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We discuss the interplay between many-body localization and spin symmetry. To this end, we study the time
evolution of several observables in the anisotropic t-J model. Like the Hubbard chain, the studied model contains
charge and spin degrees of freedom, yet it has smaller Hilbert space and thus allows for numerical studies of
larger systems. We compare the field disorder that breaks the Z2 spin symmetry and a potential disorder that
preserves the latter symmetry. In the former case, sufficiently strong disorder leads to localization of all studied
observables, at least for the studied system sizes. However, in the case of symmetry-preserving disorder, we
observe that odd operators under the Z2 spin transformation relax towards the equilibrium value at relatively
short timescales that grow only polynomially with the disorder strength. On the other hand, the dynamics of
even operators and the level statistics within each symmetry sector are consistent with localization. Our results
indicate that localization exists within each symmetry sector for symmetry-preserving disorder. Odd operators’
apparent relaxation is due to their time evolution between distinct symmetry sectors.

DOI: 10.1103/PhysRevB.105.155146

I. INTRODUCTION

The many-body localization (MBL) [1–4] phenomenon
has been most frequently studied in one-dimensional (1D)
disordered systems with either charge or spin degrees of
freedom [5–16]. Even though research in this field mainly
focused on a few of the simplest prototype model Hamil-
tonians for MBL such as the disordered XXZ model, the
type of the transition and even the existence of the MBL
phase in the thermodynamic limit are still under intense
consideration [17–27]. One of the specific open problems
is the effect of various symmetries on the existence of
MBL phase [28,29]. There are reports that non-Abelian
symmetry precludes MBL [28,30,31], while other investiga-
tions claim that the non-Abelian symmetry is protected by
MBL [32].

Shifting the focus to more complex prototype models that
contain charge and spin degrees of freedom, such as the 1D
Hubbard model with potential disorder, the existence of the
full MBL phase is even more elusive. In Refs. [33–36] the
authors investigated the time evolution of spin and charge im-
balance as well as transport properties in the Hubbard model.
Their results are consistent with localized/nonergodic charge
degrees of freedom, while due to the preserved SU(2) symme-
try the spin degrees of freedom remain delocalized/ergodic
up to extremely large values of potential disorder. Similar
conclusions were drawn based on the statistics of adjacent
energy levels [37] and by counting the maximal number of
local integrals of motion [38]. Subdiffusive time evolution of
charge particles was found in the related t-J model [39] with
potential disorder.

The effect of symmetry-preserving disorder was addressed
already in noninteracting one-dimensional random hopping
systems. In the case of systems with chiral or sublattice sym-
metry where particles can hop only between even and odd
lattice sites, there is a diverging mean density of states at zero
energy [40–42], which can lead to the delocalization transition
[43–46].

The main goal of this paper is to compare the effects of
spin-symmetry-preserving and symmetry-breaking disorders
on the dynamics of charge and spin degrees of freedom. In the
case of potential disorder, the behavior of specific spin degrees
of freedom is inconsistent with the full MBL state due to the
Z2 spin symmetry. This observation is based on relatively
fast relaxation of spin observables that are odd under the
later Z2 spin transformation; that is, the only nonzero matrix
elements of these operators connect two distinct symmetry
sectors. While this observation seems to preclude the MBL
state, the statistics of adjacent energy levels computed within
each symmetry sector at large potential disorder approaches
Poisson statistics.

We have organized this paper as follows: in Sec. II, we
present the model and the numerical method; we also discuss
how the symmetry properties of the model depend on the
type of disorder. Next, we present the time evolution of the
charge and spin imbalance and present a simplified model
that explains the unusual relaxation of the spin imbalance in
the presence of the potential disorder. We further present time
evolutions of various charge and spin correlation functions,
followed by an analysis of charge and spin entanglement
entropies. Based on the spectral level statistics, we discuss the
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apparent inconsistency between the relaxation of the spin im-
balance and the Poisson level statistics, both observed under
the influence of strong potential disorder.

