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Temperature dependence of correlated electronic states in the archetypal kagome metal CoSn
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Hexagonal CoSn is a newly discovered frustrated kagome metal. It shows close-to-textbook flat bands and
orbital-selective Dirac fermions, which are largely associated with its strongly correlated Co 3d orbitals. Because
correlated electronic states are easily regulated by external conditions (such as chemical doping, pressure, and
temperature), the fate of these kagome-derived electronic bands upon temperature becomes an interesting and
unsolved question. In this work, we try to study the temperature-dependent electronic structures of hexagonal
CoSn by means of the density functional theory in conjunction with the embedded dynamical mean-field theory.
We find that the Co 3d electrons are in close proximity to Mott insulating states at ambient condition. Special
attention is devoted to the evolution of Co 3d electronic states with respect to temperature. At least six different
temperatures (or energy scales), namely T ∗, TFL, TS1 (and TS2), TSF, and T̄ , are figured out. They are related to
stabilization of the “pseudogap” state, emergence of the non-Fermi-liquid phase, onset (and completeness) of the
spin plateau, occurrence of the spin-frozen phase, and beginning of the orbital freezing transition, respectively.
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I. INTRODUCTION

Recently, the 3d-electron kagome metals have attracted
lots of attention [1–11]. In these quantum materials, 3d
transition-metal (TM) atoms constitute layered kagome lat-
tices, which are two-dimensional networks of corner-sharing
triangles, resulting in exotic band topology [1]. On the one
hand, this particular atomic arrangement gives rise to strongly
localized TM 3d electron wave functions in real space. The
corresponding electronic energy bands, which have extremely
narrow bandwidths and are nearly dispersionless (so-called
flat bands), naturally arise in momentum space through the
destructive quantum interference mechanism [12–14]. That
is one of the fingerprints of the kagome metals [6–10].
On the other hand, crosses of symmetry-protected linearly
dispersive bands (i.e., Dirac cones) are also one of the
paradigmatic states of the kagome metals. Once spin-orbit
coupling lying that lies in TM 3d orbitals is nontrivial, con-
siderable Dirac gaps will open and massive Dirac fermions
will emerge [2,9,11]. Because of the unique combination of
geometrically frustrated lattice symmetry and unusual band
topology, the 3d-electron kagome metals exhibit a great deal
of distinguishing properties, including quantum spin-liquid
states [12,15], magnetic Weyl fermions [16,17], and giant
anomalous Hall effects [3,17,18], just to name a few. Conse-
quently, the 3d-electron kagome metals have been regarded as
a versatile platform for studying the frustration-driven exotic
spin-liquid phases, magnetic ground states, and novel topo-
logical excitations.

In these years, quite a few 3d-electron kagome metals
have been discovered. Their structural frameworks, in other
words, the two-dimensional (2D) kagome lattices, mostly
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comprise one of the following 3d transition elements: Cr,
Mn, Fe, Co, and Ni [1–11,17–20]. Notice that the low-lying
electronic states in these kagome metals, especially the flat
bands and Dirac bands, are usually governed by the five
TM-3d orbitals [9]. Generally speaking, these TM-3d or-
bitals are strongly correlated. There exist strong and orbital
selective electronic correlations, which will lead to consider-
able band renormalization and orbital differentiation [21–23].
The interplay of the Coulomb repulsion interaction, Hund’s
exchange interaction, crystal-field splitting, and spin-orbit
coupling makes the low-energy electronic states quite compli-
cated and finally contributes to the rich multi-orbital physics
in the 3d-electron kagome metals.

