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We show that several distinct broken-symmetry phases in a spin- 1
2 antiferromagnet on a square lattice with

easy-plane anisotropy, including valence bond solid, chiral spin liquid, and the XY-ordered state, can all be
accessed by perturbing a multicritical point with two massless Dirac fermions coupled to a level-one Chern-
Simons gauge field. This allows for a unified description of these phases, as well as the phase transitions between
them. In a specific phase transition, our analysis provides a lattice realization of one of the recently proposed
fermion-boson dualities, thus lending support to it. We also briefly discuss the relation between our paper and
the long-sought deconfined criticality in such systems.
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I. INTRODUCTION

Two-dimensional (2D) spin- 1
2 antiferromagnets can sup-

port a large variety of phases, many of them break spin-
rotation and/or lattice symmetries. Spin liquids [1], which
break none of these symmetries, have been the focus of much
recent research activity. They come in many different types as
well. One such type, known as chiral spin liquid that breaks
time-reversal symmetry, will be of particular relevance to our
discussion below. Needless to say, quantum phase transitions
among all these phases are also of strong interest.

Broken symmetry phases are traditionally described in
Ginzburg-Landau theory, which is a field theory written in
terms of the local order parameter associated with the spon-
taneously broken symmetry (see, e.g., Ref. [2]). In such
descriptions, phases with different broken symmetries are
described using different order parameter fields, and direct
second-order transitions between them require fine-tuning.
Instead, the more generic situations are first-order transitions
or intermediate phases where both types of orders coexist.
In Ref. [3], Senthil et al. argue that such descriptions miss
the possibility of deconfined criticality, which is a critical
point separating two different broken symmetries facilitating
a direct second-order transition between them. Such novel
quantum criticality can only be captured in a field theory that
describe both types of broken symmetries on equal footing.
Specifically, they argue that such deconfined critical points
separate the Neel ordered and valence bond solid (VBS)
phases of 2D spin- 1

2 antiferromagnets, which break spin-
rotation and lattice translation symmetry, respectively. In the
appropriate field theory, the two symmetry-breaking order
parameters are dual to each other and thus afford a unified
description. Numerous attempts have been made to identify
such deconfined critical points, with inconclusive outcomes
thus far (see Refs. [4,5] for recent attempts for the Heisen-
berg and XY symmetry classes, respectively, and references
therein).

While it is not our goal to resolve the fate of deconfined
criticality, our work is motivated by the line of thoughts

that lead to it. To this end, we seek to find a field theory
that provides a unified description of relevant phases in this
description and beyond. We find by perturbing a theory of
two massless Dirac fermions coupled to a single level-one
Chern-Simons (CS) gauge field, we can reach the XY-ordered
(we only consider 2D spin- 1

2 antiferromagnets with easy-
plane anisotropy in this paper) VBS, chiral spin liquid, and
an Ising Neel state in which the Neel order is along the z
direction despite the easy-plane anisotropy (which is possible
in the presence of frustration). Within this description, a direct
second-order transition between the XY-ordered phase and the
VBS or Ising Neel phase must go through this massless point,
which requires fine-tuning.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the spin- 1

2 XY model and arrive at
the multicritical point by attaching a flux quantum to each
hard-core boson that represents an up spin, and perform a
mean-field approximation to smear out the flux. This results in
two massless Dirac fermions coupled to a level-one CS field.
In Sec. III, we discuss the phases that result when various
mass terms are added to perturb this critical point. In Sec. IV,
we discuss how the mass terms responsible for spontaneous
lattice symmetry breaking are generated by fermion interac-
tions. Section V is devoted to deriving the dual bosonic theory
of the multicritical point, where we also make comparison
with the existing theory of deconfined criticality. A brief sum-
mary is offered in Sec. VI.

II. MODEL AND COMPOSITE FERMION MEAN-FIELD
APPROXIMATION

We consider the following spin- 1
2 Hamiltonian on the

square lattice:

H = −
∑
<i j>

(
Sx

i Sx
j + Sy

i Sy
j

) + · · · (1)

= H0 + · · ·, (2)
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FIG. 1. Gauge choice for fermion hopping phases. The magnetic
unit cell contains two squares, two lattice sites (one each from A
and B sublattices), and a total of 2π flux. For bonds with imaginary
phases, the phase corresponds to hopping in the direction of the error.

where 〈i j〉 stands for nearest neighbors and the ellipsis repre-
sents generic additional couplings that respect the XY rotation
symmetry and all lattice symmetries unless noted otherwise.
Note that the minus sign means the XY coupling is ferro-
magnetic instead of antiferromagnetic; the two are equivalent
under a π rotation along the z direction for one of the two
sublattices. The advantage of considering the ferromagnetic
XY coupling is the XY-ordered phase only breaks the O(2)
spin rotation symmetry, but none of the lattice symmetries.
This makes the discussion of broken symmetries in various
phases simpler below. The antiferromagnetic nature of Eq. (1)
is thus hidden in the ellipsis, which include Sz and further
neighbor couplings between XY spins in the same sublattice.

We can map half-spin ladder operators to annihilation
and creation operators of the hard-core bosons. Accordingly,
the nearest-neighbor XY spin coupling in Eq. (1) becomes
nearest-neighbor boson hopping,

H0 = −1

2

∑
<i j>

(b†
i b j + b†

jbi ), (3)

and the ground state has half filling in the absence of a net
magnetization along the z direction. We will use the spin and
boson representations interchangeably below.

