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Optical pump-probe experiments carried out in the time domain reveal both the intrinsic low-energy dynamics
and its connections to higher-energy excitations in correlated electron systems. In this work, we propose two
microscopic mechanisms for the optical generation of coherent magnetic modes in van der Waals magnets,
and derive the corresponding effective light-spin interactions: either through pumping atomic orbital excitations
resonantly or via a light-induced Floquet spin Hamiltonian, the ground state of the system is driven out of
equilibrium. The subsequent long-time relaxational dynamics can then be probed using, e.g., the magneto-optical
Kerr effect or transient grating spectroscopy. As an example, we apply our framework to NiPS3, which is
magnetically ordered in the bulk, and is conjectured to realize the XY model in the monolayer limit. Our theory
makes explicit how the material’s low-energy response depends sensitively on the microscopic details of the
light-spin coupling as well as pump fluence, frequency, and polarization. For the case of bulk NiPS3, we find
quantitative agreement with recent experiments [D. Afanasiev et al., Sci. Adv. 7, eabf3096 (2021)]. We further
propose pump-probe experiments for monolayer NiPS3 and detail how anomalous relaxational behavior may
reveal excitations of a (proximate) Berezinskii-Kosterlitz-Thouless phase in a proposed effective XY model.
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I. INTRODUCTION

Ultrafast light-matter interaction provides a powerful
means to probe and control quantum materials [1–3]. By
pumping the system to a nonequilibrium state, the probed
relaxation dynamics may reveal intrinsic coherent excitations.
Recent advances in the field of ultrafast optics have enabled
coherent control of quantum materials through nonthermal
pathways, where the quantum coherence in the transition
process must be taken into account. While these nonthermal
pathways enable more control by the pump polarization, fre-
quency, fluence, etc., they also pose the theoretical challenge
of identifying microscopic mechanisms suitable for pumping
in a specific setting. Several mechanisms have been explored
both experimentally and theoretically to optically excite co-
herent magnetic excitations [4–6], e.g., through coupling with
optically active phonons, or direct coupling with spin exci-
tations. Recent experiments also showed coherent magnetic
excitations through pumping in the mid-infrared to near-
infrared range, where the light couples to correlated electronic
degrees of freedom or atomic excitations.

Moving a step forward towards a systematic understanding
of the microscopic pathways of optical generation of coherent
magnetic excitations, in this study we explore two distinct
microscopic mechanisms, one resonant and another nonres-
onant, through optically pumping atomic orbital excitations
and Floquet engineering, respectively.

*These authors contributed equally to this work.

Our studies are motivated by recent experiments by
Afanasiev et al. in Ref. [7], which point towards markedly
distinct mechanisms of exciting coherent magnons in the same
material. Using a pump-probe setup, they find that applying
linearly polarized pump beams to the bulk van der Waals
magnet NiPS3 allows one to selectively excite two distinct
modes of oscillations in the Faraday rotation of the probe
beam as signature of the coupled dynamics of the Néel order
parameter and magnetization.

NiPS3, which belongs to the family transition-metal thio-
phosphates, has zigzag-antiferromagnetic Néel order in the
ground state [8–10]. A single-ion easy-plane anisotropy
causes the spins to lie within a plane, with a weaker easy-
axis anisotropy due to monoclinic stacking of layers setting
an in-plane ordering direction (for the definition of the spin
Hamiltonian and modeling of the magnon dynamics we refer
the reader to Sec. IV). The low-energy magnon modes of
the system thus correspond to pseudo-Goldstone modes. The
lowest-energy mode is associated with rotations of the Néel
vector against the in-plane easy-axis anisotropy, dubbed f1

in Ref. [7], while fluctuations of the out-of-plane component
give rise to a higher-frequency mode f2. The former is found
to be excited for pump beam energies in a narrow frequency
range around 1.0 eV, close to the energy of an atomic or-
bital transition. However, strikingly, the out-of-plane mode
is excited with an almost equal amplitude for a wide range
of photon energies from 0.1 up to 0.9 eV. This remarkable
difference in the dependence of the excited modes on the driv-
ing light’s frequency suggests, in the spirit of the discussion
above, that two distinct excitation mechanisms are at play.
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In this work, we show that the optical pumping of or-
bital atomic excitations is efficient to drive the resonant f1

mode. Furthermore, we show that the transient Floquet spin
Hamiltonian allows for additional anisotropic terms, which
disturb the zigzag ground-state ordering pattern. This can
explain the f2 mode being excited in a transparent energy
window. We emphasize that spin-orbit coupling is crucial to
optically excite magnetic excitations through electronic tran-
sitions.

Both the microscopic mechanisms as well as the theoret-
ical framework to describe the ultrafast excitation process
discussed here can be readily generalized to pumping other
types of magnetic excitations. As a second example, we hence
discuss pumping hydrodynamic modes in the Berezinskii-
Kosterlitz-Thouless (BKT) phase and its proximate phases.
This may be realized in the monolayer limit of NiPS3,
which was found to exhibit a drastic suppression of anti-
ferromagnetic ordering compared with two-layer and bulk
samples [11].

Framework

Our methodology in modeling the microscopic excita-
tion mechanism of coherent magnetic excitations in ultrafast
pump-probe setups consists in finding an effective micro-
scopic Hamiltonian Heff which is active for the duration of
the pump in second-order perturbation theory in the electric
field of the driving light. Time evolution according to this
Hamiltonian takes the system out of equilibrium and thus sets
the initial conditions for the subsequent relaxation dynamics
according to the equilibrium low-energy equations of motion.

In the case of bulk NiPS3, the homogeneous low-energy
excitations consist of two sets of coupled harmonic oscillators

∂t nα ∼ χ−1mβ − hm,β (t ), ∂t mβ ∼ −κnα
nα + hn,α (t ) (1)

for the components of the Néel vector n and the magnetization
m, with α = y(z) and β = z(y) for the in-plane f1 (out-of-
plane f2) mode when the Néel order is along x. The source
terms hm,β and hn,α correspond to effective uniform and stag-
gered magnetic fields induced by the pump beam’s electric
field, and can be obtained by considering the action of Heff

on the low-energy variables of the system. We note that this
approach presupposes that the time evolution induced by the
pump pulse is unitary, and thus that the concept of an effective
(Hermitian) Hamiltonian is well defined. Interestingly, this
assumption is not satisfied for driving frequencies which are
resonant with a (sharp) atomic transition, as we discuss in
Sec. II B. In this case, the initial conditions for the low-energy
variables set by the perturbing light can be evaluated directly
in a microscopic picture using a generalized (nonunitary)
time-evolution operator. Equation (1) nevertheless still holds
(with h· = 0) after the pulse.

With an advanced understanding of the microscopic mech-
anisms governing the excitation of low-energy magnons in
conventionally ordered magnetic systems at hand, it is of
prime interest to turn to more exotic magnetic phases of mat-
ter. Here, ultrafast optical methods may serve as an additional
probe into the dynamics of more exotic excitations beyond the
linear-response regime. To this end, we study pumping hydro-
dynamic modes in the BKT phase and its proximate phases.

The general phase diagram of a two-dimensional (2D) magnet
with easy-plane anisotropy and hexagonal symmetry consists
of two phase transitions at TBKT and Tc, where TBKT > Tc [12].
Below Tc, the system orders into one of the six degenerate
minima selected by the hexagonal anisotropy. Above TBKT, the
system is disordered with exponential decaying correlations.
At any Tc < T < TBKT, the system exhibits critical algebraic
order. Crucially, the pump-induced excitation and subsequent
relaxation of spin-wave modes in the (quasi)ordered phases
and diffusive spin modes in the disordered phases can be
readily modeled using the framework described above: The
time evolution according to the effective Hamiltonian which is
active during the pump, with the respective light-induced local
anisotropies and exchange interactions between the S = 1 lo-
cal moments, then sets the initial conditions for the subsequent
low-energy dynamics of the in-plane phase of the Néel order
parameter and the out-of-plane magnetization, which are con-
veniently modeled in terms of a dual electromagnetic theory
in order to account for the presence of free vortices and bound
vortex-antivortex pairs [13].

We emphasize that our framework can be readily applied
to other systems with hexagonal symmetry and spin-orbit
coupling, with only minor modifications required to account
for the possibly distinct crystalline symmetries. Furthermore,
coherent magnetic excitations aside from magnon and hydro-
dynamic modes may be excited within this framework, such
as quadrupolar waves proposed in NiGa2S4 [14].

The remainder of the paper is organized as follows. In
Sec. II, we discuss single-ion multiplets of a Ni2+ ion in
appropriate crystal fields and derive electric-field-induced
single-ion anisotropies. The modification of (anisotropic) ex-
change interactions in the pump period is discussed in Sec. III.
We then model the long-range magnetic order and the light-
induced dynamics of coherent low-energy magnons in bulk
NiPS3, using the results of the preceding sections in Sec. IV.
In Sec. V, we generalize the framework to pumping hydrody-
namic modes in and proximate to the BKT phase.

II. PUMP-INDUCED SINGLE-ION ANISOTROPY

Motivated by the observation in Ref. [7] that the low-
energy in-plane mode f1 in NiPS3 is excited in a rather narrow
pump photon energy range which coincides with the energy of
the 3A2g → 3T2g interorbital resonance of a Ni2+ ion, we first
focus on a single ion in a d8 configuration in an octahedral
crystal field environment (with a small trigonal distortion).

The laser’s electric field induces virtual transitions out of
the orbital-singlet, spin-triplet ground state to the first excited
multiplet. As the latter is split under spin-orbit coupling, we
can use time-dependent second-order perturbation theory to
derive an effective time evolution in the S = 1 ground-state
sector which includes light-induced single-ion spin anisotropy
terms. Here we emphasize that spin-orbit coupling is a cru-
cial ingredient as it allows the orbital resonance to couple
to spin, which ultimately yields transitions between distinct
spin states in the ground-state manifold. We further note that
within our local approach of considering a single Ni2+ ion
with octahedral symmetry, all dipole matrix elements be-
tween the 3A2g ground-state multiplet and the first excited
3T2g multiplet vanish by the dipole selection rule, as the
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FIG. 1. Schematic visualization of NiPS3 crystal structure.
(a) Projection in the x̂-ŷ plane, where S (t) and S (b) denote sulfur
atoms on the top and bottom of a (P2S6)4− cluster. The gray arrows
indicate the zigzag Néel due to the Ni2+ local moments arranged
on a honeycomb lattice. The axis for the C′

2 symmetry is shown
marked light blue, and the vertical mirror plane σv in purple. We also
show the noncubic crystal field environment (with broken inversion
symmetry) for a Ni site. (b) Three-dimensional (isometric projection)
illustration of a (P2S6)4− cluster.

electric-field-induced dipole operator rα I→ −rα is odd under
inversion I, while A2g and T2g are even under I, such that
〈A2g|rα|T2g〉 = − 〈A2g|rα|T2g〉 ≡ 0. However, this an artifact
of the single-ion picture since, in NiPS3, the sites of the
Ni2+ are not inversion centers as the surrounding S atoms,
stemming from the P2S4−

6 clusters, break the cubic symmetry,
as visible from Fig. 1. In this structure, the symmetry of
the Ni sites is hence reduced to D3. We therefore emulate
the inversion-symmetry breaking by constructing a ground-
state wave function for the A2 orbital singlet which contains
inversion-odd components due to the hybridization induced
by ligand holes on the Ni2+. The induced anisotropy terms
take the Néel vector out of equilibrium for the duration of the
pump pulse and thus set initial conditions for the subsequent
relaxation dynamics governed by the equilibrium equations of
motion.