There is no doubt that the electronic correlation should play
a vital role in the electronic structures of 3d-electron kagome
metals [9]. First, the orbital energy levels are affected by the
electronic correlation. As a consequence, the flat bands and
Dirac bands are renormalized and shifted towards the Fermi
level. Second, the TM-3d electrons are redistributed among
the five d-orbitals due to the electronic correlation, which lead
to noticeable modifications of the orbital occupancies and the
spin states. Finally, the strength of electronic correlation is
easily tuned by external conditions, such as chemical doping,
pressure, and temperature. The corresponding band structures
are anticipated to be changed simultaneously [23]. For ex-
ample, the correlated TM-3d electrons should become more
and more incoherent with increment of the system temper-
ature. We wonder whether the representative flat bands and
Dirac bands in the 3d-electron kagome metals could survive
at moderately high temperature. In a word, we have to con-
sider the electronic correlations in TM-3d orbitals in order
to gain a comprehensive understanding about the electronic
structures of 3d-electron kagome metals. Actually, some theo-
retical works concerning the 3d-electron kagome metals have
taken the electronic correlations into accounts [9,24]. But,
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FIG. 1. (a) Schematic picture for the kagome layer in hexagonal CoSn. The Co and Sn atoms are represented by red and green balls,
respectively. The dashed rhomboid means the unit cell of the kagome lattice. (b) Irreducible Brillouin zone of hexagonal CoSn. Some high-
symmetry points are labeled. Here the green arrows are used to depict the selected high-symmetry directions. (c1)–(c6) Momentum-resolved
spectral functions A(k, ω) of hexagonal CoSn calculated by the DFT + DMFT method at different temperatures. The horizontal dashed lines
denote the Fermi level. In panel (c1), the words “FB” and “DC” are abbreviations for flat bands and Dirac cones, respectively.

how these correlated 3d states evolve upon temperature are
seldom examined.

Now we would like to fill in this gap by investigating the
temperature dependence of correlated electronic structures of
an archetypal 3d-electron kagome metal CoSn. CoSn crys-
tallizes in a hexagonal structure (space group P6/mmm, No.
191), in which the kagome layers are stacked along the c
axis and separated by spacing layers [see Figs. 1(a) and 1(b)].
The kagome layer is composed of a 2D kagome lattice of
Co atoms and the centers of hexagons are occupied by Sn
atoms (Co3Sn), while the spacing layer is composed of a
honeycomb lattice of Sn atoms (Sn2) only. Very recently, the
flat bands and Dirac bands in hexagonal CoSn have been de-
termined both computationally and experimentally [9,10]. It is
identified as an ideal 3d-electron kagome metal without com-
plications induced by magnetism (the formation of magnetic
ordering and local moments in this compound is suppressed
presumably due to a higher d-orbital filling than the other
3d-electron kagome metals) [10] and with a perfect in-plane
kagome lattice (the kagome lattice in hexagonal CoSn is the
one closest to the 2D limit). Moreover, the magnitudes of
energy gaps induced by spin-orbit coupling are quite differ-
ent. They rely on the orbital characters of the Dirac bands,
suggesting realization of orbital-selective Dirac fermions [9].
These findings shed new light on the multi-orbital physics
in hexagonal CoSn and provide a reasonable explanation for
the multiple topological electronic excitations in 3d-electron
kagome metals.

In the present work, we tried to calculate the electronic
structures of hexagonal CoSn at various temperatures by using
a state-of-the-art first-principles many-body approach. The
temperature-dependent momentum-resolved spectral func-
tions, total and partial 3d densities of states, self-energy
functions, spin states, spin susceptibilities, and orbital sus-
ceptibilities were carefully evaluated. We find that, though
the Co-3d states remain metallic, they are actually in the
vicinity of Mott-Hubbard transitions. More importantly, the
calculated results reveal a few characteristic temperatures (or,
equivalently, energy scales). They signal some furtive changes
(including transitions and crossovers) in the electronic and
spin states. A comprehensive picture about how the correlated
Co 3d states in hexagonal CoSn evolve with the increment of
temperature is finally provided.

The rest of this paper is organized as follows: In Sec. II, we
introduce the computational methods and important parame-
ters. The main results are presented in Sec. III. Finally, Sec. IV
serves as a short summary.

II. METHOD

A first-principles many-body approach, namely, density
functional theory plus embedded dynamical mean-field theory
(dubbed DFT + eDMFT) [25–27], was employed to cal-
culate the electronic properties of hexagonal CoSn. This
approach has been successfully applied to study the electronic
structures of many strongly correlated materials, including
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transition-metal oxides [28], iron-based superconductors [29],
ruthenates [30–32], iridates [33,34], and actinides [35,36].

For the DFT part, we used the WIEN2K code, which
implements a full-potential linearized augmented plane-
wave formalism (FP-LAPW) [37]. The exchange-correlation
term in the Kohn-Sham equation was described within the
generalized gradient approximation (actually the Perdew-
Burke-Ernzerhof functional) [38]. The muffin-tin radii for
Co and Sn atoms are 2.46 and 2.42 a.u., respectively. We
set RMTKMAX = 8.0 and used a 15 × 15 × 16 k mesh (245k
points in the first irreducible Brillouin zone) for the Brillouin-
zone sampling.

