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Nonperturbative ab initio approach for calculating the electrical conductivity of a liquid metal
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We propose a nonperturbative ab initio approach to calculate the electrical conductivity of a liquid metal.
Our approach is based on the Kubo formula and the theory of electron-phonon coupling (EPC) and, unlike the
conventional empirical approach based on the Kubo-Greenwood formula, fully takes into account the effect of
coupling between electrons and moving ions. We show that the electrical conductivity at high temperature is
determined by an EPC parameter λtr , which can be inferred, nonperturbatively, from the correlation of electron
scattering matrices induced by ions. The latter can be evaluated in a molecular dynamics simulation. Based on
the density-functional theory and pseudopotential methods, we implement the approach in an ab initio manner.
We apply it to liquid sodium and obtain results in good agreement with experiments. This approach is efficient
and based on a rigorous theory suitable for applying to general metallic liquid systems.
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I. INTRODUCTION

Liquid metals are an important class of materials vital
for many applications because of their excellent electrical
and thermal conductivities combined with flexible mechanic
properties. They find applications in flexible electronics [1–3],
microfluidic devices [4,5], and material syntheses [6], etc.
They also form cores of many planets, generating geomag-
netic fields [7–9]. The physical properties of liquid metals
are crucial for these applications and for understanding the
formation and evolution of planets. Among them, electrical
conductivity is a basic, nonetheless one of the most important
properties. As such, an efficient and reliable approach for
calculating the electric conductivity of a liquid metal is highly
desirable.

At present, the most successful approach for calculating
the electrical conductivity of a liquid metal is to combine
molecular dynamics (MD) or path-integral molecular dy-
namics (PIMD) simulations with the Kubo-Greenwood (KG)
formula [10,11]. This approach approximates liquid as an en-
semble of independent electron systems subject to quenched
and disordered ionic fields and inherently ignores the effect
of the motion of ions on the evolution of electron states
[12]. The electrical conductivity is calculated by averaging
ion configurations sampled from MD simulations [7,12–14].
The direct-current (dc) limit (ω → 0) of the conductivity is
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obtained by extrapolating from conductivities at high frequen-
cies [7,14,15]. This approach has been applied to various
liquid metals with great success [9,14–22]. However, its ap-
proximated and empirical nature limits further improvements.
Parallel to this, in the more rigorous treatment developed for
solids, electrical resistivity can be interpreted as a result of
electron-phonon coupling (EPC) [20–22] for which the dy-
namic effects of ion motion play a central role. The harmonic
approximation (HA) of ion motion, however, is often applied
and the EPC is treated in a perturbative manner. Both of these
treatments are not applicable in liquids. It is not obvious how
the two distinct views can be unified in a certain limit nor is
it satisfactory that one has to rely on two distinct theories for
two phases of one matter.

In this paper, we extend the applicability of the EPC theory
of conductivity originally developed for solids and develop a
nonperturbative ab initio approach appropriate for calculat-
ing the dc conductivity of a liquid. Instead of perturbatively
determining the EPC scattering amplitudes, we reformulate
the theory to relate the dc conductivity with the irreducible
interaction mediated by EPC in the particle-hole channel. We
show that the irreducible interaction can be inferred from
the correlation of the T matrices of electron-ion scatterings,
which can be evaluated in a MD or PIMD simulation. At high
temperatures, the formula of electrical resistivity is reduced to
the familiar form of the conventional EPC theory that is pro-
portional to a single EPC parameter λtr . We explicitly relate
the parameter to the irreducible interaction. With these devel-
opments, we have a nonperturbative approach for determining
electrical conductivity. We implement the approach by us-
ing the density-functional theory (DFT) and norm-conserving

2469-9950/2022/105(15)/155148(8) 155148-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0158-9385
https://orcid.org/0000-0003-0316-4257
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.155148&domain=pdf&date_stamp=2022-04-22
https://doi.org/10.1103/PhysRevB.105.155148


ZHANG, CHEN, WANG, SHI, AND LI PHYSICAL REVIEW B 105, 155148 (2022)

pseudopotential methods. Applying the implementation to
liquid sodium, we find that this theory correctly predicts the
nonlinear dependence of the resistivity on temperature as ob-
served in experiments. The results are in good agreement with
available experiments both qualitatively and quantitatively.

