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We construct a class of edge theories for a family of fermionic Abelian topological phases with K matrices of

the form K = (k1 0
0 −k2

), where k1, k2 > 0 are odd integers. Our edge theories are notable for two reasons: (i)

they have finite-dimensional Hilbert spaces (for finite-sized systems) and (ii), depending on the values of k1, k2,
some of the edge theories describe boundaries that cannot be gapped by any local interaction. The simplest
example of such an ungappable boundary occurs for (k1, k2) = (1, 3), which is realized by the ν = 2/3 fractional
quantum Hall state. We derive our edge theories by starting with the standard chiral boson edge theory, consisting
of two counterpropagating chiral boson modes, and then introducing an array of pointlike impurity scatterers.
We solve this impurity model exactly in the limit of infinitely strong impurity scattering, and we show that
the energy spectrum consists of a gapped phonon spectrum together with a ground-state degeneracy that scales
exponentially with the number of impurities. This ground-state subspace forms the Hilbert space for our edge
theory. We believe that similar edge theories can be constructed for any Abelian topological phase with vanishing
thermal Hall coefficient, κH = 0.
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I. INTRODUCTION

Many insights into two-dimensional topological phases
can be obtained by examining the properties of their spatial
boundaries [1]. These boundaries are particularly interesting
in cases where they host gapless edge excitations. The struc-
ture of these edge modes can then be conveniently described
in terms of an edge theory.

At its core, an edge theory for a 2D topological phase
consists of two pieces of data: (i) a Hilbert space H and (ii)
a complete list of local operators {O} acting in H. These two
pieces of data have a simple physical meaning: H describes
the subspace of low-energy edge excitations of some 2D sys-
tem, while {O} describes the projections of local operators
in the 2D system into this low energy subspace. We note
that edge theories of systems with global symmetries carry
additional structures [2], but in this paper we will not be
interested in such symmetry-enriched topological phases.

A famous example of an edge theory is the chiral boson
field theory that describes the edge of ν = 1/k Laughlin frac-
tional quantum Hall (FQH) state [1] [Fig. 1(a)]. This edge
theory consists of a single 1D field φ(x) obeying the com-
mutation algebra [φ(x), ∂yφ(y)] = − 2π i

k δ(x − y) as well as

the global constraint ei
∫ L

0 ∂xφ dx = 1. The Hilbert space H is
the unique irreducible representation of this operator algebra,
while the local operators {O} consist of arbitrary derivatives
and products of the electron creation/annihilation operators
e±ikφ .

The goal of this paper is to construct edge theories that are
fundamentally different from the above Laughlin edge theory.
In particular, we wish to find edge theories that have a finite-
dimensional Hilbert space H for a finite-size system. Such

edge theories are desirable because they provide a simple and
well-regulated setting to study edge physics.

The simplest example of a finite-dimensional edge theory
is the lattice edge theory for the toric code model [3–6]
[Fig. 1(b)]. The Hilbert space H for this edge theory consists
of a chain of N spin-1/2’s, arranged in a ring, with a Z2 global
constraint

∏N
i=1 σ x

i = 1. The local operators {O} consist of
arbitrary products of the spin operators {σ x

i , σ z
i σ z

i+1} acting on
nearby lattice sites. This edge theory describes a particular
boundary of the toric code model that has 2N−1 zero energy
edge states below a bulk gap.

More generally, it is natural to ask which other topolog-
ical phases can support finite-dimensional edge theories. To
answer this question, it is useful to divide topological phases
into three classes:

(I) Topological phases that have a vanishing thermal
Hall coefficient [7,8], κH = 0, and support a gapped
boundary.

(II) Topological phases that have a vanishing thermal
Hall coefficient, κH = 0, but do not support a gapped
boundary.

(III) Topological phases with a nonzero thermal Hall co-
efficient, κH �= 0.

Type-I topological phases almost certainly have finite-
dimensional edge theories. Indeed, it is believed [9–12] that
all phases of this type can be realized by string-net models
[13,14], and every string-net model has a finite-dimensional
edge theory similar to that of the toric code model [15].
On the opposite end of the spectrum are type-III topological
phases: For phases in this class, it seems unlikely that a finite-
dimensional edge theory is possible at all, since the nonzero
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FIG. 1. Examples of edge theories for type-I and type-III topo-
logical phases. (a) A chiral boson field theory describes the edge
of the (type-III) Laughlin state. (b) A spin-1/2 chain with a global
constraint describes the edge of the (type-I) toric code model. The
edge degrees of freedom correspond to the spins (blue dots) along
the boundary of the lattice.

thermal Hall coefficient κH �= 0 presumably means that the
edge spectrum must form a continuum.

The key question is then whether there exist finite-
dimensional edge theories for type-II topological phases. In
this paper, we answer this question in the affirmative. Our
main result is a collection of finite-dimensional edge theories
for a family of type-I and type-II Abelian topological phases.
Specifically, we construct edge theories for fermionic Abelian
topological phases described by 2 × 2 K matrices of the form
K = (k1 0

0 −k2
) where k1, k2 > 0 are odd integers. Two pro-

totypical examples are (k1, k2) = (1, 3) and (k1, k2) = (1, 9).
The former is a type-II topological phase realized by the
ν = 2/3 FQH state, while the latter is a type-I topological
phase realized by the ν = 8/9 FQH state. More generally, the
phases for which k1 · k2 is a perfect square are of type I, while
the other phases are of type II [16,17].

To derive our finite-dimensional edge theories, we start
with the standard edge theory for K = (k1 0

0 −k2
), which con-

sists of two counterpropagating chiral boson edge modes. We
then introduce an array of pointlike impurity scatterers that
scatter electrons between the two edge modes. The impurities
we introduce come in two types: conventional impurities that
scatter a single electron from one mode to the other and super-
conducting impurities that scatter a single electron from one
mode to a hole on the other, with a Cooper pair entering the
superconductor. Using the formalism developed in an earlier
work [18], we solve this impurity model exactly in the limit of
infinitely strong impurity scattering. In this limit, the energy
spectrum of the impurity model can be cleanly separated
into two pieces (Fig. 4): (i) a gapped phonon spectrum and
(ii) a ground-state degeneracy that scales exponentially with
the number of impurities. This ground-state space forms the
Hilbert space for our low-energy edge theory.

It is natural to compare our impurity model with the models
considered in Refs. [19–21], in which a fractional quantum
spin Hall edge is proximity coupled to an alternating sequence
of superconductors and ferromagnets. At first glance, the
models share similar physics: like our impurity model, the
models of Refs. [19–21] exhibit a gapped phonon spectrum
and an exponentially large ground-state degeneracy. However,
this analogy is (mostly) misleading. The key distinction is that

the models considered in Refs. [19–21] describe an alternating
sequence of two different types of gapped boundaries, while
there is no such picture for the impurity model for general
k1, k2. Relatedly, while the ground-state degeneracy in Refs.
[19–21] is topologically protected, this is not the case for the
impurity model, where the degeneracy splits at any finite value
of impurity scattering. The one exception to these statements
is the special case k1 = k2: in that case, the impurity model
is indeed a close cousin of the models considered in Refs.
[19–21] and the analogy is valid. (See Sec. II for more details.)

In addition to constructing edge theories, we also in-
vestigate the “gappability” of our edge theories in several
examples. As one might expect, we are able to find gapping
Hamiltonians for the type-I examples but not for the type-II
examples. First, we study one of the simplest type-I edge
theories, namely, (k1, k2) = (1, 9). In this case, we construct
a gapping Hamiltonian which is a sum of commuting local
terms. Next, we consider one of the simplest type-II edge
theories, namely, (k1, k2) = (1, 3). In this case, we show that
there is an obstruction to finding a commuting gapping Hamil-
tonian. We also numerically study a simple noncommuting
edge Hamiltonian in this case and show that it has a gapless
spectrum.

This paper is organized as follows. In Sec. II, we present
the impurity model that underlies our edge theory. In Sec. III,
we solve the impurity model, and in Sec. IV we derive our
edge theory. In Sec. V, we construct a gapping Hamilto-
nian for one of the simplest type-I edge theories, namely,
(k1, k2) = (1, 9). In Sec. VI, we investigate the obstructions
to gapping one of the simplest type-II edge theories, namely,
(k1, k2) = (1, 3). In Sec. VII, we summarize our results and
discuss extensions and future directions. Technical details are
presented in the Appendix.

II. IMPURITY MODEL

Our goal is to derive finite-dimensional edge theories for
fermionic Abelian topological phases described by the 2 × 2
K matrix K = (k1 0

0 −k2
), where k1, k2 > 0 are odd integers.

To do this, we start with the standard edge theory for these
phases and then modify this edge theory by introducing a
set of impurity scatterers. The ground-state subspace of this
impurity model will define our finite-dimensional edge theory.
In this section, we describe the impurity model.

First, we recall the standard edge theory for the Abelian
topological phase with K-matrix K = (k1 0

0 −k2
). This edge

theory consists of two counterpropagating chiral boson edge
modes, described by bosonic fields φ1, φ2 satisfying the fol-
lowing commutation relations [1] :

[φ1(x), ∂yφ1(y)] = −2π i

k1
δ(x − y),

[φ2(x), ∂yφ2(y)] = 2π i

k2
δ(x − y),

[φ1(x), ∂yφ2(y)] = 0. (2.1)

Here we use a normalization convention where the electron
operators ψ

†
1 , ψ

†
2 for the two edge modes are

ψ
†
1 = e−ik1φ1 , ψ

†
2 = eik2φ2 (2.2)
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FIG. 2. Impurity model: Two counterpropagating chiral boson
modes with parameters k1, k2 with an alternating sequence of 2N
impurity scatterers. Conventional impurities are located at positions
x1, x3, ...., x2N−1; superconducting impurities are located at positions
x2, x4, ..., x2N .

The Hamiltonian is

H0 = v

4π

∫ L

0
[k1(∂xφ1(x))2 + k2(∂xφ1(x))2]dx. (2.3)

where L is the circumference of the (circular) edge and v is
the velocity of the edge modes (we choose v to be the same
for both modes for simplicity).

The above theory describes a clean edge with no scattering
between the two modes. As such, there are two separately
conserved U (1) charges Q1, Q2 associated with the two edge
modes:

Qi = 1

2π

∫ L

0
∂xφidx, i = 1, 2. (2.4)

We now break both of these U (1) symmetries by introduc-
ing two types of scattering terms into the Hamiltonian: a
conventional scattering term that backscatters electrons from
one edge mode to the other and a superconducting term that
scatters an electron from one edge mode to a hole on the
other mode. Given our definition of the electron operators in
Eqs. (2.2), these two types of scattering terms take the form

U cos(k1φ1 ± k2φ2 − α),

where U, α describe the magnitude and phase of the impurity
scattering.

To facilitate the solution of our model, we will only intro-
duce scattering at a set of discrete points, {xi} along the edge.
We think of these pointlike scatterers as describing two types
of impurities: conventional impurities and superconducting
impurities. We arrange the impurities in an alternating pattern
with conventional impurities at positions x1, x3, ..., x2N−1 and
superconducting impurities located at positions x2, x4, ..., x2N

(Fig. 2). We choose xl to be regularly spaced with a spacing
s = L/2N , and we set all phases α = 0 for simplicity, which
gives the following impurity model:

H = H0 − U
2N∑
l=1

cos[k1φ1(ls) + (−1)l+1k2φ2(ls)]. (2.5)

We will be interested in the properties of this model in the
thermodynamic limit where L → ∞ and N → ∞ with the
impurity spacing s = L/2N fixed.