For the DMFT part, the Rutgers’ EDMFT software package
developed by Haule [27] was used. The correlated subspace
includes the five Co-3d orbitals. To define the DMFT projec-
tor which is used to project the Kohn-Sham bands into the
local orbitals, a large energy window was used (from −10 eV
to +10 eV with respect to the Fermi level). The Coulomb
repulsive interaction parameter U and Hund’s exchange inter-
action parameter JH were 5.0 and 0.8 eV, respectively, which
were borrowed from Ref. [9]. The rotationally-invariant-type
Coulomb interaction was chosen in most DFT + eDMFT
runs. A simplified Ising-type Coulomb interaction (only the
density-density terms were included) was used in some bench-
mark tests. The obtained results are parallel and will not
change the main conclusions of this paper. We employed
the exact double-counting scheme which is based on the di-
electric constant approximation [39] to cancel out the excess
amount of the electronic correction effect that is included
partly in the DFT part. We also compared our results with
those that use the nominal double-counting scheme [40]. The
differences are negligible. To solve the auxiliary multi-orbital
quantum impurity problems, the hybridization expansion ver-
sion continuous-time quantum Monte Carlo impurity solver
(dubbed CT-HYB) [41,42] was employed. For the CT-HYB
calculations, up to 200 million of Monte Carlo steps were
employed for each quantum impurity solver run. To examine
the temperature dependence of electronic structures of CoSn,
the hypothetical T is from 60 to 2400 K for the eDMFT
calculations. We adopted the experimental lattice parameters
and ignored the thermal expansion [9,10]. The system was
assumed to be paramagnetic.

We performed fully charge self-consistent DFT + eDMFT
calculation [27]. About 60–80 iterations were enough to ob-
tain converged results. The convergent criteria for charge and
energy were set to 1 × 10−6e and 1 × 10−6 Ry, respectively.
Finally, the Matsubara self-energy functions were analytically
continued from the imaginary to the real axis by the maximum
entropy method [43]. Then the real-frequency self-energy
functions were utilized to calculate the other observables, such
as quasiparticle band structures and density of states.

III. RESULTS AND DISCUSSION

A. Quasiparticle band structures

We endeavored to calculate the temperature-dependent
quasiparticle band structures (or equivalently, momentum-
resolved spectral functions) A(k, ω) of hexagonal CoSn
along some high-symmetry directions [L-H-A, please refer

to Fig. 1(b) for more details] at first. The calculated results
for representative temperatures are visualized in Figs. 1(c1)–
1(c6). Note that the quasiparticle band structures, Fermi
surfaces, and surface states of hexagonal CoSn have been
determined both experimentally (at T = 60 and 20 K) and
theoretically (at T = 116 K) [9,10]. Our calculated results are
in excellent accord with them (please see the Appendix for
more details).

All the essential features in the quasiparticle band struc-
tures are annotated using arrows and labels in Fig. 1(c1).
There are multiple flat bands (“FB”) between −0.6 and
−0.1 eV. And there are two Dirac cones (“DC”) at H points
with binding energies ≈0.55 eV and ≈1.0 eV, respectively.
These features suggest that the hexagonal CoSn is indeed a
3d-electron kagome metal [9,10]. Even the system temper-
ature is drastically increased, we find that the quasiparticle
band structures are barely changed. The positions of the flat
bands and Dirac bands are shifted slightly. But it might be due
to the marginal effect of the DFT + eDMFT self-consistent
iterations [27] or the biases introduced at the analytical con-
tinuation processes [43], instead of the temperature effect.
Overall, the kagome-derived bands at low-energy region are
quite stable and robust. They can survive at ultrahigh tem-
perature (at least up to 773 K). It seems that the correlated
electronic states of hexagonal CoSn will not be changed
greatly upon temperature. But it is not the case. Let us ex-
amine the other physical observables further.

B. Electronic density of states

Figure 2(a) shows the total 3d density of states Ad (ω).
The following characteristics are revealed. (i) Since the 3d
spectral weights at the Fermi level are larger than zero [i.e.,
Ad (ω = 0) > 0.0, see Fig. 2(e) as well], the Co-3d electronic
states are strictly metallic. (ii) The quasiparticle resonance
peaks are absent. Instead, there are “pseudogap”-like struc-
tures in the Fermi level. Thus, it is concluded that the Co-3d
electronic states in CoSn are in the vicinity of Mott-Hubbard
transitions [23,26]. In other words, the Co-3d states could be
easily tuned into insulating if some sort of external conditions
are changed (for example, applying tension on the c axis to
reduce the interlayer coupling). (iii) There are sharp peaks
around −0.2 eV. They resemble the Van Hove singularities,
which are associated with the flat bands, as seen in Fig. 1(c).