A. Ni2+ single-ion multiplets

To set the stage, the Ni2+ ion is in the local crystal field
environment with D3 symmetry, which is weakly broken from
the cubic symmetry Oh due to trigonal splitting. We note
that under an octahedral crystal field the 3F ground-state
multiplet of two unpaired d electrons (d8 � d2) is split as
3F → 3A2g + 3T1g + 3T2g, with 3A2g constituting the S = 1,
orbital-singlet ground-state manifold and 3T2g the first excited
multiplet. To explicitly construct the corresponding wave
functions from the single-particle d-orbital wave functions, it
is convenient to choose the single-particle wave functions as
eigenstates of the C3 rotation operator about the [111] axis in
the cubic reference frame, where ω = ei2π/3 denotes the third
root of unity.

The orbital component of the ground state is then
given as |A2g〉 = 1√

2
(|eω2〉1 |eω〉2 − |eω〉1 |eω2〉2), and the or-

bital sector of the first excited 3T2g multiplet is spanned
by |T2g, 1〉 , |T2g, ω〉, and |T2g, ω

2〉, with explicit expressions
given in Eq. (A4). The energy of the first excited multiplet on
top of the ground state is given by εT2g − εA2g = � ≡ 10Dq.

We now discuss the effect spin-orbit coupling HSOC = λ
L ·

S perturbatively. As the 3A2g multiplet is an orbital singlet,
its threefold degeneracy will only be lifted at higher-order
perturbation theory through mixing with the excited levels.
Conversely, the degeneracy of the 3T2g multiplet is lifted under
spin-orbit coupling at first order in λ. For our purposes, it
is convenient to define a fictitious angular momentum l = 1
acting on the T2g orbital triplet. An explicit calculation reveals
that

PT2g

LPT2g = 1

2

l, (2)

where PT2g = ∑
a=1,ω,ω2 |T2g, a〉 〈T2g, a| denotes the projection

operator into the orbital triplet. At first order in λ, the degen-
eracy in the first excited multiplet is split with the effective
Hamiltonian Heff

SOC. Introducing the (fictitious) total angular
momentum 
Jeff = 
S + 
l , the three sectors have quantum num-
bers Jeff = 0, Jeff = 1, Jeff = 2 and energies ε = −λ, −λ/2,
and λ/2, respectively.

It is convenient to transform spatial coordinates to the
trigonal reference frame with an orthogonal matrix W ,⎛

⎝x
y
z

⎞
⎠ �→

⎛
⎜⎝

2z−x−y√
6

x−y√
2

x+y+z√
3

⎞
⎟⎠ ≡ W

⎛
⎝x

y
z

⎞
⎠, (3)

such that the quantization axes of spin and fictitious angular
momentum operators coincide with the ẑ *axis, which is also
the axis of the C3 rotation operation. Note that with this choice
of reference frame, the splitting 3T2g → 3A1 + 3E (for λ = 0)
under a trigonal distortion of the crystal field can be accounted
for in degenerate perturbation theory through the effective
Hamiltonian

Heff
tri = δ(lz )2

. (4)

For both λ, δ �= 0 the 3T2g multiplet is split into three dou-
blets and three singlets which carry quantum numbers Sz + lz.
However, for simplicity, we take δ = 0 in the present discus-
sion and note that a finite (but small) δ �= 0 could account for
further level splitting and a fine structure of the experimentally
observed resonance peaks.

B. Time-dependent perturbation theory

We now employ time-dependent perturbation theory to
study how the degeneracy of the S = 1, orbital-singlet ground-
state sector spanned by |A2g, Sz = 0,±1〉 is lifted by the
perturbing electric field, which induces transitions to the
Jeff = 0, 1, 2 manifolds arising from spin-orbit splitting of
the first excited multiplet. To this end, we consider the per-
turbing Hamiltonian

HE = rαEα (ω)eiωt + rαE∗
α (ω)e−iωt (5)

which yields the time-evolution operator in the interaction
picture

UI(t, t0) = T e−i
∫ t

t0
HE

I (t ′ )dt ′
. (6)

Expanding to second order and projecting to the S = 1
subspace, we find the matrix elements of the effective
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time-evolution operator within that subspace as

〈a|Ueff (t, t0)|b〉

≈ δab −
∑

m

∫ t

t0

dt ′
∫ t ′

t0

dt ′′ 〈a|HE
I (t ′)|m〉 〈m|HE

I (t ′′)|b〉 ,

(7)

where |a〉 ≡ |Sz〉 denote the three states in S = 1 ground-state
sector and |m〉 = |Jeff , Jz

eff〉 are the states in the spin-orbit-split
first excited multiplet. Focusing on a pump pulse of length tp

which is switched on at t0 = 0, the temporal integrations can
be performed analytically, yielding

〈a|Ueff (tp, 0)|b〉 ≈ δab + EαE∗
β

∑
m

〈a|rα|m〉 〈m|rβ |b〉
i(ω − εm0)

×
[

tp − ei(ω−εm0 )tp − 1

i(ω − εm0)

]
, (8)

where we have kept only the dominant term for ω ≈ εm0 > 0
with εm0 = εm − ε0 denoting the energy difference between
the ground state and the first excited sector.

In the off-resonant limit, i.e., when tp(ω − εm0) � 1 for all
m, the second term in the square brackets in (8) tends to 0,
and the time-evolution operator can be written in terms of a
pump-induced effective (Hermitian) Hamiltonian UI(tp, 0) ≈
1 − iHefftp, as discussed by Pershan et al. in Refs. [15,16].

On the other hand, in the resonant limit tp(ω − εm0) � 1 it
is seen that the time-evolution operator

〈a|Ueff (tp, 0)|b〉 → δab − EαE∗
β

∑
m

〈a|rα|m〉 〈m|rβ |b〉 t2
p

2
(9)

becomes nonunitary, as the ground-state wave function ac-
quires a finite overlap with the excited levels due to real
transitions mediated by the perturbation, which is not captured
within our approach of projecting to the S = 1 states.

Near a resonance, the notion of an effective pump-induced
time-independent Hamiltonian thus no longer applies. In-
stead, we will make use of the time-evolution operator
projected to the low-energy subspace to directly compute the
pump-induced initial conditions for relaxational low-energy
dynamics as described in Sec. IV.

In order to evaluate the time-evolution operator in the
Sz = ±1, 0 basis of the 3A2g ground state, we first note that the
equilibrium Hamiltonian H0 is diagonal following the above

considerations, and has elements

H0 |A2g, Sz〉 = 0, (10)

H0 |Jeff , Jz
eff〉 =

(
� + λ

4
Jeff (Jeff + 1) − λ

)
|Jeff , Jz

eff〉 , (11)

where Jeff = 0, 1, 2. Using the multiplet wave functions con-
structed in the previous section, however, immediately yields
UI ≈ 1 as all dipole matrix elements between d orbitals in
the nominator of (8) vanish, in apparent contradiction to the
experimentally observed orbital resonance. To resolve this
inconsistency, we note that recent experimental and first-
principles numerical studies [17,18] have recently shown that
the Ni ground state contains, in addition to the d8 configu-
ration, a strong admixture of a d9L configuration, where L
denotes a ligand p-orbital hole. As the numerical modeling of
a Ni-ligand cluster in Ref. [17] finds the hole-doped contri-
bution to the ground-state wave function |ψ〉 to be actually
dominant | 〈d9L|ψ〉 |2 = 0.60 (compared to | 〈d10L2|ψ〉 |2 =
0.15 and | 〈d8|ψ〉 |2 = 0.25), we in the following consider
the ground-state configuration egL comprised of an eg and L
hole. We emphasize that in the case of octahedral symmetry
the resulting ground-state wave function is found to be of
(approximate) 3A2g symmetry and thus, given the oddness of
the dipole operator appearing in the perturbing electric field
Hamiltonian HE

I , all dipole matrix elements for transitions to
the first excited multiplet remain forbidden (however, trigonal
distortions in the L hole may induce an eu representation
at the Ni2+ site). Given that in NiPS3 the Ni are no longer
centers of inversion of the NiS6 clusters, the eu orbitals due to
the ligand hole may hybridize with the eg deriving from the
Ni2+ d levels to form an inversion-odd component in the full
A2 orbital-singlet ground state given by

|A2〉 = 1
2 [|eω〉1 |pω2〉2 + |eω2〉1 |pω〉2 + (1 ↔ 2)], (12)

where we drop all other contributions which will yield vanish-
ing transition dipole matrix elements.

We are now in a position to evaluate (8) where we take
|A2g, Sz〉 → |A2〉 |Sz〉. We consider a pump beam at normal
incidence to basal planes of NiPS3, implying (in the trigonal
reference frame) that Ez ≡ 0.

The resulting time-evolution operator Ueff for a single
Ni2+ S = 1 moment can then be written in the form (up to
constants quadratic in E)

Ueff (tp, 0) = 1 + Cz
A1

(tp)E · E∗(Sz )2 + Cz
A2

(tp)(iE × E∗)Sz

+Cxy
E (tp)[(ExE∗

y + EyE∗
x )(SxSy + SySx ) + (ExE∗

x − EyE∗
y )((Sx )2 − (Sy)2)]. (13)

Here, we have labeled the coefficients by the irreducible
representations of D3 under which the respective electric
field bilinears transform. In general, these coefficients Cα

X =
Re Cα

X + i Im Cα
X are complex, and become purely imagi-

nary (real) in the off-resonant (resonant) limit. We further
stress that these coefficients Cα

X = Cα
X (tp) depend on the pump

length tp. For technical details on the derivation of (13), we
refer the reader to Appendix A 2.

The first term in (13) corresponds to a light-induced
modulation of the single-ion anisotropy normal to the plane
of incidence and is proportional to total intensity of the
light, implying a polarization-independent result, with the
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coefficient

Cz
A1

= − i

24
(2g0 − 3g1 + g2), (14)

where g j = 1
ω−εm j 0

[tp − e
i(ω−εm j 0 )tp−1
i(ω−εm j 0 ) ], j = 0, 1, 2, with εmj 0

the energy difference between the ground state and the excited
state with Jeff = j in Eq. (11).

