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Solvable lattice Hamiltonians with fractional Hall conductivity
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We construct a class of lattice Hamiltonians that exhibit fractional Hall conductivity. These Hamiltonians,
while not being exactly solvable, can be controllably solved in their low-energy sectors, through a combination of
perturbative and exact techniques. Our construction demonstrates a systematic way to circumvent the Kapustin-
Fidkowski no-go theorem and is generalizable.
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I. INTRODUCTION

The topological states of matter have been an important
theme in condensed matter physics since the discovery of the
quantum Hall effect four decades ago [1–3]. Over time, as
people’s knowledge in this field broadened and understand-
ings deepened, the construction of exactly solvable lattice
models emerged as a promising approach to study a large
variety of topological states as well as their interplays with
global symmetries [4–6]. The success of the exactly solvable
lattice model approach is at least threefold: (1) these models
provide unambiguous microscopic completions for the asso-
ciated topological phases, many of which hypothesized on
theoretical grounds, and demonstrate that they can be realized
in solid state systems at least in principle; (2) all the inter-
esting topological properties can be exactly solved for and
thereby apprehended in an explicit manner; (3) these mod-
els are constructed not out of fortuity but out of systematic
considerations under certain principles, and the physical and
mathematical origin of those principles is profound [5–9].

In condensed matter physics, one most important global
symmetry a topological state may interplay (“be enriched”)
with is the electromagnetic U(1). Indeed, the quantum Hall
effect, whose very advent opened the entire field, was primar-
ily characterized by the integrally or fractionally quantized
Hall conductivity, featuring such an interplay. A rather curious
situation occurs, however, if we attempt to construct exactly
solvable lattice Hamiltonians, applying the usual ingredients
and wisdom that have generated so many successes, for the
topological states that exhibit nontrivial Hall conductivity:
such efforts never came to fruition. The fundamental reason
behind this apparently disappointing situation was finally ad-
dressed by Kapustin and Fidkowski, stated by them in a no-go
theorem [10]: A nontrivial Hall conductivity is impossible in
a gapped local commuting projector Hamiltonian with finite-
dimensional local Hilbert space.

The purpose of this work is to go beyond the usual ap-
proach of exactly solvable lattice models, and in particular be-
yond the limiting conditions stated in the Kapustin-Fidkowski
no-go theorem, in order to construct lattice Hamiltonians that

can be solved, at least in the low-energy sectors, to find non-
trivial Hall conductivity.

In Ref. [11] one of us studied the electromagnetic U(1) en-
richment for a large class of Abelian topological phases [those
which admit gapped boundary conditions were the electro-
magnetic U(1) absent [12,13]], including the cases with Hall
conductivity, and found exactly solvable Lagrangians for them
on effective space-time lattices (i.e., coarse-grained space-
time manifolds). There it was also explained how and why,
if we proceed with the usual wisdom [5,8] in an attempt to
reduce an exactly solvable Lagrangian on a coarse-grained
space-time to an exactly solvable toy model Hamiltonian on
an actual spatial lattice, we would run into problems when
the Hall conductivity is nontrivial. The occurrence of the
problems is an embodiment of the Kapustin-Fidkowski no-go
theorem.

Through the study in Ref. [11], however, a path was
sketched towards constructing controllably solvable, despite
not being exactly solvable, lattice Hamiltonians with non-
trivial Hall conductivity. In this paper we elaborate on the
simplest such cases and show that the Hamiltonians can
indeed be solved, exhibiting the desired values of Hall con-
ductivity which are fractional in general. The solution is
obtained by a combination of perturbation theory and the
exact techniques familiar in solving local commuting pro-
jector Hamiltonians. (We remark that a well-known example
of Hamiltonian solved by a combination of perturbative and
exact techniques is the celebrated Kitaev honeycomb model
[14] which is a non-Abelian spin liquid, although the detailed
procedure is very different from our present work.) Our work
is conceptually straightforward and can be generalized to a
larger class [11] of topological phases coupled to electromag-
netic U(1), including the fermionic phases; we will elaborate
on those generalizations in subsequent works.

This paper is organized as the following. In Sec. II we
motivate the lattice Hamiltonians following the idea outlined
in [11]; we also explain the relation between our present
work and the previous literature, in particular Refs. [15,16]
and [17]. In Sec. III A we use perturbation theory to obtain
the low-energy subspace within each local Hilbert space.
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In Sec. III B we solve for the many-body ground state(s)
and anyon excitation states using steps similar to those in
solving local commuting projector Hamiltonians. In Sec. IV
we compute the Hall conductivity, and show it is precisely
quantized to the values that we designated, despite that we
have apparently used perturbation theory in the derivation. In
Sec. V we make concluding remarks.

II. HAMILTONIAN

In this paper we focus on the simplest cases among the
bosonic topological orders enriched by electromagnetic U(1)
considered in [11]. In the continuum they are described by a
class of doubled Chern-Simons (BF) theories

S =
∫

d3x
[ n

2π
adb − q

2π
Ada − p

2π
Adb

]
(1)

with n, p, q being integers. Here a, b are dynamical U(1)
gauge fields and A is the electromagnetic U(1) background.
When the coupling to A is absent, the theory can be reduced
to the Zn generalization of the toric code (see below), there-
fore, n determines the intrinsic topological order, with n = 1
topologically trivial [18]. On the other hand, p, q determine
the U(1) global symmetry enrichment. [In principle, a, b can
couple to two different U(1) global symmetry backgrounds
A, B, but in this work we will identify B = A.] This model can
be viewed as certain “double-layered” bosonic quantum Hall.
Its Hall conductivity is −2pq/n, and it supports two types of
anyons, one coupled to a and the other to b, that have trivial
self-statistics and −2π/n mutual statistics, and carry electric
charges p/n and q/n, respectively [19].

In [11] it was shown that such topological orders along
with the electromagnetic U(1) enrichment admit effective
Lagrangians on space-time lattice, that retain all the formal
properties and are exactly solvable. By viewing one direc-
tion of the space-time lattice as the discretized time, through
standard procedure, a space-time lattice Lagrangian gives rise
to a set of commutation relations, as well as a spatial lattice
Hamiltonian were it in the usual cases; in our case, however,
related to the fact the Lagrangian is exactly solvable, instead
of a Hamiltonian it turns out we actually get a set of strict
constraints on the Hilbert space. While a set of constraints
on the Hilbert space is not what we hope for, we can use
them to motivate a lattice Hamiltonian, whose low-energy sec-
tor reproduces and therefore replaces those constraints. The
Hamiltonian thereby motivated may not be exactly solvable
any more, but as long as its low-energy sector can be control-
lably solved for, we have achieved our goal. The motivating
procedure is reviewed in details in Appendix A. Here we will
present the results: the lattice Hilbert space, the commutation
relations, and the lattice Hamiltonians for general integers
n, p, q.

We suppose the spatial lattice is a square lattice for sim-
plicity (we can generalize all of our results to a triangulation
with branching structure of an arbitrary two-dimensional spa-
tial manifold). The local Hilbert spaces and their endowed
operators are as follows (see Fig. 1 for illustration):

(i) On each link l, which is equivalent to a dual lattice link
l� (with direction 90◦ counterclockwise to the direction of l),
there is a local Hilbert space endowed with a conjugate pair

FIG. 1. Illustration for the lattice (solid line) and the dual lattice
(dashed line), the conjugate pairs of operators, and the lattice and
dual lattice “exterior derivatives.” Note we have picked the natural
directions of the lattice links to be +x̂, +ŷ, and the natural directions
of the dual lattice links to be 90◦ counterclockwise to the associated
lattice link directions. When the direction label on a link (or a dual
link) reverses, the associated operator picks a negative sign.

of real-valued operators satisfying

[bl, al� ] = i
2π

n
. (2)

(ii) On each vertex v, which is equivalent to a dual lattice
plaquette p�, there is a local Hilbert space endowed with a
conjugate pair of integer/U(1)-valued operators satisfying[

sa
p� , eiθb

v
] = eiθb

v . (3)

(iii) On each plaquette p, which is equivalent to a dual
lattice vertex v�, there is a local Hilbert space endowed with a
conjugate pair of integer/U(1)-valued operators satisfying[

sb
p, eiθa

v�
] = eiθa

v� . (4)