A few comments about this model: First, we should explain
why we use an impurity model with two types of impurities
instead of just one. The reason we construct our model in
this way is that one type of impurity is not sufficient to open
a gap in the phonon spectrum for general k1, k2. For exam-
ple, suppose we only included conventional impurities, i.e.,
terms of the form U cos(k1φ1 + k2φ2 − α). Consider the case
(k1, k2) = (1, 3), which describes the edge of the ν = 2/3
FQH state. In this case, it is known that a model with only
conventional impurity scattering hosts two gapless counter-
propagating edge modes [22,23]. Indeed, a gapless phonon
spectrum is guaranteed, on general grounds, due to two prop-
erties of this model: (1) the total charge Q = Q1 + Q2 is
conserved and (2) the bulk topological phase has a nonzero
electric Hall conductance, σH = 2/3. (Any system with a
conserved charge and a nonzero Hall conductance must have
gapless phonon excitations.) Generalizing this argument, one
can show [24] that the only case in which a gap can be
opened up by a single type of scattering term of the form
cos(�1k1φ1 + �2k2φ2), with �1,�2 ∈ Z, is if �1,�2 obey
the null vector criterion: [25]

k1�
2
1 − k2�

2
2 = 0. (2.6)

If k1k2 is not a perfect square, then this null vector equa-
tion has no integer solutions �1,�2, and therefore a single
type of impurity can never open a gap in the phonon spectrum.

Our second comment is about the special case k1 = k2.
This case is special because our impurity scattering terms
obey the null vector condition Eq. (2.6) (since �1,�2 = ±1).
Therefore, when we take the limit U → ∞, each impurity
effectively gaps out a short segment of the boundary. We can
then think of the edge, as a whole, as an alternating sequence
of two different types of gapped boundaries. The physics of
the impurity model is then similar to the models discussed in
Refs. [19–21] in which a fractional quantum spin Hall edge
is gapped out in two different ways by proximity coupling to
an alternating sequence of superconductors and ferromagnets.
This connection is discussed in more detail in Ref. [18].

Note that the k1 �= k2 case is qualitatively different. In this
case, the scattering terms do not obey Eq. (2.6), and therefore
we cannot think of the individual impurities as gapping out
short segments of boundary. The impurity model still has a
phonon gap, as we will show below, but this gap has a differ-
ent character because it is a collective property of impurities
rather than the individual impurities.

III. SOLVING THE IMPURITY MODEL

A. Review of general formalism

Our solution of the impurity model Eq. (2.5) is based on
a general formalism for solving quadratic Hamiltonians with
large cosine terms, introduced in Ref. [18]. Below we briefly
review some of the most important results of this formalism
before turning to our specific problem.

Consider a general Hamiltonian of the form

H = H0 − U
∑

i

cos(Ci ), (3.1)

defined on some phase space {x1, p1, x2, p2, ...}. H0 is a
quadratic function of position and momentum variables
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{x1, p1, x2, p2, ...} and Ci are linear functions of these vari-
ables. The Ci’s can be arbitrary except for two restrictions:
(1) {C1,C2, ...} are linearly independent and (2) [Ci,Cj] is
an integer multiple of 2π i for all i, j (so the cosine terms
commute with one another). Reference [18] showed how to
find the low-energy spectrum of Hamiltonians of this kind in
the limit U → ∞.

The basic idea behind the analysis of Ref. [18] is that the
cosine terms act as constraints in the limit U → ∞. These
constraints force the arguments of the cosine terms to be
locked to integer multiples of 2π at low energies. When this
happens, the low-energy spectrum of H can be described
by an effective Hamiltonian Heff acting within an effective
Hilbert space Heff. Importantly, the effective Hamiltonian Heff

is quadratic and therefore can be diagonalized using elemen-
tary methods.

How do we construct the effective Hamiltonian and Hilbert
space? The Hilbert space is easy: Heff is the subspace of the
original Hilbert space consisting of all states |ψ〉 satisfying

cos(Ci )|ψ〉 = |ψ〉, i = 1, 2, .... (3.2)

As for the Hamiltonian, Ref. [18] described a simple recipe for
simultaneously constructing and diagonalizing Heff. The first
step is to find all operators a that are linear combinations of the
phase space variables x1, p1, ... and that satisfy the equations

[a, H0] = Ea +
∑

l

λl [Cl , H0], (3.3)

[a,Cl ] = 0, for all l, (3.4)

where λl and E are arbitrary scalars with E �= 0. The above
operators a have a simple physical meaning: They describe
creation or annihilation operators for the effective Hamilto-
nian Heff. The scalar E is the energy of the corresponding
mode while the scalars λl can be thought of as Lagrange
multipliers associated with the constraints imposed by the
cosine terms.

Once the solutions to Eqs. (3.3) and (3.4) have been iden-
tified, the next step is to separate them into two classes:
annihilation operators with E > 0 and creation operators
with E < 0. If a1, a2, ... form a complete set of linearly
independent annihilation operators and a†

1, a†
2, ... are the cor-

responding creation operators, then they should be normalized
so

[ak, a†
k′ ] = δkk′ , [ak, ak′ ] = [a†

k, a†
k′ ] = 0. (3.5)

After these steps have been completed, the effective Hamilto-
nian Heff can be easily written: According to Ref. [18], Heff is
simply given by [26]

Heff =
∑

k

Eka†
kak . (3.6)

At this point, it is tempting to conclude that the energy
spectrum of Heff is identical to that of a collection of harmonic
oscillators with frequencies Ek . However, this is not correct
in general. Indeed, Ref. [18] showed that each occupation
number eigenstate is D-fold degenerate where

D =
√

| det(Z )| (3.7)

and where Zi j is the commutator matrix:

Zi j = 1

2π i
[Ci,Cj]. (3.8)

An important special case of this result is that the ground state
of H is D-fold degenerate. This ground state degeneracy will
play a central role in this paper.

The intuition behind Eq. (3.7) is that the degeneracy arises
because the arguments of the cosine terms, Ci, do not com-
mute with one another; hence to compute the degeneracy, we
need to carefully analyze the commutation relations between
the Ci’s. See Ref. [18] for more details.

B. Applying the formalism to the impurity model

We now apply the above formalism to diagonalize the
Hamiltonian H Eq. (2.5) in the limit U → ∞. The first step is
to write H in the standard form

H = H0 − U
2N∑
l=1

cos(Cl ), (3.9)

where

Cl = [k1φ1(ls) + (−1)l+1k2φ2(ls)] l = 1, ..., 2N. (3.10)

According to the general formalism, the first step in analyz-
ing the U → ∞ limit is to search for all operators a with the
following properties. First, a should be a linear combination
of the phase space variables ∂yφ1 and ∂yφ2:

a =
∫ L

0
dy [ f1(y)∂yφ1(y) + f2(y)∂yφ2(y)]. (3.11)

Second, a should obey

[a, H0] = Ea +
2N∑
l=1

λl [Cl , H0], (3.12)

[a,Cl ] = 0, l = 1, ..., 2N (3.13)

for some scalars λl and E �= 0. Finally, since our model has
discrete translational symmetry with a unit cell of length 2s,
the functions f1,2 should obey the Bloch condition

f1(x + 2s) = e−iθ f1(x), f2(x + 2s) = e−iθ f2(x), (3.14)

where the crystal momentum θ is defined in [−π, π ] and is
quantized in multiples of 2π/N .

Our task is to solve Eqs. (3.12)–(3.14). For clarity, we
present our results first and then explain the derivation.
What we find is that are an infinite number of solutions to
Eqs.(3.12)–(3.14) for each θ in [−π, π ]. We label these solu-
tions as am,θ and Em,θ , where m can be thought of as a kind
of band index, which runs over the set 0,±1,±2, .... We find
that the am,θ are given by

am,θ =
∫ L

0

dy√|Em,θ |
e− iθy

2s [um,θ ∂yφ1(y) + wm,θ ∂yφ2(y)],

(3.15)

where um,θ and wm,θ are periodic functions of y to be derived
below. Likewise, we find that the corresponding energies Em,θ
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FIG. 3. Phonon spectrum [Eq. (3.16)] of the impurity model
for the parameters v = s = 1 and (k1, k2) = (1, 3). Notice the gap
around E = 0.

are given by (Fig. 3)

Em,θ = (2m + 1)πv

4s
+ (−1)mv

s

[
arccos

(
κ cos

θ

2

)
− π

4

]
,

(3.16)

where κ ≡ | k1−k2
k1+k2

|. Here the am,θ are normalized so they obey
the canonical commutation relations

[am,θ , a†
m′,θ ′ ] = δθ,θ ′δmm′ , Em,θ > 0. (3.17)

With these results, we can immediately write the low-
energy effective Hamiltonian in the limit U → ∞:

Heff =
∑
m,θ

�(Em,θ )Em,θ a†
m,θ am,θ (3.18)

where � is the Heaviside step function. The main result of
this analysis is that the phonon bands Em,θ have a gap around
E = 0 (see Fig. 3). From Eq. (3.16), we can see that the size
of this gap is �ph = v

s arccos(κ ).
We now derive the above results. First, we substitute

Eq. (3.11) into Eq. (3.12), which gives the differential equa-
tions

f ′
1(y) = −i

E

v
f1(y) − k1

2N∑
l=1

λlδ(y − ls),

f ′
2(y) = i

E

v
f2(y) − k2

2N∑
l=1

(−1)l+1λlδ(y − ls).

Solving these equations gives piecewise plane waves

f1(y) = Ale
−i E

v
(y−ls),

f2(y) = Ble
i E

v
(y−ls), ls < y < (l + 1)s, (3.19)

where Al , Bl satisfy the matching conditions

Al = Al−1e−iEs/v − λl k1,

Bl = Bl−1eiEs/v − (−1)l+1λl k2.

Eliminating λl , we derive

(Al − Al−1e−iEs/v )

k1
= (−1)l+1 (Bl − Bl−1eiEs/v )

k2
. (3.20)

We still have to impose the constraint [a,Cl ] = 0, which gives
an additional matching condition for Al , Bl . After regulariza-
tion of the cosine terms (see Appendix B of Ref. [23]), this
constraint gives

(Al + Al−1e−iEs/v )

2
= (−1)l+1 (Bl + Bl−1eiEs/v ).

2
(3.21)

To proceed further, we assume k1 �= k2; we discuss the case
k1 = k2 later. Using Eqs. (3.20) and (3.21), we solve for Al , Bl

in terms of Al−1, Bl−1,(
Al

Bl

)
= T±.

(
Al−1

Bl−1

)
, (3.22)

where T± is defined by

T± = 1
(k2−k1 )

(
(k1 + k2)e−iEs/v ∓2k1eiEs/v

±2k2e−iEs/v −(k1 + k2)eiEs/v

)
and where we use T+ when l is odd and T− when l is even.

The transfer matrix across a full unit cell is given by the
product of T− and T+:(

A2l+2

B2l+2

)
= T−T+

(
A2l

B2l

)
.

Next we use the Bloch condition Eq. (3.14) to deduce that(
A2l

B2l

)
= e−ilθ

(
A
B

)
,

where (A, B) ≡ (A0, B0). Combining the above two equations,
we obtain

T−T+

(
A
B

)
= e−iθ

(
A
B

)
. (3.23)

The above eigenvalue equation completely determines the
phonon dispersion. To solve this equation, notice that
det(T+) = det(T−) = −1, so det(T−T+) = 1. Thus if T−T+
has e−iθ as an eigenvalue, then it has eiθ as the other eigen-
value. Hence, Tr(T−T+) = 2 cos θ . Writing this equation out
explicitly gives

cos(θ ) =
(

k1 + k2

k1 − k2

)2

cos (2Es/v) + 4k1k2

(k1 − k2)2
.