The matrix elements of the second term in (13), transform-
ing in the A2 irreducible representation, are proportional to
the chiral intensity iE × E∗ = iEαE∗

βεαβ (α, β = x, y) which
is finite only for circularly polarized light, and couples to the z
component of the local moment. In the off-resonant limit, this
term is thus understood as a light-induced Zeeman magnetic
field, which lies at the heart of the “inverse Faraday effect”
[1,6,16]. The corresponding coefficient reads as

Cz
A2

= − i

24
(2g0 + 3g1 − 5g2). (15)

Further, there are two terms in (13) which belong to the
two-dimensional E representation of D3 and are analogous to
single-ion anisotropies within the xy plane (which coincides
with the crystallographic basal plane). The coefficient reads
as

Cxy
E = i

24
(2g0 − 3g1 + g2). (16)

An inspection of the symmetry properties of the system
reveals that in principle one can consider a second two-
dimensional E representation involving the spin bilinears
{Sx, Sz} and {Sy, Sz} which, however, is absent from the Ueff .
This follows from a generalized dipole selection rule for the
fictitious orbital angular momentum: Noting that the dipole
operator at normal incidence only involves x and y compo-
nents, allowed transitions need to satisfy �Jz

eff = ±1, where
it is understood that Jz

eff ≡ Sz in the A2 ground state (in which
the orbital angular momentum is quenched) and Jz

eff = lz + Sz

in the excited states. It thus follows that matrix elements of
Ueff in the ground-state manifold derived from second-order
perturbation theory are either diagonal or need to satisfy
�Jz

eff ≡ �Sz = ±2, which is only facilitated by products of
two operators of the type S± = Sx ± iSy, and thus Sz cannot
couple to any off-diagonal spin operators.

We plot the frequency dependency of Cz
A2

and Cxy
E , which

are of relevance to the excitation of spin waves in NiPS3 (see
also Sec. IV), informed by realistic microscopic parameters,
in Fig. 2. In particular, as we detail in Sec. IV, when pumping
with linearly polarized light, only the Cxy

E term contributes to
the in-plane mode f1. On the other hand, exciting the out-of-
plane mode f2 requires spin bilinears {Sx, Sz} and {Sy, Sz},
which is absent here due to the generalized dipole selection
rule stated above. This explains the experimental observation
in Ref. [7] that only the f1 mode is excited in the narrow
resonant frequency range.

III. ANISOTROPIC EXCHANGE INTERACTIONS AND
FLOQUET SPIN HAMILTONIAN

Motivated by the observation of low-energy out-of-plane
mode f2 in a broad frequency range transparent in optical ab-
sorption, we consider an off-resonant mechanism, where the

Δ

Im Cz
A2

|Im Cz
A2
|

0.0 0.5 1.0 1.5 2.0
ω [eV]

Δ

Im Cxy
E

|Im Cxy
E |

−6

−4

−2

0

2

4

6

Δ

Re Cz
A2

|Re Cz
A2
|

0.0 0.5 1.0 1.5 2.0
ω [eV]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Δ

Re Cxy
E

|Re Cz
E|

FIG. 2. Plot of the real and imaginary parts of Cz
A2

[Eq. (15)]
and Cxy

E [Eq. (16)] (and their absolute values for comparison with
Ref. [7]) as a function of the light’s driving frequency. Here, we
have taken the crystal field splitting [7] � = 1.07 eV and spin-orbit
coupling [18] λ = 0.08 eV, and a boxcar pump profile of 100 fs ≈
41.36 meV. Note, a nonuniform pump pulse will likely lead to
a further smearing of the frequency dependence of the observed
intensities.

Floquet spin Hamiltonian introduces effective magnetic fields
that couple to the slow spin fields n, m [see Eq. (1)]. Similar to
the orbital-resonance-induced spin transition as discussed in
Sec. II, the SOC is essential here for the pump field to induce
anisotropic spin interactions, and thus generate an effective
staggered field along ẑ or ŷ which couples to the Néel vector.

To understand the possible spin interaction channels,
we first obtain the effective bilinear spin Hamiltonian in
equilibrium from a minimal two-orbital Hubbard model on
a honeycomb lattice. In particular, we will focus on the
anisotropic spin exchanges which require SOC. In equi-
librium, these anisotropic terms will modify the spin-wave
spectrum, but do not contribute to the effective magnetic fields
when the zigzag order is the true ground state. Next, we ob-
tain the corresponding nonequilibrium spin exchange through
the Floquet formalism, and identify the effective field up to
quadratic order in the pump electric field.

A. Equilibrium spin-exchange interactions

For simplicity, we ignore the ground-state multiplet in d9L
configuration, and restrict to the four states in the d8 configu-
ration at half-filling in the eg orbitals for each Ni2+. We will
focus only on the nearest-neighbor (NN) and third-nearest-
neighbor (TNN) terms, both of which are invariant under
the twofold rotation along the bond (C′

2), product of bond
inversion (i.e., with the inversion center given by a midpoint
of a bond), and mirror with the mirror plane perpendicular

155138-5



SEIFERT, YE, AND BALENTS PHYSICAL REVIEW B 105, 155138 (2022)

to the bond (I × σv), and time reversal (see also Fig. 1 for
an illustration of the C′

2 axis and mirror plane). We then use
the threefold-rotational symmetry about a Ni site and trans-
lational symmetries to generate hopping terms for the full
lattice.

We hence obtain the general symmetry-allowed tight-
binding Hamiltonian within eg orbitals (ignoring the ligand
atoms), which reads as

Ht =
∑

r∈A,δi

�†
r

[
W i−1

C3
(w0τ0σ0 + w1τzσ0 + w2τyσz

+w3τyσx )(W †
C3

)i−1]�r+δi + H.c., (17)

where �r = (eω,↑, eω,↓, eω2,↑, eω2,↓)�r , δi = δ
(l )
i with i =

1, 2, 3, denotes the NN (l = 1) or TNN (l = 3) bonds. δ1

is along the ŷ direction in trigonal coordinate, and δi =
RC3

i−1δ1. Here, WC3 ,RC3 are the threefold-rotation opera-
tions acting on the single-particle fermion operators � and
3d spatial vectors, respectively. τi, σi are identity (i = 0) and
Pauli matrices (i = 1, 2, 3) in the orbital and spin space, re-
spectively. Note that among the hopping integrals denoted as
wμ (μ = 0, . . . , 3), w2 and w3 require SOC.

To capture the onsite interactions, for simplicity, we
consider only the intraorbital Hubbard repulsion HU =
U

∑
i,α n̂i,α (n̂i,α − 1), where α labels the eg orbitals. Note that

Hund’s coupling (JH ) and interorbital Hubbard interaction
(U ′) do not contribute to the exchange coupling at the leading
order in JH ,U ′ because the atoms active in the excited state
perturbed by Ht are occupied by one electron (hole). The
effective spin Hamiltonian at half-filling obtained through
second-order perturbation theory in t/U � 1 is given by

Hex
eff = −PsHtPd

1

HU
PdHtPs, (18)

where Ps,d are projection operators on the single- and double-
electron occupancy space. Hex

eff up to a constant is

Hex
eff =

∑
r,δi


S�
r Γδi 
Sr+δi , (19)

where Γδi = Ri−1
C3

Γδ1R�
C3

i−1, and

Γδ1 =
⎛
⎝Jl − J ′

l + J ′′
l 0 Jl,xz

0 Jl − J ′
l − J ′′

l 0
Jl,xz 0 Jl + J ′

l − J ′′
l

⎞
⎠. (20)

Here, Jl is the lth NN isotropic Heisenberg exchange,
J ′

l , J ′′
l , Jl,xz are the anisotropic spin exchange that requires

SOC. Specifically, we find

Jl = 2
(
w2

0 + w2
1

)
U

,

J ′
l = −2w2

2

U
, J ′′

i = 2w2
3

U
, Jl,xz = 4w2w3

U
, (21)

with wμ = w(l )
μ denoting the μ = 0, . . . , 3 hopping ampli-

tudes on l = 1, 3 nearest-neighbor bonds as introduced in
(17).

In passing, we note that there are a few cautions to fully
apply the minimal model to NiPS3. First, in this consider-
ation, the exchange paths are limited to only between Ni
ions. However, in transition-metal trichalcogenide, the ligand
atoms play an important role to determine the sign of the
exchange interactions. Indeed, the NN Heisenberg term is
found to be ferromagnetic [10], which cannot be explained by
the antiferromagnetic superexchange presented in Eq. (20). It
instead requires considering the superexchange paths through
the ligand atoms following the Goodenough-Kanamori ap-
proach [8,19]. Similarly, for the TNN spin exchange, the
super-superexchange paths are dominant [10,20]. Neverthe-
less, the current consideration obtains all symmetry-allowed
spin-exchange terms and will be taken to derive the Floquet
spin Hamiltonian with the right symmetry.

Second, aside from electron hopping w2,w3, SOC may
also enter into the effective spin Hamiltonian through onsite
term HSOC,onsite = λSOC

∑
i �

†
i τyσz�i. However, we note that

the ground-state multiplet is an orbital singlet, HSOC,onsite

does not have nonzero matrix element within the ground-state
multiplet manifold. A careful analysis including both Ht and
Honsite,SOC indicates that the onsite SOC does not contribute to

the anisotropic spin Hamiltonian up to w2
0λ

2

U 3 , so will be ignored
in further discussions.

B. Floquet spin Hamiltonian

We consider the following periodically driven Hubbard
model:

Ht (t ) =
∑
〈i, j〉

w
αβ
is1, js2

e−ieA(t )·ri j v̂iαs1, jβs2 + H.c.,

HU = U
∑

i

n̂iα (n̂iα − 1), (22)

where ri j = ri − r j , and the effects of the pump laser are
manifested in the kinetic energy Ht (t ) through the Peierls sub-
stitution. For compactness, we have introduced the electron
hopping operator v̂iαs, jβs′ = e†

iαse jβs′ that denotes the hopping
of spin s′ orbital β electron at site j to spin s orbital α electron
at site i.