Note that, under the hexagonal crystal field, the five Co-
3d orbitals should be split into three groups, namely dz2 ,
dx2−y2 + dxy, and dxz + dyz. The two dx2−y2 + dxy orbitals are
in-plane, while the three dz2 and dxz + dyz orbitals are out-of-
plane [9]. It is anticipated that their electronic structures could
be quite different and present orbital differentiation behav-
ior. To validate this conjecture, we draw the orbital-resolved
densities of states in Figs. 2(b)–2(d). For the dz2 orbital,
multiple satellite peaks appear around the Fermi level. These
peaks probably originate from the many-body transitions
among various 3d valence electron configurations (such as
3d6, 3d7, and 3d8), which are called quasiparticle multiplets
sometimes [44,45]. This feature is usually seen in strongly
correlated mixed-valence 4 f or 5 f electron systems [44,45].
It is quite surprising to discover it in a correlated 3d-electron
kagome metal. For the dx2−y2 + dxy orbitals, the spectrum
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FIG. 2. (a)–(d) Temperature-dependent electronic densities of states for various Co-3d orbitals (full 3d , dz2 , dx2−y2 + dxy, and dxz + dyz

orbitals). The data shown in the panels have been rescaled for a better view. The vertical dashed lines denote the Fermi level. (e), (f) Temperature
dependencies of spectral weights at ω = 0 for various Co-3d orbitals. In panels (e) and (f), the characteristic temperature T ∗ (≈1000 K) is
highlighted by using color bars. See text for explanations.

shows a pseudogap between two side peaks. It looks as if
the size (or width) of the pseudogap is not affected by the
temperature effect. For the dxz + dyz orbitals, the spectrum is
characterized by a single sharp peak below the Fermi level
(the side humps on the unoccupied side are somewhat small).
Actually, the Van Hove singularities seen in Fig. 2(a) are
mainly from the contributions of the dx2−y2 + dxy and dxz + dyz

orbitals.
With increasing temperature, not only the shapes but also

the peak positions of these spectra remain almost unchanged.
That is consistent with what we have observed in the quasi-
particle band structures [see Fig. 1(c)]. However, considerable
spectral weight transfer will take place at high temperature.
Figure 2(e) shows the evolution of Ad (ω = 0) with respect
to temperature T . In the low-temperature (T < 600 K) or
high-temperature (T > 1000 K) region, Ad (ω = 0, T ) is ap-
proximately a constant. However, Ad (ω = 0, T ) gradually
decreases under temperature in the intermediate region, which
signals that the Co-3d electrons become more and more in-
coherent. Parts of Co-3d valence electrons near the Fermi
level would be excited into higher levels. As a consequence,
the “pseudogap” state and the trend to a correlated insulator
are greatly enhanced. So, we can define a new temperature
scale T ∗ (≈1000 K) to mark such a change in the spectral
weight at zero frequency. Figure 2(f) displays the orbital-
resolved Ad (ω = 0, T ). The data for the dx2−y2 + dxy orbitals
are featureless. Interestingly, the data for the dz2 and dxz +
dyz orbitals exhibit completely different behaviors. When
T < T ∗, the changes are rather small. When T > T ∗, Ad (ω =
0, T ) of the dz2 orbital increases with increasing temperature,
while those of the dxz + dyz orbitals are on the contrary. There-
fore, it is suggested that there is significant spectral weight
transfer (or charge transfer) among the out-of-plane 3d or-
bitals, while the in-plane dx2−y2 + dxy orbitals act as spectators
only.