Using a trigonometric identity, this can be further simplified
to

cos (Es/v) = ±
(

k1 − k2

k1 + k2

)
cos(θ/2).

Notice that for each θ ∈ [−π, π ], there are infinitely many
E ’s that satisfy the above equation. These are precisely the
energies Em,θ presented in Eq. (3.16). A little algebra shows
that the corresponding values for A, B are given by

Am,θ = (k1 + k2)2e
−2isEm,θ

v − (k1 − k2)2eiθ + 4k1k2,

Bm,θ = −(1 + e
−2isEm,θ

v )2k2(k1 + k2). (3.24)
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We can now write the explicit form of the two functions um,θ

and wm,θ in Eq. (3.15):

um,θ = A±
m,θ

Nm,θ

ei(θ/2s−Em,θ /v)(y−ls), (3.25)

wm,θ = B±
m,θ

Nm,θ

ei(θ/2s+Em,θ /v)(y−ls), ls � y � (l + 1)s,

(3.26)

where(
A−

m,θ

B−
m,θ

)
≡

(
Am,θ

Bm,θ

)
,

(
A+

m,θ

B+
m,θ

)
≡ eiθ/2T+

(
Am,θ

Bm,θ

)
,

and where we use A−, B− when l is even and A+ and B+ when
l is odd.

The normalization constant Nm,θ is given by

Nm,θ =
√

2πL

v

( |Am,θ |2
k1

+ |Bm,θ |2
k2

)1/2

(3.27)

and is obtained by demanding that am,θ obey the canonical
commutation relations Eq. (3.17).

As we mentioned earlier, the above derivation assumes that
k1 �= k2 since the transfer matrices T± are not well-defined
when k1 = k2. Therefore, strictly speaking, we need a separate
derivation for the case k1 = k2. However, the k1 = k2 case can
be analyzed straightforwardly starting from Eqs. (3.20) and
(3.21), as discussed in Ref. [18]. The end result for the energy
spectrum is the same as one would get by naively substituting
k1 = k2 into Eq. (3.16). Thus, the above results hold for both
k1 = k2 and k1 �= k2.

C. Ground-state degeneracy

In the previous section, we showed that all the phonon
modes of H Eq. (2.5) are gapped in the limit U → ∞. This
means that the only possible low-energy states of H are its
ground states. In this section, we compute this ground-state
degeneracy and show that it grows exponentially with N .

We will use the formalism of Sec. III A for this calculation,
but we first need to take care of a technical problem. The
problem is that our formalism assumes that all degrees of free-
dom are continuous and real valued, but our system has two
integer-valued degrees of freedom, namely, the total charge
Q1, Q2 Eq. (2.4) on the two edge modes. The discrete nature
of Q1, Q2 is important for obtaining the correct ground-state
degeneracy so we need to take account of it in the remainder
of our analysis. We do this using a trick: We treat all degrees of
freedom as though they are real valued and then we introduce
two additional cosine terms to enforce the discreteness of
Q1, Q2 at an energetic level, namely,

H → H − U cos(2πQ1) − U cos(2πQ2).

In the limit U → ∞, these terms lock Q1, Q2 to integer values
and also make the corresponding conjugate variables φ1, φ2

compact. With this trick, we now have 2N + 2 cosine terms
cos(Cl ) with

Cl = [k1φ1(ls) + (−1)l+1k2φ2(ls)] l = 1, ..., 2N,

C2N+1 = 2πQ1, C2N+2 = 2πQ2.

We are now ready to compute the ground-state degen-
eracy using the general formalism. The first step is to
compute the commutator matrix Zi j = 1

2π i [Ci,Cj]. This can
be done straightforwardly once we choose a convention for
the commutation relations for φ1, φ2. We use the following
convention:

[φ1(ls), φ1(l ′s)] = −π i

k1
sgn(l ′ − l ),

[φ2(ls), φ2(l ′s)] = π i

k2
sgn(l ′ − l ).

With this convention, we find

Zi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −α β −α · · · β −α −1 1
α 0 −α β · · · −α β −1 −1
−β α 0 −α · · · β −α −1 1
α −β α 0 · · · −α β −1 −1
...

...
...

...
...

...
...

...
...

−β α −β α · · · 0 −α −1 1
α −β α −β · · · α 0 −1 −1
1 1 1 1 · · · 1 1 0 0
−1 1 −1 1 · · · −1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(3.28)

where

α = k1 + k2

2
, β = k2 − k1

2
. (3.29)

The next step is to compute the ground-state degeneracy
using the formula Eq. (3.7). According to this formula, the
ground-state degeneracy is given by

√| det Z|. We denote
this quantity by DN (for a system of 2N impurities). DN can
be determined by simplifying the Zi j matrix using row and
column operations, Ri → Ri − Ri+2 and Ci → Ci − Ci+2 for
i = 1, ..., 2N − 2. The transformed matrix is of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2α β 0 · · · 0 0 0 0
2α 0 −2α β · · · 0 0 0 0
−β 2α 0 −2α · · · 0 0 0 0
0 −β 2α 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 −α −1 1
0 0 0 0 · · · α 0 −1 −1
0 0 0 0 · · · 1 1 0 0
0 0 0 0 · · · −1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Computing DN using the standard recursive formula for the
Pfaffian of a skew-symmetric matrix, we derive the following
recursion relation:

DN = 2αDN−1 − β2DN−2. (3.30)

Solving the recursion relation with D1 = 2 and D2 = 4α,
gives the following explicit formula for DN :

DN =
( k1+k2

2 + √
k1k2

)N − ( k1+k2
2 − √

k1k2
)N

√
k1k2

. (3.31)

In the limit of large N , we see that the degeneracy DN grows
exponentially with N as

DN ∼ 1√
k1k2

(
k1 + k2

2
+

√
k1k2

)N

. (3.32)
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Δph

E

FIG. 4. Many-body energy spectrum of impurity model in U →
∞ limit: Gapped phonon modes and an extensive ground-state
degeneracy.

To summarize, we have shown that the impurity model
H Eq. (2.5) has two properties in the limit U → ∞: (1) the
phonon modes of H have a gap of size �ph = v

s arccos(κ )
[see Eq. (3.16)] and (2) H has a ground-state degeneracy DN

Eq. (3.31). Together, these two results imply that the energy
spectrum of H looks like the one shown in Fig. 4.

IV. FINITE DIMENSIONAL EDGE THEORY

We now derive our edge theory by projecting into the
ground-state subspace of H (Fig. 4).

A. Deriving the edge theory

To construct our edge theory, we need to specify two pieces
of data: (1) the Hilbert space H and (2) the set of local
operators {O} in our edge theory.

We start with the Hilbert space H. In our case, H is simply
the ground-state subspace of the impurity model. This sub-
space consists of all states |ψ〉 obeying two conditions:

am,θ |ψ〉 = 0, cos(Cj )|ψ〉 = |ψ〉. (4.1)

Here, the {am,θ } are the phonon annihilation operators
Eq. (3.15) while the {Cj} are given in Eq. (3.13).

Next we discuss the local operators {O} in our edge theory.
These operators are defined by projecting the local operators
in the original chiral boson edge theory into the ground-state
subspace Eq. (4.1). To analyze this projection, we use the
formalism of Ref. [18]. First, we note that according to Ap-
pendix D3 of Ref. [18], the most general ground-state operator
can be written as a polynomial in e±i�i , where

�i =
2N+2∑

j=1

Z−1
ji Cj . (4.2)

At the same time, it is clear from physical considerations
that ei�i corresponds to a local operator near impurity i (see
below for an explanation). Combining these two facts, we
conclude that {ei�1 , ..., ei�2N } are the basic local operators in
the edge theory. Equivalently, the basic local operators are
{U1, ...,U2N } where

Ui = ei�i+iφ, (4.3)

and where φ is an additional phase that we include in the
definition of Ui to simplify some of the equations below. Our
specific choice of φ is given in Eq. (A14).

The Ui’s should be thought of as analogs of the Pauli spin
operators {σ x

i , σ
y
i , σ z

i } in a quantum spin-1/2 chain: Any ob-
servable in the edge theory can be constructed by taking sums
and products (and adjoints) of the Ui operators. Likewise, any
local operator in the edge theory can be built out of Ui’s with
i restricted to a finite interval.

To understand the physical interpretation of the Ui opera-
tors, notice that

[am,θ , �i] = 0, [Cj, �i] = 2π iδi j, (4.4)

where the first equality follows from Eq. (3.13). These com-
mutation relations have several implications. First, they imply
that Ui commutes with both am,θ and cos(Cj ). This means
that Ui maps the ground-state subspace to itself—an important
consistency check. A second implication is that U −1

i CjUi =
Cj − 2πδi j . This identity gives a physical interpretation to
Ui: we can think of Ui as describing an instanton tunneling
event where Ci shifts by 2π (see Appendix C of Ref. [18] for
more details). This identity also explains why Ui should be
thought of as an operator that is localized near impurity i, as
we claimed earlier.

One aspect of the Ui’s that is worth emphasizing is that
they have even fermion parity. This means that the Ui’s are
not capable of describing fermion parity nonconserving pro-
cesses like an electron tunneling into an edge from another
system. To describe such processes, one needs to supplement
the Ui’s with fermion parity-odd operators. We discuss these
electronlike operators in Appendix B; we will not need them
in the main text.

B. Algebraic definition of the edge theory

In principle, our edge theory is fully defined by the Hilbert
space Eqs. (4.1) together with the local operators Eq. (4.3).
However, it is more convenient to define the edge theory in
terms of the operator algebra obeyed by the Ui operators; this
is analogous to defining a spin-1/2 chain by the algebra of the
Pauli spin operators.

To this end, we now list the fundamental algebraic prop-
erties of the Ui operators (see Appendix A for a derivation).
First,

U −1
i = U †

i , (4.5)

UiUj = e2π iZ−1
i j UjUi, (4.6)

U β
i U −2α

i+1 U β

i+2 = I, (4.7)

where the indices i + 1, i + 2 are defined modulo 2N . Also,

U1U2 · · ·U2N = eiθ1I,

U −1
1 U2U

−1
3 · · ·U2N = eiθ2I, (4.8)

where Eq. (4.8) can be thought of as global boundary condi-
tions and θ1, θ2 are two phases that specify these boundary
conditions. In our setup, the values of θ1, θ2 are given by
Eq. (A16). Finally, the Ui operators obey a technical condition
related to fermion parity:

Tr(U2U4 · · ·U2N ) = 0. (4.9)
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To understand the connection between Eq. (4.9) and fermion
parity, note that

∏N
i=1 U2i ∝ exp(i

∑N
i=1 �2i ). The latter oper-

ator can be identified with the fermion parity operator via the
identity

∑2N
i=1 �2i = −π (Q1 + Q2). Thus, Eq. (4.9) says that

the fermion parity operator in our edge theory has a vanishing
trace. Equivalently, it says that our edge theory contains both
even and odd fermion parity sectors with the same dimension-
ality.

An important property of the above algebraic relations
Eqs. (4.5)–(4.9) is that they are complete. In other words,
there is a unique [27] representation of dimension DN of
the algebra defined by Eqs. (4.5)–(4.9). (See Appendix C for
an algorithm for constructing this representation.) Thus, we
can simply define the edge theory Hilbert space H to be this
unique representation. This algebraic definition is a compact
way to describe the edge theory.