Consider the electric field 
E = 1
2 ( 
Eeiωt + 
E∗e−iωt ), the

gauge term reads as

e−ieA(t )·ri j = ei
�i j
ω

sin (ωt+φi j ) =
n=∞∑

n=−∞
ein(ωt+φi j )Jn

(
�i j

ω

)
,

(23)

where the “Rabi” frequency of the laser for bond 〈i j〉 is �i j =
e
√

(Re 
E · ri j )2 + (Im 
E · ri j )2, the phase φi j is determined by

tan φi j = Im 
E · ri j/Re 
E · ri j In the off-resonant limit, i.e.,
when |U − nω| is much greater than the bandwidth of the
many-body excited states, we can ignore the heating due to,
e.g., doublon decay [21], the Floquet spin Hamiltonian from
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the Hubbard model can be expressed as

Hex
eff = −

∑
〈i j〉,n,n′

w
α′β ′
js′

1,is
′
2
w

αβ
is1, js2

Jn′

(
� ji

ω

)
Jn

(
�i j

ω

)
ei(n+n′ )ωt ei(n′φ ji+nφi j )Psv̂ jα′s′

1,iβ
′s′

2

Pd

HU + nω
v̂iαs1, jβs2Ps

→ −
∑
〈i j〉,n

w
α′β ′
js′

1,is
′
2
w

αβ
is1, js2

Jn

(
� ji

ω

)
J−n

(
�i j

ω

)
ein(φ ji−φi j )Psv̂ jα′s′

1,iβ
′s′

2

Pd

HU − nω
v̂iαs1, jβs2Ps

= −
∑
〈i j〉,n

w
α′β ′
js′

1,is
′
2
w

αβ
is1, js2

J 2
n

(
� ji

ω

)
Psv̂ jα′s′

1,iβ
′s′

2

Pd

HU − nω
v̂iαs1, jβs2Ps. (24)

From the first to second line, we have considered only the
time-independent effective spin Hamiltonian, and to obtain
the last line, we have used φi j = φ ji + π . Note that compared
with the equilibrium spin Hamiltonian, the pump laser only
modifies the effective exchange coupling strength of a given
bond 〈i j〉 by a factor J 2

n ( � ji

ω
) U

U−nω
. For linearly polarized

light, �i j = e|Re 
E · ri j |. Importantly, �r,r+δ
(l )
i

for the three
l = 1, 3 nearest-neighbor bonds related by C3 rotation can
be different, which may lead to anisotropy terms taking the
Néel vector out of the equilibrium ground-state manifold. On
the other hand, for circularly polarized light, as Re 
E ⊥ Im 
E
and |Re 
E | = |Im 
E |, we find �r,r+δi the same for i = 1, 2, 3.
As a result, the circularly polarized pump laser could only
modify the strength of the spin exchange while preserving
the C3 rotational symmetry, which may significantly modify
the ground-state manifold when the equilibrium spin system
is near a phase transition.

IV. APPLICATION: MAGNON DYNAMICS IN BULK NiPS3

A. Equilibrium spin Hamiltonian

Both experimental and first-principles studies have shown
that the effective spin Hamiltonian for NiPS3 can be captured
by the Heisenberg model with NN, SNN, and TNN spin ex-
change. As the ground-state multiplet for a Ni2+ ion is spin
triplet and orbital singlet, the effective spin-orbit coupling
(SOC) on the ground-state manifold is small, and requires
mixing with higher excited levels. In the following, we ex-
press the equilibrium spin Hamiltonian as Hspin = H(0)

spin +
H(1)

spin, where only H(1)
spin requires SOC.

The zigzag Néel order is stabilized by the isotropic
Heisenberg terms [10]

H(0)
spin = J1

∑
〈i j〉1


Si · 
S j + J2

∑
〈i j〉2


Si · 
S j + J3

∑
〈i j〉3


Si · 
S j (25)

with 〈i j〉l denotes the l nearest-neighbor bond, |J3| � |J1| �
|J2|, and J3 > 0, J1 < 0. The strength of J3 is found at order
10 meV.

H(1)
spin are generally weaker in magnitude, but they are

important in the observation of coherent magnon oscillation
at terahertz frequency. In the following, we model the spin
anisotropy by the single-ion anisotropy [22], which reads as

H(1)
spin = Dz

∑
i

S2
i,z + Dxy

∑
i

(
S2

i,y − S2
i,x

)
, (26)

and |Dz| � |Dxy|. Note that with D3d point-group symmetry
of the crystal, only Dz �= 0 is allowed. However, the bulk
NiPS3 crystalizes in a monoclinic structure [7], which breaks
the threefold rotation due to displacement of adjacent layers
along the â axis. This allows for a much weaker Dxy �= 0.

In passing, we note that other anisotropic spin-exchange
terms may also enter into H(1)

spin. However, as we discuss
below, they do not modify the dynamics of slow modes
qualitatively.

B. Slow modes and low-energy equation of motion

Here, we consider an easy-plane zigzag order (Dz > 0)
which favors alignment along x̂ (Dxy > 0). The slow modes,
i.e., the Goldstone modes, are the transverse fluctuations of
the Néel order, whose energy gap is determined by the the
anisotropy terms in Eq. (26). When the spatial variations of the
ordered state are small and slowly varying, the semiclassical
spin configuration at site r can be described as


Sr ≡ 
SR,α = (−1)αeiM·R Snr

√
1 − (mr )2 + Smr, (27)

where R, α denote the unit-cell coordinate and sublattice label
of the site r, nr = (n0, ny, nz )r denotes the staggered compo-
nent of the spin fields in terms of the static order parameter
n0x̂ and transverse fluctuations nyŷ, nz ẑ, and mr is the ferro-
magnetic component of the fluctuating spin fields. The phase
factor (−1)αeiM·R is chosen to describe the zigzag ordering
pattern (see detailed discussions in Appendix C).

We also include a general form of the effective Hamiltonian
to model the effect of the pump field in the ultrafast regime,

Hpump
eff = −S(hn · n + hm · m), (28)

where hn,m are the effective fields to be determined micro-
scopically up to quadratic order in |E|2.

From Eqs. (25), (26), (27), and (28), we arrive at the
equation of motion for the spatially homogeneous slow
modes:

ṅy = χ−1mz − hm,z, ṁz = −κny ny + hn,y;

ṅz = −χ−1my + hm,y, ṁy = κnz nz − hn,z. (29)

Here, χ−1 ∼ JS is the uniform spin susceptibility, κny , κnz ∼
DS are the anisotropy. Note that ny, mz and nz, my are two sets
of conjugate fields. In the probe-field period, they form two
sets of harmonic oscillators with frequencies � f1 = �ny =√

κnyχ
−1, � f2 = �nz = √

κnzχ
−1. In the pump period start-

ing at t = 0 of duration tp, assuming square pulses hn,m =
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h̄n,m[�(t ) − �(t − tp)], the effective magnetic fields exert
forces to the spin fields, which determine the initial condition
of the free oscillation in the probe period:

mz(t+
p ) = h̄n,ytp, ∂t mz(t+

p ) = κny h̄m,ztp ;

my(t+
p ) = −h̄n,ztp, ∂t mz(t+

p ) = κnz h̄m,ytp. (30)

C. Pump-induced effective fields and initial conditions

1. Pumping the orbital resonance

First, we discuss the initial conditions for the magnetiza-
tion and the Néel vector due to the effective light-induced
single-ion anisotropy. While the limit of off-resonant driving
[with tp(ω − εm0) � 1] is readily treated in the framework
presented in the previous subsection by rewriting the pump-
induced effective Hamiltonian in terms of the magnetization
and Néel vector continuum fields and then identifying the
linear terms (with their coefficients constituting source fields),
this treatment fails for driving frequencies near an orbital
resonance for which the effective time evolution in the S = 1
ground-state sector is no longer unitary, as shown in Sec. II B.
Further, we stress that the quadratic time dependence in (8)
implies that a light pulse with a time-independent fluence
leads to an explicit time dependence of any effective pump-
induced low-energy source term, rendering the assumption
leading to (30) invalid.

To mitigate this, we instead directly compute the initial
conditions for the magnetization and Néel order-parameter
fields through evaluating the respective time-evolved micro-
scopic defining spin expectation values. The magnetization
is given by mz(tp) = 1

N

∑
i 〈n0|Sz

i |n0〉 (tp), where the expec-
tation value is taken with respect to the Néel reference
state |n0〉 = ∏

i |Sx = (−1)si eiM·Ri 〉i corresponding to S = 1
moments fully polarized in the ±x̂ direction depending
on unit-cell coordinate Ri and sublattice αi of site i [see
also the parametrization (27)]. Analogously, the ŷ compo-
nent of the Néel order parameter is obtained as ny(tp) =
1
N

∑
i(−1)αi eiM·Ri 〈n0|Sy

i |n0〉 (tp). Using the time-evolution
operator in the interaction picture, we thus find for the ex-
pectation value at site i

〈n0|Sz
i |n0〉 (tp) = 〈±i|U †

eff (tp, 0)SzUeff (tp, 0)|±i〉 . (31)

With the general form of (13) we can write to second order

U †
eff (tp, 0)SzUeff (tp, 0) ≈ Sz +

∑
O

(
Re(CO(E, E∗)){Sz,O}

+ i Im(CO(E, E∗))[Sz,O]
)
, (32)

where O denote the (products of) spin operators ap-
pearing in (13), and CO(E ) their respective coefficients
(here, we have absorbed the electric field bilinears into
the coefficients for ease of notation). We note that the
nonunitarity of time evolution is reflected in the presence
of the anticommutator, and unitarity is recovered in the
off-resonant limit where Re CO = 0, as argued earlier. Tak-
ing the expectation value of (32) with respect to |Sx = ±〉,
we find that the only nonvanishing contributions are given
by 〈{Sz, Sz}〉 = 1 and 〈[Sz, SxSy + SySx]〉 = −i, as well as
〈±|{Sy, SxSy + SySx}|±〉 = ±1 and 〈±|[Sy, Sz]|±〉 = ±i. We
hence find the initial conditions for the equilibrium relax-

ational dynamics of the out-of-plane magnetization and its
velocity induced by the perturbation as

mz(t+
p ) = Re(Cz

A2
)iE × E∗ + Im(Cxy

E )(ExE∗
y + H.c.), (33a)

∂t mz(t+
p ) = −κny(t+

p )

= −κ Re(Cxy
E )(ExE∗

y + H.c.) + κ Im(Cz
A2

)iE × E∗,

(33b)

which supersede (30) in the regime where the coupling of the
light to the orbital resonance is most dominant. We stress that
Eqs. (33a) and (33b) have multiple qualitative and semiquan-
titative implications for experiment. Away from finite pump
lengths (away from the resonant or off-resonant limits), both
Cz

A2
and Cxy

E are complex. Hence, by pumping with linearly or
circularly polarized light the first (second) terms in (33a) and
(33b) are activated and determine the initial conditions for the
relaxational dynamics. By tuning ω (e.g., to the off-resonant
limit such that the coefficients become purely imaginary),
the balance of (33a) and (33b) is changed (and thus oscilla-
tions become more sinelike or cosinelike) in a characteristic
manner, which can be observed by tracking the phase of the
magnetization oscillations with respect to a fixed time t0 = 0
(assuming constant pump lengths).

2. Floquet modification of spin exchange

Next, we obtain the effective magnetic field through the
bond-dependent anisotropic Floquet spin Hamiltonian, which
is induced by the linearly polarized pump. Note the staggered
field along ẑ and ŷ, i.e., hnz and hny , can be obtained from
Sx

r Sz
r+δi

+ Sz
rSx

r+δi
and Sx

r Sy
r+δi

+ Sy
rSx

r+δi
types of exchanges,

respectively. To be specific, defining J (n)
xz,δi

as the exchange-
coupling coefficient for spin bilinear {Sx, Sz} on bond 〈r, r +
δi〉 from the nth order photon absorption, i.e., with resolvent

1
U−nω

, we find

Hpump
eff,nz

=
∑
r,i

J (1)
xz,δi

(〈
Sx

r

〉
Sz

r+δi
+ Sz

r

〈
Sx

r+δi

〉) + O(| 
E |4)

= − 2S2n0

∑
r,i

J (1)
xz,δi

nz

= − 2S2n0

υu.c.

