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The modern theory of polarization establishes the bulk-boundary correspondence for the bulk polarization. In
this paper, we attempt to extend it to a sum rule of the bulk quadrupole moment by employing a many-body
operator introduced in Kang et al. [B. Kang, K. Shiozaki, and G. Y. Cho, Phys. Rev. B 100, 245134 (2019)]
and Wheeler et al. [W. A. Wheeler, L. K. Wagner, and T. L. Hughes, Phys. Rev. B 100, 245135 (2019)]. The
sum rule that we propose consists of the alternating sum of four observables, which are the phase factors of the
many-body operator in different boundary conditions. We demonstrate its validity through extensive numerical
computations for various noninteracting tight-binding models. We also observe that individual terms in the sum
rule correspond to the bulk quadrupole moment, the edge-localized polarizations, and the corner charge in the
thermodynamic limit on some models.
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I. INTRODUCTION

Recent developments in topological insulators [1,2] uncov-
ered a new class of topological material, called higher-order
topological insulators (HOTIs) [3–5]. It was found that HOTIs
are not just conceptual ideas as there are material propos-
als [6,7] as well as material realizations [8,9] of them. HOTIs
are characterized by nontrivial boundary-of-boundary states
despite that the boundaries are trivial. Among various the-
oretical tools, the bulk polarization has proven useful in
understanding many aspects of topological insulators [10–14].
It is therefore natural to ask if the bulk quadrupole or higher
multipole moments could play the same role for HOTIs.

The modern theory of polarization [15–17] identifies the
bulk polarization with the sum of Wannier centers. Later,
the bulk polarization of a many-body state is shown to be
identified as the phase factor of the expectation value of a
many-body operator [18]. Despite the success of the modern
theory of polarization, the modern theory of quadrupole and
higher multipole moments has not been fully developed so far.
One attempt is to employ the Wannier centers to define the
bulk quadrupole moment, but this approach has been success-
ful when there exist crystalline symmetries so that the bulk
multipole moment is quantized [4,19]. On the other line of
development, Refs. [20,21] introduced a many-body operator
Û2 for the quadrupole moment generalizing the many-body
operator presented in Ref. [18]:

Û2 ≡ exp

[
2π i

LxLy

Lx,Ly∑
x,y=1

xy(n̂x,y − ne)

]
,
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where n̂x,y is the number operator, and ne is the background
charge. This approach can in principle be applied to systems
without any crystalline symmetries and to interacting sys-
tems; however, the observables given by Û2 have difficulties
in identifying their physical meanings with respect to their
coordinate dependence [20] and lack of periodicity [22] so
their physical meanings have not been fully understood yet.

One of the successes of the modern theory of polar-
ization is that it identifies the bulk polarization with the
boundary charge, which is called the bulk-boundary corre-
spondence [17,23]. While the bulk polarization is determined
by a full many-body electron state, the boundary charge is
determined by a simple one-body observable near the bound-
ary. Thus, the identification of the two is rather surprising
and also provides a firm justification of the modern theory
of polarization. A natural question is then whether such a
correspondence for HOTIs can be formulated in terms of
the bulk quadrupole moment. In recent studies, the bulk-
boundary correspondences for HOTIs were formulated in
terms of the filling anomaly with rotation symmetries [24–28],
in terms of the bulk quadrupole moment with inversion sym-
metry [29,30], and in terms of the adiabatic current flowing
along the edges [31]. The bulk-boundary correspondences in
terms of the quadrupole moment were presented using Wan-
nier functions, where the corner charge is expressed as a sum
of quantities that depend on the choice of the bulk Wannier
functions, although the corner charge itself is not.

In this paper, we propose another bulk-boundary corre-
spondence in terms of the operator Û2, which is given by an
alternating sum of four phase factors, where the sum vanishes
in the thermodynamic limit:

φpp − φop − φpo + φoo = 0 (mod 1).

Four phase factors are the phase factors of the expectation
values of Û2 with respect to the ground state in different
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boundary conditions:

φab = 1

2π
Im{log[〈GS(a, b)|Û2|GS(a, b)〉]},

where a and b refer to the boundary conditions along the x
and y direction, respectively, with a and b being either p (peri-
odic) or o (open). We observe that for band insulators having
well-localized edge-localized polarizations defined in Ref. [4]
based on the hybrid Wannier function (HWF), the phase
factors φpp, φpo/op, and φoo can be identified with the bulk
quadrupole moment, the edge-localized polarizations, and the
corner charge, respectively, which consequently elevates our
bulk-boundary correspondence to that for the quadrupole mo-
ment. We further observe that for some insulators, there exist
HWFs with the corresponding hybrid Wannier value at 0.5
so that one cannot directly apply the definition of the edge-
localized polarization presented in Ref. [4] due to its branch
cut dependence, as elaborated in Appendix F. For those insu-
lators, we find that at least the phase factor φoo can be regarded
as the corner charge in the thermodynamic limit while the
physical meaning of the other phase factors becomes unclear.

The paper is organized as follows. In Sec. II, we introduce
sum rules encoding the bulk-boundary correspondence for
multipole moments using many-body operators. In Sec. III,
we provide numerical results presenting our observations in
Sec. II. We conclude in Sec. IV where the summary of main
results is given and possible future directions are discussed.
In Appendix A, we derive the dipolar and quadrupolar sum
rules for classical systems. In Appendix B, we give field the-
oretic justifications of the interpretations of the phase factors
φab. In Appendix C, we provide a proof that the many-body
operator can measure the corner charge in one-dimensional
(1D) geometry for band insulators. In Appendix D, we dis-
cuss the coordinate dependence of the phase factor φop. In
Appendix E, we provide numerical results for a C3-symmetric
insulator, which suggests that the sum rule may hold in other
types of symmetric insulators besides the C4-symmetric ones
discussed in the main text. Finally, in Appendix F, we provide
technical remarks on the HWF-based edge-localized polar-
ization including the branch cut dependence which becomes
more explicit for the models with the hybrid Wannier value at
0.5.

II. MULTIPOLAR SUM RULES

In the following, we present the multipolar sum rules for
quantum systems in one and two dimensions. For concrete-
ness, we make here some remarks on the sum rules. First, we
only focus on one-dimensional systems having nonzero bulk
polarization in Sec. II A and two-dimensional (2D) systems
with vanishing bulk polarization in Sec. II B. Second, we
focus on circle/line geometry for one-dimensional systems
and torus/cylinder/rectangle geometry for two-dimensional
systems. Each geometry is characterized by open or periodic
boundary conditions. In addition, we always use hard-cutoff
boundary conditions for open boundaries. Third, for simplic-
ity we restrict the position of each orbital at a Bravais lattice
site. Fourth, for all the quantum systems presented below,
we assume translation symmetry and C2 symmetry, which
includes the cases where the corner charge is not quantized.

Finally, for convenience, we set the electron charge to 1 in the
following discussions.

A. Dipolar sum rule

In this subsection, we introduce the dipolar sum rule for
many-body quantum systems as a generalization of the clas-
sical dipolar sum rule. The dipolar sum rule relates the bulk
polarization with the boundary charge. To motivate the quan-
tum mechanical dipolar sum rule, we first state the classical
dipolar sum rule:

Qc = P, (1)

where P and Qc are the classical bulk polarization and
boundary charge, respectively. The derivation of Eq. (1) and
the definitions of the electric moments can be found in
Appendix A 1.

We now generalize the classical dipolar sum rule Eq. (1) to
a one-dimensional quantum mechanical system. To this end,
we first need to define the bulk polarization and the boundary
charge for a quantum system. The boundary charge can be
defined as a one-body observable:

Q(1)
c ≡

Lx/2∑
x=1

[ρ(x) − ne] (mod 1), (2)

where Lx is the total system size, ρ(x) = 〈n̂x〉 =
〈∑Norb

α=1 c†
x,αcx,α〉 is the charge density at site x with the

number of orbitals per site Norb, and ne is the average number
of electrons per site. We then employ Resta’s many-body
operator [18]:

Û1 ≡ exp

[
2π i

Lx

Lx∑
x=1

x(n̂x − ne)

]
, (3)

where we include the background charge ne from ions sitting
at each lattice site. Using Û1, the bulk polarization is given by

P = 1

2π
Im[log(〈GS|Û1|GS〉)], (4)

where |GS〉 is the many-body ground state subject to the
periodic boundary condition. With these, the classical dipolar
sum rule Eq. (1) generalizes as [17,23]

Q(1)
c = P (mod 1) (5)

in quantum systems. Unlike the dipole sum rule in classical
systems, Eq. (5) holds only modulo 1, the unit of electron
charge.