We now discuss the structure of the Z−1
i j matrix since

it plays an important role in our edge theory. We focus
on the 2N × 2N submatrix of Z−1

i j corresponding to i, j =
1, ..., 2N , since this is what appears in the commutation re-
lation Eq. (4.6). It is not hard to show that this submatrix is
given by

(Z−1)1�i, j�2N = X−1S, (4.10)

where X ,S are the following 2N × 2N matrices:

X =

⎛⎜⎜⎜⎜⎜⎜⎝

2α −β 0 · · · 0 −β

−β 2α −β · · · 0 0
0 −β 2α · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 2α −β

−β 0 0 · · · −β 2α

⎞⎟⎟⎟⎟⎟⎟⎠, (4.11)

S =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 −1
−1 0 1 · · · 0 0
0 −1 0 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 0 1
1 0 0 · · · −1 0

⎞⎟⎟⎟⎟⎟⎟⎠. (4.12)

(This expression can be derived straightforwardly by perform-
ing a sequence of elementary row operations on Z similar to
the ones discussed in Sec. III C.)

Equation (4.10) reveals several important properties of the
2N × 2N submatrix of Z−1

i j . First, we can see that Z−1
i j is

translationally invariant since X ,S are translationally invari-
ant; that is,

Z−1
(i+�)( j+�) = Z−1

i j , (4.13)

where the sums i + � and j + � are defined modulo 2N . The
other important property of Z−1

i j is that it is quasidiagonal

in the sense that Z−1
i j decays exponentially with increasing

|i − j|. (This property follows from the fact X has eigenvalues
that are bounded away from 0). Note that this quasidiagonal
structure means that Ui and Uj approximately commute at
large separations.

A final application of Eq. (4.10) is that it can be used to
derive a closed form expression for Z−1

i j for i, j = 1, ..., 2N .

To do this, we use the following formula for the inverse of X :

X−1
i j = 2

k2 − k1

xN−|i− j| + x|i− j|−N

(xN − x−N )(x − x−1)
, (4.14)

where

x = k1 + k2 + 2
√

k1k2

k2 − k1
. (4.15)

Combining Eqs. (4.10) and (4.14) gives a closed form expres-
sion for Z−1

i j for i, j = 1, ..., 2N ,

Z−1
i j = sgn( j − i)

2

k2 − k1

xN−|i− j| − x−N+|i− j|

xN − x−N
, (4.16)

where we define sgn(0) = 0. This expression simplifies in the
thermodynamic limit, N → ∞:

lim
N→∞

Z−1
i j = 2

x−|i− j|

k2 − k1
sgn( j − i). (4.17)

These formulas are useful because they make the alge-
braic relations for the Ui operators more explicit, particularly
Eq. (4.6).

Before concluding this section, we make two more com-
ments. First, we note that the edge theory defined by
Eqs. (4.5)–(4.9) has a lattice translational symmetry. In par-
ticular, there exists a unitary translation operator T that shifts
each Ui → Ui+2:

TUiT
−1 = Ui+2, (4.18)

where i + 2 is defined modulo 2N . To see this, note that
all the defining relations Eqs. (4.5)–(4.9) are invariant under
replacing Ui → Ui+2, since Z−1 is translationally invariant,
Eq. (4.13). This translational symmetry is physically rea-
sonable since it matches the translational symmetry in our
original impurity model Eq. (2.5) with alternating impurity
types.

Our second comment is about the special case k1 = k2 = k.
In that case, the edge theory simplifies substantially. The first
simplification is that Z−1

i j becomes a tridiagonal matrix with 0

on the main diagonal and ± 1
2k on the neighboring diagonals.

Equation (4.6) then reduces to

UiUi+1 = eiπ/kUi+1Ui,

with [Ui,Uj] = 0 for |i − j| � 1. Also, since β = 0, Eq. (4.7)
reduces to

U 2k
i = I.

Not surprisingly, this operator algebra matches the one found
in Refs. [19–21,28], which studied a closely related model
consisting of a fractional quantum spin Hall edge proximity
coupled to an alternating sequence of superconductors and
ferromagnets. Here, the Ui operators correspond to the charge
and spin operators, eiπQj and eiπS j , discussed, e.g., in Ref.
[19].

C. Anyonic string operators

We now discuss the anyonic string operators in our edge
theory. Recall that an important aspect of edge theories of
nontrivial topological phases is that they support nonlocal
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string operators which are parameterized by two endpoints
a and b on the edge. These string operators have a simple
physical interpretation: they describe processes in which a
pair of anyons α, ᾱ are created in the bulk and then moved
near the edge, where they are absorbed near two points a, b.
At an algebraic level, these string operators have two crucial
properties: (1) they commute with all local operators O except
for those supported near their endpoints a and b and (2)
they are nonlocal in the sense that they cannot be written as
products of local operators supported near the two endpoints
a, b.

We will argue below that the two basic string operators in
our edge theory are given by

W 1
ab =

b∏
i=a

Ui, W 2
ab =

b∏
i=a

U (−1)i

i (4.19)

where a, b denote the endpoints of the string operators. Other
string operators can be obtained by considering products
of the form (W 1

ab)m1 (W 2
ab)m2 with 0 � m1 � k1 − 1, and 0 �

m2 � k2 − 1. All together, this gives k1k2 different string
operators—one for every anyon type.

To see that W 1
ab and W 2

ab are legitimate string operators, we
first need to verify property (1), i.e., we need to check that
W 1

ab and W 2
ab commute with all local operators Uc except when

c is near a, b. To see this, we use the commutation algebra
Eq. (4.6) to derive

W 1
abUc = eiϑ1UcW

1
ab, ϑ1 = 2π

b∑
i=a

Z−1
ic , (4.20)

W 2
abUc = eiϑ2UcW

2
ab, ϑ2 =

b∑
i=a

(−1)iZ−1
ic . (4.21)

There are two cases to consider: (i) c could be outside the
interval [a, b], i.e., a < b < c or (ii) c could be inside [a, b],
i.e., a < c < b. In case (i), we can use the large N limit of Z−1

i j
given in Eq. (4.17) to deduce that ϑ1, ϑ2 decay exponentially
with the distance between c and the interval [a, b]. In case (ii),
we can use the global boundary conditions Eq. (4.8) to rewrite
W 1

ab and W 2
ab as products of Ui over the complement of [a, b].

Therefore, in this case, ϑ1 and ϑ2 decay exponentially with the
distance between c and the complement of the interval [a, b].
Combining these two cases, we deduce that

ϑi = O(x− min(|c−a|,|c−b|) ), i = 1, 2. (4.22)

This establishes property (1): W 1
ab and W 2

ab commute with all
local operators Uc except for those supported near a, b, up to
an exponentially small error.

Next we need to verify property (2), i.e., we need to check
that W 1

ab and W 2
ab are nonlocal in the sense that they cannot

be written as products of local operators supported near a
and b. The easiest way to establish this fact is to note that
these string operators obey a nontrivial commutation algebra.
In particular, consider two string operators W i

ab and W j
cd in an

interleaved geometry with a < c < b < d as in Fig. 5. In this
case, one finds that (see Appendix D)

W i
abW

j
cd = eiαi jW j

cdW i
ab, (4.23)

Wab
Wcd

a

c

b

d

FIG. 5. Two partially overlapping string operators, Wab,Wcd .

where αi j with i, j = 1, 2, is the 2 × 2 matrix

αi j =
( 2π

k1
0

0 − 2π
k2

)
+ O(x− min(|a−c|,|b−c|,|a−d|,|b−d|) ). (4.24)

In other words, each pair of operators (W i
ab,W i

cd ) obey a
commutation algebra with a phase factor of e±i2π/ki , up to an
exponentially small error. This nontrivial algebra implies that
W i

ab cannot be written (or approximated) by a product of local
operators supported near a and b, thus proving property (2).

Before concluding this section, we should mention that
the W i

ab operators are closely related to the anyonic string
operators for the standard chiral boson edge theory, namely,

W
i
ab = exp

(
i
∫ b

a
∂xφidx

)
, i = 1, 2.

In particular, it is easy to check that the commutation algebra
for the W i

ab operators is identical to that of W
i
ab. This matching

suggests that the W i
ab and W

i
ab operators correspond to the

same bulk anyons, since the commutation algebra of anyonic
string operators is directly related to the braiding statistics of
the corresponding anyons. Indeed, using the formalism of Ref.
[18], one can check that projecting the chiral boson string
operator W

i
ab into the ground state subspace of the impurity

model gives precisely the string operator W i
ab.

V. GAPPING THE (1,9) EDGE THEORY: A TYPE-I
EXAMPLE

As we mentioned in the Introduction, the above family of
edge theories describes both type-I and type-II topological
phases: the type-I edge theories are those for which

√
k1k2

is an integer, while the other theories are type II. The main
physical difference between the two types of edge theories
involves the question of gappability, i.e., whether there exist
edge Hamiltonians that (i) are local in the sense that they can
be written as a sum of local operators {O} and that (ii) have
a gapped spectrum and a unique ground state. We expect that
such gapping Hamiltonians can be constructed for type-I edge
theories but not for type-II edge theories.
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In this section, we verify this expectation for one of the
simplest type-I edge theories, namely, (k1, k2) = (1, 9). This
edge theory can be thought of as describing the boundary of
the ν = 8/9 FQH state in a scenario where charge conserva-
tion symmetry is broken. Our main result is the construction
of a concrete gapping Hamiltonian for this edge theory.

Our gapping Hamiltonian is given by

Hgap = −1

2

2N∑
i=1

(Ki + h.c.) − 1

2

N∑
i=1

(Li + H.c.), (5.1)

where Ki, Li are two-site and three-site operators of the form

Ki = eiϕK U 4
i U −2

i+1,

Li = eiϕLU 2
2i−1U

−5
2i U 2

2i+1. (5.2)

Here ϕK and ϕL are two phases whose specific values are given
in Eqs. (E7) and (E11). These values will not be important for
our analysis. Also, as always, the indices for the Ui operators
are defined modulo 2N . (See Sec. VI A for an explanation of
how we found the Hamiltonian Hgap.)

A crucial property of the Ki and Li operators is that they
commute with one another:

[Ki, Kj] = [Ki, Lj] = [Li, Lj] = 0. (5.3)

In addition the Ki and Li operators obey the following identi-
ties, for a suitable choice of phases ϕK , ϕL:

K2
i = Ki−1, (5.4)

KQ
2N = I, (5.5)

L2
i = I, (5.6)

where Q = 1
3 (22N − 1). We derive Eqs. (5.3)–(5.6) in Ap-

pendix E.
Using the above identities, we now proceed to compute

the energy spectrum of Hgap. To this end, let us consider the
collection of (commuting) operators {K2N , L1, ..., LN }. From
Eq. (5.5), we know that the eigenvalues of K2N are Qth roots of
unity. Likewise, from Eq. (5.6) we know that the eigenvalues
of Li belong to the set {±1}. Therefore, we can label the si-
multaneous eigenstates of {K2N , L1, ..., LN } as |m; σ1, ..., σN 〉,
where m = 0, 1, ..., Q − 1 describes the eigenvalue of K2N

and σi = ±1 describes the eigenvalue of Li, that is,

K2N |m; σ1, ..., σN 〉 = ei2πm/Q|m; σ1, ..., σN 〉,
Li|m; σ1, ...〉 = σi|m; σ1, ..., σN 〉.

In view of Eq. (5.4), the states |m; σ1, ..., σN 〉 are also simul-
taneous eigenstates of K1, ..., K2N−1, with eigenvalues

K2N−n|m; σ1, ..., σN 〉 = ei2n2πm/Q|m; σ1, ..., σN 〉. (5.7)

Putting this all together, it follows that the |m; σ1, ..., σN 〉
states are energy eigenstates of Hgap with eigenvalue

E (m, {σi}) = −
2N−1∑
n=0

cos(2n2πm/Q) −
N∑

i=1

σi. (5.8)

At this point, we almost have the complete energy spectrum of
Hgap. The only remaining issue is to determine the degeneracy
of each simultaneous eigenspace labeled by {m, σ1, ..., σN }.