C. Self-energy functions

It is well known that the electronic correlations in cor-
related electron systems are largely encapsulated in the

self-energy functions [26]. Thus, it is essential to inspect their
properties. Figures 3(a)–3(c) show the low-frequency parts
of Matsubara self-energy functions of Co-3d electrons (only
the imaginary parts are presented here). When the temper-
ature is low (β > 40.0, T ≈ 290 K), they look quasilinear.
However, when the temperature is high (β � 40.0), they are
convex functions. To describe this behavior more accurately,
we applied the following equation to fit their low-frequency
parts [46]:

−Im�(ωn) = C(ωn)a + γ . (1)

The fitting parameters a(T ) and γ (T ) are shown in Figs. 3(d)
and 3(e). According to the Landau Fermi-liquid theory,
a = 1.0 and γ = 0.0 denote the ideal Fermi-liquid state.
Clearly, when the temperature is low, the system tends to
obey the Fermi-liquid theory. On the contrary, when the tem-
perature is high, the system shows an abnormal self-energy
function that deviates from the description of Fermi-liquid
theory and enters the so-called non-Fermi-liquid region. Thus,
we can define a new temperature scale again, TFL, which
signals the crossover from the Fermi-liquid state to the non-
Fermi-liquid state. From Figs. 3(d) and 3(e), we find the TFL is
about 110 K for the hexagonal CoSn. Furthermore, it should
be pointed out that the TFL has nothing to do with the orbital
character. In other words, all Co-3d orbitals share almost the
same TFL, regardless of whether they are in-plane.

In correlated electron systems, the masses of interacting
electrons should be renormalized. Therefore, the effective
electron masses could be used as a valuable indicator to mea-
sure the strength of electron correlations. Next, we employed
the following formula to estimate the effective masses of Co-
3d electrons m� [26]:

Z−1 = m�

me
≈ 1 − Im�(iω0)

ω0
, (2)

where ω0(≡ π/β ) is the first fermionic Matsubara frequency,
Z is the quasiparticle weight, and me is the mass of a
noninteraction electron. Notice that this formula is approxi-
mately correct in the low-temperature region [26]. Figure 3(f)
shows the calculated results. As a whole, 0.6 < Z < 0.8,
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FIG. 3. (a)–(c) Temperature-dependent Matsubara self-energy functions for various Co-3d orbitals (dz2 , dx2−y2 + dxy, and dxz + dyz or-
bitals). Here only the low-frequency imaginary parts are shown. β means the inverse temperature (β ≡ 1/T ). (d), (e) Temperature dependencies
of orbital-resolved fitting parameters a and γ . In panel (d), the horizontal dashed line denotes the ideal value of a (i.e., a ≡ 1.0) predicted by
the Landau Fermi-liquid theory. The characteristic temperature for Fermi-liquid state TFL is highlighted by using color bar. (f) Effective 3d
electron masses estimated by using Eq. (2). See main text for more details.

which indicates that the system is moderately correlated. We
can see that the relationship m�(dx2−y2 + dxy) > m�(dz2 ) >

m�(dxz + dyz ) holds for all temperatures. It means that the
in-plane Co-3d orbitals (dx2−y2 + dxy orbitals) are more cor-
related and suffer more renormalization than the out-of-plane
orbitals (dz2 and dxz + dyz orbitals). This explains why the
“pseudogap” state occurs only at the dx2−y2 + dxy orbitals.
The orbital differentiation and orbital selectivity are quite
significant for the Co-3d orbitals in hexagonal CoSn. It is
possible to realize the orbital-selective Mott phase in this
materials.

D. Orbital occupancies and local spin states

As mentioned above, Ad (ω = 0) will change with tempera-
ture, which might imply a temperature-driven redistribution of
Co-3d electrons. Here, we will provide some direct evidence
about this issue. Figure 4(a) shows the total occupancy of Co-
3d orbitals as a function of temperature T . 〈Nd〉 increases with
increasing temperature, which manifests that excess Co-3d
electrons may be from the weakly correlated Sn-5p orbitals
through the p-d hybridization effect. The redistribution of
electrons occurs not only between the Co-3d orbitals and
Sn-5p orbitals, but also between the in-plane and out-of-plane
Co-3d orbitals. Figure 4(b) shows the temperature-dependent
3d orbital occupancies 〈Nα

d 〉, where α denotes the orbital
index. The dxz + dyz orbitals will lose a small portion of
electrons at high temperature. On the contrary, the dx2−y2 +
dxy and dz2 will gain more electrons. This trend is roughly
consistent with what we have learned from the temperature
dependence of Ad (ω = 0) [see Figs. 2(e) and 2(f)]. Further-
more, we notice that, over a wide range of temperature, the
orbital occupancies look like being fixed. Both 〈Nd〉 and 〈Nα

d 〉
exhibit a platform in this temperature region. The widths of
these platforms are the same, irrespective of the orbital char-
acteristics.