∫
d2x

[∑
i

J (1)
xz,δi

]
nz. (34)

From Eqs. (24) and (34), we can read off the effective stag-
gered magnetic field which couples to the ẑ component of the
Néel vector as

hn,z = −2n0S

[∑
i

J (1)
xz,δi

]

= −8n0w2w3S

U − ω

[(
�δ1

ω

)2

− 1

2

(
�δ2

ω

)2

− 1

2

(
�δ3

ω

)2]

= 6n0w2w3S

U − ω

(
�Rabi

ω

)2

cos 2φ, (35)
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where �Rabi = e|Re 
E ||δi|. Similarly, we obtain the field for
the in-plane component

hn,y = −2n0S

[∑
i

J (1)
xy,δi

]
= −3n0w

2
3S

U − ω

(
�Rabi

ω

)2

sin 2φ.

(36)

Using Eqs. (30) that are valid in the off-resonant limit,
we can find the initial conditions for the magnetization
oscillations:

mz(t+
p ) ∼ − w2

3tp

U − ω

(
�Rabi

ω

)2

sin 2φ, ∂t mz(t+
p ) = 0 ;

my(t+
p ) ∼ −w2w3tp

U − ω

(
�Rabi

ω

)2

cos 2φ, ∂t mz(t+
p ) = 0.

(37)

D. Experimental consequences

We discuss implications from our theory to the experiment
carried out by Afanasiev et al. in Ref. [7], where the pump
beam is linearly polarized. From Eqs. (33a) and (33b), the
resonant mechanism we proposed through pumping orbital
resonances excites only the in-plane f1 mode (i.e., out-of-
plane uniform magnetization). The out-of-plane f2 mode (i.e.,
in-plane uniform magnetization) cannot be excited due to the
absence of the single-ion spin bilinear {Sx, Sz} as a conse-
quence of the orbital selection rule (see Sec. II B for detailed
discussions). The amplitude of the magnetization oscillation
m̄z is determined by the initial conditions of mz(t+

p ) from
Eqs. (33a) and (33b), and reads as

m̄z =
(

mz(t+
p )2 +

(
∂t mz(t+

p )

ω

)2)1/2

=
(

Im(Cxy
E )2 + κny

χ−1
Re

(
Cxy

E

)2
)1/2

. (38)

Note that since ImCxy
E and ReCxy

E have zeros at different ω (see
also Fig. 2), the above form implies that the experimentally
observed amplitude does not feature zeros as a function of
ω; however, in our case κ/χ−1 ∼ D/J is small so that we
expect the contribution from Im(Cxy

E ) to strongly dominate
and determine the frequency dependence of m̄z.

From Eq. (37), the off-resonant mechanism we proposed
through anisotropic Floquet spin exchange can excite both f1

and f2 modes. Thus, according to our theory, the observation
of only f2 mode in the optical transparent photon energy win-
dow 0.1 ∼ 0.9 eV implies that the hopping integrals satisfy
w2 � w3.

We note that our theory shows that the f1 mode can also
be pumped using circularly polarized light via the orbital-
resonance mechanism, according to Eqs. (33a) and (33b),
constituting an example of the previously discussed inverse
Faraday effect [16].

V. APPLICATION: DYNAMICS OF SPIN WAVES AND
VORTICES IN MONOLAYER NiPS3

In this section, we propose the use of pump-probe meth-
ods to study the collective dynamics spanning three distinct
phases of two-dimensional XY-like magnets, arguing that the
technique has the capability to observe effects associated with
spin waves, vortices, and quasi-long-range order.

This possibility is built on remarkable progress made in
recent years exfoliating van der Waals materials which remain
magnetically ordered down to the monolayer limit [23,24].
We therefore now turn to a single (two-dimensional) layer
of NiPS3 for which recent Raman-scattering experiments find
no signature of magnetic ordering in the monolayer limit
[11]. Given the dominant easy-plane anisotropy in (bulk)
NiPS3 as discussed in Sec. IV, these findings suggest the
intriguing possibility that the interaction between the in-plane
local moments has an (approximate) SO(2) symmetry and
thus monolayer NiPS3 may realize an XY model. In two-
dimensional XY models fluctuations prevent the spontaneous
breaking of the SO(2) symmetry, and the model instead
shows a topological phase transition at TBKT from a regime
with algebraically decaying correlations (at low temperatures
T < TBKT) to an exponential decay (high temperatures T >

TBKT) driven by the proliferation of vortices as topological
defects of the order-parameter field, as shown by Berezinskii,
Kosterlitz, and Thouless [25,26]. We note that surface ter-
mination effects have an impact on the precise nature and
strength of interactions and anisotropies, and thus may lead
to the distinct behaviors of monolayer and few-layer systems,
while a naive model for the latter in terms of weakly coupled
XY models would also predict the absence of long-range
order. A detailed understanding requires a realistic ab initio
modeling of the microscopic interactions which we leave for
further studies.

As established experimental techniques for resolving the
dynamics of magnets, e.g., neutron scattering, are only of lim-
ited applicability to 2D van der Waals magnets, the purpose
of the following section is to study how the unconventional
dynamics of BKT physics can be resolved within the ultrafast
optical pump-probe framework outlined in Sec. I A.

We obtain a minimal action based on the above consid-
erations by parametrizing the in-plane Néel order parameter
n = n0(cos φ, sin φ, 0) and the magnetization m = mzẑ, ob-
taining

SXY = 1

2vu.c.

∫
dt d2x

{
2Sn2

0mz∂tφ

− [
ρn2

0(∇φ)2 + m2
effS

2m2
z

]}
, (39)

where it becomes clear from the first term that the in-plane
angle of the Néel order parameter φ and the transverse
magnetization mz are conjugate variables, for which linear
equations of motion can be derived. ρ ∼ JS2 is the spin
stiffness, m2

eff ∼ J is given by the uniform spin susceptibility.
We further allow for a (weak) in-plane anisotropy of strength
hp compatible with the point-group symmetry of the system
(D3d ), which can be written as

Sp = 1

2vu.c.

∫
dt d2x{2hp cos (pφ)}, (40)
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FIG. 3. Schematic illustration of the phases of the XY model
with a sixfold anisotropy as a function of temperature T and at
momenta k. The gray areas denote crossovers at finite momentum
k. A given temperature T within the ordered phase T < Tc is seen
to define a critical momentum k∗ above which the dynamics is well
described in terms of the critical BKT scaling.

where p = 6 for the zigzag Néel order on the honey-
comb lattice with spin-orbit coupling as discussed previously.
Renormalization group studies [12] found two phase transi-
tions, at TBKT and Tc when p = 6, where TBKT > Tc. Below
Tc, the system orders into one of the six degenerate minima
selected by the anisotropic term Sp. Above TBKT, the system
is disordered with exponential decaying correlations. At any
Tc < T < TBKT, the system exhibits critical algebraic order.
The phase diagram as a function of temperature (as well as
scaling of excited states at finite momentum) is illustrated
in Fig. 3. Following the previously described framework, we
first model the pump excitation through “source” terms which
couple linearly to the low-energy degrees of freedom for the
duration of the pump pulse, and thus take the system out
of equilibrium. The subsequent relaxational dynamics then
proceeds according to the equilibrium equations of motion,
with initial conditions set by demanding continuity.

A. Pump-induced effective fields

The pump-induced effective fields can be obtained by con-
sidering the bulk expression (28) restricted to the case of
in-plane n and out-of-plane magnetization mz, yielding

Spump,XY
eff = 1

2vu.c.

∫
dt d2x 2S[hmmz

+ n0(hn,x cos φ + hn,y sin φ)]. (41)

Here we note that the field hm couples linearly to mz and
thus is readily incorporated as an inhomogeneity to the linear
equations of motion. Using the formalism presented in
Appendix D and given the (classical) correlation function
Cmzmz we obtain the initial conditions

mz(r, t+
p ) � 0, (42)

∂t mz(r, t+
p ) �

∫
d2k

(2π )2
hm(k)eik·r ω(k)2tp

m2
effS

, (43)

where ω(k) = √
c̃2k2 + r with c̃ = meff

√
ρ/n0 and r =

m2
eff p2hp/n4

0. In particular, in the BKT phase, hp is irrelevant
and thus r = 0.

The corresponding initial conditions of the conjugate fields
to mz, φ, read as

δφ(r, t+
p ) � −

∫
d2k

(2π )2
eik·rhm(k)

tp

n2
0

, (44)

δ∂tφ(r, t+
p ) � 0. (45)

Here, we have expanded in ω(k)tp � 1 which corresponds
to the limit of ultrafast pulses. Noting that the hydrody-
namic modes in the BKT phase are described by coupled
equations of mz and ∇δφ (see later discussions in Sec. V A
for details), we conclude that there is a nonvanishing response
only for fields hm(k) which couple to nonzero wave vectors,
i.e., are spatially nonuniform.

Contrary to hm, the pump-induced field terms hn lead to
nonlinear inhomogeneities in the equations of motion for mz

and φ. To remedy this, one may be tempted to find a pump-
induced initial condition linear in φ using linear-response
theory (rather than explicitly including the inhomogeneity in
the equations of motion). However, as the correlation function
〈φ(r′, t ′) cos φ(r, t )〉 ≡ 0 vanishes by the (unbroken) SO(2)
symmetry both above and below TBKT for hp = 0, we find
a vanishing linear response of the phase φ to pump-induced
effective fields hn,x and hn,y.

On the other hand, if hp > 0 is finite (but small compared
with all other energy scales in the problem), the system orders
at lowest temperatures. The low-energy excitations in this
phase correspond to (gapped) fluctuations about the saddle-
point field configuration of φ. We expand about one of the
six degenerate minima of (40), φl = 2π l/6 with l = 0, . . . , 5,
such that φ = φl + εφ̃ with ε � 1. The action for the pump-
induced fields becomes (we take l = 0 for concreteness)

Spump,XY
eff = 1

2vu.c.

∫
dt d2x 2S[hmmz + n0hn,yφ̃]. (46)

This linear coupling to the pump-induced effective fields
maintains the linearity of the equations of motion and can be
used to determine the initial conditions for the relaxational
dynamics. We emphasize that, even though we have assumed
an ordered ground state, the coupling between hn and φ̃ will
excite dynamics which are of XY character if the spatial pro-
file of h(r) is sufficiently nonuniform [such as a pointlike laser
irradiation yielding hn(r) ∼ δ(r)]: such a field will in general
couple to a broad range of momenta including both long and
short wavelengths. At a given temperature, the anisotropy
term hp becomes irrelevant at short distances and accordingly
excitations with large momenta become identical to those of
the XY model. In the next section, a sharper criteria for the
finite frequency and momentum modes that exhibit dynamics
of BKT phase is presented.