To proceed, we map the hard-core bosons to composite
fermions (CFs) attached to a flux quantum by coupling them
with pure CS theory in lattice, and then make a mean-field
approximation to spread out the flux uniformly that results in
a π (or half) flux per plaquette [6]. With the gauge choice of
Fig. 1, the resultant band Hamiltonian takes the form

hk =
(

0 sin kx + i sin ky

sin kx − i sin ky 0

)
, (4)

in which k is the lattice momentum. Importantly, we have two
Dirac points at (0, 0) and (π, 0) where the two bands meet.
In the ground state, the lower band is filled while the upper
band is empty, so the chemical potential coincides with the
Dirac points. Thus, the low-energy physics of the system at
this level of approximation is described by two species of
massless Dirac fermions coupled to a single CS gauge field:

L = i�̄ /D� + LCS[a] + · · ·, (5)

where

LCS[a] = 1

4π
εμνλaμ∂νaλ = a ∧ da (6)

is the level-one CS term, � = (ψ1, ψ2)T combines the two
Dirac fields [7] where ψi are two-component Dirac spinors,
the slash notation is defined for a general three-vector bμ as
/b = γ μbμ, where γ μ are two by two Dirac matrices obeying
the Clifford algebra {γ μ, γ ν} = 2ημν , where ημν is the metric
of the Minkowski 2 + 1 space-time and ημν = diag(+,−,−),
which will be used for raising and lowering the indices
throughout the paper and {, } is the anticommutator. Dμ =
∂μ − iaμ − iAμ includes coupling to both the dynamic field aμ

and background gauge field Aμ, and the ellipsis represents the
less relevant terms like the Maxwell term of a. Equation (5)
is the same theory discussed in Ref. [8] in a closely related
context. As we demonstrate below, a variety of interesting
phases supported by Eq. (1) can be accessed by perturbing
Eq. (4) with various mass terms for the Dirac fermions.

III. DIRAC MASS TERMS AND CORRESPONDING
BROKEN SYMMETRY PHASES

The most general mass term that couples the two Dirac
points takes the form �̄M�, where

M = m01 + m1σ1 + m2σ2 + m3σ3 = m01 + m · σ (7)

is a two-by-two Hermitian matrix. In the following, we dis-
cuss how such mass terms can be generated beyond the
mean-field Hamiltonian Eq. (4) and what phases they generate
once added to the critical theory Eq. (5).

A. Uniform mass m0

We first consider next-nearest-neighbor XY coupling,

Hnnn = J ′ ∑
<<i j�

(
Sx

i Sx
j + Sy

i Sy
j

)
, (8)

= J ′ ∑
<<i j�

(b†
i b j + b†

jbi ), (9)

where << i j � stands for next-nearest neighbors. Within the
mean-field approximation and using the gauge choice that
hopping between A sublattice sites have phase +1 and that
between B sublattice sites have phase −1 results in a term of
the form

h′
k = 2J ′

(
cos kx cos ky 0

0 − cos kx cos ky

)
, (10)

resulting in a uniform mass term with m0 = 2J ′, while m = 0.
We now analyze the phases stabilized by m0 �= 0. Since the

fermions are massive, they can be integrated out. This results
in a CS term sgn(m0)LCS[A + a] whose sign depends on that
of m0 or, equivalently, J ′, which needs to be combined with
the original CS term for a in Eq. (5). We analyze the two cases
separately.

(i) m0 < 0. In this case, we have

Leff[a, A] = LCS[a] − LCS[a + A] = −2a ∧ dA − LCS[A].
(11)
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Since the CS coupling of a gets canceled, we are left with
a linear coupling between a and A. Further integrating out a
yields a constraint dA = 0. This corresponds to a Meissner
response of the hard core bosons, indicating they are in a
superfluid phase that spontaneously breaks the U(1) symmetry
that corresponds to charge conservation [8]. For the original
spin- 1

2 Hamiltonian Eq. (1), this is the XY-ordered phase [6].
(ii) m0 > 0. In this case, we have

Leff[a, A] = LCS[a] + LCS[a + A]

= 2a ∧ da + 2a ∧ dA + LCS[A]. (12)

Further integrating out a yields

Leff[A] = − 1
2 A ∧ dA + LCS[A] = 1

2LCS[A]. (13)

This is a fractional quantum Hall response corresponding
to the ν = 1

2 Laughlin state for bosons [8]. In the original
spin model, this corresponds to the Kalmeyer-Laughlin chi-
ral spin liquid (CSL) state, in which time-reversal symmetry
is spontaneously broken. The same result was obtained ear-
lier on triangular and Kagomé lattices with antiferromagnetic
nearest-neighbor XY coupling only [9].