Having obtained the sum rule for the dipole moment, we
consider the further characterization solely in terms of the
many-body operator Û1. For this, we define the phase factor
φa of the expectation value of Û1 as

φa ≡ 1

2π
Im{log[〈GS(a)|Û1|GS(a)〉]}, (6)

where |GS(a)〉 is the ground state under the boundary condi-
tions of type a which can be either p (periodic) or o (open).

While it seems not widely known, the boundary charge can
also be captured from φo in the thermodynamic limit, i.e.,

Q(1)
c = φo (mod 1) (7)
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as the system size goes to infinity when the system is gapped.
Our proof of Eq. (7) for band insulators can be found in
Appendix C. Thus, by combining Eqs. (4) and (7), the dipole
sum rule can be succinctly recast in terms of the phase factors:

φp = φo (mod 1). (8)

B. Quadrupolar sum rule

In this subsection, we introduce the quadrupolar sum rule
for many-body quantum systems, which generalizes the quan-
tum mechanical dipolar sum rule to the quadrupole case, and
discuss its difficulties for certain cases in identifying the phys-
ical meaning of individual terms in the sum rule.

The quadrupole sum rule would relate the bulk quadrupole
moment, the edge-localized polarization, and the corner
charge [4,20] if these quantities are well defined. To illustrate
the quadrupolar sum rule, we first need to state the classical
quadrupolar sum rule:

Qc = −Qxy + Pedge
x + Pedge

y , (9)

where Qxy, Pedge
x/y , and Qc are the classical bulk-quadrupole

moment, the edge-localized polarizations, and the corner
charge, respectively. The derivation of Eq. (9) and the def-
initions of the classical electric moments can be found in
Appendix A 2.

A natural generalization of the classical quadrupolar sum
rule to the quantum mechanical one in two dimensions would
be

Q(2)
c = −Qxy + Pedge

x + Pedge
y (mod 1), (10)

where Q(2)
c is the corner charge of a two-dimensional system

of the size Lx × Ly:

Q(2)
c ≡

Lx/2∑
x=1

Ly/2∑
y=1

(ρ(x, y) − ne) (mod 1), (11)

with ρ(x, y) = 〈n̂x,y〉 = 〈∑Norb
α=1 c†

x,y,αcx,y,α〉 being the local

charge density, and where Qxy and Pedge
x/y are the quantum

mechanical bulk quadrupole moment and the edge-localized
polarizations, respectively. As a side note, our corner charge
[Eq. (11)] corresponds to the bare corner charge in Ref. [30].
We remark that the edge-localized polarizations Pedge

x/y include
the contribution from a dressing of polarized one-dimensional
chains along the boundaries [32], which does not affect the
quadrupolar sum rule Eq. (10), and are fixed for a given state.
The precise forms of Qxy and Pedge

x/y will be presented below.
Similar to the dipole case, let us introduce the following

many-body operator [20,21]:

Û2 ≡ exp

[
2π i

LxLy

Lx,Ly∑
x,y=1

xy(n̂x,y − ne)

]
, (12)

where n̂x,y is the electron number operator at (x, y) and Lx (Ly)
is the linear system size in the x direction (y direction). For
the open boundary, we assign the coordinate x = 1 (y = 1) to
sites on the left (bottom) boundary and the coordinate x = Lx

(y = Ly) to sites on the right (top) boundary. For the periodic
boundary, the x coordinate (y coordinate) could be assigned

arbitrary as long as it starts from 1 and ends with Lx (Ly) since
it does not change the expectation value of Û2 with respect to
a translation invariant state.

In order to formulate the quadrupolar sum rule in terms
of the phase factors of the expectation values of Û2, we first
introduce

φab = 1

2π
Im{log[〈GS(a, b)|Û2|GS(a, b)〉]}, (13)

where |GS(a, b)〉 is the ground state under the a and b bound-
ary conditions along the x and y direction, respectively, with
a and b being either p (periodic) or o (open). Each boundary
condition corresponds to different geometry; for example, pp
and po mean the torus and the cylinder geometry, respec-
tively. As a note, the phase factor φop (φpo) is guaranteed to
be invariant under the coordinate transformation y → y + Ly

(x → x + Lx) in the thermodynamic limit if the system has
translation symmetry along the y(x) direction, and if the limit
of Lx(Ly) → ∞ is taken first. Even though the invariance of
φop is not guaranteed on the 2D limit Lx = Ly = L → ∞,
the thermodynamic values of φab presented in Tables I–VI
are extrapolated on the 2D limit as we empirically check
that the convergence values do not depend on the order of
limits. Details regarding the coordinate dependence of φop/po

are discussed in Appendix D.
Using these phase factors, we propose the bulk-boundary

correspondence in terms of the phase factors as

φpp − φop − φpo + φoo = 0 (mod 1) (14)

and numerically find that this holds in the thermodynamic
limit on band insulators. We will call this the sum rule of the
phase factors, or simply the sum rule. In addition, we also find
that φoo agrees with Q(2)

c :

Q(2)
c = φoo (mod 1). (15)

As a demonstration, we provide numerical confirmations of
these on band insulators in Sec. III. The above two equations,
i.e., Eqs. (14) and (15), are the main results of our present
paper.

Based on the identification of the corner charge [Eq. (15)]
and the comparison between two sum rules, Eqs. (10) and (14)
suggest that φpp can be naturally identified with the bulk
quadrupole moment:

Qxy = φpp (mod 1), (16)

which has been checked for the cases with nontrivial bulk
quadrupole moment [20,21]. In addition, φpo/op are identified
with the edge-localized polarizations:

Pedge
x = φpo (mod 1), Pedge

y = φop (mod 1). (17)

The above identifications of the phase factors φab can also
be justified using the effective field theoretic description of
multipole moments which is summarized in Appendix B.
Whenever these identifications can be made, the sum rule
Eq. (14) indeed becomes the quadrupole sum rule for quantum
systems. In Sec. III A, we numerically demonstrate the valid-
ity of the identifications of φpo/op by comparing these with the
HWF-based edge-localized polarizations defined in Ref. [4].
However, it is important to note that these identifications are
not always possible. In Sec. III B, we provide an example in
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TABLE I. The phase factors φab in Eq. (13) and the electric moments (Q(2)
c , P̃edge

x , P̃edge
y ) in Eqs. (11) and (18) are computed for the

quadrupole insulator [Eq. (20)] with various parameters. The sum of the phase factors
∑

(−1)abφab in the last column refers to the combination
φpp − φpo − φop + φoo as per Eq. (14). All values are the ones from extrapolating the observables as a function of 1/L, where we consider
isotropic systems Lx = Ly = L with L from 23 to 30. An explicit extrapolation procedure is presented in Fig. 1. We use round brackets to
denote the errors of the least significant digit. We see that the edge-localized polarizations P̃edge

x and P̃edge
y agree with phase factors φpo and φop,

corner charge Q(2)
c agrees with φoo, and the sum rule is satisfied up to small errors.

Model parameters Phase factors Electric moments Sum rule

Hquad(γx, γy, λx, λy, δ) φpp φpo φop φoo Q(2)
c P̃edge

x P̃edge
y

∑
(−1)abφab

(0.1, 0.1, 1.0, 1.0, 10−7) 0.50000(0) 0.50000(0) 0.50000(0) 0.50000(0) 0.50000(0) 0.50000(0) 0.50000(0) 0.00000(0)
(0.5,0.5,1.0,1.0,0.7) −0.11389(0) −0.11385(0) −0.11385(0) −0.11392(0) −0.11387(0) −0.11386(0) −0.11386(0) −0.00010(0)
(0.2,0.3,1.0,1.0,0.1) −0.43156(0) −0.43155(0) −0.43155(0) −0.43155(0) −0.43156(0) −0.43156(0) −0.43155(0) −0.00001(0)
(0.1,0.1,1.0,1.2,0.1) −0.44018(0) −0.44017(0) −0.44018(0) −0.44019(0) −0.44018(0) −0.44018(0) −0.44018(0) −0.00002(0)

which these identifications fail as φpp, φop, and φpo are not
convergent in the thermodynamic limit. Nonetheless, even for
these cases, the sum rule Eq. (14) and the identification of the
corner charge with φoo [Eq. (15)] always hold.

In the remainder of this section, we briefly discuss the
HWF-based edge-localized polarization [4]:

P̃edge
x =

∑
j

Ly/2∑
y=1

ν jρ j (y) (mod 1), (18)

where ρ j (y) is the density, and e2π iν j is the eigenvalue of the
jth HWF ψ j (y) of the hybrid Wilson loop Wkx along the x di-
rection. We find that for band insulators having well-localized
P̃edge

x/y along the boundaries, P̃edge
x/y and φpo/op seem to agree with

each other in the thermodynamic limit and the same quantized
value for insulators having C4 symmetry:

P̃edge
x = φop (mod 1), P̃edge

y = φpo (mod 1). (19)

However, P̃edge
x/y crucially depends on the choice of the branch

cut of the hybrid Wannier values. In particular, for the mod-
els with the hybrid Wannier value at 0.5, this dependence
becomes more explicit, thereby leading to a difficulty in com-
puting P̃edge

x/y . We discuss this branch cut dependence in more
detail in Appendix F.