We compute this degeneracy in Appendix F. We find that
there is a unique state for every choice of {m, σ1, ..., σN }. Note
that this counting is consistent with the total dimension of the
Hilbert space since there are Q · 2N = 2N

3 (22N − 1) choices of
the quantum numbers m, σ1, ..., σN , which exactly matches
the dimension of the Hilbert space DN = (8N − 2N )/3, as
given by Eq. (3.31).

With Eq. (5.8) in hand, we can now read off the ground
state and the energy gap. Specifically, we see that the ground
state is the (unique) state where m = 0 and σi = +1 for all
i. We can also see that there are two types of low-energy
excitations: spin-flip excitations where σi = −1 for some i
and clock excitations where m is nonzero. To find the energy
gap, we need to compute the energies of these two types
of excitations. We start with the spin-flip excitation, which
has an energy of �flip = 2 since σi = +1 in the ground state
and σi = −1 in the excited state. Moving on to the clock
excitations, these have an energy of [29].

�clock(m) = E (m, {σi = 1}) − E (0, {σi = 1})

=
2N−1∑
n=0

[1 − cos(2n2πm/Q)]. (5.9)

It is easy to check numerically that the lowest energy clock ex-
citation occurs at m = 1 [30]. More generally, one can check
that the lowest energy clock excitations form a degenerate
multiplet of size 4N and occur at m’s of the form m = ±2k

for k = 0, 1, ..., 2N − 1. Specializing to the lowest energy
(m = 1) excitation, we obtain

�clock(1) =
2N−1∑
n=0

[1 − cos(2n2π/Q)].

Substituting Q = 1
3 (22N − 1) and taking the thermodynamic

limit N → ∞ gives

lim
N→∞

�clock(1) =
∞∑

n=0

(1 − cos(3π2−n))

≈ 5.55 (5.10)

Combining these calculations, we conclude that the overall
energy gap is

� = min(�flip,�clock(1)) = 2. (5.11)

In particular, we see that Hgap has a finite energy gap in the
thermodynamic limit, as we wished to show.

VI. OBSTRUCTION TO GAPPING THE (1,3) EDGE
THEORY: A TYPE-II EXAMPLE

In this section, we investigate the gappability of one of the
simplest type-II edge theories, namely, (k1, k2) = (1, 3). This
edge theory can be thought of as describing the boundary of
the ν = 2/3 FQH state in a scenario where charge conser-
vation symmetry is broken. We consider two possible types
of gapping Hamiltonians. The first type of Hamiltonian is a
sum of commuting operators (like the Hgap Hamiltonian that
we found in the (k1, k2) = (1, 9) case) while the second is a
sum of noncommuting operators. In both cases, we encounter
obstructions to gapping the edge.
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A. Absence of local commuting operators

We start by searching for local commuting operators for the
(k1, k2) = (1, 3) edge theory. We focus on the simplest class
of local operators, namely, those of the form

Hi = U a0
i U a1

i+1 · · ·U am
i+m, (6.1)

where a0, ..., am are integers. Such operators can be thought
of as analogs of Pauli strings.

The main result of this section is that there are no nontriv-
ial operators of the form Eq. (6.1) that commute with their
translations, i.e., no nontrivial operators that satisfy

[Hi, Hj] = 0. (6.2)

More precisely, we show that if [Hi, Hj] = 0 for all i, j, and
for arbitrarily large system sizes N , then Hi = (const) · I.
This result means that the (1,3) edge theory does not support
commuting Hamiltonians like the Hgap Hamiltonian that we
found in the (1,9) case.

The first step of the proof is to substitute the commutation
relations for Ui into [Hi, Hj] = 0. This yields the condition

m∑
k,l=0

akalZ−1
(i+k)( j+l ) = 0 (mod 2π ). (6.3)

Next we take the limit N → ∞ and use the formula for Z−1
i j

Eq. (4.17) to deduce

m∑
k,l=0

akal

(
2x−|i+k− j−l|

k2 − k1
sgn( j + l − i − k)

)
= 0 (mod 2π ),

(6.4)

where x is defined in Eq. (4.15). Note that we will ultimately
specialize to the case (k1, k2) = (1, 3), but we keep these
variables general for now.

Next notice that the left-hand side of Eq. (6.4) is exponen-
tially small in the separation |i − j|. In particular, the left-hand
side is strictly greater than −2π and strictly less than 2π

for sufficiently large |i − j|. Hence, the equality must hold
exactly, not just modulo 2π , that is,

m∑
k,l=0

akal

(
2x−|i+k− j−l|

k2 − k1
sgn(i + k − j − l )

)
= 0. (6.5)

for sufficiently large |i − j|. To proceed further, we specialize
to the case where i − j is large and positive. In that case, the
condition reduces to

m∑
k,l=0

akal

(
2x−(i+k− j−l )

k2 − k1

)
= 0 (6.6)

Multiplying both sides by (k2−k1 )xi− j

2 , we derive

m∑
k,l=0

akalx
l−k = 0. (6.7)

The left-hand side can be factored as(
m∑

k=0

akx−k

)(
m∑

l=0

alx
l

)
= 0, (6.8)

so we deduce that one of the two terms on the left-hand side
must vanish. In other words, the polynomial

P(z) ≡
m∑

k=0

akzk (6.9)

has either x or x−1 as a zero. First, suppose that x is a zero.
In this case, we can use a standard theorem about algebraic
numbers to deduce that P(z) is divisible by Q+(z), where
Q+(z) is the minimal polynomial with integer coefficients that
has x as its zero. Likewise, if x−1 is a zero, then P(z) must
be divisible by Q−(z) where Q−(z) is the minimal polynomial
that has x−1 as its zero.

Now we specialize to (k1, k2) = (1, 3). Then x = 2 + √
3

and x−1 = 2 − √
3, and it is easy to see that the two minimal

polynomials Q±(z) are equal and are given by

Q±(z) = z2 − 4z + 1. (6.10)

Therefore, by the above argument, P(z) must be divisible by
z2 − 4z + 1, i.e.,

P(z) =
(

n∑
l=0

blz
l

)
(z2 − 4z + 1) (6.11)

for some integers bl . Equating coefficients of zk on the two
sides gives the identity

ak = bk − 4bk−1 + bk−2 (6.12)

(where we use the convention b−1 = b−2 = 0). The above
identity in turn implies that

Hi ∝ Ob0
i Ob1

i+1 · · · Obn
i+n, (6.13)

where

Oj = UjU
−4
j+1Uj+2. (6.14)

The final step is to recall that Oi = I by the algebraic relation
Eq. (4.7) obeyed by the Ui operators. Hence Hi = (const)I, as
we wished to show. As we mentioned earlier, this result rules
out the possibility of constructing a commuting Hamiltonian
for the (1,3) edge theory like the one that we found in the (1,9)
case.

The above analysis can also be extended to other choices of
k1, k2. Perhaps the most interesting application is in the oppo-
site direction—i.e., finding gapping Hamiltonians for type-I
edge theories, rather than finding obstructions to gapping
type-II edge theories. For example, consider the type-I edge
theory with (k1, k2) = (1, 9) discussed in Sec. V. In this case,
Eq. (4.15) gives x = 2. Hence the minimal polynomials for x
and x−1 are Q+(z) = z − 2, and Q−(z) = 2z − 1, respectively.
Following the same logic as before, one deduces that the
simplest candidates for commuting terms are Ai = U −2

i Ui+1

(as well as UiU
−2
i+1). By construction, the Ai operators are

guaranteed to commute approximately at large separations
but one can check that they actually commute exactly at
all separations—except when they are nearest neighbors, in
which case they anticommute. One can then construct fully
commuting terms by considering the combinations Ki ∝ A−2

i

and Li ∝ A−1
2i−1A2

2i. Indeed, this line of reasoning is what led
us to the gapping Hamiltonian in Sec. V.
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FIG. 6. Gap � between the ground state and first excited state
of Hnc Eq. (6.15) as a function of inverse size 1/N for the two cases
(k1, k2) = (1, 3) and (k1, k2) = (1, 5).

B. Numerical study of non-commuting Hamiltonian

In this section, we discuss the low-energy spectrum of the
following edge Hamiltonian, which is built out of noncom-
muting local operators:

Hnc = −
2N∑
i=1

(Ui + U †
i ). (6.15)

We consider Hnc for two different type-II edge theories,
namely, (k1, k2) = (1, 3) and (k1, k2) = (1, 5). Our main re-
sult is that Hnc is gapless in both cases—consistent with
expectations.

To obtain our results, we use numerical exact diagonal-
ization. The numerical implementation is mostly straight-
forward; the only nontrivial step is the construction of an
explicit matrix representation of Hnc, which we explain in
Appendix C.

To begin, we compute the gap � between the ground state
and the first excited state as a function of system size N . The
results for N = 2, 3, ..., 8 are shown in Fig. 6. For the (1,5)
case, our results are consistent with a gap that scales like
� ∝ 1/N for large N . For the (1,3) case, we do not see simple
scaling behavior at these system sizes, but our results are
still consistent with a gap that vanishes in the thermodynamic
limit.

Next, to get a more detailed picture of the low-energy
spectrum of Hnc, we use the fact that Hnc is invariant under
the discrete translational symmetry operator T defined by
TUiT −1 = Ui+2 (see Sec. IV B for a discussion). This means
that every energy eigenstate |�n〉 can be labeled by both its
energy εn and its crystal momentum θn ∈ [0, 2π ), where θn is
defined by

T |�n〉 = eiθn |�n〉. (6.16)

Note that θn takes values in the set {0, 2π/N, ..., 2π (N −
1)/N} for a system with 2N impurities.

Taking advantage of this additional quantum number, we
compute the energy difference εn − ε0 and crystal momen-
tum difference θn − θ0 for the lowest 100 energy eigenstates
{|�n〉} that belong to the same fermion parity sector as the
ground state |�0〉. (Here ε0, θ0 denote the energy and crystal
momentum of the ground state.) We perform this computation
for N = 8, which corresponds to 16 impurities. To find the
crystal momentum difference θn − θ0, we use the following

FIG. 7. Relative energies, εn − ε0, and crystal momenta, θn − θ0,
for the lowest 100 energy eigenstates of Hnc Eq. (6.15) for (k1, k2) =
(1, 5) and N = 8. The spectrum resembles the chiral boson the-
ory H ′

0 Eq. (6.18): The states along the guiding green line can be
identified with the left-moving mode φ2, while the states along the
blue line correspond to the right-moving mode φ1 and the states
along the red line correspond to composites of left-moving exci-
tations and one right-moving excitation. The circled states can be
identified with the four degenerate zero-mode excitations of H ′

0 with
charges Q1, Q2 = ±1. For clarity, results are plotted in a repeated
zone scheme where θn − θ0 ranges from −3π to 3π .

identity:

ei(θm−θn ) = 〈�m|U3|�n〉
〈�m|U1|�n〉 . (6.17)

We first present our results in the case (k1, k2) = (1, 5),
since they are easier to interpret. In this case, the low-energy
spectrum of Hnc closely resembles that of a standard chiral bo-
son edge theory with two counter-propagating modes, namely,

H ′
0 = 1

4π

∫ L

0
[v1k1(∂xφ1(x))2 + v2k2(∂xφ2(x))2]dx, (6.18)

where φ1, φ2 are chiral boson fields obeying the commutation
relations Eqs. (2.1), and where (k1, k2) = (1, 5). (Note that H ′

0
is identical to the clean edge theory H0 Eq. (2.3) except that it
has different velocities v1 �= v2 for the two counterpropagat-
ing modes.)