Since the spin states of the systems are in tightly connected
with the orbital occupancies, it is supposed that the spin states
of Co-3d electrons will be modified as well. Figure 4(c)
shows the expected values of total spin 〈S〉. Initially,
〈S〉 ≈ 0.88. Then it decreases quickly with temperature
until T reaches TS1. When TS1 < T < TS2, it exhibits weak
temperature dependence (〈S〉 ≈ 0.87). Once T is larger than
TS2, 〈S〉 decreases monotonically with temperature again.
Hence, we can define two new temperature scales, namely,
TS1 and TS2. They are used to locate the beginning and
ending of the spin plateau. In this material, TS1 and TS2

are about 150 and 600 K, respectively. The pressure-driven
high-spin to low-spin transition has been suggested for
the cobalt monoxide [28]. The underlying mechanisms
for this transition have been well understood. As for the
hexagonal CoSn, although similar high-spin to low-spin
transition is absent, it is still useful to clarify the underlying
mechanism for the temperature-driven spin state evolution.
At first, we used some good quantum numbers, such as
the total occupancy N and the total spin S to classify the
atomic eigenstates |	〉 of the local impurity Hamiltonian
Hloc for the Co-3d electrons. And then we tried to measure
the atomic eigenstate probabilities p	 via the CT-HYB
quantum impurity solver [35,42]. Figure 4(d) illustrates the
calculated results for some principal atomic eigenstates.
Apparently, in the low-temperature region, the atomic
eigenstates |N = 7, S = 0.5〉 and |N = 7, S = 1.5〉 dominate.
However, in the high-temperature region, the atomic
eigenstate |N = 8, S = 1.0〉 is more favorable. So, it is the
|N = 7, S = 0.5〉 + |N = 7, S = 1.5〉 → |N = 8, S = 1.0〉
transition that results in the change of spin states.

E. Spin and orbital dynamics

Next, let us focus on the spin dynamics of hexagonal CoSn.
We tried to calculate the spin susceptibility χsp(τ ) for Co-3d
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FIG. 4. (a) Total 3d occupancy and (b) orbital-resolved occupancies as a function of temperature T . (c) Total spin as a function of
temperature T . TS1 and TS2 are left and right boundaries of the spin plateau, respectively. (d) Temperature dependencies of probabilities
for principal atomic eigenstates. Here, the data for atomic eigenstates |N = 8, S = 0.0〉 and |N = 8, S = 1.0〉 are rescaled for a better view.

orbitals via the following definition:

χsp(τ ) = 〈S(0)S(τ )〉. (3)

Here, S is the operator of total spin, and τ denotes the
imaginary time (τ ∈ [0, β]). Figure 5(a) shows the calculated
results. When the temperature is low, χsp(τ ) approaches zero
for times τ sufficiently far from τ = 0 or β. On the contrary,
when the temperature is high, the asymptotic behavior of
χsp(τ ) is quite different. It approaches a nonzero constant c
at large enough τ , which means a well-defined frozen local
moment. On the other hand, if the Landau Fermi-liquid theory
is obeyed, χsp(τ ) should behave as χsp(τ ) ∼ [T/sin(T τπ )]2.
Clearly, the asymptotic behavior of χsp(τ ) provides more ev-
idence for the violation of the Landau Fermi-liquid theory at
high temperature [46]. Thus, we can define a new tempera-
ture scale TSF. When T < TSF, χsp(τ = β/2) → 0.0. When

T > TSF, χsp(τ = β/2) → c. It seems that the spin moment is
frozen at T > TSF. This situation is the so-called spin-freezing
state. Indeed, TSF signals the emergence of a spin-freezing
phase. For the hexagonal CoSn, its TSF is around 290 K
(β = 40) according to Fig. 5(a).