II. MODEL AND METHOD

We investigate the anisotropic t-J model on a one-
dimensional ring with L sites and Nf = L/2 fermions in the
total Sz = 0 subspace in the presence of either a random
external magnetic field hi ∈ [−2Ws, 2Ws] or random potential
εi ∈ [−Wc,Wc],

H = −t0
∑
i,σ

c†
i,σ ci+1,σ + c.c. + Jz

∑
i

Sz
i Sz

i+1 − nini+1/4

+ J⊥
2

∑
i

S+
i S−

i+1 + S−
i S+

i+1 +
∑

i

hiS
z
i + εini. (1)

The fermion operators ci,σ and ni = ∑
σ c†

i,σ ci,σ , as well as the
spin operators S±,z

i , act in the Hilbert space spanned locally by
only three states, |0〉i, | ↑〉i, and | ↓〉i. The absence of doubly
occupied states | ↑↓〉i in the t-J model allows studying charge
and spin dynamics for much larger systems than would be
possible for the Hubbard chain. This property is the main mo-
tivation for the choice of Hamiltonian. We perform multiple
time evolutions based on the Lanczos technique, with each
evolution starting from a different set of either random hi or
εi. The main goal of this work is to compare the time evolution
of spin and charge degrees of freedom under the influence of
two different types of disorder. For this reason we choose,
following Ref. [37], the initial state that possesses a charge-
density-wave order as well as a staggered spin orientation
configuration |�0〉, defined as

|�0〉 = | ↑ 0 ↓ 0 ↑ 0 ↓ 0 . . . 〉, (2)

|�̄0〉 = Û |�0〉 = | ↓ 0 ↑ 0 ↓ 0 ↑ 0 . . . 〉, (3)

where |�̄0〉 represents a state with globally reversed spin pro-
jections Sz

i via the unitary transformation Û = ∏
i(1 − ni +

S+
i + S−

i ). In addition, we compute the level statistics of the
energy spectra. We typically take Nr = 500–1500 realizations
of the disorder. We measure time in units of [1/t0] and set
t0 = Jz = 1 and J⊥ = 1.5.

There exists a significant difference between the two sys-
tems under the influence of potential (Wc �= 0,Ws = 0) and
field (Ws �= 0,Wc = 0) disorders. Since we have set Jz �= J⊥,
the SU(2) symmetry is broken even at Wc(s) = 0. In the case
of the potential disorder and for Sz

tot = 0, the Hamiltonian
remains invariant under the Z2 spin transformation Û , which
is closely related to the global π rotation around the x axis
[47]. Since ÛÛ = ÛÛ † = 1, each eigenstate consists of either
a symmetric combination of states (Û |�S〉 = |�S〉) or an an-
tisymmetric combination of states (Û |�A〉 = −|�A〉), which
differ by a global reversal of Sz

i , |�S/A〉 = (|�〉 ± Û |�〉)/2.
The Hamiltonian thus separates into two blocks with equal
numbers of symmetric and antisymmetric functions.

III. CHARGE AND SPIN IMBALANCE

We start by presenting the time propagation of the charge
and spin imbalance as defined by the following operators:

P̂c = 1

Nf

L∑
i=1

(−1)i+1ni, (4)

P̂s = 2

Nf

L∑
i=1

(−1)
∑i−1

j=1 n j Sz
i . (5)

The initial state is chosen such that P̂c(s)|�0〉 = |�0〉. Note
also that P̂s is odd under the Z2 spin transformation, Û P̂sÛ =
−P̂s; thus, it connects the symmetric and antisymmetric sec-
tors, while its matrix elements within each symmetry block
vanish, 〈�S|P̂s|�S〉 = 〈�A|P̂s|�A〉 = 0. Consequently, in the
basis of the eigenstates of the Hamiltonian, P̂s has no diago-
nal matrix elements. In contrast P̂c is even, Û P̂cÛ = P̂c, and
〈�S|P̂c|�A〉 = 0.

