model. For
simplicity, we consider only the nearest-neighbor hopping
amplitude ε〈i j〉 = 1 which defines the energy unit of the sys-
tem. The SOC κi j and the nonlocal interaction Vi j are set
to zero. Numerical results are obtained on the basis of the
converged DMFT solution of the lattice problem (1). In this
case the local reference system is given by the impurity prob-
lem of DMFT (2). Figure 3 shows the phase diagram for the
considered model in the temperature (T ) vs local Coulomb in-
teraction (U ) space. The red line corresponds to the condition
(36) that defines the temperature at which the local magnetic
moment is formed in the system. For illustrative purposes, we
also show the AFM phase boundary of DMFT (green line) that
was obtained in Ref. [86] using the criterion on the inverse
of the AFM susceptibility (31). Remarkably, we find that the
local moment appears already at high temperatures well above
the Néel phase transition to the AFM state. This observation
is consistent with the fact that in some cases a paramagnetic
phase can be well described by a classical Heisenberg model
that explicitly assumes the existence of the magnetic moment.
At the same time, the obtained result suggests that the local
magnetic moment exists only above a relatively large criti-
cal value of the local Coulomb interaction U ∗ 
 6.5, which
is comparable to the half of the bandwidth D/2 = 6. More
interestingly, the red line in Fig. 3 crosses the AFM phase
boundary at even larger value of U 
 7.7 and further splits the
AFM phase into two parts. The shaded red area to the right
of the red line indicates the existence of the local magnetic
moment in the system, which below the Néel temperature
corresponds to Heisenberg antiferromagnetism (shaded green
area). Consequently, the AFM ordering to the left of the red
line occurs without the presence of the magnetic moment,
which can be associated with Slater mechanism of metal-
insulator transition [87,88] due to long-range fluctuations of
itinerant electrons. Remarkably, we find that the Slater (that is,
purely itinerant) antiferromagnetism is not limited to a weakly
interacting regime of the Hubbard model and extends to large
values of the local Coulomb interaction upon lowering the
temperature.

The average value of the local magnetic moment 〈M〉 can
be found from the local free energy of the system. To this aim
we exclude the static contribution from the inverse of the local
susceptibility in Eq. (32) according to discussions presented
at the end of Sec. IV, and plot the energy as a function
of M = ρs

ω=0. Figure 4 illustrates the corresponding result
obtained for U = 8 at different temperatures. We find that
at a high temperature T = 2.5 the local energy shown in top
left panel has a parabolic form with a minimum at 〈M〉 = 0.
After crossing the red line that depicts the formation of the
local moment the energy takes the form of the double-well
potential. At T = 2.0 two minima of the energy (top right
panel) are located at |〈M〉| = 0.17, which corresponds to the
average value of the local magnetic moment. Upon lowering
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FIG. 3. Phase diagram for the 3D Hubbard model as a function
of temperature T and local Coulomb interaction U . Red line corre-
sponds to the criterion (36) for the formation of the local magnetic
moment. Blue line depicts the temperature at which the fingerprint of
the local moment formation appears in the generalized local charge
susceptibility (see Ref. [89]). Green line is the AFM phase transition
boundary obtained in Ref. [86] via DMFT susceptibility. Colored
“×” markers at U = 8 highlight points for which the local free
energy is shown in Fig. 4.

the temperature the value of the local magnetic moment grows
and at T = 1.0 becomes |〈M〉| = 0.37, as shown in bottom
left panel of Fig. 4. Finally, at T = 0.3 (bottom right panel)
after crossing the red line for the second time the minimum of
the energy again shifts to 〈M〉 = 0, which corresponds to the
Kondo screening of the local moment [90]. At small enough
U we rather deal with the regime of local spin fluctuations
than with the Kondo effect; within the Anderson model it
corresponds to the regime of valence fluctuations [90]. Free
energy obtained for smaller (U = 6.4, U = 6.8) and larger
(U = 10) values of the local Coulomb interaction close to a
transition point can be found in Appendix C.

The average value of the local moment can also be com-
pared to the magnetization 〈M ′〉 estimated from the equal-time
local spin susceptibility (see, e.g., Refs. [77,91,92])

3χ s
ττ = 〈M ′2〉 
 〈M ′〉(〈M ′〉 + 2). (37)

This expression gives nearly constant value 〈M ′〉 = 0.85 ±
0.03 for the all considered temperatures. Therefore, we find
that the magnetization calculated from the susceptibility
strongly overestimates the average value of the local magnetic
moment 〈M〉 and, moreover, remains very large in the regime
where the system possesses no local magnetic moment at all.
This result is a direct consequence of the fact that the spin sus-
ceptibility of the local reference system (2) cannot distinguish
the fluctuations of the local magnetic moment from the spin
fluctuations of the itinerant electrons that also contribute to
the susceptibility, especially in the paramagnetic regime [93].
In particular, this explains the large value of 〈M ′〉 obtained
at T = 0.3 that lies in the Kondo (or valence fluctuation)
regime, where the local magnetic moment is screened by
the electrons.

Importantly, the Kondo screening of the local magnetic
moment can influence different physical quantities not nec-

FIG. 4. Local free energy of the system Sloc[M] as a function
of the local magnetic moment M = ρs

ω=0. Results are obtained for
U = 8 at different temperatures T = 2.5 (top left panel), T = 2.0
(top right panel), T = 1.0 (bottom left panel), and T = 0.3 (bottom
right panel). Color of each plot corresponds to the color of the “×”
marker in Fig. 3 that indicates the temperature at which the energy is
calculated.

essarily related to magnetism. Recently, it has been argued
that the appearance of the “onionlike” fermionic Matsubara
frequency structure of the generalized local charge suscepti-
bility χ c(ν, ν ′, ω) can be seen as a fingerprint of the Kondo
screening of the local magnetic moment [89]. In particular, the
authors of Ref. [89] showed that in the low-temperature and
large-U regime the criterion χ c(ν0, ν0, ω0) = χ c(ν0,−ν0, ω0)
for this change in the fermionic frequency structure, where
ν0 = π/β and ω0 = 0 are, respectively, the zeroth fermionic
and bosonic Matsubara frequencies, provides a good estimate
for the Kondo temperature. For comparison we plot the “fin-
gerprint” temperature (blue line in Fig. 3) that was deduced
from the criterion on the local generalized charge suscepti-
bility of the DMFT impurity problem (2). We find that in
the large interaction regime U � 11 the lower branches of
both red and blue curves lie on top of each other and thus
reproduce the Kondo temperature obtained in Ref. [89]. How-
ever, upon decreasing the interaction, the blue line rapidly
shifts downwards to lower temperatures from the red one.
This trend is preserved and significantly increased upon going
to the high-temperature branches. Therefore, we observe that
the phenomenological criterion proposed in Ref. [89] seems
to correlate with the formation of the local moment but can
be directly attributed to it only in the well-developed Kondo
regime.

VI. CONCLUSIONS

To conclude, in this work we have shown that the ex-
tended Hubbard model that describes the behavior of electrons
on a lattice can be turned into an effective bosonic action
describing spin dynamics of itinerant-electron systems. We
have proved that the special set of transformations allows one
to write the resulting action in terms of physical variables
that can be associated with fluctuations of the local magnetic
moment. In particular, the use of these transformations makes
possible a careful separation of electronic and spin degrees
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of freedom. We have shown that the derived effective spin
problem takes into account all possible spin-exchange inter-
actions including the isotropic, the antisymmetric anisotropic,
and the symmetric anisotropic interactions. Importantly, the
obtained two-spin interactions can be reduced to a well-known
expression [48,50,51] that is intensively used for realistic
calculations of magnetic materials. Another important step
in these transformations is a precise separation of the ro-
tational dynamics of the local magnetic moment from the
Higgs fluctuations of its modulus. This allowed us to obtain a
correct Berry phase term, which is written in terms of rotation
angles and of the scalar field that describes the behavior of
the modulus of the magnetic moment. As a consequence, the
equation of motion for the introduced spin problem takes
the Landau-Lifshitz-Gilbert form, which, in addition to the
uniform spin precession, accounts for the Gilbert damping.