To see the similarity between the low-energy spectrum of
Hnc and H ′

0, consider the green, blue, and red lines in Fig. 7.
Along the green line, we see a collection of states with a linear
dispersion with a negative slope. We also see approximate
degeneracies of 1,1,2,3,5.... This dispersion and degeneracy
counting exactly matches the left-moving phonon modes as-
sociated with φ2. Likewise, along the blue line in Fig. 7, we
can see two nondegenerate states with a much steeper posi-
tive slope. This dispersion matches the right-moving phonon
modes associated with φ1 if we take the v1 to be larger than v2,
or more specifically v1/v2 ≈ 5. Likewise, along the red line
in Fig. 7, we see another set of states with a linear dispersion
and a negative slope, and with approximate degeneracies of
1, 1, 2, .... This dispersion and degeneracy counting is consis-
tent with the collection of phonon excitations that are made up
of the lowest energy excitation of φ1 together with multiple
phonon excitations of φ2. Finally, note the cluster of four
approximately degenerate states circled in Fig. 7. These states
match the lowest energy zero-mode excitations of H ′

0 which
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FIG. 8. Relative energies, εn − ε0, and crystal momenta, θn − θ0,
for the lowest 100 energy eigenstates of Hnc for (k1, k2 ) = (1, 3) and
N = 8. For clarity, results are plotted in a repeated zone scheme
where θn − θ0 ranges from −3π to 3π .

carry charges Q1 = ±1 and Q2 = ±1, and come in a fourfold
multiplet.

Combining all of this numerical evidence, including the
scaling of gap �, it seems likely that the low-energy physics
of Hnc is indeed described by the chiral boson edge theory H ′

0.
We have thus come full circle: we started with a chiral boson
edge theory H0; we then added strong impurity scattering,
which resulted in an energy gap and an extensive ground-
state degeneracy. Finally, we added a further perturbation Hnc,
splitting the ground-state degeneracy and leading to H ′

0, which
is essentially the same chiral boson edge theory that we started
with, but at a lower energy scale.

We now move on to the case (k1, k2) = (1, 3), shown in
Fig. 8. In this case, we have not been able to identify any
structure associated with the low-energy spectrum of Hnc, and
we have not found a candidate field theory that matches it.
The only conclusion we can draw, coming primarily from
Fig. 6, is that the gap appears to vanish in the thermodynamic
limit. A more systematic numerical study may be necessary to
understand this example.

VII. DISCUSSION

In this paper, we have constructed a family of finite-
dimensional edge theories describing the boundaries of
Abelian topological phases with K matrices of the form K =
(k1 0

0 −k2
). Importantly, this family includes both type-I and

type-II topological phases, i.e., phases with both gappable
and ungappable boundaries and with vanishing thermal Hall
coefficient, κH = 0. These edge theories are defined by a
collection of algebraic relations Eqs. (4.5)–(4.9) satisfied by
the elementary local operators Ui.

An interesting aspect of our edge theories (for k1 �= k2) is
that they do not seem to have a tensor product structure. More
precisely, our edge theories do not have an obvious description
as a tensor product Hilbert space with constraints (e.g., like the
toric code edge theory mentioned in the Introduction). This
lack of a tensor product structure is particularly intriguing in
the case of the type-II topological phases where k1k2 is not
a perfect square. We are not aware of any edge theory for
these phases with a (constrained) tensor product structure, so
one can reasonably conjecture that this is a general feature
of type-II topological phases. This conjecture is reminiscent

of an observation of Jones and Metlitski that some symmetry-
protected topological phases do not support edge theories with
tensor product Hilbert spaces [31]. Here, the conjecture about
type-II topological phases is even stronger, both because it
doesn’t depend on symmetry and because it rules out tensor
product Hilbert spaces with constraints.

While we have focused on a particular class of 2 × 2
fermionic K matrices, our construction can be readily ex-
tended to any 2m × 2m bosonic or fermionic K matrix
with vanishing thermal Hall coefficient, κH = 0. In the gen-
eral case, one would start with the standard chiral boson
edge theory [1] with 2m fields φ1, ..., φ2m and then intro-
duce 2m different impurity scattering terms of the form
U cos(�T K�) where � is a 2m component integer vector and
� = (φ1, ..., φ2m )T . For an appropriate choice of scattering
terms, the resulting impurity model should have a phonon
gap, and the ground-state subspace of this model can then
be used to derive a finite dimensional edge theory, as we did
here. In this way, one can construct a finite-dimensional edge
theory for any Abelian topological phase with κH = 0. On
the other hand, our construction does not have an obvious
generalization to non-Abelian topological phases.

We see a number of directions for future work. One di-
rection would be to prove rigorously that our type-II edge
theories cannot be gapped by any local Hamiltonian. Since
our edge theories are finite dimensional, they provide a partic-
ularly convenient setting for making precise statements of this
kind.

Another direction would be to use our edge theories as a
platform for numerical investigations of type-II edges. Such
numerical studies could help us understand what kinds of
gapless energy spectra are possible for type-II edges. For ex-
ample, are there general bounds on the energy gap or density
of states as a function of system size?

It would also be interesting to use our edge theories to build
lattice models for type-II topological phases. For example,
the coupled wire construction of Ref. [32] provides a general
method for constructing models for bulk topological phases
starting from edge theories. In our case, since our edge theo-
ries are finite dimensional, it may be possible to construct a
fully microscopic lattice model using such an approach.
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APPENDIX A: DERIVATION OF EQS. (4.5)–(4.9)

In this Appendix, we derive the basic algebraic relations
obeyed by the Ui operators, namely Eqs. (4.5)–(4.9). We
reprint these equations below for convenience:

U −1
i = U †

i , (A1)

UiUj = e2π iZ−1
i j UjUi, (A2)

U β
i U −2α

i+1 U β

i+2 = I, (A3)
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U1U2 · · ·U2N = eiθ1I, (A4)

U −1
1 U2U

−1
3 · · ·U2N = eiθ2I, (A5)

Tr(U2U4 · · ·U2N ) = 0. (A6)

Our derivation is based on an analogous set of relations for the
�i operators:

[�i, � j] = −2π iZ−1
i j , (A7)

β�i − 2α�i+1 + β�i+2 = Ci+2 − Ci, (A8)

2N∑
i=1

�i = −C2N+1, (A9)

2N∑
i=1

(−1)i�i = −C2N+2. (A10)

Here, Eq. (A7) follows immediately from [Ci,Cj] = 2π iZi j

together with �i = ∑
j Z−1

ji Cj . Likewise, Eqs. (A8)–(A10)
follow from Ci = ∑

j Z ji� j , along with the explicit form of
the Zi j matrix Eq. (3.28). We note that Eq. (A8) only holds
for i = 1, ..., 2N − 2; for the special cases where i = 2N − 1
or 2N , the relations take the modified form

β�2N−1 − 2α�2N + β�1

= C1 − C2N−1 + (α − β )C2N+1 + (α + β )C2N+2,

β�2N − 2α�1 + β�2

= C2 − C2N + (α − β )C2N+1 − (α + β )C2N+2. (A11)

We now use Eqs. (A7)–(A11), together with the definition
Ui = ei�i+iφ , to derive Eqs. (A1)–(A6). We start with Eq. (A2),
the first nontrivial relation. This relation follows immediately
from Eq. (A7) together with the Baker-Campbell-Hausdorff
formula. To derive Eq. (A3), we use Eqs. (A8) and (A11)
together with the fact that eiCi = I within the ground-state
subspace to deduce that

ei(β�i−2α�i+1+β�i+2 ) = eiβπI. (A12)

Here the phase factor on the right-hand side comes from the
Baker-Campbell-Hausdorff formula. Decomposing the left-
hand side of Eq. (A12) into a product of exponentials, we
obtain

eiβ�i e−i2α�i+1 eiβ�i+2 = eiϕI, (A13)

where

ϕ = π

4
(k2 − k1)2Z−1

2 − π (k2
2 − k2

1 )Z−1
1 + π (k2 − k1)

2
.

Here we are using the abbreviation Z−1
j ≡ Z−1

i(i+ j). Equa-
tion (A3) then follows from Eq. (A13), provided that we
choose the phase φ in the definition of Ui to be φ = ϕ

2k1
, that

is,

φ = π

8k1
(k2 − k1)2Z−1

2 − π (k2
2 − k2

1 )

2k1
Z−1

1 + π (k2 − k1)

4k1
.

(A14)

Next we derive Eqs. (A4) and (A5). This derivation follows
the same logic as Eq. (A3). First, we use (A9) and (A10)
together with the fact that eiCi = I within the ground-state
subspace, to deduce that

exp

(
i

2N∑
i=1

�i

)
= exp

(
i

2N∑
i=1

(−1)i�i

)
= I. (A15)

Decomposing the left-hand side into a product of exponentials
using the Baker-Campbell-Hausdorff formula, it is straightfor-
ward to show that Eqs. (A4) and (A5) hold with

θ1 = π

2N−1∑
j=1

(2N − j)Z−1
j + 2Nφ,

θ2 = π

2N−1∑
j=1

(2N − j)(−1) jZ−1
j . (A16)

All that remains is Eq. (A6). To derive this relation, it
suffices to show that

TrH
(
ei

∑2N
i=1 �2i

) = 0 (A17)

or, equivalently,

TrH
(
e−i(C2N+1+C2N+2 )/2

) = 0, (A18)

since
∑2N

i=1 �2i = −(C2N+1 + C2N+2)/2 by Eqs. (A9) and
(A10). To show Eq. (A18), consider the electron operator ψ1/2

defined in Eq. (B1) below. One can check that ψ1/2 commutes
with eiCj for all j and therefore preserves the ground-state
subspace H. At the same time, ψ1/2 anticommutes with
e−i(C2N+1+C2N+2 )/2. Eq.uation (A18) follows immediately from
these properties (see, e.g., Lemma 1 in Appendix F).

APPENDIX B: ELECTRON OPERATORS

In this Appendix, we construct a collection of fermion
parity-odd operators within our edge theory. These operators
are local (in the fermionic sense), so we will refer to them as
electron operators.

1. Microscopic definition of electron operators

We begin with a microscopic definition of the electron
operators. We denote these operators by {ψi+1/2}, where i runs
from 0, ..., 2N − 1. Note that we index the electron opera-
tors by half integers instead of integers; this turns out to be
convenient notation as it leads to more symmetrical algebraic
relations Eqs. (B6)–(B9). We will think of ψi+1/2 as living
halfway between the ith and (i + 1)st impurity.

We start by defining the electron operator ψ1/2, which lives
between impurities 2N and 1. We define [33]

ψ1/2 = ei�2N+1+iφ′
, (B1)

where �2N+1 is defined like �1, ..., �2N , i.e.,

�2N+1 =
2N+2∑

j=1

Z−1
j(2N+1)Cj . (B2)

Here φ′ is an additional phase which we include to simplify
the algebraic relations obeyed by the electron operators [in
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particular, Eq. (B6)]. Specifically, we choose

φ′ = −π

4
(k1 + k2) − π

8
(k2 − k1)2Z−1

1 . (B3)

Like the Ui operators, it is easy to check that ψ1/2 commutes
with am,θ and cos(Cj ) and therefore defines a legitimate oper-
ator acting within the ground state subspace H. It is also easy
to see that ψ1/2 anticommutes with the fermion parity operator
ei(C2N+1+C2N+2 )/2 and therefore carries odd fermion parity.