We first show the charge imbalance, presented in Fig. 1(a),
Pc(t ) = 〈P̂c〉t , where 〈· · · 〉t indicates multiple time evolutions
from the initial |ψ0〉, averaged over different random real-
izations of either potential or magnetic field disorder. We
observe a similar time evolution for t � 10 under the influ-
ence of either potential or field disorder. At larger t and for
Wc(s) � 6, Pc(t ) relaxes towards zero faster in the case of field
disorder. At larger Wc(s) � 10, Pc(t ) shows a slow, logarithmic
decrease in time. Provided that the time dependence would
further follow a logarithmic form A ln(t ) + B, as displayed
with thin dashed lines for Wc(s) = 10 in Fig. 1(a), Pc(t ) would
equilibrate under Wc or Ws to zero around τc ∼ 27 000 and
τs ∼ 460 000, respectively. It is worth stressing that relaxation
time becomes longer in the case of potential disorder at larger
values of Wc(s) � 10; moreover, relaxation might be prevented
by the onset of the many-body localization.

In the case of the spin imbalance Ps(t ) [see Fig. 1(b)], we
find exceedingly different time evolutions when comparing
systems with potential and field disorders. While Ps(t ) in
the case of the field disorder shows behavior qualitatively
similar to that of Pc(t ), the time evolution in the case of the
potential disorder shows relaxation for all Ws on a timescale
accessible by our calculations. Moreover, the corresponding
relaxation times τ show a quadratic Wc dependence, as shown
in the inset of Fig. 1(b). The latter quadratic dependence
may be explained by recalling that for large Wc, (Ws = 0)
a redistribution of charge may be energetically very costly;
however, reversing the spin orientation does not change the
energy. Therefore, the charge redistribution that is necessary
for the spin dynamics is realized via virtual processes shown
in Fig. 1(c). In order to estimate the relevant energy scale
(i.e., also the timescale) one may study a toy model with
the four local states shown in Fig. 1(c): two initial states
| ↑, 0,↓〉S/A and two virtually generated states | ↑,↓, 0〉S/A.
The corresponding eigenproblem is, up to a constant-energy
shift, given by 2 × 2 matrices,(

0 −t0
−t0 V S/A

)(| ↑, 0,↓〉S/A

| ↑,↓, 0〉S/A

)
= ES/A

(| ↑, 0,↓〉S/A

| ↑,↓, 0〉S/A

)
, (6)

where the potentials V S/A = ε2 − ε3 − 1
2 (Jz ∓ J⊥). If the

charge disorder is strong, then the typical values of |V S/A| ∼
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FIG. 1. (a) and (b) Pc(s)(t ) = 〈P̂c(s)〉t for a system with L = 16.
Note that Ps(c)(t = 0) = 1. Results using finite potential disorder Wc

(and Ws = 0) are presented with solid lines, while those with field
disorder Ws (and Wc = 0) are presented with dotted lines. Roughly
Nr ∼ 500 realizations have been used for each set of data. The inset
in (b) represents the relaxation time τ defined through intercepts of
Ps with zero obtained by fitting Ps(t ) = A ln(t ) + B in the interval
t � 4 and t ∼ τapprox. Fits are displayed by thin dashed red lines.
The brown dashed line in the inset represents the single-parameter
fit τ = 0.28W 2

c . Fits similar to those for Ps(t ) in a different time
interval for Pc(t ) are also displayed in (a) using thin dashed red
lines. Relaxation times for Wc(s) = 14 based on the presented fits are
τc = 4.7 × 106 and τs = 7.7 × 1016. A small time step 	t = 0.01
was used in all presented results to obtain sufficient numerical stabil-
ity of time propagation. (c) Processes that connect two spin-reversed
states with equal energy. Here, Ht0 and H⊥ represent the first and
third terms in Eq. (1) for potential disorder.

|ε2 − ε3| are large. As a consequence only two eigenstates
have large projections on the initial states, | ↑, 0,↓〉S/A. Then,
the dynamics of odd operators is governed by the difference in
corresponding eigenenergies in symmetric and antisymmetric
sectors τ = |ES − EA|−1 ∼ W 2

c /t2
0 J⊥.