To have an intuitive picture in mind (which will appear to
be an emergent picture that is not exact, after we introduce
our Hamiltonian later), one may think of a, b as dynamical
R gauge fields on the lattice, such that they are effectively
reduced to dynamical U(1) gauge fields upon the introduction
of the associated dynamical Dirac string variables sa and sb.
The “reduction to U(1)” can be understood in the following
sense. The effective U(1) fluxes associated with the dynamical
gauge fields a, b are

f b
p ≡ (db − 2πsb)p, f a

p� ≡ (d�a − 2πsa)p� , (5)

where the lattice curl db and the dual lattice curl d�a are
illustrated in Fig. 1. Thanks to the Dirac string variables,
if we sum f b

p or f a
p� over all the plaquettes p or p� on a

closed space (consider a square lattice plane with periodic
boundary conditions, forming a torus), we can have arbitrary
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2πZ values, reproducing the Dirac quantization condition for
U(1) gauge fluxes. Moreover, we can see that the f a, f b fluxes
are invariant under

bl → bl + 2πzb
l , sb

p → sb
p + (dzb)p,

al� → al� + 2πza
l� , sa

p� → sa
p� + (d�za)p� , (6)

where zb
l , za

l� are arbitrary Z-valued transformations on the
links and dual links, respectively. Such invariances manifest
the fact that a, b are effectively reduced from R to R/2πZ =
U(1) gauge fields; they are known as 1-form Z gauge invari-
ances {see [11] and Appendix A) (a general introduction to
higher form symmetries can be found in [20]). Let us define
the generators

ga
l� ≡ ei(d�θa−na)l� , gb

l ≡ ei(dθb−nb)l , (7)

where the notions of dθb and d�θa are illustrated in Fig. 1.
Then the transformation zb

l in (6) is generated by conjugating
bl with ga

l� whose l� is dual to l is the aforementioned manner
(actually l� is right on top of l, so we may therefore say l� = l);
likewise, the transformation za

l� is generated by conjugating al�

with gb
l . The expressions of ga, gb invite us to think of θa, θb

as the “superconducting phases” (with charge n) associated
with the effectively U(1) dynamical gauge fields a, b, respec-
tively. Indeed, the expressions of ga, gb are invariant under the
ordinary (0-form) gauge transformations

bl → bl + (dϕb)l, θb
v → θb

v + nϕb
v,

al� → al� + (d�ϕa)l� , θa
v� → θa

v� + nϕa
v� , (8)

where ϕb
v , ϕa

v� are arbitrary U(1) transformations on the ver-
tices and dual vertices, respectively; they are effectively U(1)
instead of R because any 2πZ part of them can be com-
pletely absorbed into (6). The two transformations by ϕb

v ,
ϕa

v� are, in turn, generated by the commutators with f a
p�=v

and f b
p=v� respectively. In fact, it is easy to check that the

generators ga, gb, f a, f b for the gauge transformations (6) and
(8) all commute with each other [so in particular their own
expressions are invariant under (6) and (8)]; if a state is a si-
multaneous eigenstate of all of ga, gb, f a, f b, we may view the
state as respecting the respective Gauss’s law constraints with
the “gauge charges” given by the simultaneous eigenvalues.

Having introduced the local Hilbert space and operators,
we now introduce the lattice Hamiltonian. Before we present
our final Hamiltonian, it turns out to be helpful to first consider
a simpler “prototype” Hamiltonian, and understand its prop-
erties and problems. Through the aforementioned effective
Lagrangian and treatments that are detailed in Appendix A,
we are led to consider the “prototype” Hamiltonian

H̃ = Ub

2

∑
l

∣∣1 − eiqAl gb
l

∣∣2 + Ua

2

∑
l�

∣∣1 − eipA�
l� ga

l�
∣∣2

+ Vb

2

∑
p

(
f b
p

)2 + Va

2

∑
p�

(
f a
p�

)2
, (9)

where Al is the electromagnetic U(1) background field living
on the link l, while A�

l� on the dual link l� is identified with
a nearby Al pointing in the same direction (see Fig. 2 for a
choice of identification). The coupling of the electromagnetic

FIG. 2. A choice of identification of A�
l� with Al, where l is chosen

to locate at x̂/2 + ŷ/2 away from l�.

field A into the system can be intuitively understood as the
following. If we think of sa

p� as a boson number operator on the

vertex v = p�, then e±iθb
v is the creation/annihilation operator

of the boson, and hence gb
l involves the hopping of such a

boson across the link l; if the boson carries electric charge q,
its hopping will indeed couple to A through the factor eiqAl ,
likewise for the term with A�

l� . Therefore, the local electric
charge operator on a vertex v is given by

ρv ≡ q sa
p�=v + p sb

p=v−x̂/2−ŷ/2, (10)

where the second term is due to the said identification between
A�

l� and Al.
Let us examine the properties of H̃ . Since ga, gb, f a, f b

commute with each other, all of the four terms in H̃ com-
mute with each other and can be simultaneously diagonalized;
as mentioned before, the simultaneous diagonalization may
be viewed as imposing the Gauss’s laws for their respective
gauge transformations. But, the four terms cannot be simulta-
neously minimized in general. To minimize the Ub term, we
need an eigenstate such that

nbl = qAl + (dθb)l mod2π, (11)

but then in the Vb term

f b
p = q

n
(dA)p mod

2π

n
(12)

which is nonzero in general, and hence the Vb term is not
minimized; in particular, for small magnetic field dA, if the
U term is already minimized by the state, f b

p = (q/n)(dA)p is
the choice that minimizes the V term the best. Likewise for the
Ua term and the Va term, with q → p and A → A�. Suppose
Ub/Vb,Ua/Va → ∞ so that the Ub,Ua terms are minimized
first, and suppose the magnetic field dA is indeed small.
Then, the ground state may be viewed as considering all the
eigenstates in the b, θb, sb basis that first minimizes the Ub

term and then the Vb term, and then taking a suitable linear
superposition of all such states according to minimizing the
Ua term and then the Va term, in a spirit similar to solving
for the toric code ground state(s) [4]; clearly, one can also
exchange the views between b and a.

Some connection to a −2pq/n Hall conductivity can be
readily noted. From the definitions of f b, f a and ρ, we find
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the ground-state expectation value of the local charge:

〈ρv〉 = − q

2π
〈 f a − d�a〉p� − p

2π
〈 f b − db〉p

= − pq

2πn
[(dA)p′ + (dA)p]

+ q

2π
〈(d�a)p�〉 + p

2π
〈(db)p〉, (13)

where p� = v, p = v − x̂/2 − ŷ/2, p′ = v + x̂/2 + ŷ/2.
Since (dA)p and (dA)p′ are nearby magnetic fields, this
result already has the flavor of 〈δρ〉 = σH dA with the Hall
conductivity 2πσH = −2pq/n, if we can show that 〈(d�a)p�〉
and 〈(db)p〉 at ground state are somehow independent of the
external magnetic field.

At this point we are ready to see the problem with our
“prototype” Hamiltonian H̃ . The problem manifests itself as
twofolded:

(i) Since ga, gb, f a, f b commute with each other and their
eigenvalues are all continuous, the Hamiltonian is gapless,
rather than a gapped one that we want; in fact, the Hamiltonian
is locally gapless, not just becoming gapless only after taking
the limit of large system size. Related to this, the ground state
and hence the response to the magnetic field are sensitive
to the ratios Ub/Vb and Ua/Va (which were taken towards
infinite in the above), rather than being robustly fractionally
quantized.

(ii) To compute the Hall conductivity, we need to show
that the ground-state local expectation values 〈(d�a)p�〉 and
〈(db)p〉 are somehow independent of the external magnetic
field. But, with a little extra effort it is easy to see these
expectation values are ambiguous, somewhat like asking for
the expectation 〈x〉 for a Bloch wave. The ambiguity arises
from the infinite ranges of the local values of a, b involved in
the superposition.

These two issues actually represent the same problem:
since a, b are canonical conjugates, the local gaplessness of
a is related to the local unboundedness of b, and vice versa.

Our task is therefore to resolve this problem of H̃ , making
a modified Hamiltonian gapped and its Hall conductivity un-
ambiguous. This is the point at which the Kapustin-Fidkowski
no-go theorem [10] makes its manifestation. When the Hall
conductivity vanishes, i.e., when p = 0 or q = 0, there is a
known resolution that maintains the local commutativity of
the terms in the Hamiltonian, making it exactly solvable; the
model was introduced in [21] (as part of a larger Hamilto-
nian), and revisited in our present framework in [11] (see
Appendix A). Roughly speaking, the resolution is to note that
when q = 0 (the case when p = 0 is analogous), the condi-
tion (11) is independent of the external field, and therefore,
rather than viewing it as an energetic condition, we may
instead, from the very beginning, let the full local Hilbert
space on the link to take a finite set of discrete values b̃l =
{0, 1, . . . , n − 1} [which may be viewed as a reminiscence of
(nb − dθb)l/2π modn under the condition (11)]; now that the
local Hilbert space on a link is discrete and bounded, one can
construct gapped local commuting terms that essentially play
the roles of the Vb,Ua,Vb terms in H̃ , and the commutativity
leads to solvability. If both p, q = 0, the model can be further
reduced to the Zn generalization of the toric code [4]. Such
a model becomes unavailable when the Hall conductivity

−2pq/n 	= 0, i.e., when p, q 	= 0, since the condition (11) and
its al� analog both depend on the external field and can no
longer be realized by any fixed discrete local Hilbert space to
begin with. Thus, for general values of p, q, we will resort
to our resolution below, which makes the Hamiltonian not
exactly solvable, but fortunately perturbatively solvable at its
lower-energy sectors.