The derived equation of motion assumes the presence of
the local magnetic moment in the system. To capture the
formation of the magnetic moment, we have investigated the
local free energy of the system. We have found that, according
to Landau phenomenology, the energy as a function of the
local magnetic moment transforms from the paraboliclike to a
Mexican-hat potential form. The transition point between two
cases can be captured by a sign change of the second variation
of the local free energy, which allowed us to introduce a
criterion for the formation of the local magnetic moment. This
criterion can be interpreted as the appearance of a diamagnetic
exchange coupling of the local magnetic to itself. According

to the derived criterion this self-exchange coupling can be
obtained by excluding the itinerant contribution from the total
local exchange. This result explains the fact that the value
of the local magnetic moment cannot be estimated from the
local magnetic susceptibility, which also contains the contri-
bution of itinerant electrons. Instead, we have argued that the
value of the local magnetic moment can be found from the
minima of the local free energy. As the result, we have ob-
served that the local moment appears in the system well above
the transition temperature to the ordered magnetic state and
exists only above a critical value of the Coulomb interaction.
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APPENDIX A: EFFECTIVE SPIN PROBLEM IN THE MULTIORBITAL CASE

In this Appendix we explicitly derive a spin problem for a multiorbital (ll ′) electronic system. Those who are not interested
in technical details of this derivation can find a summary of performed transformations at the end of this section. We start with
the lattice action of the extended Hubbard model written in the coordinate (i) and imaginary-time (τ ) space

S =
∫ β

0
dτ

{
−

∑
i j,σσ ′,ll ′

c∗
iτσ l

[
δi jδσσ ′δll ′ (−∂τ + μ) − εσσ ′

i j,ll ′
]
c jτσ ′l ′

+ 1

2

∑
i,σσ ′,{l}

Ul1l2l3l4 c∗
iτσ l1 ciτσ l2 c∗

iτσ ′l4 ciτσ ′l3 + 1

2

∑
i j,ς,{l}

ρ
ς

iτ l1l2
V ς, i j

l1l2l3l4
ρ

ς

jτ l4l3

}
. (A1)

In this expression we introduced composite variables ρ
ς

iτ ll ′ = nς

iτ ll ′ − 〈nς

ll ′ 〉imp that describe fluctuations of the charge (ς = c)

and spin (ς = s = {x, y, z}) densities nς

iτ ll ′ = ∑
σσ ′ c∗

iτσ l σ
ς

σσ ′ciτσ ′l ′ around their average values. The latter are provided by an
effective site-independent impurity problem

Simp = −
∫∫ β

0
dτ dτ ′ ∑

σ,ll ′
c∗
τσ l

[
δττ ′δll ′ (−∂τ + μ) − �ll ′

ττ ′
]
cτ ′σ l ′ +

1

2

∫ β

0
dτ

∑
σσ ′,{l}

Ul1l2l3l4 c∗
τσ l1 cτσ l2 c∗

τσ ′l4 cτσ ′l3 . (A2)

The impurity problem is considered in a nonpolarized form so that 〈ns
ll ′ 〉imp = 0. Consequently, the corresponding retarded

fermionic hybridization function is spin independent and reads as �ll ′
ττ ′ = �ll ′ (τ − τ ′). The remainder part of the action

Srem = S− ∑
i Simp is following:

Srem =
∫∫ β

0
dτ dτ ′ ∑

i j,σσ ′,ll ′
c∗

iτσ l ε̃ττ ′ll ′
i jσσ ′ c jτ ′σ ′l ′ + 1

2

∫ β

0
dτ

∑
i j,ς,{l}

ρ
ς

iτ l1l2
V ς, i j

l1l2l3l4
ρ

ς

jτ l4l3
, (A3)
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where ε̃ττ ′ll ′
i jσσ ′ = εσσ ′

i j,ll ′δττ ′ − �ll ′
ττ ′δi jδσσ ′ . In order to integrate out the local reference system (A2) that is solved numerically exactly

we perform Hubbard-Stratonovich transformations over the remainder part of the lattice action (A3) as

exp

⎧⎨
⎩−

∫∫ β

0
dτ dτ ′ ∑

i j,σσ ′,ll ′
c∗

iτσ l ε̃ττ ′ll ′
i jσσ ′ c jτ ′σ ′l ′

⎫⎬
⎭

= D f

∫
D[ f ∗, f ] exp

⎧⎨
⎩
∫ β

0
{dτi}

∑
i j,σσ ′,{l}

f ∗
iτ1σ l1 [g−1]l1l2

τ1τ2
[ε̃−1]τ2τ3,l2l3

i j,σσ ′ [g−1]l3l4
τ3τ4

f jτ4σ ′l4

−
∫∫ β

0
dτ dτ ′ ∑

i,σ,ll ′

(
c∗

iτσ l [g
−1]ll ′

ττ ′ fiτ ′σ l ′ + H.c.
)}

(A4)

exp

⎧⎨
⎩−1

2

∫ β

0
dτ

∑
i j,ς,{l}

ρ
ς

iτ l1l2
V ς, i j

l1l2l3l4
ρ

ς

jτ l4l3

⎫⎬
⎭

= Dφ

∫
D[φς ] exp

⎧⎨
⎩
∫ β

0
dτ

⎛
⎝1

2

∑
i j,ς,{l}

φ
ς

iτ l1l2
[(V ς )−1]i j

l1l2,l3l4
φ

ς

jτ l4l3
−

∑
i,ς,ll ′

φ
ς

iτ ll ′ ρ
ς

iτ l ′l

⎞
⎠
⎫⎬
⎭, (A5)

where determinantsD f = det[g(� − ε)g] andD−1
φ = −√

detV can be neglected when calculating expectation values. After that
the lattice action becomes

S = −
∫∫ β

0
{dτi}

∑
i j,σσ ′,{l}

f ∗
iτ1σ l1 [g−1]l1l2

τ1τ2
[ε̃−1]τ2τ3,l2l3

i j,σσ ′ [g−1]l3l4
τ3τ4

f jτ4σ ′l4

+
∫∫ β

0
dτ dτ ′ ∑

i,σ,ll ′

(
c∗

iτσ l [g
−1]ll ′

ττ ′ fiτ ′σ l ′ + f ∗
iτσ l [g

−1]ll ′
ττ ′ciτ ′σ l ′

)

− 1

2

∫ β

0
dτ

∑
i j,ς,{l}

φ
ς

iτ l1l2
[(V ς )−1]i j

l1l2,l3l4
φ

ς

jτ l4l3
+

∫ β

0
dτ

∑
i,ς,ll ′

(
φ

ς

iτ ll ′ + j ς

iτ ll ′
)
ρ

ς

iτ l ′l +
∑

i

Simp. (A6)

In the last equation we have introduced source field j ς for the composite ρς variable. Now we perform a transformation of
fermionic variables to a rotating frame as discussed in the main text. This transformation can be written in terms of the unitary
orbital-independent rotation matrix