The remainder of the paper is organized as follows. In
Sec. II, we develop the general formalism of the electrical
conductivity in liquids. The relation between the conductiv-
ity and the irreducible interaction I mediated by EPC in the
electron-hole channel is established. In Sec. III, we show how
I can be inferred from a MD simulation by relating it to
the correlation of T matrices of electron-ion scatterings. The
approach is applied to liquid sodium. Implementation details
and results are presented in Sec. IV. Finally, we summarize
and discuss our results in Sec. V. Some details of the theo-
retical derivations and the tests of numerical convergence are
presented in the Appendixes.

II. EPC THEORY OF ELECTRICAL CONDUCTIVITY

In this section, we develop formalism for calculating the
dc conductivity of a liquid. The derivation is based on the
conventional EPC theory of conductivity originally developed
for solids; see, e.g., Ref. [23]. To have a theory appropriate
for a liquid, we need to eliminate reliance on perturbatively
defined quantities and the HA in the original theory.

A. Formula of conductivity

From the Kubo formula [10,23], the dc electrical conduc-
tivity of a general system can be calculated by

σ = − lim
ω→0

Im[πret (ω)]

ω
, (1)

where πret (ω) is the retarded current-current correlation func-
tion. To determine πret (ω), it is more convenient to first
determine the imaginary time-ordered correlation function,

π (iωm) = − 1

3V

∫ h̄β

0
dτeiωmτ 〈T̂τ ĵ(τ ) · ĵ(0)〉, (2)

and then perform an analytic continuation by substituting iωm

with ω + iδ, where δ denotes an infinitesimal positive con-
stant. Here τ ∈ [0, h̄β ) is the imaginary time, with β = 1/kBT
being the inverse temperature; ωm = 2mπ/h̄β, m ∈ Z is a Bo-
son Matsubara frequency. V is the total volume of the system.
We have assumed that the system is isotropic.

By substituting the current operator ĵq(τ ) =
−(e/m)

∑
pσ pψ̂†

pσ (τ )ψ̂pσ (τ ) into the Kubo formula, we
obtain

π (iωm) = 2e2

3m2V

1

h̄β

∑
pp′

p · p′G(2)(p, p′ + q0; p + q0, p′),

(3)
where

G(2)(p, p′ + q0; p + q0, p′)

= −
∫ h̄β

0
dτeiωmτ 〈T̂τ ψ̂

†
pσ (τ + τ0)ψ̂pσ (τ + τ0)ψ̂†

p′σ (τ0)

× ψ̂p′σ (τ0)〉 (4)

FIG. 1. (a) The relation between the vector vertex function and
the scattering amplitude. (b) The Bethe-Salpeter equation (11).
(c–e) The definitions of 


(0)
pp′ (−iν, iν ), I (0)

pp′ (−iν, iν ), and �(|p|, ε),
respectively.

is the two-particle Green’s function; ψ̂pσ (ψ̂†
pσ ) is the annihi-

lation (creation) operator of an electron with the momentum p
and spin σ ; e and m are the charge and bare mass of the elec-
tron, respectively. For simplicity, we use the four-dimensional
momentum notation p ≡ (p, iν), and q0 ≡ (0, iωm), where
ν ≡ (2n + 1)π/h̄β, n ∈ Z denotes a Fermion Matsubara fre-
quency.

The two-particle Green’s function G(2) can in general be
decomposed as

G(2)(p, p′ + q0; p + q0, p′)

= GpGp+q0δpp′ + 1

h̄2β
GpGp+q0
pp′ (q0)Gp′Gp′+q0 , (5)

where we ignore the inconsequential disconnected part of the
Green’s function, Gp is the single-particle Green’s function
of the system, and 
pp′ (q0) is the scattering amplitude of an
electron-hole pair scattered from (p, p + q0) to (p′, p′ + q0).
We note that Gp is diagonal in the basis of plane waves be-
cause a liquid has the space and time translation symmetries.