Our resolution is to add simple, noncommuting terms
εaa2

l�/2 and εbb2
l /2 to the “prototype” Hamiltonian H̃ , to open

the local gaps and also to softly bound the ranges of the local
Hilbert spaces. The Hamiltonian reads as

H =
∑
l=l�

[ εa

2
a2

l� + εb

2
b2

l + Ub[1 − cos(dθb − nb + qA)l]

+ Ua[1 − cos(d�θa − na + pA�)l� ]

]
+

∑
p=v�

Vb(db − 2πsb)2
p +

∑
v=p�

Va(d�a − 2πsa)2
p� . (14)

Since the εa, εb terms do not commute with some of the
remaining terms (nor with each other), a gap is opened up;
the fluctuations of a, b on each link are also softly bounded by
these terms. As the εa, εb terms violate the gauge invariances
(6) and (8), the gauge field picture of the a, b variables is no
longer exact, but emergent at best. Indeed, in the remaining
sections of this paper, we will show such a gauge field picture
emerges at the low-energy sector on each individual link when
εa, εb are small compared to Ua,Ub, and we are able to solve
the low-energy sectors of the full Hamiltonian, and show the
system exhibits the desired Hall conductivity −2pq/n.

Before we move on towards the solution, we would like
to comment on the relation between our work and the rele-
vant literature. We first remark that the Hamiltonian H has
appeared before as certain cases in [15,16], which numeri-
cally studied lattice models with Hall conductivity. The proper
relation of the lattice models to Chern-Simons theory and
the subsequent path towards analytically solving the models,
however, were not addressed in [15,16]. In Appendix F we
provide a detailed explanation of how to properly identify
the nature of the topological orders for all of the models
in [15,16], so to connect those models to Chern-Simons
theory and to our work. In our work, we motivated the lat-
tice Hamiltonian H starting from a class of well-established
Chern-Simons theories, from which the solvability follows as
a natural consequence. Our approach is systematic and can be
straightforwardly applied to the more general twisted bosonic
and fermionic topological orders [11]. We will elaborate on
those more general cases in upcoming works; this work serves
to demonstrate our approach through the most basic examples.

In [16] the relation between some of the models and the
Zn toric code was discussed in the absence of coupling to the
electromagnetic background (see Appendix F). As we will see
in the following, interestingly, when we solve the Hamiltonian
in the presence of electromagnetic coupling, crucial features
appear: the low-energy subspace emerges to be an effective
Zn-gauge-like theory, but with the Zn in some ways “shifted
by” and “projective under” the electromagnetic background;
such modification is essential for a nontrivial Hall conduc-
tivity. Such background-dependent emergent field is beyond
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the celebrated paradigm of exactly solvable lattice models
established since the seminal works [4–6], and may shed
light on the studies of the more general symmetry-enriched
topological orders that are beyond this celebrated paradigm.

More recently [17] investigated exactly solvable local com-
muting projector Hamiltonians with integer values of Hall
conductivity. There are two differences with our present work.
First, [17] focused on integer Hall conductivity, while the Hall
conductivity in our present work takes fractional values in
general. Second, the spirit of their lattice model bears a major
difference with ours. The model in [17] involved U(1)-valued
local Hilbert space, and for their Hamiltonians to be made
of local commuting projectors, the matrix elements must not
be continuous functions of both the U(1) dynamical variables
and the electromagnetic U(1) background gauge field. On the
other hand, our Hamiltonians’ matrix elements are regular
functions of the continuous dynamical variables; the electro-
magnetic U(1) background gauge field also couples to the
system in the usual form. Our models hold on to these impor-
tant physical requirements [10] at the cost of exact solvability.
It is interesting to note, however, that the discontinuities in the
models of [17] may be interpreted as a reminiscence of the
emergent 1-form Z-gauge invariance (6); see the discussion
below (29) for the origin of the emergent “discontinuity” in
our continuous model. Since it is well known that disconti-
nuities appear when the group cohomology machinery [6] is
applied to continuous global symmetry groups [electromag-
netic U(1) here], our resolution to the discontinuity problem
is another reflection that our construction is reaching beyond
the currently established paradigm.

III. SOLVING THE HAMILTONIAN

Now we proceed to solve the Hamiltonian H at its low-
energy sector and find the Hall conductivity. The sketch is the
following.

(i) First we solve the link terms in a solvable limit, i.e.,
perturbatively find the low-energy subspace determined by the
εa, εb,Ua,Ub terms on each individual link, which turn out to
be an emergent Zn subspace but with operator values shifted
by the electromagnetic field. The approximate low-energy
wave functions are illustrated in Fig. 3.

(ii) Then, with this emergent Zn low-energy subspace on
each link, we can solve the Va,Vb terms in a manner similar to
solving the toric code [4], and find fractionally charged anyons
and the fractional Hall conductivity.

(iii) Finally, since we have used perturbation theory, we
need to confirm that the Hall conductivity is precisely the
designated fraction −2pq/n, rather than some nearby number
blurred by the perturbative error. This is done by narrowing
down our perturbative error without closing the gap, and
implementing the usual derivation for the robustness of frac-
tional Hall conductivity in gapped systems [22].

In this and the following section we carry out these steps.
We remark that our solving procedure resembles what one
does to study a real solid-state or cold-atom system: one first
identifies the local low-energy subspace (the relevant elec-
tronic orbits on an atom, or the relevant atomic orbits in a
potential trap) out of an infinite-dimensional local full Hilbert

FIG. 3. The trial ground-state wave functions |
 (0,0)
mb (b)| for the

local Hamiltonian on each link, in the b basis. The “potential” for the
b variable, (ε/2)b2 − U cos n(b − b0), is illustrated below with the
purple line. The parameters used are n = 3, εb = εa = ε, Ua = Ub =
U , ε/U = 1/44, and b0 = 0.2π . In the b basis, the wide envelope
represented by the dashed line is a Gaussian centered at 0, with width
2π/nWa where Wa ∼ (εb/Ua )1/4; each narrow peak is a Gaussian
centered at b̄ j = (2π/n) j + b̄0, with width Wb ∼ (εa/Ub)1/4. The
errors of these trial wave functions to the true ones are O(W 2).

space; then one projects the many-body interactions onto the
low-energy subspace to study the many-body problem.

A. Local low-energy subspace

In this section, we solve the local low-energy subspace on
each link in a solvable limit. The local Hamiltonian can be
expressed as (the link index is omitted in this section)

Hlink = 1

2
(εbb2 + εaa2)

− Ub cos[n(b − b̄0)] − Ua cos[n(a − ā0)], (15)

where ā0 and b̄0 include terms that commute with the b and
a operators. Our task is to perturbatively find the low-energy
subspace of Hlink, under the assumption

ε � U, (16)

where ε is the scale of εa and εb, and U the scale of Ua and Ub.
We will find trial wave functions for n nearly degenerate low-
energy states that are well separated for other states, forming
an emergent Zn low-energy subspace; the actual low-energy
wave functions differ from our trial ones by O(

√
ε/U ) con-

trolled errors, and their energy split is O(
√

ε/U ) smaller than
their gap to the higher-energy states. The full details of the
calculation and error control in this section can be found in
Appendix B.

To motivate our trial wave functions, note that the leading
noncommuting pairs of terms are the εa and Ub pair, as well
as the εb and Ua pair. Let us first consider the εa and Ub terms

Hlink,b = 1

2
εaa2 − Ub cos[n(b − b̄0)] (17)

which may be viewed as a particle in a one-dimensional si-
nusoidal potential. Alternatively, if we are to view b as some
gauge field as motivated in the previous section, then the Ub

term is the Higgs potential and the εa term is the kinetic
energy that opens the Higgs gap near the potential minima.
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As long as the potential is deep enough, the neighborhood
around each minimum, located at b̄ j = (2π/n) j + b̄0 with
j ∈ Z, can be effectively expanded to the quadratic order.
Therefore, the low-energy eigenfunctions are approximately
those of infinitely many harmonic oscillators, one at each
potential minimum b̄ j . The eigenstates |φ(Nb)

j 〉 are those of
the harmonic oscillators at the potential minima b̄ j and with
energy level Nb. The excitation energy of which is

ωb = 2π
√

Ubεa. (18)

In particular, the low-energy |φ(Nb)
j 〉 are localized Gaussians of

width

Wb =
√

2π

n

( εa

Ub

) 1
4

(19)

centered at b̄ j . As long as Nb is not too large, the tunnel-
ing overlap between different j’s is exponentially small in
−1/W 2

b , hence the Nb states, at least for small Nb can be
treated as a nearly orthonormal and nearly degenerate under
Hlink,b, analogous to a “tight-binding” electron in a sinusoidal
potential. We need to consider Nb = 0 for low-energy sub-
space, and small Nb > 0 for error control. The higher powers
in the expansion of the cos minima mix Nb = 0 with small Nb

and modify the wave functions by a controlled error O(W 2
b ).