It should be noted that while the mean-field Hamiltonian
Eq. (4) suggests that the nearest-neighbor XY model is a
critical point separating the CSL and XY-ordered phases, it
is known that its ground state is actually XY ordered. As
discussed in Ref. [6], fluctuation effects beyond the mean-field
approximation tend to generate a negative m0. We thus need
a positive J ′, which frustrates the XY order, to reduce the
magnitude of the dynamically generated negative mass, and
eventually drive the system into the CSL phase. It would
be very interesting to study the spin- 1

2 XY model with the
frustrating next-nearest-neighbor J ′ coupling to see if such a
transition exists.

B. Staggered mass m3

We call m3 in Eq. (7) staggered mass because it gives
rise to masses of opposite sign to the two Dirac fermions.
Interestingly, it comes from a staggered potential coupled to
the hardcore boson density (which is equal to the CF density),

v = m3

∑
i

(−1)ib†
i bi = 2m3

∑
i

(−1)iSz
i + const, (14)

and the second equality above indicates it couples to the
staggered magnetization along the z direction in the original
spin language. Such a mass could come from spontaneous
development of staggered magnetization along the z direction
[6], which breaks lattice translation symmetry spontaneously.
We call the resultant phase an Ising-ordered phase (to be dis-
tinguished from the XY-ordered phase discussed earlier). m3

could also come from an external potential with wave vector
(π, π ), which breaks lattice translation symmetry explicitly.

Regardless of its origin, in the presence of m3 the Dirac
fermions can again be integrated out. Since they have opposite
masses, the CS terms they generate cancel. Further integrating
out a with the existing CS term thus generates no term involv-
ing A, indicating the state has no (nontrivial) electromagnetic
response. This is thus a Mott insulator state for the hardcore
bosons.

(a) (b)

FIG. 2. Column valence bond solid (VBS) patterns. Solid lines
represent strengthened bonds while dashed lines represent weakened
bonds. (a) The column VBS directed along x axis, carrying lattice
momentum (π, 0). (b) The column VBS, directed along y axis,
carrying lattice momentum (0, π ).

Reference [6] was mainly concerned about the quantum
phase transition from the XY-ordered to Ising-ordered state
in the nearest-neighbor XXZ model, which is actually a first-
order transition that occurs at the Heisenberg point. In the
presence of frustration, like that induced by J ′, XY order gets
suppressed and a direct second-order transition between them
may be possible. Since m3 breaks lattice translation symmetry,
it must remain zero at this (putative) critical point. As a result,
the transition must again be driven through the critical point
described by Eq. (5), where m0 vanishes and m3 gets turned on
simultaneously. This is different from the conclusion of Ref.
[6], where the authors assumed the presence of both m0 and
m3, resulting in masses m0 ± m3 for the two Dirac fermions,
and the critical point is reached at m0 = m3, where only one
of the two Dirac fermions become massless,

L = iψ̄ /Dψ + LCS[a] + · · ·, (15)

where ψ is the field of this massless Dirac fermion. This same
model was also discussed in Ref. [10].

From the discussions above, it becomes clear that for the
theory [Eq. (15)] to be relevant, before the XY order is
suppressed, the Ising order must be present already, due to
either spontaneous or explicit breaking of lattice translation
symmetry. We consider the latter for its simplicity. With a
staggered lattice potential of the form [Eq. (14)], the unit
cell of the square lattice gets doubled, and so does the boson
filling from half to one per unit cell. We thus have a standard
superfluid to Mott-Insulator transition in this case, which is
described by the familiar O(2) φ4 theory. Our analysis thus
support the recently proposed duality between Eq. (15) and
the corresponding Wilson-Fisher fixed point [11].

C. Off-diagonal masses m1 and m2

As discussed above, the staggered mass m3 breaks lattice
translation symmetry and carries momentum (π, π ). The off-
diagonal mass terms m1 and m2 couple the two Dirac points
and must carry momentum (π, 0) or (0, π ). They thus break
lattice translation symmetry in a different manner. As we
demonstrate below, column VBS orders correspond to such
symmetry breaking pattern and generates these masses.

VBS order, generated either spontaneously or explicitly,
modulates the spin-spin coupling strength. We consider the
most important column VBS patterns, which could align
along either the x or y direction (see Fig. 2). It is immediately
clear that they carry momenta (π, 0) and (0, π ), respectively.
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m0

|m |

CSL

VBS

Ising

XY

VBS

Ising

FIG. 3. Phase diagram parameterized by the mass matrix of
Eq. (7). The dashed lines are second-order phase boundaries along
which one of the eigenvalues of the mass matrix Eq. (7) vanishes.
The origin (thick dot) is a multicritical point where the entire mass
matrix Eq. (7) vanishes. See text for detailed description of phases
and the symmetries they break.

A straightforward calculation yields m2,3 = δ for the patterns
of Figs. 2(a) and 2(b), respectively, where δ is the bond mod-
ulation.

In the presence of m2 and/or m3, we can diagonalize the
mass matrix Eq. (7) resulting in the same Dirac Hamiltonian
as that of m3 mass only. So the system has the same topologi-
cal properties as well, and is in the Mott insulator phase.

D. Summary

When all masses are present, diagonalizing the mass matrix
Eq. (7) yields

m = m0 ±
√

m2
1 + m2

2 + m2
3 = m0 ± |m|, (16)

where m = (m1, m2, m3). The resultant phase diagram, Fig. 3,
looks similar to that of Ref. [8], although what we have here is
actually a 4D phase diagram projected down to the 2D plane
spanned by m0 and |m|. In particular, we note all components
of m break lattice translation symmetry, but in different ways.
On the other hand, m0, while not breaking lattice translation
symmetry, leads to phases that break O(2) spin rotation sym-
metry or time-reversal symmetry when it dominates, in the
same manner as discussed in Sec. III A.