We define a vector vertex function �(p, q0) = p +
(1/h̄2β )

∑
p′ p′Gp′Gp′+q0
pp′ (q0) [see Fig. 1(a)]. Because a

liquid is isotropic, the vector vertex function must have the
form �(p, q0) = p�(|p|; iν, iν + iωm), where � is a scalar
vertex function [23]. Equation (3) can be rewritten as

π (iωm) = 2e2

3m2

1

h̄β

∑
p

GpGp+q0 |p|2�(|p|; iν, iν + iωm).

(6)

We then complete the summation of the Matsubara fre-
quency ν and perform the analytic continuation iωm → ω +
iδ. After applying Ward identities for EPC systems [23,24],
we obtain

σ = 2e2

3m2

∫
d3 p

(2π h̄)3
|p|2

∫ ∞

−∞

dε

2π h̄

[
−dnF (ε)

dε

]

× ∣∣Gret
p (ε)

∣∣2
�(|p|, ε − iδ, ε + iδ), (7)
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where Gret
p (ε) is the retarded Green’s function. The details of

the analytic continuation can be found in §8.4.2 of Ref. [23].
In Eq. (7), the evaluation of |Gret

p (ε)|2 can be simplified. To
see this, we explicitly write

∣∣Gret
p (ε)

∣∣2 =
∣∣∣∣ h̄

ε + εF − εp − Re�(p, ε) − iIm�(p, ε)

∣∣∣∣
2

,

= h̄2

(ε + εF − ε̃p)2 + [Im�(p, ε)]2
, (8)

where �(|p|, ε) ≡ �(|p|, ε + iδ) is the self-energy of the
system, ε̃p(ε) = (|p|2/2m) + Re�(|p|, ε) is the renormalized
electron dispersion, and εF is the Fermi energy. It is propor-
tional to a Lorentzian function and Im� is the spread. As a
result, Eq. (8) can be approximated as

∣∣Gret
p (ε)

∣∣2 ≈ − π h̄2

Im�(|p|, ε + iδ)
δ(ε + εF − ε̃p(ε)), (9)

The approximation is valid when |Im�(|p|, ε + iδ)| 
 εF ,
which is true for most metallic systems.

Finally, noting that the system is isotropic and the vertex
function and the self-energy only weakly depend on |p| for
|p| ∼ pF , we obtain the formula for determining the dc con-
ductivity of a liquid

σ = e2n0 h̄

2m

∫ ∞

−∞
dε

�(pF ; ε − iδ, ε + iδ)

Z (ε)Im�(pF ; ε + iδ)

dnF (ε)

dε
, (10)

where n0 is the electron density, nF (ε) is the Fermi-Dirac dis-
tribution function, and pF is the Fermi momentum. �(pF ; ε −
iδ, ε+iδ) is obtained from �(pF ; iν, iν + iωm) by substi-
tuting iν → ε − iδ and iν + iωm → ε + iδ, and Z (ε) = 1 +
(m/pF )[∂Re�(p, ε + iδ)/∂ p]p=pF is a factor due to the renor-
malization of the electron dispersion.

B. Integral equations

While Eq. (10) has a form identical to that of the conven-
tional EPC theory, all complexities are hidden in the scalar
vertex function. In the conventional theory, the vertex function
is determined perturbatively from an EPC Hamiltonian based
on the HA. For liquids, instead, we make use of exact integral
relations.

For the scattering amplitude 
, we have the Bethe-Salpeter
equation [Fig. 1(b)] [25]


p,p+q(q0) = Ip,p+q(q0) + 1

h̄2β

∑
q′

Ip,p+q′ (q0)

× Gp+q′Gp+q′+q0
p+q′,p+q(q0), (11)

where we introduce an irreducible electron-hole interaction I .
In the perturbation theory, I includes all the two-particle scat-
tering diagrams that are irreducible in the direct electron-hole
channel [26]. For liquids, we have to determine it nonpertur-
batively. This will be discussed in the next section.