To define the other electron operators ψn+1/2, with n =
1, ..., 2N − 1, we multiply ψ1/2 by an appropriate string oper-
ator:

ψn+1/2 = ei(nν+φ′ )ψ1/2 · (U −k1
1 U −k1

2 · · ·U −k1
n ). (B4)

Here ν is the following phase factor, which we again include
to simplify the relations below [namely, Eq. (B6)]:

ν = πk1Z−1
1(2N+1) + π

4
Z−1

2 (k2 − k1)2

− π

4
Z−1

1 (3k2 + k1)(k2 − k1). (B5)

One might worry that ψn+1/2 is a nonlocal operator given its
appearance. However, we will see below that ψn+1/2 is, in fact,
local (in the fermionic sense). The string operator that appears
in the definition of ψn+1/2 should be thought of as analogous
to a Jordan-Wigner string.

Relatedly, notice that U −k1
1 U −k1

2 · · ·U −k1
n is equivalent (up

to a phase) to the anyonic string operator (W 1
ab)−k1 defined

in Sec. IV C. This makes sense: The operator W 1
ab moves an

anyon from a to b, and a composite of k1 such anyons is a local
fermion (i.e., electron). Thus, (W 1

ab)−k1 is a string operator that
moves an electron from a to b.

2. Algebraic definition of electron operators

An alternative way to define the electron operators ψn+1/2

is by their algebraic relations. The defining algebraic relations
for the electron operators are as follows:

ψ2
i+1/2 = U β

i U −β

i+1, (B6)

ψ−1
i−1/2ψi+1/2 = eiνU −k1

i , i = 1, ..., 2N − 1, (B7)

Uiψ j+1/2 = e2π iZ−1
(i− j)(2N+1)ψ j+1/2Ui, (B8)

ψi+1/2ψ j+1/2 = −e−π ik1βZ−1
i j ψ j+1/2ψi+1/2, i �= j, (B9)

where the difference i − j is defined modulo 2N . Here,
Eq. (B6) follows from a Baker-Campbell-Hausdorff calcula-
tion similar to those discussed in Appendix A, while Eq. (B7)
follows immediately from the definition Eq. (B4). The last
two Eqs. (B8) and (B9) also follow from Baker-Campbell-
Hausdorff calculations, with the help of the identities
Eqs. (B10) and (4.10).

To fully understand Eqs. (B6)–(B9), it is useful to have
a more explicit formula for the matrix elements Z−1

j(2N+1)
with 1 � j � 2N . A straightforward linear algebra calcula-
tion gives

Z−1
j(2N+1) = k1(X−1

j1 + X−1
j(2N ) ), (B10)

where X is the 2N × 2N matrix defined in Eq. (4.11). Sub-
stituting the formula for X−1 (4.14), we obtain the following

expression for Z−1
j(2N+1):

Z−1
j(2N+1) = 2k1

k2 − k1

xN+1− j + x j−1−N + xN− j + x j−N

(xN − x−N )(x − x−1)
.

(B11)

With these formulas, we are now ready to discuss some
important features ofEqs. (B6)–(B9). Our first comment is
about the commutation relation Eq. (B8): to understand the
structure of this commutation relation, note that Z−1

j(2N+1)

is exponentially small for large | j|, |2N − j| (since X−1 is
a quasidiagonal matrix). It follows that Ui and ψ j+1/2 ap-
proximately commute at large separations. This is important
because it means that ψ j+1/2 are indeed local operators (in the
fermionic sense), as we claimed earlier.

Our second comment is about the last relation Eq. (B9):
Note that this equation implies that ψi+1/2 and ψ j+1/2 ap-
proximately anticommute at large separations since Z−1

i j is
exponentially small for large |i − j|. This makes sense since
the ψi+1/2 describe fermionic operators.

Finally, it is worth mentioning that the relations (B6)–(B9)
simplify substantially in the special case k1 = k2 = k. In this
case, Eqs. (B6)–(B9) reduce to

ψ2
i+1/2 = I, (B12)

ψi−1/2ψi+1/2 = eikπ/2U −k
i , i = 1, ..., 2N − 1, (B13)

Uiψ j+1/2 = −ψ j+1/2Ui, i = j, j + 1, (B14)

ψi+1/2ψ j+1/2 = −ψ j+1/2ψi+1/2, i �= j. (B15)

APPENDIX C: MATRIX REPRESENTATION OF Ui

In this Appendix, we describe how to construct an explicit
matrix representation of the Ui operators using the formalism
of Ref. [18].

The simplest way to construct a representation is to use our
original expression for Ui in terms of Cj :

Ui = exp

(
i

2N+2∑
j=1

Z−1
ji Cj + iφ

)
. (C1)

Here φ is given in Eq. (A14), and the Ci’s obey

[Ci,Cj] = 2π iZi j, eiCi = I. (C2)

In principle, Eqs. (C1) and (C2) completely determine the
form of the Ui operators, but they are not easy to work with
since Zi j is a complicated skew-symmetric matrix. We now
make a change of variables to simplify these relations. Specif-
ically, we define

C′
i =

2N+2∑
j=1

Vi jCj + χi (C3)

for some matrix V and some vector χ that we will choose
below. Then, [C′

i ,C′
j] = 2π iZ ′

i j where

Z ′ = VZVT . (C4)
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We choose V to be a matrix with integer entries and determi-
nant ±1, with the property that Z ′ takes the simple form

Z ′ =
(

0N+1 −D
D 0N+1

)
, D =

⎛⎜⎜⎝
d1 0 · · · 0
0 d2 · · · 0
...

...
...

...

0 0 · · · dN+1

⎞⎟⎟⎠,

(C5)

where d1, ..., dN+1 are positive integers. Here, the matrix V is
an integer change of basis that puts Z into skew-normal form.
Such a change of basis always exists, but it is not unique [34].

After finding V , we then choose the offset χ so

χi = π
∑
j<k

Vi jVikZ jk (mod 2π ). (C6)

This choice ensures that eiC′
i = I, as one can verify using the

Baker-Campbell-Hausdorff formula, together with eiCj = I.
Next we define C̃′

i by rescaling C′
i :

C′
i =

2N+2∑
j=1

D̃i jC̃
′
j, D̃i j =

(
D 0N+1

0N+1 D

)
. (C7)

Putting this together, we can write Ui in terms of C̃′
j as

Ui = exp

(
i

2N+2∑
j=1

Yi jC̃
′
j + iχ̃i + iφ

)
, (C8)

where the matrix Yi j and the vector χ̃i are defined by

Y = −Z−1V−1D̃, χ̃ = Z−1V−1χ. (C9)

By construction, the C̃′
i operators obey

[C̃′
i , C̃′

i+N+1] = −2π i

di
, (C10)

with all other commutators vanishing. Also,

eidiC̃′
i = eidiC̃′

i+N+1 = I. (C11)

This completes our change of variables from Ci to C̃′
i .

The advantage of the new variables is that it is easy to find
a representation for eiC̃′

i . Indeed, given the algebra Eqs. (C10)
and (C11), it is clear that each pair of operators eiC̃′

i and eiC̃′
i+N+1

can be represented as di × di clock and shift matrices:

eiC̃′
i = Adi , eiC̃′

i+N+1 = Bdi , (C12)

where Ad and Bd are defined by

Ad =

⎛⎜⎜⎜⎝
1 0 · · · 0
0 e

i2π
d · · · 0

...
...

...
...

0 0 · · · e
i2π (d−1)

d

⎞⎟⎟⎟⎠,

Bd =

⎛⎜⎜⎜⎜⎝
0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

⎞⎟⎟⎟⎟⎠. (C13)

To translate this into a representation for Ui, note that the
matrix Yi j has integer entries, as one can easily verify using the
fact that VZVT is of the form given in Eqs. (C5). Therefore,
each Ui is a product of integer powers of eiC̃′

j . Specifically, we
can write Ui as

Ui = ei(χ̃i+νi+φ)
N+1∏
j=1

(
eiYi jC̃′

j eiYi( j+N+1)C̃′
j+N+1

)
, (C14)

where the extra phase νi comes from the Baker-Campbell-
Hausdorff formula and is given by

νi = −π

N+1∑
j=1

Yi jYi( j+N+1)

di
. (C15)

Plugging in Eqs. (C12), we obtain the following represen-
tation for Ui as a tensor product of clock and shift matrices:

Ui = ei(χ̃i+νi+φ)
N+1⊗
j=1

(
A

Yi j

d j
B

Yi( j+N+1)

d j

)
. (C16)

This is the desired representation of Ui.
To illustrate this construction, consider the case where

(k1, k2) = (1, 3). In this case, one finds that the di’s defined
by Eqs. (C5) are

d1 = d2 = ... = dN = 1, dN+1 = DN . (C17)

This means that all the clock and shift matrices in the tensor
product Eq. (C16) are trivial (i.e., equal to 1) except for those
labeled by j = N + 1. Hence Eq. (C16) reduces to

Ui = ei(χ̃i+νi+φ)Aai
DN

Bbi
DN

, (C18)

where ai = Yi(N+1) and bi = Yi(2N+2) are integers, and
ADN , BDN are DN × DN clock and shift matrices.

Another illustrative example is (k1, k2) = (1, 9). In this
case, one finds

d1 = d2 = ... = dN = 2, dN+1 = Q (C19)

where Q = DN
2N = 1

3 (2N − 1). Hence Ui is given by a tensor
product of N + 1 matrices, of which N are 2 × 2 Pauli oper-
ators, and one of which is a Q × Q matrix built out of clock
and shift matrices raised to integer powers. Note that in both
these examples, the Hilbert space does not have a local tensor
product structure (e.g., like a spin chain) since the (N + 1)st
block has an exponentially large dimension dN+1.

APPENDIX D: ALGEBRA OF ANYONIC STRING
OPERATORS

In this Appendix, we derive the commutation algebra of the
two string operators

W 1
ab =

b∏
i=a

Ui, W 2
ab =

b∏
i=a

U (−1)i

i .

Specifically, we show that for an interleaved geometry with
a < c < b < d , the string operators obey the commutation
relations

W i
abW

j
cd = eiαi jW j

cdW i
ab, (D1)
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where

α11 ≈ 2π

k1
, α22 ≈ −2π

k2
, α12 ≈ α21 ≈ 0 (D2)

up to errors of order O(x− min(|a−c|,|b−c|,|a−d|,|b−d|) ).
We start by evaluating α11. Using Eq. (4.6), we have

α11 = 2π

b∑
i=a

d∑
j=c

Z−1
i j . (D3)

Substituting the formula Eq. (4.17) for Z−1
i j in the limit N →

∞, we obtain

α11 = 4π

k2 − k1

b∑
i=a

d∑
j=c

x−|i− j|sgn( j − i). (D4)

Evaluating the double sum gives

b∑
i=a

d∑
j=c

x−|i− j|sgn( j − i) = (x − xa−c+1) − (xc−d − xa−d )

(x − 1)2

+ (x − xc−b) − (xb−d+1 − xc−d )

(x − 1)2
.