Now we have a new set of basis states describing the
low-energy physics of the system, spanned by infinitely many
highly localized orbits |φ(Nb)

j 〉. Our next step would be to solve
the remaining terms

Hlink,a = 1

2
εbb2 − Ua cos[n(a − ā0)] (20)

in this basis. While the Ua term, the “hopping term of the tight-
binding model,” remains exact after the projection into this
basis (as this basis spans an invariant subspace under the Ua

term), the “potential well” εb term does not. We approximate

b2
∣∣φ(Nb)

j

〉 ≈ b̄2
∣∣φ(Nb)

j

〉
(21)

which we must justify later (see the end of this subsection).
Here b̄ is the operator identifying the center coordinates
(2π/n) j + b̄0 of the orbits, which is well defined at least
for Nb not too large. This means that at low energies we no
longer need to consider the continuous b variable but can
concentrate on a discrete b̄ space for each level Nb. The basis
of the conjugate variable of b̄ operator, a (not to be confused
with ā), is then confined onto the “first Brillioun zone” in the
reciprocal space of the b̄ j lattice, i.e., a ∈ [0, 2π ). Since the
roles of a and b̄ are conjugate, we can switch the perspective
and now interpret a as a coordinate on a ring. Thus, we can
regard −Ua cos[n(a − ā0)] = −Ua cos[n(a − ā0)] term as a
sinusoidal potential, subjected to the periodic boundary con-
dition identifying a = 0 and 2π . This potential has n minima
located at āma = (2π/n)ma + ā0, ma ∈ Zn. We can solve the
Hamiltonian around each minimum, again treating the poten-
tial in the neighborhoods of the minima as quadratic. The
corresponding excitation energy is

ωa = 2π
√

εbUa (22)

and the low-energy states 
̃
(Nb,Na )
ma can be solved. They are n-

fold degenerate for each level, and again localized in a basis
by Gaussian width

Wa =
√

2π

n

( εb

Ua

) 1
4
. (23)

Similar to the discussion in the previous step, the errors are
O(W 2

a ).
Piecing up the above, we conclude that the link has an

emergent Zn-like low-energy subspace, with trial wave func-
tions

∣∣
̃ (0,0)
ma

〉 =
√

Wb

nπWa

∫
da e−i n

2π
b̄0(a−āma )e−W 2

b (n/2π )2a2/2

(∑
za∈Z

e−[a−āma+nza ]2/2W 2
a

)
|a〉 (24)

or their linear combinations∣∣
 (0,0)
mb

〉 ≡ 1√
n

∑
ma

e−i n
2π

āma b̄mb
∣∣
 (0,0)

ma

〉
=

√
Wa

nπWb

∫
db

(∑
zb∈Z

einā0zb
e−(n/2π )2W 2

a b̄2
mb+nzb/2e−[b−b̄mb+nzb ]2/2W 2

b

)
|b〉. (25)

Here ma and mb take values in {0, 1, . . . , n − 1}; if we shift
either by n, the corresponding wavefunction will return to
itself but with an overall phase that depends on b̄0 or ā0, an
important feature different from an actual Zn, as we will see
later. An illustration of 


(0,0)
mb in b basis can be found in Fig. 3;

it is clear that the solutions to Hlink,b give the narrow peaks,
with width Wb, while the solution to Hlink,a determines the
broad envelope, with width 2π/nWa.

One may notice the two expressions above are slightly
asymmetric between a and b. This is because we treated
Hlink,b first. There is no contradiction to the apparent

symmetry between a and b in the original problem (if we
have set εa = εb = ε and Ua = Ub = U ) because these are
trial wave functions that have O(

√
ε/U ) errors with the actual

low-energy states anyways, and the said asymmetry is indeed
of this order.

At this point we shall return and justify the approximation
in (21). At first sight it seems this cannot be justified because
no matter how small εb/Ub is, the b2 potential will eventu-
ally be large enough to overcome the cos potential which
determines the b̄ minima; in other words, it is not obviously
controlled to find the low-energy states of Hlink,b first and then
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project Hlink,a into them. Our justification, in intuitive terms,
is to note that the trial wave functions |
 (Na,Nb)

mb 〉 (with small
values of Na, Nb of interest) already have small amplitudes
when b2 is large enough to overcome εb/Ub. In particular,
the typical spread of b in these wave functions is deter-
mined by the broad envelope of width ∼1/Wa ∼ (ε/U )−1/4,
therefore, εbb2 ∼ ε

√
U/ε is still smaller than Ub by a fac-

tor of O(
√

ε/U ). A more rigorous error control is given
in Appendix B. This error may introduce splitting among
the n actual low-energy states, by an amount O(ε) which
is O(

√
ε/U ) smaller than the gap O(

√
εU ) with the higher-

energy states.

B. Many-body ground states and excitations

Now that we have found the link low-energy subspace to be
an effective Zn-like field [but bears important difference with
a literal Zn field, see discussion below (29)], one can envision
that the remaining solution to the many-body problem is sim-
ilar to that of a Zn toric code, with suitable modifications by
the electromagnetic background. We will see this is indeed the
case. To control the error, the assumptions to be made are

ε � V � √
εU , (26)

where V is the scale of Va,Vb. The second separation of scales
is to ensure the applicability of the usual many-body perturba-
tion theory, where we can neglect the higher-energy states in

each local Hilbert space when considering the interaction cou-
plings between local systems; this is justified in Appendix C.
The first separation of scales is to ensure that the energy split
between the states within each local low-energy subspace can
be treated as a local perturbation on top of the toric-code-like
physics, so that the robustness of the toric-code-like physics
[4] is applicable.

We first note that for each link low-energy trial state, we
shall make the substitutions

b0,l → (dθb + qA)l/n , a0,l� → (d�θa + pA�)l�/n

so that the link state |
 (0,0)
mb,l 〉 depends on the neighboring

vertex states |θb
v 〉 and plaquette states |θa

v�〉, and also on the
electromagnetic background. So, any given sets of {mb

l }, {θa
v�},

{θb
v } specify a basis state for the many-body low-energy basis∣∣{mb

l

}
,
{
θa

v�

}
,
{
θb

v

}〉 ≡
⊗
v�,v,l

∣∣θa
v�

〉∣∣θb
v

〉∣∣
 (0,0)
mb

l ,l

〉
. (27)

The Fourier transforms of {θa
v�} can also serve as a well-

defined basis:∣∣{mb
l

}
,
{
sb

p

}
,
{
θb

v

}〉 ≡
∫

{θa
v� }

ei
∑

v� sb
p·θa

v�
∣∣{mb

l

}
,
{
θa

v�

}
,
{
θb

v

}〉
.

(28)

The basis vectors can be expanded in the original basis (for
simplicity, we omit the possible normalization factors in this
subsection)

∣∣{mb
l

}
,
{
sb

p

}
,
{
θb

v

}〉 =
∑
{zb

l }

∫
{bl}

(∏
l

eizb
l ·(pA� )l� e

−b̄2
mb

l ,zb
l

(n/2π )2W 2
a /2

e
−(bl−b̄mb

l ,zb
l

)2/2W 2
b

) ⊗
l,p,v

|bl〉|(sb + dzb)p〉
∣∣θb

v

〉
, (29)

where the minima positions

b̄mb
l ,z

b
l
≡ 2π

n

(
mb + nzb + dθb + qA

2π

)
l
. (30)

We make a few remarks about this set of many-body low-
energy basis states.

(i) The local minima in the b basis, specified by b̄mb
l ,z

b
l
, may

be viewed as an emergent realization of the Gauss’s constraint
gb

l = e−iqAl [see also (11)]. The positions of the minima are
shifted by the background electromagnetic field Al.