From the relation between the vertex functions and 


[Fig. 1(a)], it is straightforward to obtain the integral equation

for the scalar vertex function

�(|p|; iν, iν + iωm)

= 1 + 1

h̄2β

∑
q

p · (p + q)

|p|2 Ip,p+q(q0)

×Gp+qGp+q+q0�(|p + q|; iν, iν + iωm). (12)

C. High-temperature limit

In most cases, the melting temperature of a material is
much higher than its Debye temperature �D. As a result, it
suffices to determine the conductivity at the high-temperature
limit T � �D. In this case, the conductivity is determined by
a single EPC parameter λtr . This is shown as follows.

In the high-temperature limit, Eq. (12) can be simpli-
fied. Note that the Matsubara frequency h̄ωmq ≡ 2mqπkBT �
kB�D unless mq = 0, while Ip,p+q(q0), which is induced by
the EPC, has significant magnitude only when h̄ωmq � kB�D,
where ωmq denotes the Matsubara frequency of q. We there-
fore keep only terms with ωmq = 0 in the summation in
Eq. (12). As a result, for iν → ε − iδ and iν + iωm → ε + iδ,
the equation can be simplified as

�(|p|; ε) = 1 + 1

h̄2β

∑
q

p · (p + q)

|p|2 I (0)
p,p+q(ε − iδ, ε + iδ)

× ∣∣Gret
p+q(ε)

∣∣2
�(|p + q|; ε), (13)

where �(|p|; ε) ≡ �(|p|; ε − iδ, ε + iδ) [Fig. 1(e)], and
I (0)

p,p+q(ε − iδ, ε + iδ) denotes Ip,p+q(q0) for the given set of
the momenta and a zero-frequency transfer [Fig. 1(d)].

We then apply the approximation Eq. (9). It gives rise to a
Dirac delta function which constrains p + q on the Fermi sur-
face, i.e., |p + q| = pF . As a result, �(|p + q|; ε) = �(pF ; ε)
can be moved out of the summation. We define a set of EPC
parameters(

λ(ε)
λtr (ε)

)
=

∑
q

(
1

−p · q/|p|2
)

I (0)
p,p+q(ε − iδ, ε + iδ)

× Z (ε)δ(ε + εF − ε̃p+q(ε)). (14)

By using the parameters, the imaginary part of the self-energy
can be written as

Im�(p, ε) ≈ − π

βZ (ε)
λ(ε) (15)

in the high-temperature limit (see Appendix A). It is then
straightforward to get the solution

�(pF ; ε) = λ(ε)

λtr (ε)
. (16)

By inserting Eq. (15) and Eq. (16) into Eq. (10), we
determine the dc conductivity. At high temperature and for
ε ∼ 0, we can neglect the energy dependence of λtr (ε) [27].
Completing the integral over ε, we obtain

σ ≈ e2n0 h̄β

2πmλtr (0)
. (17)

This is the final formula to be applied for determining the dc
conductivity of a liquid. It has a form identical to that of the
conventional theory. However, for liquids, the EPC parameter
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λtr (0) cannot be determined in a perturbative way. According
to Eq. (14), to determine λtr (0), we need to first determine the
irreducible electron-hole interaction I (0)

p,p+q(−iδ, iδ).

III. IRREDUCIBLE ELECTRON-HOLE INTERACTION

From the last section, we see that the irreducible electron-
hole interaction I (0)

p,p+q(−iδ, iδ) is the key for determining the
electrical conductivity of a liquid. In this section, we develop
an approach for determining it.

A. Related to an electron-hole scattering amplitude

By setting p = (p, iν), p + q0 = (p,−iν) and q = (q, 0)
in Eq. (11), we obtain an equation for I (0)

p,p+q(−iν, iν):

I (0)
p,p+q(−iν, iν) = 


(0)
p,p+q(−iν, iν)

− 1

h̄2β

∑
q′

I (0)
p,p+q′ (−iν, iν)

× |Gp+q′ (−iν)|2
(0)
p+q′,p+q(−iν, iν), (18)

where 

(0)
p,p+q(−iν, iν) denotes 
p,p+q(q0) for the given set of

the momenta [Fig. 1(c)], and we keep only terms with zero
Matsubara frequency in the summation of the right-hand side,
as it is appropriate for the high-temperature limit.