In our description, the two perpendicular VBS order pa-
rameters give rise to the real and imaginary parts of the
off-diagonal Dirac mass in Eq. (7). They thus naturally form a
complex order parameter, consistent with an earlier study [3].
We find they can be further combined with stagger magnetiza-
tion m3 to form an O(3) order parameter, and they cooperate
to enhance the Mott gap; in other words, they are intertwined.
On the other hand, they compete with the uniform mass m0,
and such competition leads to various quantum phase transi-
tions. Despite such competition, our analysis suggests that all
the phases that appear in Fig. 3 naturally appear near each
other in a frustrated spin- 1

2 model on the square lattice, in the
neighborhood of a multicritical point described by Eq. (5).

IV. SPONTANEOUS BREAKING OF LATTICE SYMMETRY

From the perspective of the field theory Eq. (5), the mass-
less point for both of the Dirac fermions (the origin in Fig. 3)
is multicritical and the full mass matrix of Eq. (7) must be

tuned to zero. For example a direct second-order transition
from the XY phase to the VBS phase must go through this
point, while a more generic situation is going through the
coexisting region or a direct first-order transition. On the other
hand, the masses m break lattice symmetries. Thus, unlike
m0, they are not tuning parameters, but are instead generated
from (sufficiently) strong interactions that lead to spontaneous
symmetry breaking. Accordingly, we consider the following
four-Fermi (Gross-Neveu type) interaction:

Lint = λ0[(ψ1ψ1)2 + (ψ2ψ2)2] + λ1(ψ1ψ1)(ψ2ψ2)

+ λ2(ψ1ψ2)(ψ2ψ1) + λ3(ψ1ψ2)2 + λ∗
3(ψ2ψ1)2.

(17)

It is clear that a positive λ1 favors m3, while a negative λ2 and
any λ3 favor m1,2. We can introduce Hubbard-Stratonovich
fields � to decouple these interactions, resulting in a Yukawa
type of coupling

LY = �̄��, (18)

where

� = φ01 + φ1σ1 + φ2σ2 + φ3σ3. (19)

Obviously φ = (φ1, φ2, φ3) is an order parameter field de-
scribing the broken lattice symmetry.

The ordering transition is described by an effective field
theory in terms of φ obtained from integrating out �. This can
be done under the generic situation of m0 �= 0. Such a transi-
tion, if continuous, takes the system from the XY/CSL phase
to a mixed phase where spontaneously broken XY/time-
reversal symmetry coexist with spontaneously broken lattice
symmetry. A direct continuous transition from the XY phase
to the VBS phase, however, again requires fine-tuning m0 to
zero; in this case, the Dirac fermions are massless and cannot
be integrated out perturbatively.

Returning to the generic situation of m0 �= 0, to determine
the order of transition this effective theory describes at the
mean-field level, we are interested in the sign of the prefactor
of the |φ|4 term. Let us denote this prefactor as β4. We can cal-
culate it diagrammatically. For notational simplicity, we focus
on the φ3 term in Eq. (19) as a representative of φ; the conclu-
sions below are general. Also, we assume a uniform |φ| = m.

The Feynman rules we use are given in Fig. 4. The dia-
grams up to two loops that contribute to β4 are shown in Fig. 5
[12]. The expansion in the number of loops is equivalent to a
weak coupling expansion in terms of the coupling constant
between fermions and CS gauge field [13], the inverse of the
square root of the absolute value of the CS level. We do not
show this coupling constant explicitly in our calculations for
brevity of the notation. We adopt a renormalized perturbation
theory approach, in which we replace the bare mass m0 with
renormalized mass mr in the free propagators and compensate
this by adding mass and field-strength renormalization coun-
terterms.

Before the quantitative computation of β4, we can have a
qualitative discussion on what to expect. The dimension of the
β4 has an inverse mass dimension, i.e., [β4] = [m−1]. On the
other hand, the only dimensionful free parameter in the theory
(and relevant Feynman diagrams that generate β4) is the mass
mr . We thus expect β4 is inversely proportional to the mass.
We will calculate this proportionality constant below.
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We start with calculating the one-loop contribution D1

which is shown in Fig. 5:

D1 = −1

4
tr

[ ∫
d3 p

(2π )3

(i(/p − mr ))4(
p2 − m2

r

)4 + iε

]

= −1

4
tr

[ ∫
d3 p

(2π )3

p4 − 4p2mr/p + 6p2m2 − 4/pm3
r + m4

r(
p2 − m2

r

)4 + iε

]

= −2

4

∫
d3 p

(2π )3

p4 + 6p2m2
r + m4

r(
p2 − m2

r

)4 + iε
, (20)

which, after Wick rotating to Euclidean coordinates pμ
E =

pEμ = (−ip0, p) and /p = −i/pE , becomes

D1 = − i

2

1

|mr |
∫

d3 pE

(2π )3

p4
E − 6p2

E + 1

((pE )2 + 1)4
. (21)

Using the integral identities given in Appendix with n = 4,
d = 3 we find

D1 = − i

2

�( 1
2 )

(4π )3/2�(4)

(
1

|mr |
)[

15

4
− 18

4
+ 3

4

]
,

= 0. (22)

μ

a

b

=iγμδab (20a)