IV. CHARGE AND SPIN CORRELATION FUNCTIONS

We next explore the neighboring density-density and spin-
spin correlation functions, defined as

Ĝn = 1

L

∑
i

nini+1, Gn(t ) = 〈Ĝn〉t , (7)

ĜSz = 1

L

∑
i

Sz
i Sz

i+1, GSz (t ) = 〈ĜSz 〉t . (8)

For proper analysis of the long-time behavior it is important
to note that the energy of the initial state after averaging
over different random realizations, Eave = 〈ψ0|H |ψ0〉ave = 0,
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FIG. 2. (a) Gn(t ) and (b) GSz (t ) for different strengths of disor-
der. Solid lines represent potential disorder Wc, while dotted lines
show magnetic field disorder Ws. Thin horizontal red dashed lines
represent the infinite-T limits of correlation functions, Gn(T →
∞) = 7/30, GSz (T → ∞) = −1/120. Note that their respective
values in the thermodynamic limit are 1/4 and 0, respectively. The
parameters of the system are the same as in Fig. 1.

is located near the middle of the energy spectrum, which in
the microcanonical sense corresponds to infinite temperature
(T → ∞). Based on the eigenstate thermalization hypothe-
sis [48–54], it is expected that for small Wc(s) and t → ∞,
Gn(Sz ) approach their respective T → ∞ limits, as indicated
by dashed horizontal lines in Fig. 2. It is indicative that charge
and spin correlation functions for short times t � 1 display
qualitatively similar time dependences. Initially, only the hop-
ping part (the first term) of the Hamiltonian in Eq. (1) is active
since the exchange interaction can act only between particles
on neighboring sites. The change in either the potential energy
or field energy after hopping between neighboring lattice sites
is in both cases comparable, which leads to a similar time
dependence for times comparable to the inverse hopping time
1/t0. For larger Wc(s) � 10 and t � 50, Gn shows a logarithmic
increase in time, while GSz shows a logarithmic decrease. The
difference is due to substantially different T → ∞ limits. In
contrast to Gn, GSz shows distinct dependence with regard
to the type of disorder. At large Wc � 10, GSz approaches
significantly closer to the ergodic T → ∞ limit than in the
case of Ws � 10. Still, GSz does not show relaxation, which
is the case of Ps(t ), shown in Fig. 1(b). The explanation for
this seeming discrepancy can be found again in the symmetry
argument. While P̂s is odd under the Z2 spin transformation,
ĜSz is even, it has nonzero matrix elements within a fixed
symmetry sector, and the matrix elements which are diagonal
in the eigenstates of Hamiltonian may be nonzero as well.

To test this assumption, we define a three-site operator,


̂ = 8

Nf

∑
i=1,3,5,...,L−1

(−1)1+(i+1)/2Sz
i Sz

i+2Sz
i+4, (9)

which is also odd under the Z2 spin transformation, Û 
̂Û =
−
̂. As seen in Fig. 3, 
(t ) = 〈
̂〉t also shows relaxation with
the respective relaxation times τ
 scaling with W 2

c just as in
the case of Pc(t ), shown in Fig. 1(b).
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FIG. 3. 
(t ) = 〈
̂〉t for different strengths of disorder. Solid lines
represent potential disorder Wc, while dotted lines show magnetic
field disorder Ws. Dashed red lines represent fits of the form 
(t ) =
A ln(t ) + B that were used to extract relaxation times τ
 , presented
in the inset. The dashed brown line in the inset represents the single-
parameter fit τ
 = 0.45W 2

c . The parameters of the system are the
same as in Fig. 1.