The equation suggests an approach for determining the
irreducible interaction: By determining 


(0)
p,p+q(−iν, iν) nu-

merically, we can obtain I (0)
p,p+q(−iν, iν) by solving Eq. (18).

It is reasonable to expect that I (0)
p,p+q(−iν, iν) only weakly

depends on the Matsubara frequency iν, the irreducible in-
teraction can be obtained by

I (0)
p,p+q(−iδ, iδ) ≈ I (0)

p,p+q(−iν, iν) (19)

for a properly chosen iν (see below).

B. Evaluating the scattering amplitude in MD

Quantities like 

(0)
p,p+q(−iν, iν), which are defined in imag-

inary time, can in general be evaluated in a PIMD simulation.
In the simulation, one maps quantum ion degrees of free-
dom into classical ring polymers with beads representing ions
at different instances of the imaginary time [28]. Electron-
related quantities can be evaluated by averaging an ensemble
of quantum electron systems subjected to random imaginary
time-dependent ionic fields. Applications of such an approach
can be found in Refs. [29,30].

In the approach, the single-particle Green’s function can be
evaluated as Gp = 〈Gpp[R(τ )]〉C and the two-particle Green’s
function as

G(2)(p + q0, p′; p, p′ + q0)

= 〈Gpp′ [R(τ )]Gp′+q0,p+q0 [R(τ )]〉C, (20)

where G[R(τ )] denotes the electron Green’s function at a
given ion configuration {Ri(τ )}, and 〈· · · 〉C denotes an aver-
age over ion configurations.

The scattering amplitude 
pp′ (q0) can be expressed as a
correlation function. To see this, we apply the identity

Gpp′ = Gpδp,p′ + 1

h̄
GpTpp′Gp′ , (21)

where Tpp′ denotes the matrix element of the T matrix of elec-
tron scattering induced by an ionic field. Substituting Eq. (21)
into Eq. (20) and comparing the resulting form with Eq. (5),
we find


pp′ (q0) = β〈Tpp′Tp+q0,p′+q0〉C . (22)

We can show that the T matrix has the symmetry

(Tp,p+q )∗ = T p̄+q,p̄, (23)

where we denote p̄ ≡ (p,−iν). To see this, we note that
the Green’s function can be determined by the matrix
equation [G−1]pp′ = G−1

0 (p)δpp′ − Vpp′ (iν − iν ′), where
G0(p) is the Green’s function in a free space, and
Vpp′ (iν − iν ′) is the Fourier transform of the random ionic
potential. Since the ionic potential is Hermitian and is a local
function of the time, we have V ∗

pp′ (iν − iν ′) = Vp′ p(iν ′ − iν).
In addition, we have [G0(p)]∗ = G0( p̄). By applying these
relations, it is straightforward to show (Gp,p+q )∗ = G p̄+q,p̄.
Besides, time-reversal and inversion symmetries require that
[G(p)]∗ = G( p̄). Combining the relations with Eq. (21), we
obtain Eq. (23).

Applying Eq. (22) and Eq. (23), we have



(0)
p,p+q(−iν, iν) = β〈|T p̄,p̄+q|2〉C (24)

with q ≡ (q, 0). This is the formula to be applied for evaluat-
ing the scattering amplitude.

For a PIMD simulation, to determine the T matrix for a
time-dependent ionic potential, one needs to solve the time-
dependent equation of the Green’s function

[
− ∂

∂τ
− Ĥ (τ ) − εF Î

h̄

]
Ĝ(τ, τ ′) = δ(τ − τ ′)Î, (25)

where Ĥ (τ ) denotes the time-dependent Hamiltonian for a
given ionic potential. This is expensive and infeasible in
practice. Fortunately, we can apply the quasistatic approxi-
mation [29]. This is to choose a Matsubara frequency ν with
its magnitude kB�D/h̄ 
 |ν| 
 εF /h̄ and determine instanta-
neous solutions Ĝ(iν; τ ) = [(iν + εF /h̄)Î − Ĥ (τ )/h̄]−1. The
approximated solution of Eq. (25) can then be written as

Ĝ(iν + iωm, iν) ≈ 1

h̄β

∫
dτ Ĝ(iν; τ )eiωmτ , (26)

where Ĝ(iν + iωm, iν) denotes the Fourier transform of
Ĝ(τ, τ ′). The T matrix can be obtained by applying
Eq. (21).