III. NUMERICAL DEMONSTRATION

In this section, we provide numerical demonstrations of the
sum rule Eq. (14) and observations, Eqs. (15) and (19). Due

to size limitation, our numerics are based on noninteracting
tight-binding models on the square lattice. However, we be-
lieve that the same sum rule should also hold in interacting
cases as well, since our formalism is based on many-body
operators. In addition, we separately discuss models without
and with the hybrid Wannier value at 0.5 as there exists a
difficulty in computing P̃edge

x/y for the latter case. We therefore
numerically confirm the validity of Eq. (19) only for the for-
mer case while the numerical confirmations of the sum rule
Eq. (14) and the identification of φoo with Q(2)

c [Eq. (15)] are
presented in all cases.

A. Models without the hybrid Wannier value at 0.5

We present numerical results on models without the hybrid
Wannier value at 0.5. Tested models are the quadrupole insu-
lator, the edge-localized polarization insulator, the quadrupole
insulator with π/2 flux per plaquette, and the two band model
introduced in Ref. [33], where details of these models can be
found below. In the case of full open boundary conditions, the
C4 symmetry breaking term is always introduced in order to
split the possible degeneracy at the Fermi level. Due to such
term, the number of filled states is always equal to the filling
ne/Norb times the number of sites N . The same C4 breaking
term often splits the degeneracy of the hybrid Wannier val-
ues at 0.5 in the case of mixed open and periodic boundary
conditions.

For each model, we numerically compute the phase fac-
tors φab [Eq. (13)], the edge-localized polarizations P̃edge

x/y

[Eq. (18)], and the corner charge Q(2)
c [Eq. (11)] for

TABLE II. The phase factors φab and the electric moments (Q(2)
c , P̃edge

x , P̃edge
y ) with are computed for the edge-localized polarization

insulator [Eq. (21)] with various parameters. Here we use the same extrapolation procedure as in Table I. In this case as well, the edge-localized
polarizations P̃edge

x and P̃edge
y agree with phase factors φpo and φop, corner charge Q(2)

c agrees with φoo, and the sum rule is satisfied up to small
errors.

Model parameters Phase factors Electric moments Sum rule

Hedge(γx, γy, λx, λy, δ) φpp φpo φop φoo Q(2)
c P̃edge

x P̃edge
y

∑
(−1)abφab

(0.1, 0.1, 1, 1.2, 10−7) 0.00000(0) 0.50000(0) 0.00000(0) 0.50000(0) 0.50000(0) 0.50000(0) 0.00000(0) 0.00000(0)
(0.5,0.5,1.0,1.0,0.7) −0.01661(0) −0.09914(0) −0.09914(0) −0.18179(0) −0.18174(0) −0.09836(0) −0.09836(0) −0.00012(0)
(0.2,0.3,1.0,1.0,0.1) −0.05940(1) −0.27871(1) −0.31926(1) 0.46139(1) 0.46122(1) −0.27833(1) −0.31897(1) −0.00004(1)
(0.1,0.1,1.0,1.2,0.1) −0.01585(0) −0.44086(0) −0.12064(0) 0.45436(0) 0.45434(0) −0.44172(0) −0.11936(0) 0.00002(0)
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TABLE III. The phase factors φab and the electric moments (Q(2)
c , P̃edge

x , P̃edge
y ) are computed for the quadrupole insulator with π/2 flux per

plaquette [Eq. (22)] with various parameters. Here we use the same extrapolation procedure as in Table I. In this case as well, the edge-localized
polarizations P̃edge

x and P̃edge
y agree with phase factors φpo and φop, corner charge Q(2)

c agrees with φoo, and the sum rule is satisfied up to small
errors.

Model parameters Phase factors Electric moments Sum rule

H (π/2)
quad (γx, γy, λx, λy, δ) φpp φpo φop φoo Q(2)

c P̃edge
x P̃edge

y

∑
(−1)abφab

(0.1, 0.1, 1.0, 1.0, 10−7) 0.50000(0) 0.50000(0) 0.50000(0) 0.50000(0) 0.50000(0) 0.50000(0) 0.50000(0) 0.00000(0)
(0.5,0.5,1.0,1.0,0.7) −0.06272(0) −0.09622(0) −0.09622(0) −0.12980(0) −0.12975(0) −0.09675(0) −0.09675(0) −0.00009(0)
(0.2,0.3,1.0,1.0,0.1) −0.40237(0) −0.42169(0) −0.42104(0) −0.44037(0) −0.44039(0) −0.42192(0) −0.42155(0) −0.00001(0)
(0.1,0.1,1.0,1.2,0.1) −0.42101(0) −0.43853(0) −0.43160(0) −0.44913(0) −0.44913(0) −0.43855(0) −0.43165(0) −0.00001(0)

various parameters. The results are summarized in Tables I, II,
and III. All observables in the tables are the extrapolated
values in the thermodynamic limit L → ∞ which are obtained
via quadratic extrapolations as a function of 1/L, as shown in
Fig. 1. In all cases, we find that the phase factors in the sum
rule and the sum rule itself are convergent in the thermody-
namic limit. We also see that our edge-localized polarizations,
φop/po, have values similar to the other ones, P̃edge

x/y , with dif-
ferences at worst O(10−3). In addition, when a C4 symmetry
breaking term is small, φpp has the same quantized value as
the one predicted by the nested Wilson-loop approach [4].
Furthermore, the identification of φoo with Q(2)

c and the sum
rule hold up to errors of O(10−4). The errors may be attributed
to the finite-size effect.

1. Quadrupole insulator Hquad

As our first model with the gapped Wannier spectrum,
we consider the following tight-binding model [4] having a
nonzero bulk quadrupole moment:

Hquad(k) = [γx + λx cos(kx )]�4 + λx sin(kx )�3

+ [γy + λy cos(ky)]�2 + λy sin(ky)�1 + δ �0,

(20)

where �0 = σ3 ⊗ σ0; �k = −σ2 ⊗ σk for k = 1, 2, 3; and
�4 = σ1 ⊗ σ0 with σk=1,2,3 being Pauli matrices and σ0 being
the 2 × 2 identity matrix.

When δ = 0, there exist two anticommuting mirror sym-
metries which quantize the bulk quadrupole moment Qxy = 0
or 1/2. The half-filled ground state of Eq. (20) realizes the
topologically trivial quadrupole insulator when |γx| > |λx|
and |γy| > |λy| and topologically nontrivial quadrupole in-
sulator when |γx| < |λx| and |γy| < |λy|. When δ �= 0, C4

symmetry and the mirror symmetries are broken and hence
the bulk quadrupole moment is no longer quantized.

The numerical results for the quadrupole insulator are sum-
marized in Table I.

2. Edge-localized polarization insulator Hedge

Our next model is the edge-localized polarization insu-
lator [4]. The tight-binding Hamiltonian in the momentum
space can be written as

Hedge(k) = [γx + λx cos(kx )]�4 + λx sin(kx )�3

+ [γy + λy cos(ky)]�̃2 + λy sin(ky)�̃1 + δ �0,

(21)

where �̃2 = σ1 ⊗ σ1, �̃1 = −σ1 ⊗ σ2, and all the other � ma-
trices are the same as the ones in Eq. (20).

The half-filled ground state of Eq. (21) has a vanishing bulk
quadrupole moment but a nonzero corner charge. In particular,
when δ = 0, there exist two mirror symmetries Mx and My

which quantize the corner charge to be 0 or 1/2, where the
corner charge is originated sorely from the edge-localized
polarizations [4]. The half-filled ground state of Eq. (21) with
|γx/y| 	 |λx/y| has (P̃edge

x , P̃edge
y ) = (0, 0.5) when λx > λy and

(P̃edge
x , P̃edge

y ) = (0.5, 0) when λx < λy.
The numerical results for the edge-localized polarization

insulator are summarized in Table II.

3. Quadrupole insulator with π/2 flux per plaquette H (π/2)
quad

Our third model is the quadrupole insulator with π/2 flux
per plaquette [20]. The tight-binding Hamiltonian in momen-
tum space can be written as

H (π/2)
quad (k) = γx�4 + γy(iν2 ⊗ ν2) + δ�0

− λx[cos(kx )(σy ⊗ σ0) + sin(kx )(σx ⊗ σz )]

− λy[cos(ky)(ν1 ⊗ ν2) + sin(ky)(iν1 ⊗ ν1)],
(22)

TABLE IV. The phase factors φab and the electric moments (Q(2)
c , P̃edge

x , P̃edge
y ) are computed for the two band insulator Htwo [Eq. (24)].