For the particular case of pointlike ultrashort pulses of
duration ω(k)tp � 1, we find the initial conditions for φ̃ and
its velocity (to lowest order in tpω � 1)

φ̃(r, t+
p ) � 0, (47a)

∂t φ̃(r, t+
p ) � δ(r)

m2
effS

n3
0

tphny , (47b)
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and correspondingly

δmz(r, t = t+
p ) � δ(r)

1

n0
tphny , (48a)

δ∂t mz(r, t = t+
p ) � 0, (48b)

where we refer the reader to Appendix D for technical details.
We conclude that for all phases, i.e., below and above TBKT

and within the ordered phase for hp, pump-induced fields
can excite relaxational dynamics by coupling to the out-of-
plane magnetization mz. In addition, we have argued that a
second (conjugate) pathway of driving spin-wave excitations
with XY-model character is possible close to the transition
between the vortex-paired disordered phase and the ordered
phase stabilized by a weak sixfold anisotropy hp.

B. Equations of motion and relaxation dynamics

In order to model the equilibrium dynamics of the XY
model (in the absence of anisotropy and pump-induced fields),
we make use of the duality between the planar XY model and
(2 + 1)-dimensional electromagnetic U(1) gauge theory in the
presence of charged matter as established by Ambegaokar,
Halperin, Nelson, and Siggia (AHNS) [13] as well as Coté
and Griffin [27], with the main steps reproduced by us below.
The electromagnetic duality allows for a unified description
of the combined dynamics of spin waves and vortices in both
quasiordered and disordered phases by making use of the
appropriate constitutive relations for the dual-vortex charge
density and current below and above TBKT.

To this end, we note that the in-plane superfluid velocity
us = u‖ + u⊥ can be decomposed into longitudinal and trans-
verse components which satisfy ∇ × u‖ = 0 and ∇ · u⊥ = 0.
Following Refs. [13,27], these conditions may be solved by
setting u‖ = ∇ f and u⊥ = ẑ × ∇g, where f and g are some
smooth differentiable functions.

The transverse component gives rise to a winding of the
superfluid velocity characterized by

∇ × us = 2πN (r, t )ẑ (49)

which defines the vortex density N (r, t ) = ∑
i niδ(r − ri ) of

a collection of pointlike vortices with charges ni at positions
ri. As vortices are stable topological objects, we have the con-
servation law ∂t N + ∇ · Jv = 0 with the vortex current Jv =∑

i ṙiniδ(r − ri ), where ni = ±1 is the topological charge of
the ith vortex. These considerations suggest the definition of
the dual electric field e = us × ẑ, such that (49) becomes the
Gauss law ∇ · e = 2πN0.1

The equation of motion for mz and φ from Eq. (39) gives

dφ

dt
= m2

eff

n2
0

(Smz ), (50a)

∂t (Smz ) = ρ∇ · u‖. (50b)

1Note that we embed the (2+1)-dimensional electromagnetic the-
ory into the standard (3+1)-dimensional Maxwell’s equation for
ease of notation; in the following we always have ẑ · e = 0 and
b = (0, 0, b)�.

Equations (50a) and (49) determine the time derivative of
the superfluid velocity as

∂t us = ∇∂tφ − 2π ẑ × Jv, (51)

which can be rewritten as Ampère’s law upon defining a
magnetic field as b = meff/(n0

√
ρ )Smzẑ (for details we refer

the reader to Ref. [27]). Faraday’s law follows straightfor-
wardly from Eq. (50b), and we further have ∇ · b = 0 since
b = b(x, y)ẑ. The combined Maxwell equations for the gauge
theory dual to the XY model thus read as

∇ · (εe) = 2π�v, (52a)

∇ × e = − 1

c0

∂b
∂t

, (52b)

∇ · b = 0, (52c)

∇ × b = 1

c0

∂ (εe)

∂t
+ 2π

c0
Jv, (52d)

where �v = Nv is the vortex charge density and Jv the vor-
tex current as defined above, and c0 = √

ρmeff/n0. We have
further introduced a (so far phenomenological) dielectric con-
stant ε to account for bound charges (see below for a detailed
discussion).

It is convenient to decompose vectors in the XY plane
into their longitudinal and transverse components. As intro-
duced earlier, for the superfluid velocity we have u‖ = u‖k̂
and u⊥ = u⊥ẑ × k̂, corresponding to spin-wave and vortex
contributions, respectively. The longitudinal and transverse
projections of the electric field in an analogous decompostion
then read as e‖ = u⊥ and e⊥ = −u‖. Fourier transforming,
the second Maxwell equation reads as (we write k = |k| and
k̂ = k/k)

ike⊥ = 1

c0
iωb · ẑ, (53)

making clear that the transverse component of the electric
field couples to b, i.e., Eq. (50b), such that the longitudinal
components of e decouple from the equations of motion, en-
tering only via the Gauss law εke‖ = 2πρv . Combining the
second and fourth Maxwell equations we finally arrive at an
(inhomogeneous) wave equation for the transverse component
of the electric field, written as(

ε(ω, k)ω2 − c2
0k2

)
e⊥(ω, k) = −2π iωẑ · (k̂ × Jv ). (54)

The solution of (54) depends on the nature of the vortex
current Jv which can be related to the electric field via consti-
tutive relations, taking different forms above and below TBKT,
as we detail below.

1. Gas of free vortices for T > TBKT

Above TBKT, the proliferation of vortices is entropi-
cally favored: within the electromagnetic theory described
above, this phase is described in terms of a gas of free
charges, with a renormalized dielectric function accounting
for bound vortex-antivortex pairs with separations below a
temperature-dependent characteristic separation scale ξ+(T )
which diverges as T → T +

BKT. In order to determine the dy-
namics of the system, the constitutive relation for the vortex
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current Jv must be specified. Following AHNS [13], the vor-
tices experience a Magnus force resulting in a net transverse
current as well as a stochastic force giving rise to longitudinal
diffusive behavior, such that the vortex current is written

Jv (ω, k) = γ0

(
εi j − D

kiklεl j

Dk2 − iω

)
v j (55a)

= γ0
iω

iω − Dk2
k̂e‖ + γ0e⊥ẑ × k̂, (55b)

where γ0 ∼ Dn f ρ
0/(kBT ) ∼ ξ−2

+ ∼ e− b′T
T −Tc is a phenomeno-

logical constant and D is the diffusion constant. Using this
result in (54) one arrives at(

εcω
2 + 2π iωγ0 − c2

0k2
)
e⊥ = 0. (56)

In the limit where c0k
√

εc � 2πγ0 ∼ ξ−2
+ , which is appli-

cable to all wavelengths at high temperatures and small
wavelengths at successively lowered temperatures (but still
T > TBKT), it is sufficient to approximate the dielectric func-
tion by a constant ε(k, ω) � εc, as we are interested in length
scales beyond the typical free vortex separation such that the
iγ0ω term is more important. One thus finds two modes with
dispersions:

ω⊥
1 = −i

2πγ0

εc
and ω⊥

2 = −i
c2

0k2

2πγ0
. (57)

These modes for the transverse electric field correspond
(because of e⊥ = −u‖ and e‖ = u‖) to a relaxation of the lon-
gitudinal components of the superfluid velocity. The dynamics
of the longitudinal component of the electric field is obtained
from the Gauss law and the continuity equation ∂t�v + ∇ ·
Jv = 0, yielding iωke‖ε = 2πk · Jv . Using Jv from above we
obtain the relaxation of the longitudinal component

ω‖ = −i

(
Dk2 + 2πγ0

εc

)
≈ −i

2πγ0

εc
. (58)

Note that the modes ω⊥
1 and ω‖ are (to lowest order) inde-

pendent of k and scale down to zero as T → T +
BKT [13] (see

Fig. 4).

2. Dielectric of vortex-antivortex pairs for T < TBKT

Below TBKT, the vortices are bound into vortex-antivortex
pairs corresponding to electric dipoles in the dual electro-
magnetic theory, so that the free charge density �v = 0 and
current Jv = 0 vanish [13]. In this regime, the bound vortex
pairs thus impact the dynamics through a (in general dy-
namic) renormalized dielectric function ε(ω), whose real and
imaginary parts can be related to the static length-dependent
dielectric function ε̃(r) as Re ε(ω) = ε̃(r = √

14D/ω) and
Im ε(ω) = π/4r d ε̃

dr |r=√
14D/ω. After the manipulations de-

tailed in Ref. [13], one arrives at the dispersion for the
transverse electric field components (see Fig. 4)

ω⊥
± = ±c3(0)k − iD3kπK−1, (59)

where c3(ω) = c0
√

Re ε(ω) and D3 is some constant. It thus
becomes clear that in the quasiordered phase spin waves [with
a linear dispersion, first term in (59)] experience damping due
to the background of vortex-antivortex pairs, with a contin-
uously varying power-law momentum dependence. Note that

FIG. 4. Qualitative illustration of the long-wavelength dynamics
of the XY model. For T > TBKT, two decaying modes with widths �⊥

1

and �‖ as well as a diffusive mode with width �⊥
2 are present, while

below T < TBKT the dynamics is governed by two linearly dispersing
spin waves with anomalous broadening. Note that the mode �‖

corresponds to the longitudinal electric field (vortex contributions to
the superfluid velocity), whose dynamics cannot be excited through
the mechanisms considered here.

the absence of free charges in this regime implies that there
is no dynamics of the longitudinal component of the effective
electric field.

In passing, we argue that the dynamic renormalized dielec-
tric function ε(ω) discussed above applies to a wide range
of frequency above ω∗ ∼ Dk∗2 in the ordered phase close
to the transition to BKT phase (see Fig. 5), where k∗ is the
crossover momentum above which the static dielectric con-
stant ε̃(r ∼ k−1) exhibit the BKT critical power-law scaling
with k, as illustrated in Fig. 3. Loosely speaking, k∗ can be
estimated through the static RG flow of hexagonal anisotropy
hp [12], around which the RG trajectory going towards the RG
fixed point for Tc flows to the stable fixed point for ordered
phase. Because the renormalization to ε(ω) comes from the
bound vortex-antivortex pairs separated within the distance
rD(ω) = √

14D/ω, ε(ω) is unchanged for ω > ω∗. This gives

FIG. 5. Illustration of BKT scaling for excited states, i.e., the
coupled transverse electric field and magnetic field, within the or-
dered regime. The crossover momentum k∗ (see Fig. 3) determines
an inverse length scale which in turn sets an energy scale ω∗ [by
inverting vortex-antivortex bound pair length scale rD(ω)] above
which the dielectric constant receives no further corrections from
hp. Thus, the decay of the excited states exhibits BKT scaling
[see Eq. (60)].

155138-12



ULTRAFAST OPTICAL EXCITATION OF MAGNETIC … PHYSICAL REVIEW B 105, 155138 (2022)

the dispersion for the transverse electric field components

ω⊥
± = ±

√
c̃2k2 + r − iD′

3(c̃2k2 + r)(πK−1)/2 (60)

for ω > ω∗. Same as in the quasiordered phase, the key dif-
ference compared with magnon mode in the conventional
ordered state is the damping term due to background vortex-
antivortex pairs.