Finally, since the scattering amplitude 

(0)
p,p+q(−iν, iν) has

a zero-frequency transfer, and in most cases, ions are heavy
enough to have a negligible effect of quantum fluctuations,
it is usually sufficient to use the classical MD instead of the
more expensive PIMD for simulating the motion of ions. In
this case, the T matrix can be obtained straightforwardly
from the static ionic potential with respect to a given ionic
configuration.

IV. APPLICATION TO LIQUID SODIUM

In this section, we implement and apply our approach to
liquid sodium.
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A. Implementation

In our implementation, ab initio MD and PIMD simu-
lations are performed using the Quantum Espresso package
interfaced with i-PI [31,32]. The Martins-Troullier norm-
conserving pseudopotential is used to treat the ion-electron
interactions [33]. The Perdew-Burke-Ernzerhof (PBE) func-
tional is used to describe the exchange-correlation potential
[34]. The electron Brillouin zone is sampled with the 
 point.
An energy cutoff of 30 Ry is used for the expansion of electron
wave functions by plane waves. At 400 K, the MD simulations
are run for supercells containing 128, 250, and 432 atoms, and
the PIMD simulations are run for a supercell of 250 atoms
with 4 and 8 beads. From 500 to 800 K, MD simulations are
run for the supercell of 250 atoms. The time step is 3 fs and
the simulation time is not less than 24 ps. The Generalized
Langevin equation (GLE) thermostat is used to equilibrate
the canonical ensemble. For each simulation, after the tem-
perature reaches equilibrium, the nuclear configurations are
uniformly sampled with a spacing of 25 time steps. To get a
converged result, we usually need ∼400 samples. The atomic
densities at different temperatures were set according to the
experiment [35].

With ionic configurations output by the MD or PIMD simu-
lations, we determine the Green’s function G[R(τ )] for each of
the configurations. Corresponding T matrices are determined
by applying Eq. (21). By averaging the ionic configurations,
we obtain the single-particle Green’s function and the scat-
tering amplitude 


(0)
p,p+q(−iν, iν). The irreducible interaction

I (0)
p,p+q(−iν, iν) is obtained from the scattering amplitude by

solving Eq. (18).
To determine λtr (0), we recast I (0)

p,p+q(−iν, iν) for p and
p + q close to the Fermi surface as a function of q ≡ |q|.
By interpolation, we can have a function I (0)(q) for arbitrary
values of q. The EPC parameters can then be determined by

(
λ(0)
λtr (0)

)
= N (εF )

∫ 2pF

0

(
q/2p2

F
[0.5em]q3/4p4

F

)
I (0)(q)dq, (27)

where N (εF ) is the density of states of free electrons at the
Fermi surface.

B. Results

In Fig. 2, we show the irreducible electron-hole interaction
I (0)

p,p+q(−iν, iν) recast as a function I (0)(q) for liquid sodium
at 400 K. The result shown is determined from a 36-ps MD
simulation for a supercell of 250 atoms, where 460 samples
are extracted. PIMD simulations with different number of
beads are also performed and yield no statistically distinguish-
able changes (see Appendix B). Due to the finite size of the
simulation, there is no data for 0 < q � 0.3kF , although we
do find I (0)(0) ≈ 0 as expected for an interaction induced by
EPC. The lack of data in the region introduces uncertainty
for interpolating values of I (0)(q). Fortunately, the uncertainty
will not severely affect the determination of λtr (0), as the
contribution from the region is suppressed by the q3 factor in
Eq. (27) (see the inset of Fig. 2). We also show the scattering
amplitude 
(0)(q) from which I (0)(q) is inferred. It is numer-
ically close to I (0)(q) but with a notable difference: 
(0)(0) �=
0. It suggests that applying the Bethe-Salpeter equation (18)
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FIG. 2. The irreducible electron-electron interaction I (0)(q) and
the scattering amplitude 
(0)(q) of liquid sodium at 400 K. The
functions are recast from I (0)

pp′ and 

(0)
pp′ for q = |p − p′| and 0.9pF <

|p|, |p′| < 1.1pF , respectively. Values for different p’s and p′’s but
having the same q are shown as separated points. The vertical spreads
of the values indicate their uncertainties. The inset shows the inte-
grands of Eq. (27) for λtr (blue line) and λ (red line).

is important for recovering the correct asymptotic behavior of
the irreducible interaction.