(ii) For definiteness of the labels, we need to fix the
emergent Zn label mb

l to take values in the range, say,
{0, 1, . . . , n − 1}. If an mb

l shifts by n, the effect can be ab-
sorbed into a shift of the nearby sb

p through a shift of the
summation variable zb

l ; moreover, an overall phase that de-
pends on A�

l� is generated. In other words, for Zn = Z/nZ,
the mod out of nZ is now “projective” under the electro-
magnetic field A�

l� . It is easy to see that the summation over
zb

l , entangling the link Hilbert space and the nearby plaque-
tte Hilbert spaces, is an emergent realization of the Gauss’s
constraint ga

l� = e−ipA�
l� which generates the first line of the

invariance (6).
(iii) While any final physical result must not depend on

any 2π shift of θb
v or Al because the original Hamiltonian

does not, the labeling of the basis states does. If such a shift is

made, through the expression of b̄mb
l ,z

b
l

we can see mb
l must be

relabeled to represent the same physical state; furthermore, if
mb

l is relabeled out of the {0, 1, . . . , n − 1} range, to relabel it
back in, the nearby sb

p must also be relabeled, and an overall
phase that depends on (“projective under”) A�

l� is generated.
One may avoid this ambiguity by fixing θb

v and Al to belong to
(−π, π ], but we do not have to, as long as the said relabeling
is understood.

All these are crucial features of our emergent Zn-like the-
ory, compared to a usual lattice Zn theory that cannot couple
to electromagnetic background. In particular, the last point
above is closely related to the effective indistinguishability
(A6), which is in turn crucial to the embodiment of the
Kapustin-Fidkowski no-go theorem (see Appendix A). More
broadly, the fact that the emergent Zn-like field is “shifted
by” and “projective under” the electromagnetic background
is a feature that cannot be achieved in the standard paradigm
of constructing exactly solvable lattice models [4–6] which
would have started with a literal Zn field; in particular, the
relabeling of mb

l , sb
p needed when Al gradually increases from

0 to 2π may be interpreted as the “discontinuity” [17] in the
effective description, and here we see such “discontinuity”
emerges from a lattice model that is in fact continuous in all
variables. This may shed light on the study of more general
symmetry-enriched topological orders.
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It is useful to also introduce the dual basis states
|{ma

l�}, {θa
v�}, {sa

p�}〉 in a symmetric manner to (29), with min-
ima

āma
l� ,za

l�
≡ 2π

n

(
ma + nza + d�θa + pA�

2π

)
l�
. (31)

[As commented in the paragraph after (25), within our con-
trolled error we can safely neglect the slight asymmetry
between the 〈a|
̃ (0,0)

ma 〉 and the 〈b|
 (0,0)
mb 〉 expressions.] The

formal remarks are analogous to the above and will not be
repeated.

The many-body part of the Hamiltonian is Hb + Ha, where
Hb ≡ Vb

∑
p( db

n − 2πsb)2
p and Ha ≡ Va

∑
v( d�a

n − 2πsa)2
p� . In

Appendix C we justify that it suffices to focus on their pro-
jections into the local low-energy trial subspace we found
above. As in the usual toric code these two terms commute
and can be simultaneously diagonalized, even so after the
projection into the local low-energy trial subspace, up to errors
exponentially small in 1/W 2. Moreover, up to the same error,
it is straightforward to show that Hb and Ha are, respectively,
diagonal in the two sets of trial basis states introduced above,
with eigenvalues

Vb

∑
p

(
2πdmb + qdA

n
− 2πsb

)2

p
, (32)

Va

∑
p�

(
2πd�ma + pd�A�

n
− 2πsa

)2

p�

, (33)

respectively. Therefore, we can denote the local excitation
numbers by

vb
p ≡ −

(
dmb − nsb +

[
qdA

2π

])
p
, (34)

va
p� ≡ −

(
d�ma − nsa +

[
pd�A�

2π

])
p�

, (35)

where [x] denotes the nearest integer to a real number x. Hb

and Ha are minimized when vb and va vanish, respectively.
To see vb

p describes anyon excitations, we use the Wilson
loop operator

Lb

 ≡ exp

[
i
∑
l∈


bl

]
→ exp

[
i
2π

n

∑
l∈


(
mb + q

A

2π

)
l

]
(36)

with 
 a lattice loop encircling p; the expectation would be a
phase e−i2πvb

p/n in the absence of background field. Moreover,
it is easy to see that if 
 is a line with two open ends, the
Wilson line Lb


 will create a ±1 pair of va
p� excitations at its

ends. This is why −vb and va are usually called the “flux” and

“charge” anyons in the Zn toric code, named in the perspective
of b being a gauge field. The −2π/n phase in the expectation
value is the mutual braiding statistics between the charge and
the flux anyons. Similarly,

La

� ≡ exp

[
i
∑
l�∈
�

al�

]
→ exp

[
i
2π

n

∑
l�∈
�

(
ma + p

A�

2π

)
l�

]
(37)

detects va
p� if 
� is a dual lattice loop encircling p�, and creates

a ±1 pair of vb
p if 
� has open ends. We will leave the discus-

sions of the electromagnetic responses to the next section.
Consider the condition (34). Different mb, sb configura-

tions may have the same values of (dmb − nsb)p. Locally,
such equivalent configurations are generated by the Z/nZ
reminiscence of the 0-form R/2πZ gauge invariance, the
first line of (8) rescaled by n/2π . The mod out of the nZ is
embodied such that, if a 0-form gauge transformation brings
some mb

l out of the specified range {0, 1, . . . , n − 1}, we
must bring it back into the range by the 1-form Z gauge
transformation mentioned before, which thereby changes the
nearby sb

p configurations [21]. The explicit form of such local
transformation is given in (D1) in Appendix D.

Globally, there are also mb, sb configurations that give the
same values of (34) everywhere, but nonetheless belong to
different topological classes C. Consider the square lattice
with periodic boundary conditions, forming a torus. Each
topological class C is characterized by the expectation val-
ues of two Wilson loop operators, Lb


x
and Lb


y
, where 
i is

a noncontractible loop that runs around the i direction. The
particular path that 
i runs through does not matter if Al = 0
and vb

p = 0 everywhere, but otherwise we need to fix the
particular path to make comparisons. Both Lb


x
and Lb


y
can take

n different expectation values differing from each other by a
ei2π/n phase. Therefore, for fixed A and vb, the total number
of topological classes C on a torus is n2 [4].

Similar discussions apply if we consider the condition (35).
The local transformation is given in (D2). The topological
classes, characterized by La


�
x

and La

�

y
, are labeled by C�.

So, far, we have considered Ha and Hb separately under the
two sets of bases {|{mb

l }, {sb
p}, {θb

v }〉} and {|{ma
l�}, {sa

p�}, {θb
v }〉},

respectively. However, in order to find the eigenstates for
Ha + Hb, where the two terms commute and can be simulta-
neously diagonalized (even so after projected into the links’
low-energy subspaces in the small-W limit), we must take
proper superpositions within either set of basis states [4,5].
In particular, we need to sum over all the aforementioned
gauge-equivalent states that share the same {va

p�}, {vb
p} exci-

tation configurations and belong to the same topological class
C or C�, with suitable phase coefficients. We find the proper
combinations of all gauge-equivalent states to be

|C〉 ≡
∑
{t b

v }

∫
{θb

v }
exp

[
−

∑
v

i

n
(2πt b + θb)v

([
:

pd�A�

2π
:

]
− va

)
p�=v

]
T
({

t b
v

}) ∣∣{mb,C rep
l

}
,
{
sb,C rep

p

}
,
{
θb

v

}〉
, (38)

|C�〉 ≡
∑
{t a

v� }

∫
{θa

v� }
exp

[
−

∑
v�

i

n
(2πt a + θa)v�

([
:

qdA

2π
:

]
− vb

)
p=v�

]
T�

({
t a
v�

}) ∣∣{ma,C� rep
l�

}
,
{
θa

v�

}
,
{
sa,C� rep

p�

}〉
, (39)
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where we introduced [: x :] ≡ x − [x]. The state
|{mb,C rep

l }, {sb,C rep
p }, {θb

v }〉 is a representative state in the
class C and |{ma,C� rep

l� }, {θa
v�}, {sa,C� rep

p� }〉 in C� (with some
given vb, va configurations of excitations), and T({t b

v })
and T�({t a

v�}) are the aforementioned 0-form Zn gauge
transformations specified by Zn variables {t b

v }, {t a
v�}, the

definition of which is given in details in (D1) and (D2). The
set of states {|C〉} are manifest eigenstates of Hb, while the
set {|C�〉} are manifest eigenstates of Ha, but we now show
either set can actually serve as simultaneous eigenstates of
both terms, i.e., eigenstates of the entire Hamiltonian. To see
this, in Appendix D we show |C〉 is a linear combination of
all |C�〉:

|C〉 =
∑
C�

∏
l

e−i 2π
n (mb,C rep+ qA

2π
)l (ma,C� rep+ pA�

2π
)l� |C�〉 (40)

which means either the set {|C〉} or the set {|C�〉} is a choice
of orthonormal basis for the n2-dimensional eigensubspace,
specified by the given anyon configurations {va

p�} and {vb
p}, of

the full Hamiltonian.
We emphasize again that the under 2π shift of Al (and

the identified A�
l� ), the explicit expression for a given |C〉

or |C�〉 in the original physical basis of |bl〉 or |al�〉 must
remain unchanged, even though the representative labels
{mb,C rep

l }, {sb,C rep
p } or {ma,C� rep

l� }, {sa,C� rep
p� } would change.