Here we use the same extrapolation procedure as in Table I. In this case as well, the edge-localized polarizations P̃edge
x and P̃edge

y agree with
phase factors φpo and φop, corner charge Q(2)

c agrees with φoo, and the sum rule is satisfied up to small errors.

Model parameters Phase factors (×10−6) Electric moments (×10−6) Sum rule (×10−6)

Htwo(t1, t2, t3, t4, t5) φpp φpo φop φoo Q(2)
c P̃edge

x P̃edge
y

∑
(−1)abφab

(−2.2, −0.15, −0.1, −0.09, −0.06) 0.000(0) 1.459(0) 1.459(0) 2.920(0) 2.918(0) 0.851(0) 0.851(0) 0.002(0)
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TABLE V. The phase factors φab and the corner charge Q(2)
c are computed for H (4)

2b in Eq. (27) with various parameters. The number of filled
electrons is taken as 2N − 2 with the number of sites N when the system is under the full open boundary condition due to the filling anomaly
η = 2. Here we use the same extrapolation procedure as in Table I. The corner charge agrees with φoo and the sum rule Eq. (14) is satisfied up
to small errors.

Model parameters Background Phase factors Electric moment Sum rule

H (4)
2b (t, δ) φ0 φpp φpo φop φoo Q(2)

c

∑
(−1)abφab

0.5
(0.1,0.001) 0.50000(0) 0.49992(0) 0.49992(0) 0.49983(0) 0.49983(0) 0.00000(0)

0

0.5 0.49972(0) 0.49433(0) 0.49433(0)
(0.1,0.1) 0.48896(0) 0.48895(0) 0.00002(0)

0 0.49976(0) 0.49435(0) 0.49435(0)

0.5 0.49732(2) 0.49095(1) 0.49095(1) 0.00003(0)
(0.1,0.5) 0.48461(0) 0.48460(0)

0 0.49732(0) 0.49095(0) 0.49095(0) 0.00002(0)

where ν1 and ν2 are defined as

ν1 =
[

0 1
i 0

]
and ν2 =

[
0 1
−i 0

]
, (23)

and all � and σ matrices are the same as in Eq. (20). Similar
to the quadrupole insulator, which has π flux per plaquette,
the bulk quadrupole moment of the half-filled ground state of
Eq. (22) is quantized when δ = 0. However, when δ �= 0, the
bulk quadrupole moment Qxy is nonzero and (Qxy, P̃edge

x/y , Q(2)
c )

are all distinct unlike in the quadrupole insulator. These fea-
tures provide nontrivial checks of the sum rule Eq. (14) and
our observations Eqs. (15) and (19), which are summarized in
Table III.

4. Two band insulator Htwo

Our final model is the two band insulator introduced in
Ref. [33]. The tight-binding Hamiltonian in momentum space
can be written as

Htwo(k) = t1
2

σ1 + eikx

[
t4 t2
0 t4

]
+ eiky

[
t5 t3
0 t5

]
+ H.c., (24)

with the five hopping parameters (t1, t2, t3, t4, t5). The half-
filled ground state of this Hamiltonian has nonzero corner
charge and edge-localized polarizations.

The numerical results for the two band insulator with the
same parameters as in Ref. [33] are summarized in Table IV.

TABLE VI. The phase factors φab and the corner charge Q(2)
c are computed for H (4)

1b ⊕ H (4)
2c in Eq. (28) with various parameters. On each

φ0, all observables are obtained by extrapolating them as a function of 1/
√

LxLy. The phase factors φab converge to different values on
each φ0, so we separate the convergence values of φab by each value of φ0. Each extrapolation uses a sequence of four system sizes with
the interval (�Lx, �Ly ) = (4, 4), and each sequence starts from (Lx, Ly ) = (18, 16), (18, 17), (18, 18), and (19,19), which correspond to
φ0 = −0.25, 0.5, 0.25, and 0, respectively. Here, we use the same extrapolation procedure as in Table I. The corner charge agrees with φoo and
the sum rule Eq. (14) is satisfied up to small errors.

Model parameters Background Phase factors Electric moment Sum rule

H (4)
1b ⊕ H (4)

2c (tx, ty, t ) φ0 φpp φpo φop φoo Q(2)
c

∑
(−1)abφab

−0.25 0.33354(0) −0.33994(1) −0.07653(1) 0.24992(1) −0.00007(1)
0.5 0.14434(1) −0.49995(1) −0.10573(0) 0.24997(0) −0.00002(0)

(0,0,0.1) 0.25000(0)
0.25 0.43112(2) −0.15944(1) −0.15944(1) 0.24999(0) 0.00000(0)
0 −0.24983(2) −0.49992(1) −0.49992(1) 0.24999(0) 0.00000(0)

−0.25 0.374(2) −0.307(1) −0.0683(3) 0.24992(1) −0.00007(1)
0.5 0.1592(5) 0.49999(0) −0.0908(5) 0.24997(0) −0.00002(0)

(0.1,0.1,0.1) 0.25000(0)
0.25 0.489(2) −0.131(1) −0.131(1) 0.24999(0) 0.00000(0)
0 −0.24984(2) −0.49992(1) −0.49992(1) 0.24999(0) 0.00000(0)

−0.25 0.33455(4) −0.33916(4) −0.07630(0) 0.24992(1) −0.00007(1)
0.5 0.14470(1) 0.49999(0) −0.10530(1) 0.24997(0) −0.00002(0)

(0.01,0.1,0.1) 0.25000(0)
0.25 0.43274(8) −0.15863(4) −0.15863(4) 0.24999(0) 0.00000(0)
0 −0.24983(2) −0.49992(1) −0.49992(1) 0.24999(0) 0.00000(0)
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(a) (b) (c)

FIG. 1. (a–c) Extrapolation of the observables (a) φpp, (b) φop and P̃edge
y , and (c) φoo and Q(2)

c , as a quadratic function in 1/L for
the quadrupole insulator [Eq. (20)] with parameters (γx, γy, λx, λy, δ) = (0.5, 0.5, 1.0, 1.0, 0.7) and isotropic system sizes. The quadratic
extrapolation works well and the error from the extrapolation is less than 10−5 in all cases. (b) φop and P̃edge

y agree with each other in O(10−5).
(c) φoo and Q(2)

c agree with each other in the same order of accuracy.

B. Models with the hybrid Wannier value at 0.5

We now turn to models with the hybrid Wannier value
at 0.5, which are all based on C4-symmetric insulators [24].
Note that for the models presented below, a HWF with the
corresponding hybrid Wannier value at 0.5 exists even after
introducing a C4 symmetry breaking term. In these models,
corner charges are originated from the filling anomaly η [24]:

η = no. ions − no. electrons mod 4, (25)

where the number of ions equals the number of lattice sites
times the filling. In each model, we take into account the
filling anomaly η which determines the corner charge and
the phase factor φoo, where we tune the chemical potential
to include or not include the zero modes in the full open
boundary conditions.

For tested models which are specified below, we numeri-
cally compute the phase factors φab [Eq. (13)] and the corner
charge Q(2)

c [Eq. (11)]. The results are summarized in Tables V
and VI. In the tables, P̃edge

x/y are not presented since they depend
sensitively on the choice of the branch cut for the considered
models, as we discuss in Appendix F. However, we do com-
pare the corner charge Q(2)

c with φoo and check whether the
sum rule Eq. (14) is satisfied. All observables in the tables
are the extrapolated values in the thermodynamic limit as
described in Sec. III A.

For each model, we separate the cases based on the
quadrupole moment φ0 of the background ions:

φ0 ≡ −ne(Lx + 1)(Ly + 1)/4 (mod 1), (26)

with ne being the charge of the ions at each lattice site and
(Lx, Ly) being the linear system sizes. We then obtain φab and
Q(2)

c in the thermodynamic limit L → ∞ for each value of φ0

and summarize the numerical results in Tables V and VI. We
find that for the model Eq. (28) defined below, the convergent
values of the three phase factors φpp, φop, and φpo depend on
φ0 while the phase factor φoo is convergent on the same model.
In contrast, all the phase factors are convergent on the other

model Eq. (27). Thus, at least φoo is interpretable among the
four phase factors for these models. In addition, we find that
in all cases, φoo converges to corner charge Q(2)

c up to an error
O(10−5), and the sum rule holds up to the same order of an
error.

1. C4-symmetric insulator H (4)
2b

We first consider a C4-symmetric insulator H (4)
2b introduced

in Ref. [24] with a C4 symmetry breaking term parametrized
by δ:

H (4)
2b (k) =

⎡
⎢⎢⎣

δ t ei(kx+ky ) t
t −δ t e−i(kx−ky )

e−i(kx+ky ) t δ t
t ei(kx−ky ) t −δ

⎤
⎥⎥⎦.