μ ν= − 2πεμνα pα

p2 + iε
(20b)

a

a

=i(δa1 − δa2) (20c)

a b =
i

/p + mr + iε
δab (20d)

=i(/pδ2 + δmr) (20e)

FIG. 4. Feynman rules of our model, where a, b denote fermion
flavors. Dashed lines represent φ3, solid lines represent fermions, and
curly lines represent the gauge field aμ (we use Landau gauge), and
finally the cross is the counterterm which we denote as D5, where
δ2 is the fermion field strength renormalization counterterm and δm is
the mass counterterm (see also Fig. 6). We will drop the arrows in the
fermionic lines in the rest of the paper to have less cluttered diagrams.

iβ4 = + + +

FIG. 5. Diagrammatic representation of the β4 up to two loops.
We denote these diagrams, respectively, from left to right as, D1, D2,
D3, D4 and the shaded blob is the self-energy which is shown in
Fig. 6.

As a preparation for the calculation of the two-loop dia-
grams, we first calculate the fermion self-energy, �, up to
leading (one-loop) order in gauge coupling,

−i� = −i�2 + D5, (23)

where −i�2 is shown in Fig. 6 and given as

−i�2 = 2π i
∫

d3q

(2π )3

γμ(/q − mr )γν

q2 − m2
r + iε

εμνα (p − q)α
(p − q)2 + iε

, (24)

and D5 is the corresponding counter term. Equation (24) has a
linear UV divergence. We can remove this by applying Pauli-
Villars regularization, which is equivalent to the following

−iΣ2 = (24a)

Γ1 = (24b)

Γ2 = (24c)

D5 = (24d)

−iΣ =

= + (24e)

FIG. 6. Electron self-energy and vertex corrections. Respec-
tively, we have electron self-energy, −i�2, the vertex correction �1,
�2, and the counterterms D5. Those are also amputated.
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OĞUZ TÜRKER AND KUN YANG PHYSICAL REVIEW B 105, 155150 (2022)

substitution [14] in Eq. (24):

1

(p − q)2
→ 1

(p − q)2
− 1

(p − q)2 − �2
, (25)

where � is the cutoff. Next, we use Feynman parameters to
bring the denominator of Eq. (24) in a spherically symmetric
form by using the identity [14]

1(
q2 − m2

r

)n
(p − q)2

=
∫ 1

0
dx

n(1 − x)n−1

[(q − xp)2 − �]n+1
, (26)

where � = −p2x(1 − x) + (1 − x)m2
r and n is a positive inte-

ger. If we substitute Eq. (25) to Eq. (24), apply Eq. (26) with
n = 1, and change the integration variables as q − xp → k,
we have

−i�2 = i
∫ 1

0
dx

∫
d3k

(2π )2
γμ(/k + x/p − mr )γνε

μνα

× ( − k + p(1 − x)
)
α

[
1

[k2 − �]2 + iε

− 1

[k2 − ��]2 + iε

]
, (27)

where �� = −p2x(1 − x) + (1 − x)m2
r + �2x. Next, we use

the following identities for 2D gamma matrices:

εμναγμ/aγν = 2iaα, (28a)

εμναγμγν = −2iγ α. (28b)

The self-energy is then given as

−i�2 = −
∫ 1

0
dx

∫
d3k

2π2
(−k2 + (1 − x)(p2x + mr /p))

×
[

1

[k2 − �]2 + iε
− 1

[k2 − ��]2 + iε

]
, (29)

where we have removed the terms that are odd in k. Next, we
perform a Wick rotation and obtain

−i�2 = −2i

π

∫ 1

0
dx

∫ ∞

0
dkE k2

E

(
k2

E + (1 − x)

× ( − p2
E x − imr/pE

))[
1[

k2
E + �E

]2

− 1[
k2

E + �E�

]2

]
, (30)

where �E = p2
E x(1 − x) + (1 − x)m2

r and �E� = p2
E x(1 −

x) + (1 − x)m2
r + �2x. We can evaluate the integral over kE

using

I1 =
∫ ∞

0
dkE k4

E

[
1[

k2
E + �E

]2 − 1[
k2

E + �E�

]2

]
,

= 3π

4
(
√

�E� −
√

�E ) (31)

and

I2 =
∫ ∞

0
dkE k2

E

[
1[

k2
E + �E

]2 − 1[
k2

E + �E�

]2

]
,

= π

4

(
1√
�E

− 1√
�E�

)
. (32)

Note that lim�→∞ �E� = �2x. Finally, after undoing the
Wick rotation we have

−i�2 = − i

2

∫ 1

0
dx

[
− 3

√
� + √

x�

+ 1√
�

(
p2x(1 − x) + /pmr (1 − x)

)]
, (33)

where we clearly see the linear divergence. The counterterms
will remove this divergence. We define renormalization con-
ditions as

−i�(/p = −mr ) = 0 (34a)

−i
d�

d/p

∣∣∣∣
/p=−mr

= 0, (34b)

which fixes the location of the poles and the residue, thus the
physical mass [14]. After substituting Eq. (23) to Eq. (34) we
have

D5 = i(/pδ2 + δmr )

= i

(
− 1

2
sgn(mr )/p + �

3
− 3

2
|mr |

)
. (35)

Next, we calculate D2 which is shown in Fig. 5 and explic-
itly given as

D2 = −1

4
tr

[∫
d3 p

(2π )3

(i(/p − mr ))5(
p2 − m2

r

)5 + iε
(−i�)