By applying Eq. (27), we calculate the EPC parameters
λ(0) and λtr(0) of liquid sodium at 400 K. The result is shown
in Table I. Values for solid sodium, both from the conven-
tional EPC theory [36] and from the experiments [37,38], are
also shown. We find that liquid sodium has a value of λtr (0)
nearly twice as large as that of solid sodium. It suggests a
large enhancement of EPC when sodium transits from the
solid to the liquid phase. The similar enhancements of EPC
parameters are also found in amorphous solids [39,40], which
share similar static structure as liquids. According to Eq. (17),
the enhancement of λtr (0) will induce a jump of the resistivity
in the solid-liquid transition. Another feature in Table I is that
the ratio of λ(0) to λtr(0) for both solid and liquid sodium is
∼1.5, which is larger than the values of many other metals,
such as Al and Au [36]. Numerically, the reason lies in the
momentum dependence of irreducible electron-electron inter-

TABLE I. The EPC parameters λ(0) and λtr(0) of liquid sodium
at 400 K in comparison with previous theoretical and experimental
results of solid sodium. The numbers in the parenthesis denote esti-
mated uncertainties. The superscripts “a,” “b,” and “c” denote data
from Ref. [36], Ref. [37], and Ref. [38], respectively.

Liquid Solid (bcc)

This work Theorya Experiment

λ(0) 0.36(3) 0.18 0.218b

λtr (0) 0.23(1) 0.12 0.14c

aReference [36].
bReference [37].
cReference [38].
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FIG. 3. The temperature dependence of EPC parameters λ(0)
and λtr(0) of liquid sodium. The errors are estimated from the vertical
spreads of the values of I (q) shown in Fig. 2.

action I (0)(q) or EPC matrix element. In Fig. 2, it can be seen
that I (0)(q) has a large distribution for q < pF , which indicates
that small-angle scattering is important. Thus the q3 factor in
Eq. (27) can significantly suppress the scattering for small q
and make λtr(0) smaller than λ(0).

We calculate the EPC parameters at different temperatures
and show the results in Fig. 3. It is evident that the EPC
parameters in liquid sodium are temperature dependent. In the
conventional EPC theory based on the HA, these parameters
are temperature independent. As a result, the resistivity of
solid shows linear temperature dependence at high tempera-
tures. In contrast, the resistivity of liquid sodium will show
nonlinear temperature dependence because of the temperature
dependence of λtr (0).

Finally, we show the temperature dependence of the elec-
trical resistivity of liquid sodium and compare our theoretical
results with experimental measurements in Fig. 4. The agree-
ment is good in both the magnitude and the trend. The theory
correctly predicts the nonlinear temperature dependence of
the resistivity observed in experiments. The quantitative dif-
ferences between the theory and the experiments are within
the error bars of the current calculation.

V. SUMMARY AND DISCUSSION

In conclusion, we have developed a nonperturbative ap-
proach to calculate the electronic resistivity of a liquid. We
show that the resistivity is determined by a single EPC pa-
rameter λtr at high temperature. We further show that the
EPC parameter can be related to the irreducible electron-hole
interaction I , which can be inferred from the fluctuation of
scattering T matrices induced by the coupling to ions. The
fluctuation of the T matrices can be determined from a MD
simulation. To verify the approach, we develop an ab initio
implementation based on DFT and pseudopotential methods
and apply it to liquid sodium. The theoretical results are in
good agreement with experiments.

FIG. 4. Temperature dependence of the resistivity of sodium.
We show the theoretical results of this work, previous theoretical
results from the KG method (KG1–3, from Ref. [15], Ref. [14], and
Ref. [16], respectively), the linear temperature dependence predicted
by the conventional EPC theory based on the HA (the value of
λtr is from Ref. [36]), as well as experimental data. The resistivity
variations among previous works at 400 K are caused by the choices
of DFT exchange-correlation functional, k-point sampling, and su-
percell size. The experimental data for the liquid and the solid phases
are from Ref. [41] and Ref. [42], respectively.