Clearly, the physical excitation numbers {vb
p}, {va

p�} and the
Wilson loops Lb


i
or La


�

î
that characterize |C〉 or |C�〉 remain

unchanged.
We finally recall that all we have solved above was Ha +

Hb projected in the trial subspaces
⊗

l Tl, while we really
should have done it in the actual low-energy subspaces

⊗
l Ll.

Since the error between Ll and Tl is O(
√

ε/U ) for each l, we
may view any correction as a having an extra perturbation
Hamiltonian on each link l. But it is well known that in the
thermodynamical limit such local perturbation terms do not
alter the topological physics of the toric code model [4], and
the same reasoning applies here. Moreover, to ensure that the
Ha, Hb couplings do not induce large mix with the higher-
energy subspace T⊥,l on each link, we need the Ha, Hb to be
smaller than ωa, ωb. The conditions are indeed the ε � V �√

εU that we mentioned at the beginning of this subsection.

IV. HALL CONDUCTIVITY AND FRACTIONALIZED
ELECTRIC CHARGE

In the previous section we have controllably solved
the Hamiltonian, with errors bounded by the orders
O(

√
ε/U , ε/V,V/

√
εU ). Now we investigate the electromag-

netic responses, most importantly the Hall conductivity, in
both the local and the global perspectives. The local per-
spective is more straightforward, while the global perspective
settles the exactness of the quantization of the responses,
which is necessary since we have errors from the use of
perturbation theory.

First we compute the expectation of the local elec-
tric charge density (10). Carrying out the calculation in

Appendix E, we find, in general,〈
psb

p

〉 = − p

n

q(dA)p

2π
+ p

n

(
vb +

[
qdA

2π

])
p
,

〈
qsa

p�

〉 = −q

n

p(d�A�)p�

2π
+ q

n

(
va +

[
pd�A�

2π

])
p�

(41)

which are independent of the class C.
When the background magnetic field dA is small (and so

for d�A�, given the identification between A� and A in Fig. 2)
and when excitations vb, va are absent, we find the local
charge density to be

〈ρv〉 = − pq

2πn
[(dA)p′=v+x̂/2+ŷ/2 + (dA)p=v−x̂/2−ŷ/2]. (42)

Since the Hall conductivity 2πσH = δ〈ρ〉/δ(dA), this means
the Hall conductivity equals −2pq/n as desired, at least ap-
proximately to within our perturbative error. We remark that
the result applies to any geometry of the lattice, even for the
lattice with boundaries. This suggests that upon adiabatically
applying a uniform A, charge accumulates onto the boundary,
another well-known manifestation of the Hall conductivity.

On the other hand, when the electromagnetic background
is absent but vb, va excitations present, we have

〈ρv〉 = q

n
va

p�=v + p

n
vb

p=v−x̂/2−ŷ/2, (43)

which means the va and vb anyons carry fractionalized electric
charges q/n and p/n, respectively. Another manifestation of
the anyons’ electric charges is the coefficients of the A de-
pendence in the Lb and La Wilson lines, (36) and (37), which
are the world line operators that create the va and vb anyons,
respectively.

Now we consider (dA)p being not so small, so that it is
closer to an integer wb

p multiple of −2π/q. Then we can see
from (32) that the ground states with vb = 0 already energet-
ically prefer mb configurations that have wb

p fluxes at p. Then
the Wilson loop operator Lb


 with 
 enclosing p indeed picks a

phase ei 2π
n wb

p aside from the regular part ei q
n (dA)p , and the charge

on p also receives a contribution − p
n wb

p. Therefore, these Zn

gauge fluxes should also be interpreted as flux anyons, but
attached to the background fluxes. Likewise, a magnetic flux
(d�A�)p� close to an integer wa

p� multiple of 2π/p creates wa
p�

charge anyons at p� in the ground state. When some (dA)p
or (d�A�)p� take (2π/q)(Z + 1/2) or (2π/p)(Z + 1/2) value,
the Hamiltonian becomes gapless in the vicinity of p or p�,
undergoing a transition to a new ground state with different
anyon numbers.

The results above are all computed using the trial wave
functions, which differ from the actual wave functions with
errors controlled by O(

√
ε/U , ε/V,V/

√
εU ). It is well known

that the Zn toric code topological physics discussed in the pre-
vious section are robust against such local errors [4]. One can
envision that the topological electromagnetic responses, the
Hall conductivity and the anyons’ electric charges, are robust
for similar reasons. In the following we focus on the Hall con-
ductivity. We present a global definition of Hall conductivity
according to [22] (which is also the setup employed to prove
the Kapustin-Fidkowski no-go theorem [10]), which is robust
in the thermodynamical limit, and show it must be precisely

155130-9



ZHAOYU HAN AND JING-YUAN CHEN PHYSICAL REVIEW B 105, 155130 (2022)

quantized to our designated value −2pq/n rather than any
other nearby fraction blurred by the use of perturbation theory.
The strategy is as follows:

(i) We employ the method of [22] to show that the globally
defined Hall conductivity must be an integer multiple of the
inverse of the ground-state degeneracy 1/n2.

(ii) We can compute that the value is close to −2pqn/n2,
controlled up to errors bounded by O(

√
ε/U , ε/V,V/

√
εU ).

(iii) By adiabatically changing the parameters, we can
make the errors much smaller than the spacing 1/n2 and
eventually approach 0 arbitrarily closely, so we can conclude
the Hall conductivity must be exactly −2pqn/n2; since the
gap is not closed when we decreased the error adiabatically,
the Hall conductivity must take this value for some finite range
of parameters away from the zero error limit.

Following [22], we consider a square lattice with periodic
boundary conditions, forming a torus, and apply a uniform
background, in which the Al on all x-direction links take
value αx/Nx and the Al on all y-direction links take value
αy/Ny, where Ni is the number of sites in the i direction (the
identification of A� with A is understood), so that there is no
magnetic field, but only flat holonomies (αx, αy). Consider
the two-parameter space where αx and αy vary from 0 to
2πn. Suppose we fix αy and vary αx adiabatically (so there
is a weak electric field in the y direction) from 0 to 2πn.
Each time αx takes 2πZ value, the background holonomies
are gauge equivalent to the original (αx = 0, αy). However,
while the same background is revisited n times over this
adiabatic process, each time the ground state [under the given
background (αx = 0, αy)] may not be same one, until it must
come back to the original one at the nth time. This can be
seen by first performing a gauge transformation of A so that
only one column of x-direction links has nonzero values, with
Al = αx, and then carefully examining the definition of |C〉
and the definition of the noncontractible Wilson loops Lb


x
,

Lb

y

that characterize C. (In particular, one will find that, when
p, q are both coprime with n, the adiabatically evolving state
would reach n distinct ground states out of the total n2, while
for other values of p, q not both coprime with n, some of the
visited ground states would already be revisited before the nth
time.) Only when αx reaches 2πn are we guaranteed to return
to the original state; one may note, however, that there is an
overall phase that depends on A, and this is in fact related to
the Chern number below. The same reasoning applies if we fix
αx and vary αy. Therefore, in the two-parameter space where
αx and αy adiabatically vary from 0 to 2πn, at the n2 points
where (αx, αy) are gauge equivalent to (0, 0), the adiabatic
state has visited the degenerate ground states under the (0, 0)
background holonomies for n2 times (exhausting all the n2

degenerate ground states if p, q are both coprime with n, but
otherwise missing some and repeating some).

The globally defined Hall conductivity is given by
the Chern number over the αx, αy ∈ [0, 2πn) space of
holonomies, averaged over n2 visited states [22]:

2πσH = 1

n2

∫ 2πn

0
dαx

∫ 2πn

0
dαy

B
2π

,

B ≡ −i

(〈
∂C0

∂αx

∣∣∣∣∂C0

∂αy

〉
−

〈
∂C0

∂αy

∣∣∣∣∂C0

∂αx

〉)
. (44)

Here B is the Berry curvature in the space of holonomies,
and importantly the integral of B/2π is the Chern number
that must be an integer. Carrying out the calculation in Ap-
pendix E, we find the Chern number is indeed −2pqn, and
hence the Hall conductivity is indeed −2pq/n as expected.
(In fact, in our particular model, the Berry curvature is con-
stant over the space of holonomies, B = −pq/πn.) In the
calculation the largest error is still the difference between
our trial ground states and the actual ground states, bounded
by O(

√
ε/U , ε/V,V/

√
εU ), hence our strategy above applies.