]
, (36)

we then substitute Eqs. (23) and (24) and Eqs. (35) and (36)
perform a Wick rotation, and let pE → pE mr , which gives

D2 = i

8π2

1

mr

∫ 1

0
dx

∫
d pE p2

E

[(
p4

E − 10p2
E + 5

)(−p2
E

)

×
(

1 + (1 − x)√
�0

)
− (

5p4
E − 10p2

E + 1
)

×
(

−3
√

�0 + 1 − x√
�0

(− p2
E x

) + 3

)]
1(

p2
E + 1

)5 ,

(37)

where �0 = (p2
E x + 1)(1 − x). It is easy to see that the sign of

D2 depends on the combination of the sign of mr and sign of
the level of the CS term, and the same is true for all two-loop
contributions to β4. Evaluating this integral yields

D2 = i

64π

1

mr
. (38)

In preparation for the calculation of D3, we first need to
calculate the vertex correction �1, which is shown in Fig. 6
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and explicitly given as

�1 = = 2π

∫
d3q

(2π )3

γμ(i(/q − mr ))2γν(
q2 − m2

r

)2 + iε

εμνα (p − q)α
(p − q)2 + iε

. (39)

Here, if we check the superficial degree of divergence of �1

by counting the net order of q, we naively find a logarithmic
UV divergence. However, this is not the actual case, because
the leading term of the integrand is an odd function of q.
As a result, the naive logarithmically divergent term has zero
coefficient, and the integral in Eq. (39) actually converges. We
apply Eq. (26) with n = 2, change the integration variables as
q − xp → k, and obtain

�1 = −4π

∫ 1

0
dx

∫
d3k

(2π )3
γμ(/k + x/p − mr )2γνε

μνα

× ( − k + p(1 − x)
)
α

[
1 − x

[k2 − �]3 + iε

]
. (40)

After using Eq. (28) and removing the odd terms in k, we have

�1 = i8π

∫ 1

0
dx

∫
d3k

(2π )3

[
/p(1 − x)

(
k2 + x2 p2 + m2

r

)
− /k(2xp · k) + 2mr (−k2 + (1 − x)xp2)

]
×

[
1 − x

[k2 − �]3 + iε

]
. (41)

Now it is clear that this integral is not divergent, because
the term that would produce logarithmic UV divergence is
canceled as a result of the removal of the odd terms. We can
further simplify this by making the following substitution:

/k(p · k) → 1
3 k2

/p, (42)

which is a result of the symmetry of the integral in k. Then,
we perform a Wick rotation:

�1 = 8π

∫ 1

0
dx

∫
d3kE

(2π )3

[ − i/pE (1 − x)
( − k2

E − x2 p2
E

+ m2
r

) − 2k2
E /pE

3

+ 2mr
(
k2

E − (1 − x)xp2
E

)][ 1 − x[
k2

E + �E
]3

]
. (43)

We can evaluate the integral over kE using the integral identi-
ties given in Appendix. We have

�1 = 1

4

∫ 1

0
dx(1 − x)

[
3(i/pE (1 − 5x/3) + 2mr )√

�E

+
(
m2

r − x2 p2
E

)
(1 − x)(−i/pE ) − 2mrx(1 − x)p2

E )

�
3/2
E

]
.

(44)

Finally, we can calculate D3, which is shown in Fig. 5 and
explicitly given as

D3 = −1

4
tr

[∫
d3 p

(2π )3

(i(/p − mr ))4(
p2 − m2

r

)4 + iε
�1

]
. (45)

As before, we make the Wick rotation, let pE → pE mr , and
substitute �1, which gives

D3 = − i

16π2

1

mr

∫ 1

0
dx

∫ ∞

0
d pE p2

E

[
− p2

E

(
3 − 5x√

�0

− (1 − x)
(
1 − x2 p2

E

)
�

3/2
0

)(− 4p2
E + 4

)

+
(

6√
�0

− 2(1 − x)xp2
E

�
3/2
0

)(
p4

E − 6p2
E + 1

)]

× 1 − x(
p2

E + 1
)4 . (46)

Evaluating this integral yields

D3 = 0. (47)

Next we calculate D4. First, we start with �2, which is
shown in Fig. 6 and explicitly given as

�2 = 2π

∫
d3q

(2π )3

γμ(i(/q − mr ))3γν(
q2 − m2

r

)3 + iε

εμνα (p − q)α
(p − q)2 + iε

, (48)

which is convergent. First, we apply Eq. (26) with n = 3 and
change the integration variables as q − xp → k and we have

�2 = −i6π

∫ 1

0
dx

∫
d3k

(2π )3
γμ(/k + x/p − mr )3γνε

μνα

× (−k + p(1 − x))α

[
(1 − x)2

[k2 − �]4 + iε

]
. (49)

Next, we simplify the gamma matrix terms by using Eqs. (28)
and show that

εμναγμ(/k + x/p − mr )3γν (−k + p(1 − x))α

= 2i
(
k2 + x2 p2 + 2xk · p + 3m2

r

)
(k + xp)

· (−k + p(1 − x)) + (−/k + /p(1 − x))