Riτ =
(

cos(θiτ /2) −e−iϕiτ sin(θiτ /2)
eiϕiτ sin(θiτ /2) cos(θiτ /2)

)
, (A7)

where polar angles θiτ and ϕiτ will be defined later. Fermionic variables are transformed as ciτ l → Riτ ciτ l , where
ciτ l = (ciτ l↑, ciτ l↓)T . The action becomes

S = −
∫∫ β

0
{dτi}

∑
i j,σσ ′,{l}

f ∗
iτ1σ l1 [g−1]l1l2

τ1τ2
[ε̃−1]τ2τ3,l2l3

i j,σσ ′ [g−1]l3l4
τ3τ4

f jτ4σ ′l4

+
∫∫ β

0
dτ dτ ′Trσ

∑
i,ll ′

{
c∗

iτ l R
†
iτ [g−1]ll ′

ττ ′ fiτ ′l ′ + f ∗
iτ l [g

−1]ll ′
ττ ′Riτ ′ciτ ′l ′

}

− 1

2

∫ β

0
dτ

∑
i j,ς,{l}

φ
ς

iτ l1l2
[(V ς )−1]i j

l1l2,l3l4
φ

ς

jτ l4l3
+

∫ β

0
dτ

∑
i,ll ′

(
φc

iτ ll ′ + jc
iτ ll ′

)
ρc

iτ l ′l

+
∫ β

0
dτ Trσ

∑
i,s,ll ′

(
φs

iτ ll ′ + js
iτ ll ′

)
c∗

iτ l ′R
†
iτ σ

sRiτ ciτ l

+
∫ β

0
dτ Trσ

∑
i,l

c∗
iτ l R

†
iτ Ṙiτ ciτ l +

∑
i

Simp. (A8)

The term that contains the derivative of the rotation matrix can be rewritten as an effective gauge field R†
iτ Ṙiτ = ∑

sAs
iτ σ

s. We

also rewrite the coupling of an effective magnetic field to electronic degrees of freedom as R†
iτ σ

ςRiτ = ∑
ς ′Uςς ′

iτ σ ς ′
, where
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[U−1
iτ ]ss′ = [UT

iτ ]ss′
,Ucs

iτ = 0, andUcc
iτ = 1. Using these notations the action can be rewritten as

S = −
∫∫ β

0
{dτi}

∑
i j,σσ ′,{l}

f ∗
iτ1σ l1 [g−1]l1l2

τ1τ2
[ε̃−1]τ2τ3,l2l3

i j,σσ ′ [g−1]l3l4
τ3τ4

f jτ4σ ′l4

+
∫∫ β

0
dτ dτ ′Trσ

∑
i,ll ′

{
c∗

iτ l R
†
iτ [g−1]ll ′

ττ ′ fiτ ′l ′ + f ∗
iτ l [g

−1]ll ′
ττ ′Riτ ′ciτ ′l ′

}

− 1

2

∫ β

0
dτ

∑
i j,ς,{l}

φ
ς

iτ l1l2
[(V ς )−1]i j

l1l2,l3l4
φ

ς

jτ l4l3

+
∫ β

0
dτ

∑
i,ςς ′,ll ′

(
φ

ς

iτ ll ′ + j ς

iτ ll ′ +
∑
ς ′′
Aς ′′

iτ [U−1
iτ ]ς

′′ς δll ′

)
Uςς ′

iτ ρ
ς ′
iτ l ′l +

∑
i

Simp. (A9)

Now we make a shift of bosonic variables φ
ς

iτ ll ′ → φ̂
ς

iτ ll ′ = φ
ς

iτ ll ′ − j ς

iτ ll ′ − ∑
ς ′′ Aς ′′

iτ [U−1
iτ ]ς

′′ςδll ′ that leads to

S = −
∫∫ β

0
{dτi}

∑
i j,σσ ′,{l}

f ∗
iτ1σ l1 [g−1]l1l2

τ1τ2
[ε̃−1]τ2τ3,l2l3

i j,σσ ′ [g−1]l3l4
τ3τ4

f jτ4σ ′l4

+
∫∫ β

0
dτ dτ ′Trσ

∑
i,ll ′

{
c∗

iτ l R
†
iτ [g−1]ll ′

ττ ′ fiτ ′l ′ + f ∗
iτ l [g

−1]ll ′
ττ ′Riτ ′ciτ ′l ′

}

− 1

2

∫ β

0
dτ

∑
i j,ς,{l}

φ̂
ς

iτ l1l2
[(V ς )−1]i j

l1l2,l3l4
φ̂

ς

jτ l4l3
+

∫ β

0
dτ

∑
i,ςς ′,ll ′

φ
ς

iτ ll ′U
ςς ′
iτ ρ

ς ′
iτ l ′l +

∑
i

Simp. (A10)

After shifting bosonic variables the gauge A and the source j fields are no longer coupled to original fermionic c(∗) degrees of
freedom and thus will not be affected by the integration of original fermionic degrees of freedom. The latter is performed as∫

D[c∗, c] exp

{
−

∑
i

Simp −
∫∫ β

0
dτ dτ ′Trσ

∑
i,ll ′

{
c∗

iτ l R
†
iτ [g−1]ll ′

ττ ′ fiτ ′l ′ + f ∗
iτ l [g

−1]ll ′
ττ ′Riτ ′ciτ ′l ′

}
−

∫ β

0
dτ

∑
i,ςς ′,ll ′

φ
ς

iτ ll ′U
ςς ′
iτ ρ

ς ′
iτ l ′l

}

= Zimp × exp

{
−

∫ β

0
{dτi}

∑
i,{l}

(
Trσ f ∗

iτ1l1 [g−1]l1l2
τ1τ2

Riτ2
gl2l3

τ2τ3
R†

iτ3
[g−1]l3l4

τ3τ4
fiτ4l4

+ 1

2

∑
{ς}

φ
ς1
iτ1l1l2
Uς1ς2

iτ1
χ

ς2, τ1τ2
l1l2l3l4

[
U−1

iτ2

]ς2ς3
φ

ς3
iτ2l4l3

)
− F̃ [ f , φ]

}
, (A11)

whereZimp, gll ′
ττ ′ = −〈ciτ l c∗

iτ ′l ′ 〉, and χ
ς ττ ′
l1l2l3l4

= −〈ρς

iτ l2l1
ρ

ς

iτ ′l3l4
〉 are the partition function, the Green’s function, and the suscepti-

bility of the local impurity problem (A2), respectively. The interaction F̃ [ f , φ] that appears as the result of the integration of c(∗)

variables contains all possible exact fermion-fermion, fermion-boson, and boson-boson vertex functions of the local reference
system (A2). However, in actual calculations it is usually truncated at the two-particle level, which is a standard approximation
that is widely used in the dual fermion [62,63,94], the dual boson [43–47], and the dual TRILEX [41,42,95] methods including
their diagrammatic Monte Carlo realizations [96–98]. Thus, the truncated interaction contains only the exact local three-point
�

ς, τ1τ2τ3
l1l2;l3l4

and four-point �
τ1τ2τ3τ4
l1l2l3l4

vertex functions of the reference system

F̃ [ f , φ] 