C. Experimental consequences

Having formulated how the pump beam’s electric field
gives rise to pump-induced effective fields and modeled the
low-energy dynamics of the in-plane phase and out-of-plane
magnetization renormalized by the presence of free vortices
or bound vortex-antivortex pairs, we briefly comment on ex-
perimental implications of our studies.

For the paramagnetic (disordered) phase above T > TBKT,
we note that no sharp quasiparticles exist, but rather only the
decaying modes, two of which are momentum independent,
namely, ω⊥

1 and ω‖. The remaining mode ω⊥
2 ∼ k2 exhibits

diffusive behavior. Note only the transverse modes ω⊥, which
correspond to the longitudinal components of the superfluid
velocity, can be excited using the microscopic mechanisms
detailed earlier (this is tantamount to the fact that the probe
beam does not excite free vortices). Below TBKT the dynamics
is given by linearly dispersing spin waves with a renormalized
velocity and anomalous lifetime due to their motion in the
background of vortex-antivortex pairs.

While the momentum-independent modes can in princi-
ple be probed using experimental techniques that resolve the
uniform out-of-plane magnetization mz (such as the magneto-
optical Kerr effect), detection of the diffusive mode (and
determining the diffusion constant empirically) as well as
gapless spin waves (and their anomalous decay rates) would
require probing the system at nonzero wave vectors. One ex-
ample for such an experimental protocol is given by transient
grating spectroscopy which has been successfully utilized to
measure spin diffusion [28,29] and also anomalous spin prop-
agation [30,31] in semiconductors. We further note that, as
discussed in Sec. V A, highly focused pump beams (which
only irradiate a small fraction of the material) couple to exci-
tations over a broad range of momenta. Using corresponding
localized probes at different positions in the material would
then also allow one to probe the dynamics of excitation with
nonzero wave vectors, with details depending on the nature of
the experimental setup.

VI. CONCLUSION

In this work, we have established two microscopic mecha-
nisms for driving magnetic excitations using light through the
example of NiPS3. While the first mechanism relies on pump-
ing a d-d orbital resonance (which is rendered dipole allowed
upon considering the inversion-symmetry-breaking S-induced
crystal field in the crystal), splitting the S = 1 ground-state
manifold via spin-orbit coupling, we have also shown that
off-resonant driving can lead to a Floquet Hamiltonian with
modified exchange interactions and anisotropies for the pump
duration.

In a pump-probe setup, these two mechanisms will take
the system out of equilibrium and set the initial conditions
for the subsequent relaxational dynamics according to the
low-energy (hydrodynamic) equations of motion. This work
provides steps towards a more systematic understanding of the
microscopic pathways how light can couple to magnetic exci-
tations, which can be compared with experiments by studying
the electric field polarization, energy, and fluence dependence
of the initial condition of hydrodynamic modes set by pump-
ing. Roles of additional (intermediate) excitations such as
phonons or itinerant charge carriers will be clarified in future
studies. In addition, a recent publication [32] points towards
pumping coherent magnons through intermediate spin-orbital
entangled exciton transition.

While the modeling of the microscopic pump mechanisms
detailed above is informed by the atomic structure and na-
ture of interactions, the relaxational dynamics (after having
determined the appropriate initial conditions) depends only
on the nature of the magnetic ground state and its excitations.
This implies that our framework is readily applied to struc-
turally similar compounds which can have widely differing
magnetic ground states, and be used to probe their low-energy
excitations. We have exemplified this by applying our frame-
work to bulk NiPS3, finding that our study can explain the
recent experimental results by Afanasiev et al. [7]. We further
suggest that pump-probe spectroscopy can be used to gain
insight into monolayer NiPS3 which has been found to be
magnetically disordered with enhanced spin fluctuations, and
thus conjectured to be a magnetic realization of the XY model,
potentially realizing Berezinskii-Kosterlitz-Thouless physics,
which predicts strongly renormalized dynamics due to the
presence of vortex-antivortex pairs and free vortices.

We hypothesize that appropriate pump-probe setups as
discussed here could be of benefit in a wide range of mate-
rials for probing and controlling intrinsic coherent magnetic
excitations, in particular in few-layer (and monolayer) 2D
van der Waals magnets, for which established experimental
techniques such as neutron scattering are inapplicable due to
sample-size limitations.
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APPENDIX A: DETAILS ON SINGLE-ION CALCULATIONS

1. Explicit construction of multiplet wave functions

Here, we explicitly construct the wave functions for the A2g

and T2g multiplets from single-particle d- and p-orbital wave
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functions which we denote in the cubic basis by∣∣t (i)
2g

〉
i=1,2,3

∈ {
√

15yz,
√

15zx,
√

15xy}, (A1a)∣∣e(i)
g

〉
i=1,2

∈ {(3z2 − r2)/
√

12,
(
x2 − y2

)
/2}, (A1b)

|p(i)〉i=1,2,3 ∈ {
√

3x,
√

3y,
√

3z}. (A1c)

Note that the above basis states are orthonormal with re-
spect to the inner product of spherical harmonics 〈 f |g〉 =
(4π )−1

∫ 2π

0

∫ π

0 f ∗(φ, θ )g(φ, θ ) sin θ dθ dφ. We then perform
a unitary basis change to the C3 eigenbasis with

U = 1√
3

⎛
⎝1 ω2 ω

1 ω ω2

1 1 1

⎞
⎠ ⊕ 1√

2

(
1 1
−i i

)

⊕ 1√
3

⎛
⎝1 ω2 ω

1 ω ω2

1 1 1

⎞
⎠, (A2)

where ω = ei2π/3 such that the C3 eigenstates are given by

(|t1〉 , |tω〉 , |tω2〉 , |eω〉 , |eω2〉 , |p1〉 , . . . )

= (∣∣t (1)
2g

〉
, . . . , |p(3)〉)U . (A3)

Noting that eg × eg → 1A1g + 3A2g
(a) + 1Eg, eg × t2g →

1T1g + 3T1g + 1T2g + 3T2g, and t2g × t2g → 1A1g + 1Eg + 3T1g,
we can then uniquely obtain |A2g〉 as given in the main text
and the T2g orbital triplet as

|T2g, 1〉 = 1
2 [|eω〉1 |tω2〉2 + |eω2〉1 |tω〉2 − (1 ↔ 2)],

|T2g, ω〉 = 1
2 [|eω〉1 |t1〉2 + |eω2〉1 |tω2〉2 − (1 ↔ 2)],

|T2g, ω
2〉 = 1

2 [|eω〉1 |tω〉2 + |eω2〉1 |t1〉2 − (1 ↔ 2)]. (A4)

To evaluate angular momentum Lα and dipole rα operator
matrix elements [where rα = (x, y, z)], we find it convenient
to first evaluate them in the cubic basis and reference frame,
and then change to the C3 eigenbasis and transform into the
trigonal frame using the transformation W defined by Eq. (3),
such that

〈d|Lα|d ′〉 =
∑
c,c′

V αβU †
dc 〈c|Lβ |c′〉Uc′d ′ , (A5)

and equivalently for 〈d|rα|d ′〉. Here, |c〉 and |d〉 denote ele-
ments of the cubic basis and C3 eigenbasis basis, respectively.

Evaluating the matrix elements of Lα = Lα
1 + Lα

2 in the
subspace spanned by (A4), we obtain Eq. (2), where
we identify |lz = +1〉 ≡ |T2g, ω

2〉, |lz = 0〉 ≡ − |T2g, 1〉, and
|lz = −1〉 ≡ − |T2g, ω〉.

2. Evaluation of the effective time-evolution operator

To evaluate the time-evolution operator in (7), we represent
intermediate states as a linear combination |m〉 = V m

ls |lz〉 |s〉
where we use the shorthand l ≡ lz and S ≡ Sz with some
coefficients V m

ls (summation convention applies). The matrix
elements then follow as

〈A2|rα|m〉 = 〈A2|rα|l〉︸ ︷︷ ︸
=:Mαl

|s〉V m
ls = MαlV

m
ls |s〉 . (A6)

The matrix representation of the effective 3 × 3 Hamiltonian
for the ground state S = 1 manifold then follows as

Ueff = 1 +
∑

m

(Ex, Ey)MV m ⊗ (V m)�M†(E∗
x , E∗

y )�

i(ω − εm0)

×
[

tp − ei(ω−εm0 )tp − 1

i(ω − εm0)

]
, (A7)

where “⊗” denotes the outer (dyadic) product. We de-
compose Ueff ∼ ∑

O COO into a basis of 3 × 3 Hermi-
tian operators O by taking the operator scalar prod-
uct CO = tr[HeffO]/2 where O ∈ {1, Sα, {Sα, Sβ}, (Sx )2 −
(Sy), (3(Sz )2 − 21)/

√
3} with α < β.

APPENDIX B: DETAILS ON SPIN-EXCHANGE
CALCULATIONS

Useful expressions

The threefold rotation along ẑ in trigonal coordinate on
fermion basis � and 3d vectors, respectively, are

WC3 = ei 2π
3 τy ⊗Kron ei π

3 σz and RC3 =

⎛
⎜⎝− 1

2

√
3

2 0
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎠.

(B1)

From Eqs. (19), (20), and (B1), the equilibrium spin-exchange
interaction on bonds δ2,3 can be expressed explicitly as

Γδ2 =

⎛
⎜⎝Jl − J ′

l − 1
2 J ′′

l

√
3

2 J ′′
l − 1

2 Jl,xz√
3

2 J ′′
l Jl − J ′

l + 1
2 J ′′

l −
√

3
2 Jl,xz

− 1
2 Jl,xz −

√
3

2 Jl,xz Jl + J ′
l − J ′′

l

⎞
⎟⎠,

Γδ3 =

⎛
⎜⎝Jl − J ′

l − 1
2 J ′′

l −
√

3
2 J ′′

l − 1
2 Jl,xz

−
√

3
2 J ′′

l Jl − J ′
l + 1

2 J ′′
l

√
3

2 Jl,xz

− 1
2 Jl,xz

√
3

2 Jl,xz Jl + J ′
l − J ′′

l

⎞
⎟⎠,

(B2)

where l = 1, 3 refers to NN and TNN couplings.

APPENDIX C: EQUATION OF MOTION FOR
LOW-ENERGY SPIN FIELDS

Here, we derive the equation of motion (EoM) for the low-
energy spin fields. We will consider both the duration of the
pump field and the probe period. We proceed with the standard
nonlinear sigma model (NLSM) formulation for collinear an-
tiferromagnets, and obtain the effective Lagrangian in terms of
the continuous spin fields, i.e., the staggered fields (n), their
conjugate ferromagnetic fields (m). To model the effects of the
pump field, we further consider the effective magnetic field
hn, hm that couples to n, m, respectively.