× [
3(k2 + x2 p2 + 2xp · k) + m2

r

]
2imr, (50)

then, we apply Eq. (42) and a Wick rotation, so �2 becomes

�2 = 12iπ
∫ 1

0
dx

∫
d3kE

(2π )3

((
k2

E − p2
E x(1 − x)

)
× (− k2

E − x2 p2
E + 3m2

r

) + 2x

3
p2

E k2
E (1 − 2x)

− imr2xk2
/pE − imr/pE (1 − x)

(
3
(− k2

E − x2 p2
E

) + m2
r

))
×

[
(1 − x)2[

k2
E + �E

]4

]
. (51)
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We can evaluate the integral over kE using the integral identi-
ties given in Appendix. �2 is now

�2 = 3i

16

∫ 1

0
dx(1 − x)2

[
−5

�
1/2
E

+ 1

�
3/2
E

(
5x

3
p2

E (1 − 2x)

+ 3m2
r + imr/pE (3 − 5x)

)
+ 1

�
5/2
E

(− p2
E x(1 − x)

× (−x2 p2
E+3m2

r

)−imr/pE (1−x)
[− 3x2 p2

E + m2
r

])]
.

(52)

Finally, we can calculate D4 which is shown in Fig. 5 and
explicitly given as

D4 = −1

4
tr

[ ∫
d3 p

(2π )3

(i(/p − mr ))3(
p2 − m2

r

)3 + iε
(�2)

]
. (53)

As before we make Wick rotation, let pE → pE mr and substi-
tute �2 which gives

D4 = − 3i

64π2

1

mr

∫ 1

0
dx

∫ ∞

0
d pE p2

E

(1 − x)2

(pE + 1)3

×
{

− p2
E

(−p2
E + 3

)(3 − 5x

�
3/2
0

− (1 − x)
−3x2 p2

E + 1

�
5/2
0

+ (
1 − 3p2

E

)[ −5

�
1/2
0

+ 1

�
3/2
0

(
5x

3
p2

E (1 − 2x) + 3

)

+ 1

�
5/2
0

(− p2
E x(1 − x)

(−x2 p2
E + 3

))])}
. (54)

If we evaluate this numerically, we have

D4 = − i

32π

1

mr
. (55)

Finally, we get β4 by using Eqs. (37), (46), and (54), which
gives

β4 = − 1

64π

1

mr
, (56)

which is the main result of this section.
We now discuss three different cases.
(i) mr > 0. This describes a CSL phase. Since β4 > 0, its

transition into the phase with VBS and/or Ising Neel order is
first order at the mean-field level.

(2) mr < 0. This describes an XY phase. Since β4 < 0, its
transition into the phase with VBS and/or Ising Neel order is
second order at the mean-field level.

It should be noted that our evaluation of β4 is only to the
lowest order in gauge coupling (or inverse CS level), which
is of order one. We cannot rule out the possibility that higher
order correction can reverse the sign of β4 and thus the con-
clusions above.

(3) mr = 0. This is our multicritical point, at which we can-
not integrate out the (massless) Dirac fermions perturbatively
as done above. One can, nevertheless, perform a nonperturba-
tive calculation of the effective potential [14] Veff (φcl ) in terms
of φcl, which is the vacuum expectation value of φ where

Veff (φcl ) is minimized. Since the fermion theory is massless
and contains no scale, one expects its coupling to φcl gener-
ates a scale-invariant term |φcl|3, which is easy to verify by
calculating the change of fermion ground-state energy due to
φcl that plays the role of a mass. The nonanalyticity of such a
term originates from the masslessness of the Dirac fermion. Its
presence signals the non-mean-field behavior of the transition
into the phases with broken translation symmetry, even if the
theory is analyzed at the mean-field level.

V. DUAL DESCRIPTION

The theory of multicritical point is also discussed in
Ref. [22], which is mainly done by considering a mean-field
approach by considering the dual version of the theory. Thus,
to have a connection with the literature, we also briefly find
a dual version of our theory. In Sec. II, we started with the
lattice spin model given in Eq. (2), then we mapped it to
hard-core bosons, and then mapped those hard-core bosons
to nonrelativistic fermions in a lattice with a level-one CS
term. Then, we found that the continuum limit of this theory
is described by two Dirac fermions coupled to the level-one
CS term given in Eq. (5). In this section, we will apply a
bosonization transformation to Eq. (5), which, in a sense,
close the circle of our mappings.

We will use the well-known bosonization conjecture
[11,15–19]. First, we have to make several definitions to sim-
plify the notation in the following calculations. We closely
follow the approach of Ref. [15] in this section. We define the
CS term and background field coupling as [15]

SCS[a] = 1

4π

∫
d3xεμνλaμ∂νaλ, (57a)

SBF[a, B] = 1

2π

∫
d3xεμνλaμ∂νBλ, (57b)

where a is a dynamic gauge field and B is a background gauge
field—note that we use lower case letters for dynamic gauge
fields and upper case letters for background-gauge fields as
before. The actions for material fields are given as

Sfermion[ψ, A] =
∫

d3xψ̄ (i(γ μ∂μ − iAμ)ψ, (58a)

Sscalar[φ, A] =
∫

d3x|(∂μ − iAμ)φ|2 − α|φ|4, (58b)

where we have an action for a free Dirac fermion coupled to
the background gauge field and complex Wilson-Fischer (WF)
scalar, with coupling constant α which flows to infinity at the
WF fixed point and the mass flows to zero [15]. Their partition
functions