∫ β

0
{dτi}Trσ

∑
i,{l}

[∑
ςς ′

f ∗
iτ1l1 Riτ1

σςR†
iτ2

fiτ2l2�
ς, τ1τ2τ3
l1l2;l3l4

χ
ς, τ3τ4
l3l4l5l6

[
U−1

iτ4

]ςς ′
φ

ς ′
iτ4l6l5

+ 1

4
�

τ1τ2τ3τ4
l1l2l3l4

f ∗
iτ1l1 Riτ1

R†
iτ2

fiτ2l2 f ∗
iτ4l4 Riτ4

R†
iτ3

fiτ3l3

]
, (A12)

where in the paramagnetic regime �x = �y = �z, and

�
c/z, τ1τ2τ3

l1l2;l3l4
=

∫ β

0
{dτ ′}

∑
{l ′}

〈
ciτ ′

1↑l ′1
c∗

iτ ′
2↑l ′2

ρ
c/z
iτ ′

3l ′3l ′4

〉
[g−1]l ′1l1

τ ′
1τ1

[g−1]l ′2l2
τ ′

2τ2
[(χ c/z )−1]τ

′
3τ3

l ′3l ′4,l3l4
, (A13)

�
τ1τ2τ3τ4
l1l2l3l4,σ1σ2σ3σ4

=
∫ β

0
{dτ ′}

∑
{l ′}

〈
ciτ ′

1σ1l ′1
c∗

iτ ′
2σ2l ′2

c∗
iτ ′

3σ3l ′3
ciτ ′

4σ4l ′4

〉
c
[g−1]l ′1l1

τ ′
1τ1

[g−1]l ′2l2
τ ′

2τ2
[g−1]l ′3l3

τ ′
3τ3

[g−1]l ′4l4
τ ′

4τ4
. (A14)
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Here, 〈. . .〉 stands for the average with respect to the partition function of the local impurity problem (A2). After integrating
out original fermionic variables, we perform a transformation from unphysical bosonic fields φ

ς

ll ′ to physical variables ρ̄
ς

ll ′ that
describe fluctuations of charge and spin densities. To this aim we make a Hubbard-Stratonovich transformation for the quadratic
in φ̂

ς

ll ′ variables term that enters the last line of Eq. (A10), which is the only term in the action that contains bosonic source fields
j ς :

exp

⎧⎨
⎩1

2

∫ β

0
dτ

∑
i j,ς,{l}

(
φ

ς

iτ l1l2
−

∑
ς ′
Aς ′

iτ

[
U−1

iτ

]ς ′ς
δl1l2

− j ς

iτ l1l2

)
[(V ς )−1]i j

l1l2,l3l4

(
φ

ς

jτ l4l3
−

∑
ς ′′
Aς ′′

jτ

[
U−1

jτ

]ς ′′ς
δl4l3

− j ς

jτ l4l3

)⎫⎬
⎭

= [−D−1
φ

] ∫
D[ρ̄ς ] exp

{
−

∫ β

0
dτ

∑
i j,ς

[
1

2

∑
{l}

ρ̄
ς

iτ l1l2
V ς, i j

l1l2l3l4
ρ̄

ς

jτ l4l3
−

∑
ll ′

(
φ

ς

iτ ll ′ −
∑
ς ′
Aς ′

iτ

[
U−1

iτ

]ς ′ς
δll ′ − j ς

iτ ll ′

)
ρ̄

ς

iτ l ′l

]}
.

(A15)

After that, the action takes the following form:

S = −
∫ β

0
{dτi}Trσ

∑
i j,{l}

f ∗
iτ1l1

{
[g−1]l1l2

τ1τ2
[ε̃−1]τ2τ3,l2l3

i j,σσ ′ [g−1]l3l4
τ3τ4

− δi j[g
−1]l1l2

τ1τ2
Riτ2

gl2l3
τ2τ3

R†
iτ3

[g−1]l3l4
τ3τ4

}
f jτ4l4

+ 1

2

∫ β

0
dτ

∑
i j,ς,{l}

ρ̄
ς

iτ l1l2
V ς, i j

l1l2l3l4
ρ̄

ς

jτ l4l3
+ 1

2

∫∫ β

0
dτ dτ ′ ∑

i,{ς},{l}
φ

ς1
iτ l1l2
Uς1ς2

iτ χ
ς2, ττ ′
l1l2l3l4

[
U−1

iτ ′
]ς2ς3

φ
ς3
iτ ′l4l3

+
∫ β

0
dτ

{ ∑
i,mm′,l

Am
iτ

[
U−1

iτ

]mm′
ρ̄m′

iτ ll −
∑

i,ς,ll ′

[
φ

ς

iτ ll ′ − j ς

iτ ll ′
]
ρ̄

ς

iτ l ′l

}
+ F̃ [ f , φ]. (A16)

We find that the source field j ς
iτ enters the problem only as a multiplier of the new field ρ̄

ς
iτ . This means that the introduced field

ρ̄
ς
iτ is a correct variable that describes fluctuations of charge and spin densities as discussed in the main text. Further, we omit

bosonic sources j ς
iτ and bars over the bosonic field ρ

ς
iτ . Finally, bosonic fields φς can be integrated out as

∫
D[φς ] exp

{
− 1

2

∫∫ β

0
dτ dτ ′ ∑

i,{ς},{l}
φ

ς1
iτ l1l2
Uς1ς2

iτ χ
ς2, ττ ′
l1l2l3l4

[
U−1

iτ ′
]ς2ς3

φ
ς3
iτ ′l4l3

+
∫ β

0
dτ4

∑
i,ς ′,l5l6

(
ρ

ς ′
iτ4l5l6

−
∫∫∫ β

0
dτ1 dτ2 dτ3Trσ

∑
ς,l1l2l3l4

f ∗
iτ1l1 Riτ1

σςR†
iτ2

fiτ2l2�
ς, τ1τ2τ3
l1l2;l3l4

χ
ς, τ3τ4
l3l4l5l6

[
U−1

iτ4

]ςς ′
)

φ
ς ′
iτ4l6l5

}

= Zφ × exp

{
1

2

∫∫ β

0
dτ dτ ′ ∑

i,{ς},{l}
ρ

ς1
iτ l1l2
Uς1ς2

iτ [(χς2 )−1]ττ ′
l1l2,l3l4

[
U−1

iτ ′
]ς2ς3

ρ
ς3
iτ ′l4l3

−
∫ β

0
{dτ }Trσ

∑
i,ςς ′,{l}

f ∗
iτ1l1 Riτ1

σςR†
iτ2

fiτ2l2�
ς, τ1τ2τ3
l1l2;l3l4

[
U−1

iτ3

]ςς ′
ρ

ς ′
iτ3l4l3

+ 1

2

∫ β

0
{dτ }Trσ

∑
i,ς,{l}

f ∗
iτ1l1 Riτ1

σςR†
iτ2

fiτ2l2�
ς, τ1τ2τ3
l1l2;l3l4

χ
ς, τ3τ4
l3l4l5l6

�
ς, τ6τ5τ4
l8l7;l6l5

f ∗
iτ6l8 Riτ6

σςR†
iτ5

fiτ5l7

}
, (A17)

where Zφ is a partition function of the Gaussian part of this bosonic integral. The four-point interaction that appears in the last
line of this expression approximately cancels the exact four-point vertex function � [second term in Eq. (A12)] as discussed in
Ref. [39]. As the result we get