(27)
When δ = 0 and t < 1, the half-filled ground state of
Eq. (27) respects C4 symmetry and has filling anomaly η = 2.
Therefore, on full open boundary conditions, filling 2N − 2
electrons, where N is the number of sites, results in the corner
charge of −1/2 (in the unit of electron charge) at each corner.
When δ �= 0, the ground state no longer respects C4 symmetry
and the corner charge is not quantized.

The numerical results for the C4-symmetric insulator H (4)
2b

are summarized in Table V.

2. C4-symmetric insulator H (4)
1b ⊕ H (4)

2c

Finally, we consider the C4-symmetric insulator [24]
H (4)

1b ⊕ H (4)
2c . This model was used as an example in which

φpp depends on the system size [22], which indicates it is ill
defined on this model. We also see that φpp in fact does as
discussed below. The tight-binding Hamiltonian of this model
in the momentum space is given by

H (4)
1b ⊕ H (4)

2c (k) =
[

H (4)
1b γ (4)(t )

γ (4)(t )† H (4)
2c

]
, (28)

where

H (4)
1b (k) =

⎡
⎢⎢⎣

0 tx + eikx 0 ty + eiky

tx + e−ikx 0 ty + eiky 0
0 ty + e−iky 0 tx + e−ikx

ty + e−iky 0 tx + ekx 0

⎤
⎥⎥⎦, H (4)

2c (k) =

⎡
⎢⎣

0 0 tx 0
0 0 0 ty
tx 0 0 0
0 ty 0 0

⎤
⎥⎦ + 1.5

⎡
⎢⎢⎣

0 0 eikx 0
0 0 0 eiky

e−ikx 0 0 0
0 e−iky 0 0

⎤
⎥⎥⎦,
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and

γ (4)(t ) =

⎡
⎢⎣

t t 0 0
0 t t 0
0 0 t t
t 0 0 t

⎤
⎥⎦.

Both the 1/4-filled ground state of H (4)
1b and the 1/2-filled

ground state of H (4)
2c have nonzero bulk polarizations, and

we stack two models and introduce an additional hopping
term given by γ (4)(t ) so that the 3/8-filled ground state of
the stacked model has vanishing bulk polarization while re-
specting C4 symmetry. The stacked model H (4)

1b ⊕ H (4)
2c has the

filling anomaly η = 3 which results in −3/4 corner charge (in
the unit of electron charge) at each corner when 4N − 3 elec-
trons are filled under full open boundary conditions, where N
is the number of sites.

The numerical results for the C4-symmetric insulator
H (4)

1b ⊕ H (4)
2c are summarized in Table VI.

IV. CONCLUSION

In this paper, we have presented the bulk-boundary cor-
respondence for the bulk quadrupole moment which is
expressed in terms of the phase factors of the expectation
values of the many-body operators with respect to the ground
states under various boundary conditions. Our bulk-boundary
correspondence is given by the cancellation between the four
gauge-invariant phase factors, which can be computed in fully
interacting systems. We also have proposed that one of them
is expected to be identified with the corner charge. On these,
we have numerically observed that when the band insulator
is without the hybrid Wannier value at 0.5, each phase fac-
tor corresponds to a physical observable including the bulk
multipole moment and edge-localized polarizations. Whether
the same correspondence holds with the hybrid Wannier value
at 0.5 has not been fully understood yet. Through extensive
numerical computations on band insulators, we have found
that our bulk-boundary correspondence and the identification
of one of the phase factors with the corner charge hold up to
small errors of O(10−4), which might be originated from the
finite-size effect of the numerics. Furthermore, we have also
found that another two of the phase factors have values similar
to the edge-localized polarizations defined in Ref. [4] with
differences at most O(10−3), which supports our observations.

Let us conclude by making remarks on possible future
directions of our work. It would be interesting to prove the
sum rules at least in the case of band insulators. This would
also extend our knowledge of bulk multipole moments in
solids. Comparing our definition of the quadrupole moment
with another one proposed in Ref. [34] would be interesting.
Since our formulation works for disordered and interacting
systems, one could also test our sum rules for those cases.
Finally, finding connections between previous works [29–31]
and our sum rule would be interesting.
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APPENDIX A: CLASSICAL MULTIPOLAR SUM RULES

In this Appendix, we derive classical dipolar and quadrupo-
lar sum rules based on classical electrostatics. The derivations
closely follow the construction presented in Ref. [4]. Here, we
consider continuum systems for classical systems.

1. Classical dipolar sum rule

The macroscopic polarization �P ( �R) is defined in the clas-
sical electrostatics as the averaged first moment of the charge
density over a region v( �R), which is small compared with the
whole system:

�P ( �R) = 1

|v( �R)|

∫
v( �R)

d3rρ(�r + �R)�r, (A1)

where ρ(�r) is the volume charge density and |v( �R)| is the
volume of the region v( �R). It is well known that a macroscopic
system with the bulk polarization �P induces the charge den-
sity ρ via

ρ = −∇ · �P . (A2)

Suppose that the system has a boundary to the vacuum so
that the polarization drops on the boundary; then the boundary
charge Qc is accumulated on the boundary:

Qc = −
∫

v

∇ · �Pdv = −
∮

∂v

�P · d�s, (A3)

where ∂v is the boundary of a volume v which encircles the
boundary of the system as shown in Fig. 2, and �s is the surface
vector normal to ∂v. If the system is one-dimensional and has
a uniform bulk polarization density P along the x direction,
then Eq. (A3) becomes

Qc = P, (A4)

which is depicted in Fig. 2, with the circle containing the plus
symbol being the boundary charge.

- +

FIG. 2. A schematics of the polarization in a one-dimensional
system. Here, gray arrows represent the bulk polarization. The bulk
polarization P accumulates charges at each boundary with the same
amount but different signs.
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+

+ -

-

FIG. 3. Schematic understanding of the bulk quadrupole moment
and the free edge polarization. Here, gray arrows and orange arrows
represent the quadrupole moment and the free edge polarization,
respectively. Both of them accumulate charges at each corner, and
the total amount of charge at each corner is fixed by the charge
conservation law Eq. (A7).

2. Classical quadrupolar sum rule

The macroscopic quadrupole moment Qi j ( �R) is defined in
the classical electrostatics as the averaged second moment of
the charge density over v( �R):

Qi j ( �R) = 1

|v( �R)|

∫
v( �R)

d3rρ(�r + �R)rir j, (A5)

where ρ(�r) is the volume charge density. We first consider a
classical system with a uniform bulk quadrupole moment Qi j .
We assume that the system has a vanishing bulk polarization,
which follows when the system has inversion symmetry. Then
the quadrupole moment Qi j induces the charge density ρ via

ρ = 1

2

∑
i, j

∂i∂ jQi j . (A6)

If we consider a rectangular geometry as in Fig. 3, then the
corner charge Qc accumulated on a corner of a macroscopic
two-dimensional system due to quadrupole moment Qi j drop
is given by

Qc = 1

2

∑
i, j

∫
v

∂i∂ jQi jdv = 1

2

∑
i, j

∮
∂v

∂iQi jn jds, (A7)

where ni is the ith component of the unit vector normal to ∂v,
v is a volume enveloping the corner, and ∂v is the boundary
of v, which are illustrated in Fig. 3. For a rectangular system,
Eq. (A7) becomes

Qc = Qxy, (A8)

where we used the symmetry of the quadrupole moment,
Qxy = Qyx. In addition to inducing corner charge, the
quadrupole moment also induces the polarizations along the
edges, which we call the edge-localized polarizations. To this
end, we first consider the geometry given in Fig. 3. The line
charge density σw at the edge w in Fig. 3 is given as

σw = −
∑
i, j

∂ j (niQi j ), (A9)

where ni is the normal vector of the edge in Fig. 3. Since the
charge density is given as the divergence of

∑
i niQi j , this can

be considered as the polarization induced by the quadrupole
moment localized on the edge w. We will call this polarization
as Pquad

n . For a rectangular system, the quadrupole induced
polarizations at the y boundaries Pquad

x and the x boundaries
Pquad

y are given by

Pquad
x = Pquad

y = Qxy. (A10)

On the other hand, one can dress one-dimensional systems
having edge polarizations P free

x and P free
y along the boundaries

while respecting the inversion symmetry, where P free
x and

P free
y do not come from the quadrupole moment. Note that

P free
x/y also accumulates the charge Qfree

c at the corner due to
the dipolar sum rule:

Qfree
c = P free

x + P free
y . (A11)

Thus, if we define the edge-localized polarization Pedge
x/y in

classical systems as

Pedge
x/y ≡ Pquad

x/y + P free
x/y , (A12)

then the corner charge is given by

Qc = −Qxy + Pedge
x + Pedge

y . (A13)

We call Eq. (A13) the quadrupolar sum rule in classical sys-
tems, which is summarized in Fig. 3.