V. SPIN AND CHARGE ENTANGLEMENT ENTROPY

We now turn to a comparison of the dynamics of the en-
tanglement properties of charge and spin degrees of freedom.
To this end we split the system into two halves. We then
compute the charge and spin entanglement entropies [19,55],
respectively,

Sn = −
Nf∑

n=0

pn ln(pn), (10)

SSz = −
Sz

max∑
Sz=−Sz

max

pSz ln(pSz ), (11)

where Sz
max = Nf /4 and pn and pSz represent the probabilities

that the subsystem contains n fermions and the z component
of the total spin equals Sz, respectively.

The charge entropy Sn, shown in Fig. 4(a), displays quali-
tatively similar behavior with respect to the potential and field
disorders for small Wc(s) � 6. In both cases Sn approaches its
maximal value, characteristic of a thermal state at t → ∞. For
larger Wc(s) � 10 we observe a stronger deviation for different
types of disorder in the long-time limit. In both cases we
observe a slow logarithmic increase, characteristic of MBL
systems.

In contrast, the spin entropy SSz quantitatively differs in
comparison to potential or field disorder in the whole range
of Wc(s). The most significant difference is observed when
comparing results for larger Wc(s) � 10, where SSz (Wc) grows
significantly faster than SSz (Ws). For example, while at Wc(s) =
10, SSz (Wc) nearly reaches its maximal value Smax

Sz , SSz (Ws)
displays slow logarithmic growth. For even larger Wc � 14
there seems to be no observable time interval with logarithmic
growth of SSz (Wc). In contrast, it shows a tendency towards
saturation towards a nonthermal value.
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FIG. 4. (a) Sn(t ) and (b) SSz (t ) for different strengths of disorder.
Solid lines represent potential disorder Wc, while dotted lines show
magnetic field disorder Ws. Results are normalized to their respective
values in the infinite-T limit, Smax

n ∼ 1.45 and Smax
Sz ∼ 1.80. The

parameters of the system are the same as in Fig. 1.

To gain a deeper physical picture we first note that while
the field disorder affects charge as well as spin degrees of
freedom, the potential disorder affects only charge degrees
of freedom. For example, when a fermion with spin up hops
between neighboring sites under the influence of field disor-
der, it feels different Zeeman energy just like when in the
presence of the potential disorder it feels different potential
energy. Connected spin chains separated by empty sites exist.
Spins that form a particular connected spin chain do not feel
the potential disorder as long as they remain attached to the
chain. Spin excitation can freely propagate along a connected
spin chain in the presence of the potential disorder. When such
connected spin chains extend between the boundaries of the
two subsystems, they contribute to the growth of spin entropy.

VI. SPECTRAL LEVEL STATISTICS

Motivated by the rather unexpected difference in the time
evolution of charge vs spin imbalance, observed in Fig. 1(b),
as well as other observables probing charge or spin degrees
of freedom under the influence of potential disorder, we
next explore the statistical properties of the energy spec-
tra. We compute adjacent energy level spacing ratios rn =
min[	n,	n−1]/max[	n,	n−1], where 	n = En − En−1 and
{En} represents the ordered set of energy levels of the Hamil-
tonian in Eq. (1). For each realization of disorder we compute
the average value of r̄ and then instead of computing the
average over different realizations, we calculate the cumu-
lative distribution function for r̄, F (r̄). In Fig. 5(a) we first
present F (r̄) for the case of potential disorder Wc, taking into
account the full spectrum. Since the Hamiltonian in Eq. (1)
is nonintegrable, one expects that at small Wc = 2 its spec-
trum resembles the spectrum of the Gaussian random matrices
where r̄ave = r̄GOE 
 0.53 [3,56]. In contrast, at large Wc =
20, the average value of r̄ should not drop below rPoisson =
0.386, characteristic of a random distribution of energy levels.
Distributions F (r̄), shown in Fig. 5(a), are not consistent with
either of the above predictions.
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FIG. 5. F (r̄) for different values of potential disorder (a) from
the full spectrum and (b) from the symmetric (solid lines) and the
antisymmetric (dashed lines) parts of the spectra and (c) for field
disorder. Vertical dashes lines indicate values of rPoisson 
 0.386 and
rGOE 
 0.53. In most cases Nr ∼ 1500 samples have been used. Re-
sults were obtain using full diagonalization on a system with L = 12,
N↑ = N↓ = 3, and Nstates = 18480.