S = −
∫ β

0
{dτi}Trσ

∑
i j,{l}

f ∗
iτ1l1

{
[g−1]l1l2

τ1τ2
[ε̃−1]τ2τ3,l2l3

i j,σσ ′ [g−1]l3l4
τ3τ4

− δi j[g
−1]l1l2

τ1τ2
Riτ2

gl2l3
τ2τ3

R†
iτ3

[g−1]l3l4
τ3τ4

}
f jτ4l4

+ 1

2

∫ β

0
dτ

∑
i j,ς,{l}

ρ
ς

iτ l1l2
V ς, i j

l1l2l3l4
ρ

ς

jτ l4l3
− 1

2

∫∫ β

0
dτ dτ ′ ∑

i,{ς},{l}
ρ

ς1
iτ l1l2
Uς1ς2

iτ [(χς2 )−1]ττ ′
l1l2,l3l4

[
U−1

iτ ′
]ς2ς3

ρ
ς3
iτ ′l4l3

+
∫ β

0
{dτ }Trσ

∑
i,ςς ′,{l}

f ∗
iτ1l1 Riτ1

σςR†
iτ2

fiτ2l2�
ς, τ1τ2τ3
l1l2;l3l4

[
U−1

iτ3

]ςς ′
ρ

ς ′
iτ3l4l3

+
∫ β

0
dτ

∑
i,ss′,l

As
iτ

[
U−1

iτ

]ss′
ρs′

iτ ll . (A18)
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We assume that the multiorbital system that exhibits a well-developed magnetic moment is characterized by a strong Hund’s
exchange coupling that orders spins of electrons at each orbital in the same direction. This allows one to decouple the orbital
and spin degrees of freedom rewriting the vector spin field as ρs

iτ ll ′ = Miτ ll ′e
s
iτ . Here, Miτ ll ′ is a scalar field that can be associated

with the orbitally resolved value of the local magnetic moment. In its turn, �eiτ is the unit vector that points in the direction of
the local moment on the lattice site i at the time τ . At this step we set the direction of the z axis defined by the rotation matrices
(A7) equal to the direction of the local magnetic moment. Then, using the definition ofUss′

we get∑
s

ρs
iτ ll ′Uss′

iτ =
∑

s

Miτ ll ′e
s
iτUss′

iτ = Miτ ll ′δz,s′ . (A19)

The validity of this approximation will be discussed in Appendix B in order not to confuse the reader of this extremely technically
loaded Appendix even more. In addition, we use that the local Green’s function gl1l2

τ1τ2
dominates at τ1 ≈ τ2 and is diagonal in the

spin space. This allows one to write that∫∫ β

0
dτ2 dτ3Trσ

∑
l2l3

f ∗
iτ1l1 [g−1]l1l2

τ1τ2
Riτ2

gl2l3
τ2τ3

R†
iτ3

[g−1]l3l4
τ3τ4

fiτ4l4



∫ β

0
dτ3Trσ

∑
l3

δτ1τ3
δl1l3 f ∗

iτ1l1 Riτ3
R†

iτ3
[g−1]l3l4

τ3τ4
fiτ4l4 = Trσ f ∗

iτ1l1 [g−1]l1l4
τ1τ4

fiτ4l4 . (A20)

Using the same argument, the three-point vertex can be transformed as

Trσ

∑
ss′,{l}

f ∗
iτ1l1 Riτ1

σ sR†
iτ2

fiτ2l2�
s, τ1τ2τ3
l1l2l3l4

[
U−1

iτ3

]ss′
ρs′

iτ3l4l3 = Trσ

∑
{l}

f ∗
iτ1l1 Riτ1

σ zR†
iτ2

fiτ2l2�
z, τ1τ2τ3
l1l2;l3l4

Miτ3l4l3



∑

s,σσ ′,{l}
f ∗
iτ1σ l1σ

s
σσ ′ fiτ2σ ′l2�

z, τ1τ2τ3
l1l2;l3l4

Miτ3l4l3 es
iτ3

=
∑

s,σσ ′{l}
f ∗
iτ1σ l1σ

s
σσ ′ fiτ2σ ′l2�

s, τ1τ2τ3
l1l2;l3l4

ρs
iτ3l4l3 . (A21)

After that, one gets the fermion-boson action

S = −
∫∫ β

0
dτ dτ ′ ∑

i j,σσ ′
f ∗
iτσ l [G̃−1]ττ ′,ll ′

i j,σσ ′ f jτ ′σ ′l ′ +
∫ β

0
{dτ }

∑
i,ς,σσ ′,{l}

f ∗
iτ1σ l1σ

ς

σσ ′ fiτ2σ ′l2�
ς, τ1τ2τ3
l1l2;l3l4

ρ
ς

iτ3l4l3

+ 1

2

∫ β

0
dτ

∑
i j,ς,{l}

ρ
ς

iτ l1l2
V ς, i j

l1l2l3l4
ρ

ς

jτ l4l3
− 1

2

∫∫ β

0
dτ dτ ′ ∑

i,{l}
ρc

iτ l1l2 [(χ c)−1]ττ ′
l1l2,l3l4ρ

c
iτ ′l4l3

− 1

2

∫∫ β

0
dτ dτ ′ ∑

i,{l}
Miτ l1l2 [(χ z )−1]ττ ′

l1l2,l3l4 Miτ ′l4l3 +
∫ β

0
dτ

∑
i

Az
iτMiτ , (A22)

where Az
iτ = 1

2 iϕ̇ (1 − cos θ ) is the Berry phase,Miτ = ∑
l Miτ ll is the modulus of the total local magnetic moment, and G̃ is

the nonlocal part of the DMFT Green’s function

G̃ττ ′ll ′
i jσσ ′ = Gττ ′ll ′

i jσσ ′ − δi jδσσ ′gll ′
ττ ′ . (A23)

Summary of performed transformations

To guide the reader through a technical derivation
presented in this section and to clarify the meaning of
the introduced auxiliary fields, let us make a summary
of the performed transformations. We start with the
fermionic action given by Eq. (A1). The corresponding
partition function Z = ∫

D[c∗, c] e−S[c(∗)] for this initial
fermionic action S[c(∗)] contains the integral over original
fermionic variables c(∗). Then, we introduce an exactly
(numerically) solvable local reference system Simp[c(∗)] (A2)
that further will be integrated out in order to account
for local correlation effects exactly. We note that the
reference system and the remaining part of the action
Srem[c(∗)] = S[c(∗)] − ∑

i Simp[c(∗)] are written in terms
of the same variables c(∗). Therefore, the reference system
can be integrated out only after changing variables for the

remaining part of the action. This change of variables can be
done using two Hubbard-Stratonovish transformations (A4)
and (A5), which introduces new fermionic f (∗) and bosonic
φς fields in the theory. After that, the partition function
becomes Z = ∫

D[c∗, c]D[ f ∗, f ]D[φς ] e−S[c(∗), f (∗),φς ]. To
simplify expressions, hereinafter the partition function
is given up to insignificant factors, e.g., determinants,
that are explicitly specified above. We note that new
fermionic f (∗) and bosonic φς fields have no physical
meaning and are introduced only to enable integrating the
reference system out. Before performing this integration,
we make a transformation of fermionic variables c(∗)

to a rotating frame using a rotation matrix (A7). This
allows us to introduce polar angles �R = {θiτ , ϕiτ } that
further will be associated with the direction of the bosonic
field that describes fluctuations of the local magnetic
moment. Similar to Refs. [33–36], we introduce path
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integration over the angles �R to maintain rotational
invariance. This results in the following partition function
Z = ∫

D[c∗, c]D[ f ∗, f ]D[φς ]D[�R] e−S[c(∗), f (∗),φς ,�R], where
by D[�R] = ∏

sin θ dθ dφ/4π we mean the usual differential
in spherical coordinates. Now, one can integrate out original
fermionic variables c(∗) (A11), which results in the partition
function Z = ∫

D[ f ∗, f ]D[φς ]D[�R] e−S[ f (∗),φς ,�R] that
is not specified in the text. Further, we make another
Hubbard-Stratonovich transformation (A15) in order to go
from an auxiliary bosonic field φς to a physical bosonic field
ρ̄ς that describes fluctuations of charge and spin densities.
The partition function for the problem (A16) transforms
to Z = ∫