The Hall conductivity must be the designated fraction within
a finite range of parameters. This completes the proof of the
exactness and robustness of the Hall conductivity.

V. CONCLUSION

In this paper we constructed a class of lattice Hamiltonians
that can be solved at low energies and exhibit fractional Hall
conductivity. The construction is systematic, motivated by
the doubled Chern-Simons theory description of the associ-
ated bosonic topological orders enriched with electromagnetic
U(1); the solution is obtained by a combination of perturbative
and exact techniques. In forthcoming works we will elaborate
on generalizations towards twisted bosonic topological orders
as well as the fermionic ones.

This work is a solution to lattice Hamiltonians that exhibit
fractional Hall conductivity. (The relation to the previous lit-
erature is explained at the end of Sec. II.) Our construction
method is of theoretical significance, particularly in light of
the Kapustin-Fidkowski no-go theorem [10] which forbids
Hall conductivity in any local commuting projector Hamil-
tonian with finite-dimensional local Hilbert space. Since the
previously existing methods to systematically construct ex-
actly solvable lattice Hamiltonians for topological phases are
mostly subjected to these limiting conditions, our work, going
beyond these constraints, may shed light on the methodology
in the more general studies of topological phases.

Let us further our discussion on the constraints in the
Kapustin-Fidkowski no-go theorem. There are three nontrivial
constraining assumptions in the statement of the theorem:
the local Hilbert space is finite dimensional, the terms of the
Hamiltonian commute, and the terms are projectors. Our con-
struction breaks all three assumptions. It is interesting to ask
whether one may break less of these constraining assumptions
and still have Hall conductivity. Since commutativity is key
to exact solvability, let us first consider the scenarios where
commutativity is assumed:

(i) If the local Hilbert space remains finite dimensional,
and the terms of the Hamiltonian are commuting, then relax-
ing the projector assumption does not help because the terms
can be smoothly deformed to projectors without closing the
gap.

(ii) At the end of [10], the possibility of local commuting
projector Hamiltonian on infinite-dimensional local Hilbert
space was mentioned, but such models are deemed not phys-
ical, as the Hamiltonian’s matrix elements would cease to be
continuous in the local dynamical and background variables
on the lattice.

(iii) In the same discussion, the possibility of further relax-
ing the projector assumption was also mentioned. To us, this
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possibility seems unlikely to help. In order for the terms in the
Hamiltonian to be more physical than projectors, their matrix
elements should be continuous functions of the local dynami-
cal and background variables on the infinite-dimensional local
Hilbert space. But these terms are also assumed commuting.
Then it seems the Hamiltonian will always be gapless even
in finite system sizes, as is in the case of our “prototype”
Hamiltonian H̃ .

Based on these arguments, we may conjecture the follow-
ing:

(i) To have nontrivial Hall conductivity, it is necessary
to give up the commutativity assumption. As a result, the
correlations of local operators do not exactly vanish outside
of any finite distance, but only decay exponentially.

(Note the conjecture is made given the aforementioned
physical requirement that the Hamiltonian’s matrix elements
must be continuous in the dynamical and background vari-
ables on the lattice.) Such noncommuting Hamiltonians are
not exactly solvable in general. If the arguments above can be
turned into a rigorous proof to the conjecture, then we would
have a theorem generalizing the theorem in [23] from non-
interacting Chern insulators to interacting systems. A natural
question to ask is then as follows:

(i) Can one construct a Hamiltonian, over finite-
dimensional local Hilbert space and with noncommuting
terms, that is controllably solvable at lower energies, gapped,
and exhibits Hall conductivity?

(The projector assumption is no longer relevant if the terms
are already noncommuting.) This is indeed a very interesting
theoretical modeling problem to tackle. Moreover, limiting the
local Hilbert space to be finite dimensional is usually seen
as a desired “physical” feature because it means the Hamil-
tonian can be realized in generalized “spin” systems at least
in principle. [For instance, recently [24] constructed exactly

solvable lattice Hamiltonians for a large class of topological
orders enriched by electromagnetic U(1) global symmetry but
without Hall conductivity, and the Hilbert space being finite
dimensional was emphasized, in comparison to the previous
examples [21].] We would like to remind, however, that in
the conceivable proposals to realize such generalized “spin”
models in solid-state or cold-atom systems, that generalized
“spin,” the finite-dimensional local Hilbert space, is always
the local lower-energy subspace of some infinite-dimensional
full local Hilbert space; but this situation is indeed what
happens in our models. Therefore, in this sense, a theoretical
model with finite-dimensional local Hilbert space is not neces-
sarily more “physical” than our ones with infinite-dimensional
local Hilbert space.
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APPENDIX A: FROM EFFECTIVE LAGRANGIAN TO TOY
HAMILTONIAN

In [11] it was shown that the doubled Chern-Simons
theory (1) has a Lagrangian description on effective space-
time lattice, where by effective space-time lattice we mean
a coarse-grained space-time manifold; the conceptual im-
portance of this interpretation will become clear soon. For
simplicity we will think of a three-dimensional cubic lattice,
but the discussions below can be straightforwardly applied to
any tetrahedral decomposition of a three-dimensional mani-
fold, or a triangulation of a two-dimensional spatial manifold
together with a discretization of time (hence a “prism” decom-
position of the space-time). The action is

S = n

2π

∑
plaq p

ap(db)p − n
∑

plaq p

apsb
p − n

∑
link l

sa
l bl +

∑
cube c

θa
c (dsb)c +

∑
vert v

θb
v (∂sa)v

− q

2π

∑
link l

Al (∂a − 2πsa)l − p

2π

∑
plaq p

A�
p(db − 2πsb)p +

∑
plaq p

apLa
p +

∑
link l

blL
b
l . (A1)

Here the dynamical variables include the following: ap and bl take real values on plaquette p and link l , respectively (one may
view ap as living on the dual lattice, with l� = p in three dimensions, and likewise for other quantities with superscript a); sa

l
and sb

p take integer values on link l and plaquette p, respectively; θa
c and θb

v take U(1) = R/2πZ values on cube c and vertex
v, respectively. The background fields Al and A�

p take real values on link l and plaquette p, respectively; they may either be
independent, or identified in a certain way, say, A�

p = Al=p+x̂/2+ŷ/2+ẑ/2 (which can be generalized to other discretizations of the
space-time as long as there is a branching structure). The Wilson loop observables La

p and Lb
l take integer values on plaquette p

and link l , respectively. d is the lattice coboundary operator, i.e., lattice exterior derivative, and ∂ is the lattice boundary operator
which is the inverse of d; one may check that∑

cube c

θa
c (dsb)c =

∑
plaq p

(∂θa)psb
p,

∑
plaq p

ap(db)p =
∑
link l

(∂a)l bl ,
∑
link l

sa
l (dθb)l =

∑
vert v

(∂sa)vθ
b
v (A2)

on a lattice without boundary. We require the Wilson loop observables to be closed loops: (∂Lb)v = 0, (dLa)c = 0. The action
has the following gauge invariances mod2π :

bl → bl + 2πzb
l + (dϕb)l , sb

p → sb
p + (dzb)p, θb

v → θb
v + nϕb

v, (A3)

ap → ap + 2πza
p + (∂ϕa)p, sa

l → sa
l + (∂za)l , θa

c → θa
c + nϕa

c , (A4)
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where za
p and zb

l take integer values on plaquette p and link l , respectively, and ϕa
c and ϕb

v take U(1) = R/2πZ values on cube
c and vertex v, respectively; note the importance of the integrity of n. The za and zb parametrize 1-form Z gauge invariances
that reduce the a, b from real valued to effectively U(1) valued, and subsequently the ϕa and ϕb parametrize the effectively U(1)
ordinary (0-form) gauge invariances. The action also has the following invariances under changes of background variables:

Al → Al + 2πZl + (d�)l , La
p → La

p + q(dZ )p, θb
v → θb

v − q�v, (A5)

A�
p → A�

p + 2πZ�
p + (∂��)p, Lb

l → Lb
l + p(∂Z�)l , θa

c → θa
c − p��

c, (A6)

where Zl and Z�
p take integer values on link l and plaquette p, respectively, and �v and ��

c take U(1) = R/2πZ values on vertex
v and cube c, respectively; note the importance of the integrity of p, q. The Z and Z� parametrize 1-form Z gauge invariances
that reduce the background A, A� from real valued to effectively U(1) valued, and subsequently the � and �� parametrize the
effectively U(1) ordinary (0-form) global symmetries. Apparently, if A� is identified with A in the said way, then Z�,�� must be
identified with Z,� in the associated manner (but the Wilson loop observables La and Lb are still independent).