APPENDIX B: FIELD THEORETIC DERIVATIONS OF φab

Here, we show that the phase factors φpp, φop/po, and φoo

should correspond to quadrupole moment Qxy, edge-localized
polarization Pedge

y/x , and corner charge Qc in the thermodynamic
limit. To see these, we closely follow the effective field theory
description of the multipoles elaborated in Ref. [20].

We first briefly summarize the effective field theory de-
scription of the phase factors φab [20]. We start from the
thermal expectation of an operator Ûa(�r) = eiφa (�r)n̂ �(r):

〈Ûa〉β = 1

Z
Tr[e−βĤÛa] (B1)

with the partition function Z = Tr[e−βĤ ]. The ground-state
expectation value of Ûa can be achieved in the limit of β →
∞,

〈GS|Ûa|GS〉 = lim
β→∞

〈Ûa〉β, (B2)

or equivalently, we can rewrite it as

〈GS|Ûa|GS〉 = 1

Z
Tr[e− ∫ ∞

0

∫
M dτd2r[Ĥ−iφan̂δ(τ )]], (B3)
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where M is a region we considered. The right-hand side of
Eq. (B3) except 1/Z can be interpreted as the partition func-
tion of a system coupled with the gauge potential A0(�r, τ ) =
φa(�r)δ(τ ). Performing the trace in the above expression, i.e.,
integrating out the fermionic degrees of freedom of the right-
hand side, we find

1

2π
Im log 〈GS|Ûa|GS〉 = 1

2π
Seff[A0(�r, τ )] (mod 1).

For more details to derive this result, we refer to Refs. [20,35–
37]. To proceed, we note that the electric response of in-
sulators can be naturally expanded by electric multipoles in
the region M. Here, the insulators that we consider do not
have the Chern numbers. For the case with the Chern number,
please see Refs. [38,39]. Hence we expect [20]

Seff,monopole =
∫ ∞

0

∫
M

dτd2rρA0,

Seff,dipole =
∫ ∞

0

∫
M

dτd2r �P · �E ,

Seff,quadrupole =
∫ ∞

0

∫
M

dτd2r
Qxy

2
[∂xEy + ∂yEx].

Using these effective actions, we can demonstrate that the
phase factors φpp, φop/po, and φoo indeed correspond to
quadrupole moment, edge-localized polarization, and corner
charge in the thermodynamic limit.

1. Interpretation of φa

Before giving the derivations of φab, we illustrate that
the effective action approach correctly predicts the iden-
tifications of φp with polarization as well as φo with
boundary charge, which is shown in Ref. [18] and Ap-
pendix C, respectively. For these, we will set Ûa as Resta’s Û1

operator [18]:

Û1(x) = exp

[
2π i

Lx
x

]
, (B4)

so we have A0[x, τ ] = 2π
Lx

xδ(τ ) and Ex = 2π
Lx

δ(τ ).
First, we can show that φp corresponds to polarization,

which reproduces Resta’s formula. We consider a line M =
(0, Lx ) having constant polarization Px and periodic bound-
aries. Then, the effective action of the region M is given by

Seff,p =
∫ ∞

0

∫
M

dτdxPxEx. (B5)

Then, inserting the gauge potential A0 to the effective action
gives

Seff,p = 2π

Lx

∫
M

dxPx = 2πPx, (B6)

so we have

φp = Px (mod 1). (B7)

Next, we can show that φo corresponds to the boundary
charge, when the system is subject to the open boundary con-
ditions. In this case, we consider the same M having constant
polarization P as well as free boundary charge Qfree

c , i.e., free

electrons which can be added and are not related to the bulk
polarization, and open boundaries. Then, the effective action
is

Seff,o =
∫ ∞

0

∫
M

dτdx
{
PxEx + Qfree

c A0[δ(x − Lx ) + δ(x)]
}
.

Again, inserting the gauge potential to the effective action
gives

Seff,p = 2π
(
Px + Qfree

c

)
, (B8)

so we have

φo = Px + Qfree
c (mod 1), (B9)

where the right-hand side is the boundary charge predicted by
the classical electrostatics.

From these, we can also easily show the bulk-boundary
correspondence in terms of the phase factors. Since Qfree

c is
an integer, we have

φp = φo (mod 1). (B10)

2. Interpretation of φab

We then give the derivations of φab for two-dimensional
systems using the effective field theory approach. To do so,
we will consider a square region M = (0, Lx ) × (0, Ly) with
an inversion symmetric Hamiltonian for all cases; however,
the boundary conditions of M will be chosen differently for
each case.

We first discuss the identification of φpp with Qxy. Let
the region M have periodic boundaries along the x and y
directions and assume that the region has constant quadrupole
moment and vanishing polarizations. In addition, since we
deal with Û2, we set the gauge potential as A0[�r, τ ] =

2π
LxLy

xyδ(τ ). Then, the effective action of the region M is given
by

Seff,pp =
∫ ∞

0

∫
M

dτd2r
1

2
Qxy[∂xEy + ∂yEx]. (B11)

Thus, inserting the gauge potential to the effective action gives

Seff,pp = 2π

LxLy

∫
M

d2rQxy = 2πQxy. (B12)

In other words, 〈GS|Ûa|GS〉 is proportional to e2π iQxy , so we
can identify φpp with Qxy.

We next discuss the identification of φop with Pedge
y . In

this case, we let the region have open boundaries along the x
direction and periodic boundaries along the y direction and as-
sume that the region has constant quadrupole moment as well
as constant free edge-localized polarizations Pfree

y along the
opened boundaries that respect inversion symmetry, i.e., Pfree

y
is not related to the bulk quadrupole moment. One example
of this is the edge polarization model [4]. Then, the effective
action is given as

Seff,op =
∫ ∞

0

∫
M

dτd2r

{
1

2
Qxy[∂xEy + ∂yEx]

+Pfree
y Ey[δ(x − Lx ) − δ(x)]

}
. (B13)
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Again, inserting the gauge potential to the effective action
gives

Seff,op = 2π

LxLy

∫
M

d2r
{
Qxy + Pedge

y x[δ(x − Lx ) − δ(x)]
}

= 2π
(
Qxy + Pfree

y

)
.

Thus, we have φop = Qxy + Pfree
y (mod 1). As we discussed

in Appendix A, the total edge-localized polarization Pedge
y

is given by the sum of the free edge-localized polarization
Pfree

y and the quadrupole induced edge-localized polarization,
which is Qxy for square systems. Therefore, we can identify
φop with the edge-localized polarization Pedge

y . In the same
fashion, φpo should be identified with Pedge

x .
We finally discuss the identification of φoo with Qc. In this

case, we let the region have full open boundaries and assume
that the region has constant Qxy, constant Pfree

x/y , and free corner
charge Qfree

c . Again, we will assume that the system has inver-
sion symmetry. These assumptions give the effective action as

Seff,oo =
∫ ∞

0

∫
M

dτd2r

{
1

2
Qxy[∂xEy + ∂yEx]

+ Pfree
y Ey[δ(x − Lx ) − δ(x)]

+ Pfree
x Ex[δ(y − Ly) − δ(y)]

+ Qfree
c (x, y)A0[δ(x − Lx )δ(y − Ly) + δ(x)δ(y)

−δ(x)δ(y − Ly) − δ(x − Lx )δ(y)]

}
(B14)

with Qfree
c (0, 0) = Qfree

c (Lx, Ly) and Qfree
c (Lx, 0) =

Qfree
c (0, Ly). Then, the insertion of the gauge potential to

the effective action gives

φoo = Qxy + Pfree
x + Pfree

y + Qfree
c (Lx, Ly ) (mod 1).

One can see using the classical electrostatics that the
right-hand side is indeed the corner charge at �r = (Lx, Ly),
and so is φoo.

We can also directly derive the quadrupole sum rule using
the above results. Since the free corner charge Qfree

c (Lx, Ly) is
an integer, we have

φpp + φoo = φop + φpo (mod 1). (B15)

In summary, the sum rule and the identifications of the
quadrupole moment, edge-localized polarizations, and corner
charge can be justified via the above effective field theory
descriptions of multipoles.

APPENDIX C: Û1 OPERATOR AND THE CORNER
CHARGE

In this Appendix, we show that for band insulators in one
dimension, the phase factor of the Û1 expectation value with
respect to the ground state in the open boundary condition
converges to the boundary charge in the thermodynamic limit.