(D5)

Neglecting terms of order O(x− min(|a−c|,|b−c|,|a−d|,|b−d|) ) gives

b∑
i=a

d∑
j=c

x−|i− j|sgn( j − i) ≈ 2x

(x − 1)2
, (D6)

so

α11 ≈ 8πx

(k2 − k1)(x − 1)2

= 8π

(k2 − k1)(x + x−1 − 2)

= 2π

k1
, (D7)

where the third equality follows from

x + x−1 = 2(k1 + k2)

k2 − k1
. (D8)

We can evaluate α22 in a similar fashion. First, we note that

α22 = 2π

b∑
i=a

d∑
j=c

(−1)i+ jZ−1
i j

= 4π

k2 − k1

b∑
i=a

d∑
j=c

(−x)−|i− j|sgn( j − i). (D9)

We then note that the latter formula is identical to the one for
α11 Eq. (D4) except with x replaced with −x. Making this
replacement in Eq. (D7), we deduce that

α22 ≈ 8π

(k2 − k1)(−x − x−1 − 2)
= −2π

k2
, (D10)

where we again use the identity Eq. (D8).

Next, consider α21. We have

α12 = 2π

b∑
i=a

d∑
j=c

(−1)iZ−1
i j

= 4π

k2 − k1

b∑
i=a

d∑
j=c

(−1)ix−|i− j|sgn( j − i). (D11)

Evaluating the double sum gives

b∑
i=a

d∑
j=c

(−1)ix−|i− j|sgn( j − i)

= (−1)c(x+(−x)a−c+1)−(−1)d ((−x)c−d−(−x)a−d )

(x−1)(−x−1)

+ (−1)c(−x−(−x)c−b)−(−1)d ((−x)b−d+1−(−x)c−d )

(x−1)(−x − 1)
.

(D12)

Neglecting terms of order O(x− min(|a−c|,|b−c|,|a−d|,|b−d|) ), we
are left with

b∑
i=a

d∑
j=c

(−1)ix−|i− j|sgn( j − i) ≈ (−1)cx − (−1)cx

(x − 1)(−x − 1)

= 0. (D13)

We conclude that α12 ≈ 0, as we wished to show. The same
argument shows that α21 ≈ 0.

APPENDIX E: DERIVATION OF EQS. (5.3)–(5.6)

In this Appendix, we derive Eqs. (5.3)–(5.6). We will use
two identities in our derivations that are specific to (k1, k2) =
(1, 9). The first identity is that

U 4
i−1U

−10
i U 4

i+1 = I, (E1)

which follows from Eq. (4.7). The second identity is that

4Z−1
r−1 − 10Z−1

r + 4Z−1
r+1 =

⎧⎨⎩1 r = −1
−1 r = 1
0 otherwise,

(E2)

which follows from the formula Eq. (4.10). (Here, we are
using the abbreviation Z−1

r ≡ Z−1
i(i+r)).

We start by proving Eq. (5.3) or, more specifically
[Ki, Lj] = [Li, Lj] = 0. To prove these relations, consider
the quantity UiLjU

−1
i L−1

j . From the commutation algebra
Eq. (4.6) and the identity Eq. (E2), we have

UiLjU
−1
i L−1

j = ei2π (2Z−1
2 j−i−1−5Z−1

2 j−i+2Z−1
2 j−i+1 )I

=
{−I i = 2 j ± 1
I otherwise. (E3)

From Eq. (E3), it immediately follows that

[Ki, Lj] = 0, (E4)

since Ki only contains even powers of Ui. Likewise, Eq. (E3)
implies that

[Li, Lj] = 0, (E5)
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since the only odd power in Li, namel,y U −5
2i , is not supported

on either of the two sites 2 j − 1 or 2 j + 1.
We now move on to show Eq. (5.4), i.e., K2

i = Ki−1. To
this end, we use the commutation algebra Eq. (4.6) and the
identity Eq. (E1) to rewrite Ki−1K−2

i as

Ki−1K−2
i = e−iϕK

(
U 4

i−1U
−2
i

)(
U 2

i+1U
−4
i

)(
U 2

i+1U
−4
i

)
= ei(−ϕK +μ)U 4

i−1U
−10
i U 4

i+1

= ei(−ϕK +μ)I, (E6)

where μ = 48πZ−1
1 . We conclude that K2

i = Ki−1 if we
choose

ϕK = μ = 48πZ−1
1 . (E7)

A corollary of this result is that all the Ki’s commute with
each other, i.e.,

[Ki, Kj] = 0, (E8)

since every Ki can be written as an integer power of every
other Ki. This establishes the remaining equality in Eq. (5.3).

Next we prove Eq. (5.6), i.e., L2
i = I. We again use the

commutation algebra Eq. (4.6) and the identity Eq. (E1):

L2
i = ei2ϕL

(
U 2

2i−1U
−5
2i U 2

2i+1

)(
U 2

2i−1U
−5
2i U 2

2i+1

)
= ei(2ϕL+ς )U 4

2i−1U
−10
2i U 4

2i+1

= ei(2ϕL+ς )I, (E9)

where

ς = 2π (20Z−1
1 − 4Z−1

2 ). (E10)

We conclude that L2
i = I if we choose

ϕL = −ς

2
= π (4Z−1

2 − 20Z−1
1 ). (E11)

This establishes Eq. (5.6).
All that remains is to show Eq. (5.5), i.e., KQ

2N = I. To
derive this identity, it is useful to express Ki in terms of �i.
We have

Ki = eiϕK U 4
i U −2

i+1

= ei(ϕK +2φ)ei4�i e−i2�i+1

= ei(ϕK +2φ−8πZ−1
1 )ei(4�i−2�i+1 ), (E12)

where the last equality follows from the Baker-Campbell-
Hausdorff formula. Simplifying the phase in the exponent
gives

ϕK + 2φ − 8πZ−1
1 = 16πZ−1

2 − 40πZ−1
1 + 4π = 0,

(E13)

where the second equality follows from the identity 2Z−1
2 −

5Z−1
1 = −1/2, which is a special case of Eq. (E2) above.

Hence

Ki = ei(4�i−2�i+1 ), (E14)

without any additional phase factor.

We are now ready to show KQ
2N = I, where Q = 1

3 (22N −
1). First, we note that Q = ∑N−1

i=0 4i, so

KQ
2N = K1+4+...+4N−1

2N =
N∏

i=1

K2i (E15)

Substituting Eq. (E14) into the right-hand side and using the
Baker-Campbell-Hausdorff formula gives

KQ
2N = exp

(
4i

N∑
i=1

�2i − 2i
N∑

i=1

�2i+1 + iϒ

)
, (E16)

where the phase ϒ is given by

ϒ = 2π
∑
j>i

(−4Z−1
2( j−i)−1 + 10Z−1

2( j−i) − 4Z−1
2( j−i)+1

)
.

(E17)

Next we note that each term of the above sum vanishes iden-
tically due to the identity Eq. (E2), so ϒ = 0. We can then
rewrite KQ

2N as

KQ
2N = exp

(
4i

N∑
i=1

�2i − 2i
N∑

i=1

�2i+1

)

= exp

(
i

2N∑
i=1

�i

)
· exp

(
3i

2N∑
i=1

(−1)i�i

)
. (E18)

Note that there is no Baker-Campbell-Hausdorff phase in the
second equality since the two exponents commute with one
another, being proportional to C2N+1 and C2N+2, respectively.
Finally, substituting Eq. (A15) into the right-hand side, we
obtain the desired result:

KQ
2N = I. (E19)

This proves Eq. (5.5).

APPENDIX F: DEGENERACY OF SIMULTANEOUS
EIGENSPACES OF K2N, L1, ..., LN

In this Appendix, we consider the edge theory with
(k1, k2) = (1, 9) and we compute the degeneracy of each si-
multaneous eigenspace of K2N , L1, ..., LN . Our main result is
that there is a unique eigenstate |m; σ1, ..., σN 〉 with

K2N |m; σ1, ..., σN 〉 = ei2πm/Q|m; σ1, ..., σN 〉
Li|m; σ1, ..., σN 〉 = σi|m; σ1, ..., σN 〉

for each m = 0, 1, ..., Q − 1 and each σi = ±1.
To begin, consider the projector onto this simultaneous

eigenspace, which we denote by Pm;σ1,...,σN . This projector can
be written as a product of N + 1 spectral projectors—one for
each of the operators K2N , L1, ..., LN :

Pm;σ1,...,σN =
(

1

Q

Q−1∑
n=0

e−i2πmn/QKn
2N

)
N∏

i=1

(
I + σiLi

2

)
. (F1)

Computing the degeneracy of the eigenspace is equivalent to
computing the trace of Pm;σ1,...,σN . This trace can be obtained
by expanding out the above product Eq. (F1) into a large sum
of terms of the form Kn

2N Li1 · · · Lik . Below we will argue that
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all of these terms are traceless except for the term consisting
of the identity operator I. Once we show this, we will be done
since it then follows that

Tr(Pm;σ1,...,σN ) = 1

Q

1

2N
Tr(I) = 1. (F2)

Here the second equality follows from the fact that the Hilbert
space we are tracing over has a dimension of DN = Q · 2N .

We now explain why every term of the form Kn
2N Li1 · · · Lik

is traceless. We first introduce some notation: For any two
operators O1, O2, we define the bracket

�O1|O2� ≡ O1O2O−1
1 O−1

2 . (F3)

With this notation, we can now state a useful lemma:
Lemma 1. If O1, O2 are two operators satisfying

�O1|O2� = ωI, ω �= 1, (F4)

then

Tr(O1) = Tr(O2) = 0. (F5)

To prove this lemma, note that

O1O2O−1
1 = ωO2.

Taking the trace of both sides and using the cyclicity of the
trace, we deduce that Tr(O2) = 0. The same argument shows
that Tr(O1) = 0.

In view of Lemma 1, it suffices to find an operator O such
that

�O|Kn
2N Li1 · · · Lik � = ωI, (F6)

with ω �= 1. First, we consider the operator O = U 2
2N . From

the commutation algebra Eq. (E3), we can see that U 2
2N com-

mutes with all the Li’s. Hence

�U 2
2N |Kn

2N Li1 · · · Lik � = �U 2
2N |Kn

2N�
= e−i8nπZ−1

1 , (F7)

where we are using the abbreviation Z−1
r ≡ Z−1

i(i+r). Plugging
in the formula for Z−1

i j Eq. (4.16) with (k1, k2) = (1, 9) and

x = 2, we obtain

8nπZ−1
1 = 2π

n(22N−1 − 2)/3

Q
, (F8)

where Q = 1
3 (22N − 1). It is easy to check that for any

n = 1, ..., Q − 1, the above fraction is nonintegral and there-
fore e−i8nπZ−1

1 �= 1. Hence, by Lemma 1, the operator
Kn

2N Li1 · · · Lik is traceless in all these cases.
The only terms left to consider are those with n = 0, i.e.,

terms of the form Li1 · · · Lik . Consider any term of this kind
that contains Li but not Li+1. In that case, we choose O =
U2i+1. From the commutation algebra Eq. (E3), we can see
that U2i+1 anticommutes with Li and Li+1 and commutes with
all the other Li’s. Therefore, U2i+1 anticommutes with the term
Li1 · · · Lik . Applying Lemma 1, we conclude that Li1 · · · Lik is
traceless.

At this point, we have shown that all the terms are traceless,
except for the term with all the Li’s, i.e., L1L2 · · · LN . To see
that this term is traceless, we note that

L1L2 · · · LN = L−1
1 L−1

2 · · · L−1
N

∝
2N∏
i=1

U −4
2i+1

N∏
i=1

U 5
2i

∝ (U −1
1 U2U

−1
3 · · ·U2N )4 ·

N∏
i=1

U2i

∝
N∏

i=1

U2i. (F9)

Here, all the proportionality constants are phase factors, and
the last line follows from Eqs. (4.8). Now, using Eq. (4.9), we
see that the right-hand side is traceless and hence L1L2 · · · LN

is also traceless. This completes the argument: We have shown
that every term in Eq. (F1) is traceless except the term coming
from the identity operator I.
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