D[ f ∗, f ]D[φς ]D[ρ̄ς ]D[�R] e−S[ f (∗),φς ,ρ̄ς ,�R].
Finally, auxiliary bosonic fields φς are integrated
out (A17), which results in the partition function
Z = ∫

D[ f ∗, f ]D[ρ̄ς ]D[�R] e−S[ f (∗),ρ̄ς ,�R] for the fermion-
boson action (A18). At the last step we notice that under
certain conditions (see Appendix B) the path integral over
the direction of the spin part bosonic field ρ̄s can be taken in
the saddle-point approximation that allows to associate the
rotation angles �R with the direction of the aforementioned
field. The latter is a vector field with three components ρ̄x,
ρ̄y, and ρ̄z. Therefore, one can make a transformation from
Cartesian to spherical coordinate system and identically
rewrite this field as ρs = Mes. Here, Miτ is a scalar field that
can be associated with the modulus of the local magnetic
moment, and �eiτ is the unit vector that points in the direction
of the local moment on the lattice site i at the time τ . Let us
assume that the direction of the unit vector �eiτ is defined by a
set of polar angles �M = {θ ′

iτ , ϕ
′
iτ }. Then, the integral in the

partition function Z = ∫
D[ f ∗, f ]D[ρ̄ς ]D[�R] e−S[ f (∗),ρ̄ς ,�R]

can also be written asZ = ∫
D[ f ∗, f ]D[ρ̄c]D[�R]D[M,�M]

e−S[ f (∗),ρ̄c,�R,M,�M ], where D[M,�M ] = ∏
M2 sin θ ′dM

dθ ′dφ′/4π . The saddle-point approximation discussed in
Appendix B allows one to equate the angles �R = �M that
from now on define the direction of the unit vector field �eiτ

and consequently of the local magnetic moment. After that,
the partition function of the problem reduces to its final form
Z = ∫

D[ f ∗, f ]D[ρ̄c]D[M,�M] e−S[ f (∗),ρ̄c,M,�M ].

APPENDIX B: VALIDITY OF THE SADDLE-POINT
APPROXIMATION

In this Appendix we argue that under certain conditions
the path integral over �M effectively acts as a delta function
setting all fields es

iτ in the action (10) effectively equal to the
unit vectors in the directions of the z axes of the rotating
reference frames described by angles �R. As discussed in the
main text, the third and the sixth terms in Eq. (10) account
for the dynamics of the local magnetic moment. Other terms
either account for charge dynamics and thus do not depend
on �M or account for nonlocal exchange interaction between
the local moments and thus are irrelevant for the internal dy-
namics of the local moment. They are, however, important to
derive the equation of motion of the moments the solution of
which is essential to verify whether the approximation made
is consistent (see below). So, consider the expression for the

partition function:

Z =
∫

D[�M, . . . ] e−Sr exp

{
−1

2

∫∫ β

0
dτ dτ ′

×
∑
i,{ς}

ρ̄
ς1

iτ U
ς1ς2
iτ [χς2 ]−1

ττ ′
[
U−1

iτ ′
]ς2ς3

ρ̄
ς3

iτ ′

}
. (B1)

Here, Sr stands for all other terms in the action except the
third term in Eq. (10) and “. . . ” stands for all other fields
except �M . The saddle-point approximation is well justified if
the integrand is a product of a slow function of the integration
(e−Sr ) variable and a sharp-peaked function of that variable
(the exponent of the third term). Here we will discuss the
conditions under which this is a good approximation.

Consider first the third term. It couples the spin bosonic
field in the rotating reference frame ρ ′

iτ = [U−1
iτ ] ρ̄iτ at the

site i and time τ to that very same field ρ ′
iτ ′ at a different

point of time τ ′. As we consider the paramagnetic phase, the
coupling constant between these two fields, which happens
to be the inverse of the local magnetic susceptibility, does
not depend on the direction in space. As also is discussed
in the main text and is shown in Fig. 1 the susceptibility
decays rapidly with frequency meaning that its dependence
on τ − τ ′ is very slow. Note that the value of the susceptibility
defined as χ

ς

ττ ′ = −〈ρς
τ ρ

ς

τ ′ 〉 is negative, and Fig. 1 shows the
absolute value of it. As the scalar product of two unit vectors
is maximized when the vectors are parallel, the exponent of
the third term is maximized if the direction of the vector
bosonic field ρ ′

iτ at site i is a constant in the rotating reference
frame at the same site. The absolute value of the inverse
susceptibility must be sufficiently large for the saddle-point
approximation to be valid. We will get back to that at the end
of this Appendix. If we choose the initial conditions in our
path integration by setting the directions of the z axis of the
rotating frame and the local magnetic moment equal at time
τ = 0, we can conclude that the saddle trajectory is indeed the
one where �R = �M . Having established this, we can move
on with deriving the equations of motion for the moments in
the lattice as is done in the main text, and the solution of those
equations would then be the saddle trajectory for the angles
�R and consequently also for �M . An important note is that
Sr must be small along the saddle trajectory for the approxi-
mation to be valid. Let us take a closer look at this condition.

Consider the sixth term in Eq. (10) (the Berry phase):

S6 = i
∫ β

0
dτ

∑
is

As
iτ ρ ′s

iτ . (B2)

A here depends on �R only and is proportional to its time
derivative. As long as the spin dynamics it describes is slow,
i.e., adiabatic approximation is applicable and the local mo-
ment is well defined, this term remains small compared to
the third term discussed above and thus does not affect the
saddle trajectory. The small parameter here is ∼J/U , with
J being the characteristic value of the exchange interaction
(23). When the solution of the equations of motion becomes
such that the time derivatives of the angles in the Berry-phase
term become large enough, this purely imaginary term leads
to suppression of the weight of the corresponding trajectories
in the path integral due to quantum fluctuations. In this sense
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the pinning of the rotating reference frame to the direction of
the local moment can be justified only if the local moment is
indeed well defined. The internal consistency of the saddle-
point approximation is thus ensured if after considering the
exchange interaction arising from other terms in Eq. (10) the
resultant solution of the LLG equation (30) is slow.

Another important aspect becomes apparent if we estimate
the value of the third term in Eq. (10). This term is propor-
tional to the scalar product of the unity vectors describing
the directions of the vector field in the rotating frame at two
different points of time (and this scalar product is equal to 1 if
that field is pinned to the rotating frame). The proportionality
coefficient is ≈M2/2T χ s

ω=0. In order for the saddle-point ap-
proximation to work, this coefficient must be large compared
to unity. Our estimates show that the value of the local mo-
ment in the considered single-band case must be at least ∼3
for this to be valid. This basically means that the saddle-point
approximation works only in the multiorbital case, where the
large value of the magnetic moment is provided by a strong
Hund’s coupling. This actually makes sense as only in this
case we can expect the Berry-phase term to have its classical
form and consequently the dynamics of the local moments to
be described by the classical Heisenberg model with exchange
interactions. If the value of the local moment becomes small,
the quantum fluctuations play an increasingly important role
and we switch to a regime, where the local moment might still
be well defined in the sense that the criterion for the formation
of the local moment derived in Sec. IV still makes sense, but
the dynamics of those moments are in no sense classical.