We prove the claim by constructing bulk and boundary
Wannier functions. The bulk Wannier functions are identical
to the Wannier functions in the periodic boundary condition
and the boundary Wannier functions are localized near the
left and right boundaries. The phase factor of the Û1 ex-
pectation value is determined by the bulk Wannier functions

while boundary Wannier functions do not contribute, as in
the original bulk-boundary correspondence for the polariza-
tion [17,23]. To avoid any ambiguity, we assume that no mode
exists at the chemical potential, which can always be done by
either introducing a (small) symmetry breaking term splitting
the zero modes or tuning the chemical potential slightly.

In the open boundary condition, the position operator x̂ is
well defined, which we choose to take values in {1, 2, · · · , L},
and thus we can diagonalize the position operator in the
subspace of occupied single-particle orbitals Pocc. We would
like to show that the eigenvectors of Pocc(x̂)Pocc are exactly
the bulk and boundary Wannier functions with desirable
properties.

We first recall the results in Refs. [14,40], which state that
the Wannier functions {|wα,R〉}, where α = 1, · · · , ne with
ne being the electron filling and R ∈ Z labeling the position
at which the Wannier function is localized, are the eigen-
vectors of the x̂ operator in the subspace of the occupied
single-particle orbitals of the infinite open system with the
corresponding eigenvalues R + να . At the same time, {|wα,R〉}
are the eigenvectors of e

2π ix̂
L in the subspace of occupied

single-particle orbitals of a periodic system with the corre-
sponding eigenvalues ei2π (R+να )/L, when the system size L is
sufficiently large. Moreover, the Wannier functions {|wα,R〉}
are exponentially localized and satisfy the usual property
〈x|wα,R+1〉 = 〈x − 1|wα,R〉.

Let us take a positive integer δ which is much larger
than the localization lengths of {|wα,R〉}. Using the exponen-
tially localized nature, {|wα,R〉}R=δ+1,δ2,··· ,L−δ are the claimed
bulk Wannier functions, i.e., eigenvectors of Pocc(x̂)Pocc lo-
calized on the bulk, where Pocc projects to the subspace
of occupied single-particle orbitals of a finite open system.
Also, for a sufficiently large L, the bulk Wannier functions
{|wα,R〉}R=δ+1,δ2,··· ,L−δ are the eigenvectors of Pocc(e

2π ix̂
L )Pocc

with the corresponding eigenvalues ei2π (R+να )/L. The remain-
ing eigenvectors of Pocc(x̂)Pocc are localized near the left and
right boundaries, hence we call them the boundary Wannier
functions.

We now evaluate the expectation value of Û1 using the bulk
and boundary Wannier functions. Since the ground state of a
band insulator is given by the slater determinant of occupied
single-particle orbitals, which we choose to be the bulk and
boundary Wannier functions, 〈Û1〉 can be expressed as

〈Û1〉 = e−(L+1)neπ i det

⎡
⎣

⎛
⎝L 0 0

0 D 0
0 0 R

⎞
⎠

⎤
⎦, (C1)

where e−(L+1)neπ i is the phase factor from background ions, L
and R are neδ-by-neδ matrices, and

D = diag
(

e2π i δ+1+ν1
L , · · · , e2π i

L−δ+νNoc
L

)
(C2)

is a diagonal matrix. By expanding the diagonal part in the
determinant, we get

〈U1〉 = e−(L+1)neπ ie
2π i
L ( (L+1)(L−2δ)

2 ne+L
∑ne

α=1 να ) det(L) det(R)

= e2π i L+1
L (−δ)e2π i

∑ne
α=1 να det(L) det(R)

= e−2π i δ
L e2π i

∑ne
α=1 να det(L) det(R), (C3)
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where we used the fact that δ is an integer in the last equal-
ity. Note that L (R) is the matrix representation of e

2π ix̂
L

with respect to the left (right) Wannier functions which are
localized within the range δ. Thus, in the thermodynamic
limit Û1 = I + O( 1

L ) on the left (right) Wannier functions and
hence det(L) = 1 + O( 1

L ) [det(R) = 1 + O( 1
L )]. Therefore,

lim
L→∞

1

2π
Im[log(〈U1〉)] =

Nocc∑
α=1

να = Q(1)
c , (C4)

where the last equality follows from the original bulk-
boundary correspondence [17,23]. This completes the proof
that the Û1 expectation value reproduces the boundary charge
for band insulators in the open boundary condition.

APPENDIX D: COORDINATE DEPENDENCE OF φop

In this Appendix, we discuss the coordinate dependence
of the phase factors {φop} defined in Eq. (13). The phase
factor φop is computed on a system having periodic boundary
conditions along the y direction, i.e., the system is invari-
ant under the coordinate transformation along that direction
y → y + Ly. Thus, one naturally expects that the phase factors
should also be invariant under the coordinate transformation.
Here, we show that if the system size is sufficiently large,
then the phase factors are invariant under the coordinate
transformation.

We first treat the system as a quasi-1D system by consider-
ing the y label as a sublattice index of the enlarged unit cell.
We then consider the transformation rule for the Û2 operator:
Û2 → Û ′

2 = Û2Û1;x following from the translation along the
periodic direction y → y + Ly, where Û1;x is

Û1;x = exp

[
2π i

Lx

Lx,Ly∑
x,y=1

x(n̂x,y − ne)

]
(D1)

with the background charge ne. Since we consider the system
as a quasi-1D system, the additional operator Û1;x can be
viewed as Resta’s Û1 operator Eq. (3). Although |GS(o, p)〉
is not an eigenstate of Û1;x in general, it converges to an
eigenstate of Û1;x in the limit of Lx → ∞. We can show this in
the following two steps. First, if the system size is sufficiently
large, then the expectation value of Û1;x with |GS(o, p)〉 is
bounded by

|1 − |〈GS(o, p)|Û1;x|GS(o, p)〉|| � C Ly

Lx
(D2)

with some constant C. This can be seen from Eq. (C3). Sec-
ond, since Û1;x is a unitary operator, the absolute value of its
expectation value with a state is unity if and only if the state is
an eigenstate of Û1;x. Thus, Eq. (D2) implies that |GS(o, p)〉 is
an eigenstate of Û1;x in the limit of Lx → ∞. With these, the
expectation value of Û ′

2 with |GS(o, p)〉 can be written as that
of Û2 in the limit of Lx → ∞:

eiφ̃op ≡ 〈GS(o, p)|Û ′
2|GS(o, p)〉

= eiφop〈GS(o, p)|Û1;x|GS(o, p)〉. (D3)

Thus, the only thing we need to show is that the additional
term 〈GS(o, p)|Û1;x|GS(o, p)〉 converges to unity in the ther-
modynamic limit.

(c) (d)

(a) (b)

FIG. 4. (a-b) Fittings of (a) real and (b) imaginary parts of
〈Û1;x〉 = 〈GS(o, p)|Û1;x|GS(o, p)〉 on Hedge with Lx > Ly = 10 using
quadratic polynomials in 1/Lx . 〈Û1;x〉 converges to unity in the limit
of Lx → ∞. (c-d) Fittings of the phase factors φop and φ̃op on Hedge

in (c) isotropic systems, Lx = Ly = L, and (d) anisotropic systems
Lx > Ly = 10 using quadratic polynomials in 1/L and 1/Lx , respec-
tively. Both of them converge to the same value in the limit of (c)
L → ∞ and (d) Lx → ∞.

Now, we will show that 〈GS(o, p)|Û1;x|GS(o, p)〉 indeed
converges to unity in the thermodynamic limit. Since we treat
the system as a quasi-1D system, 〈GS(o, p)|Û1;x|GS(o, p)〉
can be interpreted as eiφo defined in Eq. (6). In Appendix C, we
show that φo can be identified with the boundary charge in the
limit of Lx → ∞. In addition, since the polarization of each
model is vanishing to make the quadrupole moment be well
defined, the quasi-1D system cannot have the polarization as
well as the boundary charge. Combining these implies that
〈GS(o, p)|Û1;x|GS(o, p)〉 should converge to unity in the ther-
modynamic limit, and thus eiφop in the thermodynamic limit is
invariant under y → y + Ly.

As an explicit demonstration of our proof above, we first
conduct numerical calculations on 〈GS(o, p)|Û1;x|GS(o, p)〉
and find that it converges to unity in the thermodynamic limit.
Here, we consider the edge-localized polarization insulator,
which is defined in Eq. (21). We choose the parameters as
(γx, γy, λx, λy, δ) = (0.2, 0.3, 1.0, 1.0, 0.1). We then compute
real and imaginary parts of log[〈GS(o, p)|Û1;x|GS(o, p)〉] on
anisotropic systems Lx �= Ly with Ly = 10 and Lx from 40
to 80. We extrapolate them in the thermodynamic limit as a
function of 1/Lx. The extrapolations of them are shown in
Figs. 4(a) and 4(b) which are for real and imaginary parts,
respectively. These clearly show that 〈GS(o, p)|Û1;x|GS(o, p)〉
converges to unity in the thermodynamic limit.