For a proper analysis of the spectral level statistics in the
case of the potential disorder we have computed F (r̄) sepa-
rately for each symmetry subspace. In Figs. 5(b) and 5(c) we
present F (r̄) for different values of Wc(s). There are two types
of nearly overlapping curves (solid and dashed lines) in the
case of potential disorder; see Fig. 5(b), which represents F (r̄)
for each symmetry sector separately. For small Wc(s) = 2, pre-
sented in Figs. 5(b) and 5(c), F (r̄) can be fitted with the error
function positioned at r̄ave = 0.53, which agrees with rGOE. At
large Wc(s) = 20, F (r̄) again resemble error functions, but in
this regime close to rPoisson, which in a finite system indicates
localization. For the intermediate values of Wc(s) ∈ [4, 6] we
observe broad distributions F (r̄) that result from a mixture
of systems in which some of them exhibit level statistics that
resembles ergodic systems while others are closer to being
nonergodic/localized.

We have also calculated the distribution of the gap ratios
without averaging rn over multiple energy levels. To this end
we have generated a set containing rn for various n as well as
for various disorder realizations and calculated the probability
density P(r) from the histogram of {rn}. While the distribution
F (r̄) in Fig. 5 contains information about differences between
various realizations of disorder, such information is not di-
rectly encoded in P(r). Nevertheless, P(r) allows for a more
detailed comparison with the random matrix theory. For the
Poisson level statistics one gets [3]

PP(r) = 2

(1 + r)2
, (12)

while an approximate distribution for the Gaussian orthogonal
ensemble (GOE) can be derived from the Wigner surmise
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FIG. 6. Points show the probability density of the gap ratio for
charge disorder obtained from the symmetric (S) and antisymmetric
(A) parts of the spectra. The fractions in the legend mark the parts of
the spectra which were used to generate the distribution. The dashed
lines in (a) and (c) show Eqs. (13) and (12), respectively. The dashed
line in (b) shows the distribution given by Eq. (20) in Ref. [59] with
a normalization that is relevant for r ∈ (0, 1).

[57–59] for three energy levels,

PGOE(r) = 27

4

r + r2

(1 + r + r2)5/2
. (13)

Figure 6 shows the distributions P(r) obtained from the
symmetric (S) and antisymmetric (A) parts of the spectra with
charge disorder. In order to identify artifacts arising from the
presence of the localization edge, the distributions have been
generated either from all levels or from only a central part (1/3
or 1/9) of the levels in the middle of the spectrum. Results
obtained for all three cases accurately overlap (see Figs. 6
and 7), indicating the absence of artifacts originating from the
localization edge.

As expected, numerical results for weak disorder
[Fig. 6(a)] accurately reproduce Eq. (13), whereas for the
strong disorder shown in Fig. 6(c), the distribution agrees
with Eq. (12). In the vicinity of the transition, P(r) can be
well approximated by the mixed Wigner surmise discussed
very recently in Ref. [59]. More precisely, the dashed curve
in Fig. 6(b) shows the distribution for 2 × 2 GOE matrices
mixed with two uncorrelated energy levels (see Eq. (20) in
Ref. [59]). Such a mixture of GOE and Poisson distributions
may be interpreted as the coexistence of localized (insulating)
and delocalized (metallic) domains in which the absence of
level crossings, F (r → 0) = 0 in Fig. 6(b), indicates that lo-
calization within the former domains is not perfect. Similar
results concerning the spatial separation of conducting and
insulating domains were recently found for the random-field
Heisenberg model [60].