APPENDIX C: LOCAL FREE ENERGY

In this Appendix we derive the local free energy related
to the local magnetic moment. The total local free energy of
the system is given by the reference system (A2). However, as
pointed out in the main text, this local problem describes all
local correlations including the effect of itinerant electrons.
In order to isolate the part of the energy related to the local
magnetic moment the electronic contribution should be sub-
tracted from the total local energy. To this effect we start with
the action (A6) that is reminiscent of the s-d model since it
describes a set of localized impurities (A2) that are coupled to
each other via itinerant electrons f (∗). If one excludes nonlocal
contributions, which also contain the dispersion of the itin-
erant f (∗) electrons, from this action, one gets the following
effective local action:

Sloc =
∫∫ β

0
dτ dτ ′∑

σ,ll ′

(
c∗
τσ l [g

−1]ll ′
ττ ′ fτ ′σ l ′ + f ∗

τσ l [g
−1]ll ′

ττ ′cτ ′σ l ′
)

+
∫ β

0
dτ

∑
i,ς,ll ′

φ
ς

τ ll ′ρ
ς

τ l ′l + Simp. (C1)

One finds that fields f̂ (∗) = f (∗)g−1 and φς play a role
of source fields for electronic c(∗) and composite variables
ρς , respectively. Therefore, if now we integrate out original
fermionic degrees of freedom by expanding a partition func-
tion in powers of these effective source fields, as it was done

in Eq. (A11), we get the following action:

Sloc = − lnZimp −
∫∫ β

0
dτ dτ ′ ∑

σ,ll ′
f ∗
τσ l [− g−1]ll ′

ττ ′ fτ ′l ′

− 1

2

∫∫ β

0
dτ dτ ′ ∑

ς,{l}
φ

ς

τ l1l2

[−χ
ς, ττ ′
l1l2l3l4

]
φ

ς

τ ′l4l3
+ F̃ [ f , φ],

(C2)

where the first term gives the total local energy of the system,
and the interaction part F̃ [ f , φ] defined in Appendix A con-
tains all possible exact fermion-fermion, fermion-boson, and
boson-boson vertex functions of the local reference problem
(A2). Importantly, we find that in the obtained action the bare
fermionic Green’s function for fields f (∗) coincides with the
exact Green’s function of the impurity problem g. Integrating
out f (∗) variables in this expression generates diagrammatic
corrections to boson-boson interactions that are constructed
from the exact local fermion-boson vertices connected by the
exact Green’s functions of the impurity problem. We observe
that the generated itinerant contributions become subtracted
from the total boson-boson contributions to the full local
energy of the system. Thus, after integrating f (∗) fields out
the remaining part of the local action describes the part of the
local energy related to bosonic fields φς only. Our aim is to
derive the corresponding action for physical bosonic variables
ρς . Therefore, we perform the same procedure for the action
(A18), namely, we exclude the nonlocal (itinerant) terms from
this action and integrate fermionic fields as∫

D[ f ∗, f ] exp

{
−
∫∫ β

0
dτ dτ ′ ∑

σσ ′,ll ′
f ∗
τσ l

[
[g−1]ll ′

ττ ′δσσ ′

+
∫ β

0
dτ ′′ ∑

ς,l ′′l ′′′
σ

ς

σσ ′�
ς, ττ ′τ ′′
ll ′;l ′′l ′′′ ρ

ς

iτ ′′l ′′l ′′′

]
fτ ′σ ′l ′

}

= det

[
[g−1]ll ′

ττ ′δσσ ′ +
∫ β

0
dτ ′′ ∑

ς,l ′′l ′′′
σ

ς

σσ ′�
ς, ττ ′τ ′′
ll ′;l ′′l ′′′ ρ

ς

iτ ′′l ′′l ′′′

]
.

(C3)

Note that the rotation of the quantization axis of fermions in
the case of a local problem is a trivial procedure. For this
reason, we do not perform the transformation of fermionic
variables to a rotating frame (A7) in this section. Then, the
total local action that describes the physics of the local mag-
netic moment reads as

Sloc=−Tr ln

[
[g−1]ll ′

ττ ′δσσ ′+
∫ β

0
dτ ′′ ∑

ς,l ′′l ′′′
σ

ς

σσ ′�
ς, ττ ′τ ′′
ll ′;l ′′l ′′′ ρ

ς

τ ′′l ′′l ′′′

]

− 1

2

∫∫ β

0
dτ dτ ′ ∑

ς,{l}
ρ

ς

iτ l1l2
[(χς )−1]ττ ′

l1l2,l3l4ρ
ς

τ ′l4l3
.

(C4)

Figure 5 illustrates the local free energy for a single-band
Hubbard model considered in the main text as a function of the
local magnetic moment Mω=0. The left panel shows the results
obtained for a fixed temperature T = 1 for different values of
the Coulomb interaction U = 6.4 (orange line) and U = 6.8
(violet line) around the transition point U 
 6.5. Results on
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FIG. 5. Local free energy Sloc[M] of a single-band Hubbard model as a function of the local magnetic moment M. Results on the left panel
are obtained for T = 1 at different interaction strengths U = 6.4 (orange line) and U = 6.8 (violet line). Results on the right panel are obtained
for U = 10 for different temperatures T = 0.10 (orange line) and T = 0.14 (violet line).

the right panel are obtained for a fixed value of the Coulomb
interaction U = 10 for different temperatures T = 0.10 (or-
ange line) and T = 0.14 (violet line) below and above the
transition point T 
 0.12. Crossing the transition point the
form of the free energy changes from a paraboloid-like to a
double-well potential or vice versa.

APPENDIX D: EQUATION OF MOTION FOR SPIN
DEGREES OF FREEDOM

In this Appendix we derive the equation of motion for the
local magnetic moment. After leaving out the fast degrees of
freedom in Eq. (21) we are left with an action depending on
angle variables only. It reads as

Sspin = iS
∫ β

0
dτ

∑
i

ϕ̇i(1 − cos θ ) − S
∫ β

0
dτ

∑
i,s

es
iτ hsoc s

iτ

+ 2S2
∫∫ β

0
dτ dτ ′ ∑

i j,ss′
Iss′

i j (τ − τ ′)es
iτ es′

jτ ′ . (D1)

Here, S accounts for fast degrees of freedom associated with
local moment value, Ii j is the effective exchange given by
Eq. (22), and hsoc s

jτ is an effective magnetic field introduced
in Eq. (20). At this point we make use of the fact that the
exchange is determined by the superexchange processes due
to electrons and thus has a “fast” dependence on time, while
the time dependence of the angle variables is “slow”. This
allows one to replace the τ ′ time argument of es′

j with τ and

evaluate the τ ′ integration of Iss′
(τ − τ ′) to obtain the zero-

frequency Fourier component Iss′
(ω = 0). We will discuss

the corrections to this approximation below.
Now, we vary the resulting spin action with respect to ϕi

and θi. As we consider only the first variation of the action
variables at different sites can be varied independently, i.e.,
the equation of motion for the spin at a given site is obtained
as if all other spins are kept constant. Also note that within
our approach Iss′

i j is purely nonlocal as the introduced Green’s
function for the fields f (∗) (A23) is nonlocal. Thus, we can
perform the sum over j in the last term of Eq. (D1) to get

Sspin =
∫ β

0
dτ

∑
i

{iSϕ̇i(1 − cos θ ) − S�eiτ �hiτ }, (D2)

where �hiτ = �h0
iτ + �hsoc

iτ , and �h0
iτ is an effective time-dependent

magnetic field due to interaction with all other spins with the
components

h0s
iτ = − 2S

∑
j,s′

[
Iss′

i j (ω = 0) + Is′s
ji (ω = 0)