Zfermion[A] =
∫

Dψ̄DψeiSfermion[ψ,A], (59a)

Zscalar[A] =
∫

Dφ̄DφeiSscalar[φ,A] (59b)

are related by the bosonization conjecture [15]:

Zfermion[A]e− i
2 SCS[A] =

∫
DaZscalar[a]eiSCS[a]+iSBF[a;A]. (60)
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We have to clarify the origin of the extra half-level CS term
on the left-hand side (LHS), which is something purely nota-
tional. To understand this, assume for a moment the fermions
in LHS are massive. In our notation, when we integrate out the
fermions of Zfermion[A], we do not perform any Pauli-Villars
regularization [20] and, as a result of that, we get a half-level
CS term after integrating out the fermions. However, a CS
term with a noninteger level breaks the large gauge invariance
[20]. So, to preserve the gauge invariance of the theory, we
have to add that extra half-level CS term [21].

Our goal is to obtain Eq. (5) by applying a series of manip-
ulations to LHS of Eq. (60). Applying the same manipulations
to the right-hand side (RHS) of Eq. (60) yields the dual (or
bosonized) version of Eq. (5).

First, we multiply two copies of the LHS of Eq. (60) and
integrate it over A. We denote this integration variable as ã
and add a coupling with background field C. So, the theory
becomes

SL = Sf[ψ1, ã] + Sf[ψ2, ã] − SBF[ã,C] − SCS[ã], (61)

which gives the fermionic side of our new duality. Performing
the same manipulations to the RHS of Eq. (60) yields

SR =Ss[φ1, a1] + Ss[φ2, a2] + SCS[a1] + SCS[a2]

+ SBF[a1 + a2 − C, ã], (62)

and this is the bosonic side of our new duality. Next, we
integrate out ã on the RHS, which gives rise to the constraint

C = a1 + a2, (63)

which we solve by introducing a new dynamic field b as a1 =
b and a2 = −b + C. Then SR becomes

SR = Ss[φ1, b+] + Ss[φ2,−b + C] + SCS[b] + SCS[−b + C].

(64)

Next, we apply time reversal transformation to both sides by
simply changing the signs of the BF and CS terms. We then
have

S′
L = Sf[ψ1, ã] + Sf[ψ2, ã] + SBF[ã,C] + SCS[ã]. (65)

The motivation behind this transformation is clear, as the
fermionic theory now contains a level-one CS term as in
Eq. (5). Accordingly, the bosonic side of the duality is

S′
R = Ss[φ1, b] + Ss[φ2,−b + C] − SCS[b] − SCS[−b + C].

(66)
Next, we let C → −C and we add SCS[C] to both sides. So,
both sides of the duality are given as

S′′
L = Sf[ψ1, ã] + Sf[ψ2, ã] + SCS[ã − C]. (67)

Note that for C = A this is just the action of Eq. (5) and the
bosonic side of the duality is

S′′
R = Ss[φ1, b] + Ss[φ2,−b − C]

− 2SCS[b] − SBF[b,C]. (68)

Finally, we let φ2 ↔ φ∗
2 and get

S′′′
R = Ss[φ1, b] + Ss[φ2, b + C]

− 2SCS[b] − SBF[b,C], (69)

which concludes the bosonization of Eq. (5). One should note
that this is not the only possible duality that one can find.
For example, we can find different bosonic dual models to
our original model by considering the time-reversed version
of Eq. (60) to the one of the fermionic degrees of freedom in
our original model.

VI. SUMMARY AND DISCUSSION

In this paper, we provide a unified description of various
possible phases supported by a spin- 1

2 antiferromagnet with
easy-plane anisotropy on the square lattice, including Neel-
order states, CSL, and VBSs. The description is based on two
Dirac fermions coupled to a level-one CS gauge field, and the
various phases correspond to different combinations of the
various Dirac mass terms. All these phases meet at a mul-
ticritical point where the entire Dirac mass matrix vanishes.
Within our description, a direct continuous transition from
the XY-ordered Neel state to the VBS must go through this
multicritical point. In more generic situations, there is either
an intermediate phase with both orders or a direct first-order
transition.

The theory of this multicritical point and its dual descrip-
tion have some similarities to that of the deconfined criticality
[3] and its dual description [22]. The main difference is our
models contain CS couplings while their models do not. As a
result, their phase diagram does not contain the CSL phase.
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APPENDIX: INTEGRAL IDENTITIES

Here we discuss the common integrals we will encounter
in the main text [14],

∫
dd kE

(2π )d

1[
k2

E + �E
]n

= 1

(4π )d/2

�(n − d
2 )

�(n)

(
1

�E

)n− d
2

, (A1a)

∫
dd kE

(2π )d

k2
E[

k2
E + �E

]n

= d

2(4π )d/2

�(n − d
2 − 1)

�(n)

(
1

�E

)n− d+2
2

, (A1b)
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∫
dd kE

(2π )d

k4
E[

k2
E + �E

]n

= d (d/2 + 1)

2(4π )d/2

�
(
n − d

2 − 2
)

�(n)

(
1

�E

)n− d+4
2

, (A1c)

where n ∈ Z+, which can be proved easily by converting the
LHS to the Euler integral (beta function) by substituting x =
�E/(k2

E + �E ).
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