Compared with the conventional approach based on the
KG formula [10,11], our new approach has a number
of advantages. First, our approach is more efficient. The
conventional approach determines the dc conductivity by ex-
trapolation from conductivities at finite frequencies. In low
frequencies, the approach requires a large supercell for ob-
taining a converging result. For example, previous simulations
have to employ a supercell containing as large as 2000 atoms
for liquid sodium [15]. In contrast, our approach calculates
the dc conductivity directly from the irreducible interaction
which is expected to be short range, and the finite size effect
is not as severe. Actually, a 250-atom supercell already gives a
satisfactory result in our calculation. Second, our approach is
based on rigorous formalism instead of an empirical method.
The calculation of the dc electric conductivity of a liquid
shares a unified theoretical ground with the same calculation
for its solid phase. Finally, our approach can be improved.
We can identify approximations involved in our approach
such as taking the high-temperature limit and ignoring the ε

dependence of the vertex function. These approximations can
be scrutinized and improved if necessary.
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APPENDIX A: IMAGINARY PART OF THE SELF ENERGY

In the theory of liquid superconductivity [29], Liu et al.
introduce an effective electron-electron interaction W . Com-
paring the equations satisfied by I (0)(−iν, iν) (see Sec. III B)
and those for W [29], we conclude

I (0)
p,p′ (−iν, iν) = −W11′ (A1)

with 1 ≡ (p, iν) and 1′ = (p′, iν).
Liu et al. [29] also establish a generalized optical theorem

for the imaginary part of the self-energy

Im�1 = − 1

h̄β

∑
1′

(ImG1′ )W1′1. (A2)

The relation is exact.
We can apply these two relations to determine the imagi-

nary part of the self-energy at high temperature. In this case,
we have

Im�̄(p, iν) ≈ 1

h̄β

∑
q

ImG(p′, iν)I (0)
p′ p(−iν, iν). (A3)

Applying the analytic continuation iν → ε + iδ and the ap-
proximation

ImG(p′, ε + iδ) = −π h̄
|Im�(p, ε)|

(ε + εF − ε̃p)2 + [Im�(p, ε)]2
,

≈ −π h̄δ(ε + εF − ε̃p′ (ε)), (A4)

we obtain

Im�(p, ε) ≈ −π

β

∑
q

I (0)
p′,p(ε − iδ, ε + iδ)δ(ε + εF − ε̃p′ (ε))

= − π

βZ (ε)
λ(ε). (A5)

APPENDIX B: TESTS OF CONVERGENCE

In this Appendix, we test the convergence of our
calculation.

The size of the simulation supercell is the most important
factor affecting the convergence. Figure 5(a) shows the depen-
dence of the calculated λtr at 400 K on the number of atoms in
the supercell. It can be seen that using a supercell containing
250 atoms is sufficient for the convergence of λtr. The smaller
supercell makes q points available for the interpolation too
sparse. The resulting uncertainty in the integrand function for
determining λtr (see the inset of Fig. 2) is one of the main
sources of error.

The effect of quantum fluctuations is another factor being
tested. We compare results from a MD simulation and PIMD
simulations. Figure 5(b) shows how the results depend on
the number of the beads of the PIMD simulations (one bead
for the MD simulation). We find negligible differences in the
results between the MD and the PIMD simulations. This is
expected since the sodium atom is heavy and the temperature
(400 K) is high.

In this work, we use the plane-wave basis. Thus the energy
cutoff for these plane waves should be tested. Figure 5(c)
shows that λ and λtr are converged using an energy cutoff
of 6 Ry when calculating Green’s function and solving the
Bethe-Salpeter equation.
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Finally, the ensemble average of the self-energy and
effective electron-electron interaction is affected by the
number of sampled nuclear configurations. Figure 5(d)

shows that λ, λtr and resistivity are converged by us-
ing ∼ 400 configurations (obtained from 10,000-step MD
simulations).
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