Then, another question is raised. How about the orbital
dynamics? To answer this question, we computed the orbital
susceptibility as well. The definition of orbital susceptibility
χab

orb(τ ) is as follows [47,48]:

χab
orb(τ ) = 〈Oab(0)Oab(τ )〉, (4)

where

Oab = na − nb. (5)

Here na (or nb) denotes the occupancy of orbital a (or
b). In the present work, we only considered three typical

(a) (b) (c) (d)

FIG. 5. (a) Temperature-dependent spin-spin correlation functions χsp(τ ). (b)–(d) Temperature-dependent orbital-orbital correlation func-
tions χ ab

orb(τ ), for which a and b are orbital indices. See main text for more details.
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combinations of a and b: (i) (a, b) = (dx2−y2 , dxz ), (ii)
(a, b) = (dx2−y2 , dz2 ), and (iii) (a, b) = (dz2 , dyz ). The calcu-
lated results are depicted in Figs. 5(b)–5(d). For cases (i) and
(iii), χab

orb(τ = β/2) is always larger than zero, regardless of
the inverse temperature β. Similar to the spin-freezing phase,
we call this behavior orbital-freezing state. It should be related
with some kind of orbital orders. For case (ii), when T > T̄ab,
χab

orb(τ = β/2) will show analogous behavior to that as seen
in cases (i) and (iii). But when T < T̄ab, it will approach zero.
It is suggested that the orbital-freezing state will be destroyed
below T̄ab. In this case, T̄ab 
 TSF. Obviously, T̄ab marks the
temperature scale for the orbital-freezing transition. Accord-
ing to the calculated results, orbital freezing is not a universal
and indiscriminate feature for all orbitals. It only occurs for
special combinations of orbitals at high-enough temperature.

IV. CONCLUDING REMARKS

In this paper, we present a systematic study about the
temperature dependence of electronic structures of frustrated
kagome materials CoSn. Although the hexagonal CoSn is an
archetypal kagome metal, we find its Co-3d states are rather
close to a correlated Mott insulator. Both the pseudogap and
Van Hove singularity are observed in its band structures and
densities of states, respectively. In addition, a series electronic
transitions or crossovers are predicted. We figured out at least
six different temperatures or energy scales, namely T ∗, TFL,
TS1 and TS2, TSF, and T̄ab, which are in connection with the
pseudogap, non-Fermi-liquid state, spin plateau, spin-freezing
state, and orbital-freezing state of Co-3d electrons, respec-
tively. We established that T ∗ ≈ T̄ab 
 TS2 
 TSF > TS1 >

TFL. It means that with the increment of temperature, the
Co-3d electrons in hexagonal CoSn should undergo the fol-
lowing changes (transitions or crossovers) successively: from
the Fermi-liquid state to the non-Fermi-liquid state, spin-
freezing transition, orbital-freezing transition, and entering
the pseudogap state. The calculated results suggest that the
correlated Co-3d electronic states in the hexagonal CoSn
will be dramatically tuned by temperature. The temperature
dependence of electronic structures of hexagonal CoSn is
much more complex than what we have expected before and
should be taken into consideration seriously.

Finally, we speculate that similar properties could be de-
tected in the other 3d-electron kagome metals. We would like
to note that most of the “hidden” changes of the correlated
electronic states presented in this paper occur in a two-particle
level and at high-temperature region. It is not an easy task to
validate them experimentally. Anyway, our results shed new
light into the electronic structures of strongly correlated 3d-
electron kagome metals. It would be essential and interesting
to examine the temperature-dependent electronic structures of
the other strongly correlated metals, such as iron-based su-
perconductors [29], ruthenates [30–32], iridates [33,34], and
actinides [35,36].
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FIG. 6. Quasiparticle band structures of CoSn along high-
symmetry directions (M-	-M). (a) ARPES results (T < 60 K) [10].
(b) DFT + DMFT results (T ≈ 50 K).

APPENDIX: COMPARISON WITH
EXPERIMENTAL RESULTS

In this Appendix, we would like to make a detailed compar-
ison of experimental and theoretical results. Figure 6 shows
the quasiparticle band structures obtained by ARPES experi-
ments [10] and DFT + DMFT calculations. It is obvious the
major experimental features (such as the flat bands, Dirac
bands, and quadratic band touching at 	 points) are well
reproduced by our theoretical calculations. In Fig. 7, the ex-
perimental and calculated density of states are also compared.
Since the experimental data were collected at T < 60 K , the
calculated density of states was multiplied by a Fermi-Dirac
distribution function f (ε) = 1/[exp(εβ ) + 1] where the in-
verse temperature β = 200 (T ≈ 50 K). The theoretical curve
exhibits a major peak at −0.3 eV and a “bump” around
−1.0 eV, which are in good accord with the experimental
curve.

FIG. 7. Total density of states of CoSn. The experimental spec-
trum is extracted from Ref. [10].
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