Following Ref. [33], the coherent state path integral for a
Heisenberg spin with spin value S at site r can be obtained in
the basis of the (unit) vector field er, which is defined through
Ŝr |er〉 = Ser |er〉 and |er|2 = 1. For a collinear zigzag Néel
order, it is convenient to parametrize er as

er ≡ eR,α = (−1)αeiM·R nr

√
1 − (mr )2 + mr, (C1)
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where M is the wave vector of the zigzag order, n is the
staggered component with normalization condition |n| = 1,
m is the uniform magnetization per site in unit of the satu-
ration magnetization (= S semiclassically). We have defined
r = R + uα , where R is the coordinate of a unit cell, α labels
the A and B sublattices on a honeycomb lattice. Without loss
of generality, we consider the zigzag order with M = (0, 2π√

3
),

and uA = 0, uB = (0,− 1√
3

).
The effective spin action for the spin Hamiltonian Hspin is

Zs =
∫

Dn Dm δ(n2 − 1)δ(n · m) exp (iSs),

Ss = 1

2υu.c.

∫
dx dy dt

{
2Sm ·

(
n × ∂n

∂t

)
− m2

effS
2m2

− 4(Dz + Dxy)S2n2
z − 8DxyS2n2

y + ρυu.c.(∇n)2

+ 2S(hn · n + hm · m)

}
, (C2)

where υu.c. is the volume of the unit cell, coming from con-
verting 1

2

∑
r → 1

υu.c.

∫
dx dy, with the factor 1

2 entering due
to two-sublattice unit cell m2

eff = 4(J1 + 3J3).
To study the homogeneous order-parameter dynamics, the

spatial gradient on n, m can be ignored. Below, we consider
a zigzag order with the Néel vector along the x axis, i.e.,
limh→0〈n〉 = n0x̂. The staggered field can be parametrized

by n = {n0, ny, nz}, where n0 =
√

1 − n2
y − n2

z is the order

parameter, and ny,z are transverse fluctuations (spin waves).
The first term in Ss comes from the Berry phase of a quantum
spin operator, and in terms of ny,z and my,z, it becomes

2Sm ·
(

n × ∂n
∂t

)
−→ −2Sn0(my∂t nz − mz∂t ny), (C3)

which indicates that ny, mz and nz, my are two sets of conju-
gate fields. Applying the Euler-Lagrange equation for ny, mz

and nz, my, we arrived at the EoM for the continuous fields

ṅy = χ−1mz − hm,z, ṁz = −8SDxyny + hn,y,

ṅz = −χ−1my + hm,y, ṁy = 4S(Dz + Dxy)nz − hn,z.

(C4)

Here, χ is the uniform spin susceptibility, at the leading order
in 1/S and ignoring the anisotropy, it is determined by χ−1

0 =
Sm2

eff/n0 = 4S(J1 + 3J3)/n0.
Equation (C4) can be further expressed as

∂2
t mz + 2γ ∂t mz + �2

ny
mz = κny hm,z + ∂t hn,y,

∂2
t my + 2γ ∂t my + �2

nz
my = κnz hm,y − ∂t hn,z. (C5)

Here, we have introduced a phenomenological decay
term with decay rate γ , which physically comes from
coupling with the environment and satisfies the causality.
The oscillation frequencies are � f1 = �ny = √

8SDxyχ−1 =
2S

√
2(J1 + 3J3)Dxy, � f2 = �nz = √

4S(Dz + Dxy)χ−1 =
2S

√
(J1 + 3J3)(Dz + Dxy).

APPENDIX D: INITIAL CONDITIONS IN
LINEAR-RESPONSE THEORY

The initial conditions for the relaxational dynamics (ac-
cording to the equilibrium equations of motions) due to
the effective pump-induced fields can be computed in
linear-response theory. Here we consider the pump-induced
Hamiltonian of a field hO coupling to the (classical) observ-
able O with Hpump = −(2vu.c.)−1

∫
dt d2r hO(t, r)O(t, r). We

are interested in the response of O′ due to the pump field hO,
noting that O and O′ are not necessarily the same. Hereafter,
we assume that 〈O′〉 = 0 in equilibrium. The linear response
of the observable O′ is then given by

δO′(r, t ) = (2vu.c.)
−1

∫
d2r′

∫ ∞

−∞
dt ′χO′O(r − r′, t − t ′)

× hO(r′, t ′), (D1)

where χO′O(r, t ) is the susceptibility (retarded response func-
tion) of O′ and O. We assume a “box” temporal pump profile
of the form hO(r, t ) = h̄O(r)[�(t ) − �(t − tp)], where tp is
the pump duration and h̄O(r) is the (in general spatially de-
pendent) pump strength. We evaluate the initial conditions
shortly after the pump pulse at time t = t+

p such that t+
p −

tp = 0+ is an infinitesimally small positive number, yield-
ing δO′|t=t+

p
= (2vu.c.)−1

∫
d2r

∫ tp

0 dt ′h̄O(r′)χ (r − r′, t+
p − t ′)

and similarly for ∂tδO. For brevity, the subscript of χ will
be dropped unless there is ambiguity. Writing the suscepti-
bility in terms of its imaginary part χ ′′(ω) in the frequency
domain χ (t − t ′) = ∫

dω′ i
π

e−iω(t−t ′ )χ ′′(ω)�(t − t ′) (which
is obtained making use of Kramers-Kronig relations and
Plemelji theorem) [34], the temporal integration can be per-
formed,

δO′|t=t+
p

= (2υu.c.)
−1

∫
d2r′

∫
dω′hO(r′)

1

πω′ (1 − e−itpω
′
)

×χ ′′(r − r′, ω′). (D2)

We further note that χ ′′ is related to the correlation func-
tion CO′O(r, t ) = 〈O′(r, t )O(0, 0)〉 through the fluctuation-
dissipation theorem. In the classical limit it reads as
2χ ′′(ω, k) = βωC(ω, k), thus

δO′|t=t+
p

(r) = (2υu.c.)
−1

∫
d2k

(2π )2

∫
dω′ β

2π
eik·r(1 − e−itpω

′
)

× h̄O(k)C(ω′, k). (D3)

Depending on the nature of perturbing and responding observ-
ables, it is convenient to use either Eq. (D1), (D2), or (D3).
To proceed, it is convenient to relate the response function
χ(∂tO′ )O and χO′(∂tO) with χO′O as

χ(∂tO′ )O(ω, k) = −χO′(∂tO)(ω, k) = ω

i
χO′O(ω, k), (D4)

where using χ(∂tO′ )O in the linear-response formulas above
gives the initial condition of δ∂tO′.

1. Linear response deep in the ordered state

To obtain the initial condition in the probe period for
coherent magnon in the zigzag-ordered state, we follow the
discussion in Ref. [6], from Eq. (C5), the Fourier transform of
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spin susceptibility at k = 0 reads as

χmzmz (ω) ∼ 1

ω2 + 2iγω − �2
ny

.
(D5)

In the limit of short pulse, i.e., tp � ω−1, γ −1, the effective
field hm acts as an impulse to the magnetization, giving the
magnetization an initial velocity ∂t m, while the effective field
hn provides initial amplitude of m for free oscillation in the
probe period. We find (setting n0 ≡ 1)

mz(t+
p ) = h̄n,ytp, ∂t mz(t+

p ) = κny h̄m,ztp,

my(t+
p ) = −h̄n,ztp, ∂t mz(t+

p ) = κnz h̄m,ytp. (D6)

2. Linear response in and proximate to the BKT phase

In and proximate to the BKT phase, it is convenient to
describe the dynamics in terms of the magnetization field
mz and the phase field φ, which can be conveniently for-
mulated in terms of a dual electromagnetic theory. Defining
φ = φl=0 + φ̃ (without loss of generality, we take φl = 0), the
action for the XY model with hexagonal anisotropy hp after

integrating out mz and performing the saddle-point expansion
about φl=0 = 0 reads as

SXY = 1

2vu.c.

∫
dt d2x

[
n4

0

m2
eff

(∂t φ̃)2 − ρn2
0(∇φ̃)2 − hp p2φ̃2

]
.

(D7)

The classical correlation function (i.e., assuming that the
mode is on shell only) is obtained as

Cφ̃φ̃ (k, ω) = πm2
effυu.c.

βn4
0ω(k)2

[δ[ω − ω(k)] + δ[ω + ω(k)]], (D8)

where ω(k) = √
c̃2k2 + r with c̃ = meff

√
ρ/n0 and r =

m2
eff p2hp/n4

0, with β−1 = kBT as usual. In particular, in the
BKT phase, hp is irrelevant and thus r = 0.

The autocorrelation function for the conjugate field mz

reads as

Cmzmz (k, ω) = πυu.c.

βm2
eff S

2
[δ[ω − ω(k)] + δ[ω + ω(k)]]. (D9)

From Spump,XY
eff we read off h̄mz = 2Shm and thus obtain

δmz(r, t+
p ) =

∫
d2k

(2π )2
eik·rhm(k)

1

m2
effS

{1 − cos[ω(k)tp]}, (D10a)

δ∂t mz(r, t+
p ) =

∫
d2k

(2π )2
eik·rhm(k)

1

m2
effS

ω(k) sin[ω(k)tp]. (D10b)

Using the autocorrelation for φ fields from Eqs. (D8) and (D4), the initial condition for the phase field δφ(r, t+
p ) reads as

δφ(r, t+
p ) = −

∫
d2k

(2π )2
eik·rhm(k)

1

n2
0ω(k)

sin[ω(k)tp], (D11a)

δ∂tφ(r, t+
p ) =

∫
d2k

(2π )2
eik·rhm(k)

1

n2
0

{1 − cos[ω(k)tp]}. (D11b)

In the limit tpω(k) � 1, the initial conditions read as

δmz(k, t+
p ) ≈ 0, δ∂t mz(k, t+

p ) ≈ ω(k)2

m2
effS

hmtp, (D12a)

δφ(k, t+
p ) ≈ − 1

n2
0

hmtp, δ∂tφ(k, t+
p ) ≈ 0. (D12b)

In the ordered phase due to the relevant sixfold hexagonal anisotropy perturbation hp, it is argued in the main text that the
pump-induced field hn may also induce hydrodynamic modes of the BKT phase at finite wave vector when T is close to Tc.
Further, with h̄φ̃ = 2Sn0hny and assuming a δ(r)-spatial profile of the pump-induced fields, we obtain using Cφ̃φ̃ from (D8), after
performing the ω′ integration,

δφ̃(r, t = t+
p ) =

∫
d2k

(2π )2
eik·rhny (k)

Sm2
eff

n3
0ω(k)2

{1 − cos[ω(k)tp]}, (D13a)

δ∂t φ̃(r, t = t+
p ) =

∫
d2k

(2π )2
eik·rhny (k)

Sm2
eff

n3
0ω(k)

sin[tpω(k)] (D13b)

and

δmz(r, t = t+
p ) =

∫
d2k

(2π )2
eik·rhny (k)

1

n0ω(k)
sin [tpω(k)], (D14a)

δ∂t mz(r, t = t+
p ) =

∫
d2k

(2π )2
eik·rhny (k)

1

n0
{1 − cos[ω(k)tp]}, (D14b)

where ω(k) = √
c̃2k2 + r, with r the hexagonal anisotropy gap. Expanding in tpω(k) � 1 then leads to Eqs. (47a) and (47b).
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