]
es′

jτ

= − 4S
∑

js′
Iss′

i j (ω = 0) es′
jτ . (D3)

Calculating the variation of the action with respect to the ith
spin is performed straightforwardly by expanding the scalar
product in the second term of Eq. (D2) and yields

δiSspin = iS
∫ β

0
[δϕ̇i(1 − cos θi ) + sin θiδθiϕ̇i]

− Shix

∫ β

0
(cos θiδθi cos ϕi − sin θi sin ϕiδϕi )

− Shiy

∫ β

0
(cos θiδθi sin ϕi + sin θi cos ϕiδϕi )

+ Shiz

∫ β

0
sin θiδθi. (D4)

Now, applying integrating by parts, grouping up terms pro-
portional to δϕi and δθi, and equating the variation to zero we
obtain following equations of motion (the index i is omitted
as equations for all sites are identical):

i sin θ θ̇ = hx sin θ sin ϕ − hy sin θ cos ϕ, (D5)

i sin θ ϕ̇ = hx cos θ cos ϕ + hy cos θ sin ϕ − hz sin θ. (D6)

Substituting these two equations into the expression for the
time derivatives of �eiτ components

�̇eiτ ≡ (cos θ cos ϕ θ̇ − sin θ sin ϕ ϕ̇;

cos θ sin ϕ θ̇ + sin θ cos ϕ ϕ̇; − sin θ θ̇ ), (D7)

and applying simple trigonometric identities we obtain

i�̇eiτ = −(hy cos θ − hz sin θ sin ϕ;

hz sin θ cos ϕ − hx cos θ ;

hx sin θ sin ϕ − hy sin θ cos ϕ)

= − �hiτ × �eiτ . (D8)
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By changing τ −→ it we restore the Landau-Lifshitz
equation.

Now let us discuss the effect of nonequal times in Eq. (D1).
When varying the exchange term we get two terms, one from
varying each of �e. In the second term we can interchange
the summation and integration variables i, s, τ ←→ j, s′, τ ′,
and make use of symmetry Iss′

i j (τ ) = Is′s
ji (−τ ). This leads to

the same result (D8) but with a different expression for the
effective field:

hs
iτ = − 4S

∫ β

0
dτ ′ ∑

j,s′
Iss′

i j (τ − τ ′) es′
jτ ′ + hsoc s

iτ . (D9)

So, in the general case the equation of motion for the mag-
netic moment is a set of integrodifferential equations. As the
effective exchange is a fast function of time, we can expand
the spin time dependence in powers of τ − τ ′. The first-order
term would lead to a term proportional to the time derivative
of the spin in the effective field, which would be the Gilbert
damping. But this term vanishes in the Matsubara time due
to the exchange being an even function of time. This is not
really surprising as one can not expect dissipation effects to
be visible in the equilibrium formalism. On the other hand,
if at this point we perform analytical continuation to real
times the Matsubara exchange transforms to a retarded func-
tion IR ss′

i j (t − t ′) and the contribution with the first-order time
derivative of the spin does not vanish. Up to this order we can
write [37]

hs
i (t ) = − 4S

∑
j,s′

IR ss′
i j (� = 0) es′

j (t ) + hsoc s
i (t )

− 4S
∑
j,s′

∂

∂�
Im IR ss′

i j (�)
∣∣
�=0

ės′
j (t ). (D10)

The last term accounts for the Gilbert damping. IR ss′
i j (�)

is a Fourier transform of the retarded exchange interaction
IR ss′
i j (t − t ′) to real frequency �.

APPENDIX E: APPROXIMATE CRITERION FOR THE
FORMATION OF THE LOCAL MAGNETIC MOMENT

In this Appendix we relate the criterion for the formation
of the local magnetic moment to the self-energy of electrons.
As has been shown in Ref. [39], the fermionic frequency
dependence of the four-point vertex and, as a consequence,
of the three-point vertex can be neglected provided that col-
lective electronic fluctuations in the corresponding (charge,
spin, etc.) channel are strong. In this case the local exchange
interaction (34) written in Matsubara frequency space can be
approximated as

J loc
ω =

∑
ν,σ

�s
νω gσ

ν gσ
ν+ω�∗ s

νω 
 �s
〈ν〉ω

∑
ν,σ

gσ
ν gσ

ν+ω�∗ s
νω, (E1)

where we introduced a fermionic-frequency-independent
three-point vertex �s

〈ν〉ω. Using the definition of the three-
point vertex function (A13), one gets the following expression
for the approximate local exchange interaction J loc

ω 
 �s
〈ν〉,ω,

which corresponds to the renormalized local coupling be-
tween the magnetic moment and electronic degrees of
freedom of the fermion-boson problem (17). The three-point

FIG. 6. Phase diagram for the 3D Hubbard model as a function
of temperature T and local Coulomb interaction U . Red and orange
lines correspond to the exact (36) and the approximate (E3) criteria
for the formation of the local magnetic moment, respectively. Light
blue line depicts the “fingerprint” condition proposed in Ref. [89]
(see main text) multiplied by a factor of π 2/6. Green line is the AFM
phase transition boundary predicted by DMFT [86].

vertex at the zeroth Matsubara frequency ω = 0 can be ob-
tained from the variation of the self-energy with respect to the
local magnetic moment Mω=0 according to Eq. (27). There-
fore, the criterion for the formation of the local magnetic
moment (36) can be rewritten as

Cω=0 = (
�

s imp
ω=0

)−1 − J loc
ω=0


 (
�

s imp
ω=0

)−1 − �s
〈ν〉,ω=0

= (
�

s imp
ω=0

)−1 − (
χ s

ω=0

)−1 − ∂M�
s imp
〈ν〉

= U s − ∂M�
s imp
〈ν〉 = −∂M�

s imp
〈ν〉 = 0. (E2)

In this expression �
s imp
ν = �

s imp
ν − �H is the self-energy

without the static Hartree contribution �H = − 1
2U 〈M〉,

where U s = −U/2 is the bare interaction in the spin channel.
The presence of the local magnetic moment in the system
is signaled by the positive value of the local self-exchange
interaction Cω=0 > 0. The latter corresponds to the negative

value of the variation of the self-energy ∂M�
s imp
〈ν〉 < 0, which

describes how electrons at a given lattice site react on the
formation of the local magnetic moment. In particular, the
negative value of the variation indicates that the presence
of the local moment in the system is energetically favorable
because it minimizes the self-energy of the electrons.

As follows from Eq. (E2), the approximate condition for
the formation of the local magnetic moment can also be writ-
ten as

�s
〈ν〉,ω=0 = (

�
s imp
ω=0

)−1
. (E3)

We note that the inverse of the polarization operator that stays
at the right-hand side of this equation is the high-frequency
asymptotics of the three-point vertex function [39,41]

�s(ν → ∞, ω) = (
�s imp

ω

)−1
. (E4)
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Therefore, it is convenient to use the zeroth fermionic
frequency ν0 = π/β to approximate the fermionic-frequency-
independent three-point vertex

�s(〈ν〉, ω = 0) 
 �s(ν0, ω = 0). (E5)

As Fig. 6 shows, the orange line that corresponds to the
approximate condition (E3) with the approximation (E5) for

the vertex lies close to the red line that was obtained using the
exact criterion for the formation of the local magnetic moment
(36). It is also interesting to note that in the low-temperature
regime the result obtained via the “fingerprint” condition [89]
being multiplied by the scaling factor of

∑∞
n=1 1/n2 = π2/6

(light blue line in Fig. 6) is in a very good agreement with the
result obtained via the approximate criterion (E3).
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