Figure 7 shows the distribution of the gap ratios obtained
for charge disorder from the full spectrum that includes both
symmetric and antisymmetric levels. Results obtained for
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FIG. 7. The same as in Fig. 6, but for a full spectra containing
symmetric and antisymmetric levels. The dashed line in (a) shows
the distribution given by Eq. (24) in Ref. [59] with a normalization
that is relevant for r ∈ (0, 1), whereas the dashed line in (b) shows
Eq. (12).

weak disorder can be very accurately approximated by two
independent GOE ensembles. In particular, the dashed dark
red line in Fig. 7(a) shows the distribution derived for a mix-
ture of two 2 × 2 GOE matrices (see Eq. (24) in Ref. [59]).
Rather unexpected is the case of strong disorder when P(r)
for r � 1 significantly exceeds the distribution derived for the
Poisson statics, as shown in Fig. 7(b). Comparing Figs. 6(c)
and 7(b) we identify an attraction between symmetric and
antisymmetric energy levels. Such a scenario is consistent
with results for the average ratio shown in Fig. 5(a).

VII. SUMMARY

We have studied spin and charge dynamics in a disor-
dered chain such that an unperturbed system has Z2 spin
symmetry. Then we considered two types of disorder: a ran-
dom magnetic field that breaks the Z2 symmetry and random
charge potential, which preserves the spin symmetry. In the
former case with broken spin symmetry, the dynamics of all
studied observable are consistent with localization on finite
lattices in that their expectation values do not approach the
results for thermal equilibrium. However, for the symmetry-
preserving disorder, the observables that are odd under the
Z2 spin transformation seem to thermalize while even observ-
ables do not. Numerical studies of the time evolution for the
symmetry-preserving disorder were accompanied by the level

statistics. Interestingly, the level statistics obtained separately
for odd and even symmetry sectors accurately reproduce a
crossover/transition from the GOE for weak charge disor-
der to the Poisson distribution for the strong disorder. The
time evolution and the level statistics suggest that localiza-
tion exists within each symmetry sector, i.e., for odd or even
eigenstates and observables with matrix elements only within
a given symmetry sector. The apparent relaxation of odd op-
erators is not inconsistent with the level statistics since such
operators evolve between the two sectors. Similar numerical
results were found for the dynamics in the Hubbard model
with charge disorder, which, however, has SU(2) symmetry
[33–35,61,62]. In the latter model, the spin imbalance decays
subdiffusively [33,34,61], while the spin energy density seems
not to thermalize [35,62]. In our studies, we have not consid-
ered the stability of the localized phase in the thermodynamic
limit, so we do not exclude that localization represents ex-
tremely slow dynamics that eventually may lead to a thermal
equilibrium of an infinite chain.

Comparison of the entanglement entropies of spin and
charge degrees of freedom revealed an essential difference be-
tween the field disorder that affects charge and spin degrees of
freedom and the potential disorder that influences only charge
degrees of freedom. Spins that form a particular connected
spin chain do not feel potential disorder. Spin excitations
can thus freely propagate along a connected spin chain. This
may explain the absence of logarithmic growth of the spin
entanglement entropy even in the regime of strong potential
disorder, where in contrast, the charge entanglement entropy
displays logarithmic time evolution.

The original motivation for this work stems from exper-
iments on cold atoms [63] in which charge imbalance was
measured in a cold-atom experiment setup. Recent advances
in spin- and density-resolved microscopy [64–66] might allow
measurements of the charge and spin imbalance under the
non-symmetry-breaking disorder.
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