The above argument only guarantees the invariance of φop

under the transformation y → y + Ly when we take the limit
of Lx → ∞ first since the right-hand side of Eq. (D2) may not
converge for other orders of limits. However, even for those
cases, we numerically check that φop is still invariant under
the coordinate transformation. Below, we provide numerical
calculations on φop, and for those cases, one can see that the
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phase factor is invariant under the transformation y → y + Ly

in the thermodynamic limit.
We compute the phase factor φop and the transformed phase

factor φ̃op [Eq. (D3)] on the same system used in this section.
However, here, we separately compute them on (1) isotropic
systems Lx = Ly = L with L from 23 to 30 and (2) anisotropic
systems Lx �= Ly with Ly = 10 and Lx from 40 to 80. We
then extrapolate φop and φ̃op in the thermodynamic limit via
quadratic extrapolations as a function of 1/Lx. The extrap-
olations of φop and φ̃op on the edge-localized polarization
insulator are shown in Figs. 4(c) and 4(d), which are for (1)
isotropic systems and (2) anisotropic systems, respectively.
The numerical results clearly show that the transformation
y → y + Ly does not change the thermodynamic value of φop.

In addition, we also compute φop and φ̃op when the limit
of Ly → ∞ is taken first. We first extrapolate φop and φ̃op as
quadratic functions of Ly for various Lx ∈ [10, 20] as shown
in Fig. 5. From this, we get the thermodynamic values of φop

and φ̃op in the quasi-1D system Ly → ∞. We then extrapolate
those thermodynamic values as quadratic functions of Lx as
shown in Fig. 5. One can see from Fig. 5 that the extrapolated
values of φop and φ̃op in the quasi-1D system agree with
that of φop in the 2D system Lx = Ly = L → ∞. Thus, even
we take the limit of Ly → ∞ first, φop and φ̃op agree in the
thermodynamic limit on this case.

APPENDIX E: SUM RULE IN the C3-SYMMETRIC
INSULATOR

As a demonstration that the sum rule Eq. (14) works for in-
sulators having other types of symmetry besides C4 symmetry,
we consider a C3-symmetric insulator [24] and numerically
confirm the sum rule on this model.

1. C3-symmetric insulator: H (3)
2b ⊕ H (3)

2c

The tight-binding Hamiltonian in the momentum space of
the C3-symmetric insulator H (3)

2b ⊕ H (3)
2c is given by [24]

H (3)
2b ⊕ H (3)

2c (k) =
[

H (3)
2b γ (3)(t )

γ (3)(t )† H (3)
2c

]
, (E1)

where

H (3)
2b (k) =

⎡
⎣ 0 t0 + eik·a2 t0 + e−ik·a3

t0 + e−ik·a2 0 t0 + e−ik·a1

t0 + eik·a3 t0 + eik·a1 0

⎤
⎦,

H (3)
2c (k) =

⎡
⎣ 0 t0 + eik·a1 t0 + eik·a2

t0 + e−ik·a1 0 t0 + e−ik·a3

t0 + e−ik·a2 t0 + eik·a3 0

⎤
⎦,

and

γ (3)(t ) =
⎡
⎣t t 0

0 t t
t t 0

⎤
⎦. (E2)

The 2/3-filled ground states of H (3)
2b and H (3)

2c have nonvan-
ishing polarizations 1/3 and 2/3, respectively, so the stacked
model H (3)

2b ⊕ H (3)
2c at 2/3 filling with the interlayer hopping

term γ (3)(t ) has vanishing bulk polarization and respects C3

symmetry.

(a)

(b)

FIG. 5. (a) Fittings of φop and φ̃op using quadratic polynomials in
1/Ly while fixing Lx . The blue dashed lines are quadratic extrapola-
tions of φop and the orange dotted lines are quadratic extrapolations
of φ̃op. (b) Fittings of limLy→∞ φop and limLy→∞ φ̃op using quadratic
polynomials in 1/Lx . The ochre dashed line is the thermodynamic
value of φop in the 2D system. Each y-intercept of an extrapolation in
(a) is a point in (b).

We will consider the stacked model Eq. (E1) on the square
lattice. To do so, we use the coordinates system (x, y) with
two basis vectors �a1 = (1, 0) and �a2 = (1/2,

√
3/2), i.e., the

coordinates (x, y) refer to as the vector of x�a1 + y�a2. All
the phase factors φab defined in Eq. (13) and appearing in
Table VII are computed using these coordinates. We find that
the stacked model on the square lattice at 2/3 filling has corner
charges 1/3 and −1/3 well localized near the corners.

The numerical results are summarized in Table VII. We see
that the corner charge Q(2)

c agrees with φoo and the sum rule
Eq. (14) is satisfied up to small errors of O(10−5).

APPENDIX F: BRANCH CUT DEPENDENCE OF THE
HWF-BASED EDGE-LOCALIZED POLARIZATION

In this section, we discuss the branch cut dependence in
the hybrid Wannier values of the HWF-based edge-localized

155143-13



LEE, CHO, AND KANG PHYSICAL REVIEW B 105, 155143 (2022)

TABLE VII. The phase factors φab and the corner charge Q(2)
c are computed for H (3)

2b ⊕ H (3)
2c (t0, t ) in Eq. (E1) on a square lattice with

various parameters. The details about the lattice and filling are discussed in the paragraph below Eq. (E2). Here we use the same extrapolation
procedure as in Table I. The corner charge agrees with φoo and the sum rule Eq. (14) is satisfied up to small errors.

Model parameters Phase factors Electric moment Sum rule

H (3)
2b ⊕ H (3)

2c (t0, t ) φpp φpo φop φoo Q(2)
c

∑
(−1)abφab

(0.001,0.001) −0.33340(0) −0.33333(0) −0.33333(0) −0.33331(0) −0.33333(0) −0.00005(0)
(0.1,0.001) −0.33340(0) −0.33335(0) −0.33335(0) −0.33334(0) −0.33337(0) −0.00005(0)
(0.1,0.1) −0.33377(0) −0.33441(0) −0.33441(0) −0.33510(0) −0.33513(0) −0.00004(0)
(0.2,0.1) −0.33380(0) −0.33504(0) −0.33504(0) −0.33631(0) −0.33634(0) −0.00004(0)

polarization P̃edge
x/y defined in Ref. [4] and Eq. (18). To be self-

contained, we first rewrite the definition of the edge-localized
polarization:

P̃edge
x =

∑
j

Ly/2∑
y=1

ν jρ j (y) (mod 1), (F1)

where ρ j (y) and e2π iν j are the density and the jth eigenvalue
of the hybrid Wilson loop Wkx along the x direction, respec-
tively. We will call ν j the hybrid Wannier value.

The edge-localized polarization P̃edge
x can be well defined

after one fixes the branch cut of the hybrid Wannier value
since the hybrid Wannier value is defined by a phase angle,
which has the modulo 2π ambiguity. Unless fixing the branch
cut, each ν j can be shifted by an integer n j = ±1, which
results in shifting P̃edge

x as

�P̃edge
x =

∑
j

Ly/2∑
y=1

n jρ j (y). (F2)

Since
∑Ly/2

y=1 ρ j (y) is not quantized in general, �P̃edge
x may

also not be quantized if n j is not the same for all j.

Consequently, the edge-localized polarization is ambiguous
before fixing the branch cut even if we take the modulo
one equivalence on both sides of Eq. (F1). Here we fix the
branch cut by fixing the range of the hybrid Wannier value as
ν ∈ (−0.5, 0.5]. This choice is made for our numerical results
to be consistent with that of Ref. [4]. Note that another equally
valid choice of the range is ν ∈ [−0.5, 0.5), which includes
−0.5 instead of +0.5.

However, these possibilities in ranges again cause a prob-
lem when a hybrid Wannier value ν j is at the branch cut value
since ν j can be either +0.5 or −0.5 depending on the choice
of the range. In this case, the edge-localized polarization is
invariant under the choice of the range only when

∑Ly/2
y=1 ρ j (y)

is quantized, i.e., the HWF is localized in one of the two half
systems. The situation gets worse when more than two hybrid
Wannier values ν1, ν2, . . . , νn are degenerated at the branch
cut since, for all possible unitary transformations ψ̃ i(y) =∑n

j=1 ui jψ
j (y) of the Wannier functions {ψ1, ψ2, ..., ψn},∑Ly/2

y=1 |ψ̃ i(y)|2 should be quantized for the edge-localized po-
larization not to depend sensitively on the choice of the branch
cut. To avoid this difficulty, we computed P̃edge

x/y only for the
models without the hybrid Wannier value at 0.5 in the main
text.
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