An important feature of this effective Lagrangian theory is that the backgrounds Al and Al + 2πZl are not identical outright;
an associated transformation of the Wilson loop observables is required. In physical terms, this means in this theory, a narrow
thread of 2π electromagnetic flux in the background is physically indistinguishable from inserting a Wilson loop observable
which creates a certain anyon world loop. This is indeed a property of the original doubled Chern-Simons theory (1) in the
continuum. A conceptually important point, however, is that this property is an effective, macroscopic one, in the sense that it
only applies when the thread of the electromagnetic flux is “narrow” compared to the scales of interest but large compared to any
microscopic scale. This is why the lattice Lagrangian theory above is only applicable to effective space-time lattice, by which we
mean a coarse-grained space-time manifold. Were the “lattice” not a coarse grain but an actual microscopic lattice, the description
is inapplicable because a 2π magnetic flux that is narrower than the microscopic lattice scale should be invisible outright, i.e., the
backgrounds Al and Al + 2πZl should be identical outright. It is this important difference in the physical requirements between
a theory on an effective lattice (coarse grain) and one on an actually microscopic lattice that makes the usual wisdom [5,8] which
generates toy model Hamiltonians on microscopic lattice from coarse-grained descriptions (fixed-point properties) not directly
applicable to our present problem [11].

Let us nonetheless proceed and obtain the Hilbert space and operator contents from this effective Lagrangian. For the cubic
lattice, we view two directions as the spatial lattice and one direction as the discretized time. (We may do the same for a prism
decomposition of the space-time, where the space is triangulated and the time is discretized.) Then a three-dimensional vertex v

is associated with a spatial vertex v and an integer time step t , denoted as v = (v, t ), while (the center of) a three-dimensional
cube c = (p, t + 1/2); on the other hand, a three-dimensional link l has two possibilities l = (l, t ) or l = (v, t + 1/2), and a
three-dimensional plaquette has two possibilities p = (p, t ) or p = (l, t + 1/2). In these notations, our previous action reads as
S = ∑

t Lt , with

Lt = n

2π

∑
l

al,t+1/2(bl,t+1 − bl,t ) −
∑

p

θa
p,t+1/2

(
sb

p,t+1 − sb
p,t

) +
∑

v

sa
v,t+1/2

(
θb

v,t+1 − θb
v,t

)
+

∑
l

sa
l,t [dθb − nb + qA]l,t +

∑
l

sb
l,t+1/2[∂θa − na + pA�]l,t+1/2

+
∑

p

ap,t

2π
[n(db − 2πsb) − qdA + 2πLa]p,t +

∑
v

bv,t+1/2

2π
[n(∂a − 2πsa) − pdA� + 2πLb]v,t+1/2, (A7)

where for simplicity we have assumed that A, A� only have
magnetic fields but no electric fields, and La, Lb only run
along the time direction, i.e., the anyon insertions created by
inserting these Wilson loops are held at fixed positions in the
space. Only the three terms in the first line involve discretized
time derivative; as usual, they give rise to the local Hilbert
spaces endowed with the commutation relations (2), (3), and
(4), as long as we introduce the spatial dual lattice notions
as explained there. On the other hand, the four terms in the
last two lines all involve Lagrange multipliers, so instead of
Hamiltonian terms, they give rise to strict constraints on the
Hilbert space. In particular, summing over the integer valued
sa

l,t and sb
l,t+1/2 imposes the Gauss’s law constraints for the

1-form Z gauge transformations (6), generated by (7), while
integrating over the real valued ap,t and bv,t+1/2 imposes the

Gauss’s law constraints for the ordinary (0-form) gauge trans-
formations, generated by (5):

gb
l = e−iqAl , ga

l� = e−ipA�
l� ; f b

p = q

n
(dA)p − 2π

n
La

v�=p,

f a
p� = p

n
(d�A�)p� − 2π

n
Lb

v=p� . (A8)

The commutation relations along with these Gauss’s law
constraints are the full content of the theory; there is no Hamil-
tonian on top of the subspace specified by these constraints.

While this theory is well defined, there are two undesired
features, given that our goal is to construct microscopic lattice
(toy) model Hamiltonians:

(i) Again, a 2π background magnetic flux (dA)p through
a single plaquette p is not invisible, but only equivalent to an
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La
p insertion taking value −q. Therefore, the “spatial lattice”

here must be viewed as a coarse grain rather than an actual
microscopic spatial lattice. We are interested in theories (al-
beit toy theories) on microscopic spatial lattice, in which a 2π

background magnetic flux (dA)p through a single plaquette p
is invisible outright.

(ii) The current theory is a lattice gauge theory with
strict Gauss’s law constraints imposed on the physical Hilbert
space. We are interested in theories with no strict constraints
on Hilbert space, and any appearance of gauge constraint
should be emergent at low energies [4,5].

Therefore, the remaining task is to modify the theory to
evade these two issues.

To resolve the first issue, partly motivated by [21], in Lt

we may strip off the direct coupling of the backgrounds A, A�

to the real valued a, b, so that the backgrounds only couple
to integer-valued variables sa, sb, and hence their 2πZ parts
indeed do not matter, and they are indeed U(1); as a result
of this, the f b, f a constraints in (A8) can no longer be gauge
constraints, but they can emerge as energetic conditions. Con-
sider the lattice gauge theory with two 1-form Z Gauss’s law
constraints and a Hamiltonian:

gb
l = e−iqAl , ga

l� = e−ipA�
l�

Hgauge = Vb

2

∑
p

(
f b
p

)2 + Va

2

∑
v

(
f a
v

)2
. (A9)

In this theory, the background fields Al and A�
l� are indeed

U(1) valued as desired. [In the above we omitted electric
field for convenience; it can be shown that the theory (A9)
stays the same even if we include electric field via the time
dependence of A and A�.] Moreover, under the Gauss’s law
constraints, minimizing the Hamiltonian Hgauge will indeed
lead to the f a, f b constraints in (A8), with La

v�=p given by
the integer closest to q(dA)p and Lb

v=p� given by the integer
closest to p(d�A�)p� ; this means large enough magnetic fluxes
can create anyon insertions, and one reminiscence of this fact
is the aforementioned macroscopic effective indistinguishably
between a finite-size 2π background magnetic flux and a
certain Wilson loop insertion.

The theory (A9) is, however, still a gauge theory. To re-
solve this second issue, we recall that in the previous studies
of exactly solvable models, gauge constraints are energeti-
cally imposed [4,5]. This motivates us to view (A9) as the
Ua,Ub → ∞ limit of the “prototype” Hamiltonian H̃ intro-
duced in Sec. II. This is how we motivate for H̃ . Upon making
Ua,Ub any finite values, however, the local gaplessness prob-
lem arises, as explained in Sec. II. This problem occurs here
but not in [4,5] because the local operators here take contin-
uous rather than discrete values, in order to accommodate for
suitable couplings to the continuous background U(1) gauge
field(s) A and A�. The resolution to this local gaplessness prob-
lem finally led us to our construction of the Hamiltonian H .

To further understand how the discussion so far is related
to the Kapustin-Fidkowski no-go theorem, let us first review
how, when either p or q vanishes (and hence the Hall conduc-
tivity vanishes), one may construct an exactly solvable lattice
Hamiltonian [21] that resolves the two issues above. For con-
creteness we take q = 0. Then, on each link l, instead of the

real-valued operator bl subjected to the constraint gb
l = 1 in

(A8), we can use a finite local Hilbert space endowed with
b̃l ∈ {0, 1, . . . , n − 1}, [b̃l, e−iãl� ] = e−iãl� except

e−iãl�
∣∣b̃l = n − 1

〉 = 0, eiãl�
∣∣b̃l = 0

〉 = 0. (A10)

We may view b̃l as a reminiscence of (nb − dθb)l/2π . Since
the local Hilbert space is now finite, the other constraints in
(A9) can be energetically imposed by the local commuting
gapped Hamiltonian

Hcomm = V

2

∑
p

(db̃ − ns)2
p + U

∑
v=p�

×
[
|1 − ei(d�ã)p� |2

∏
l�∈∂p�

|1 − ei(d�θ−nã+pA� )l� |2
]
,

(A11)

where sp, θv�=p are reminiscent of sb
p, θ

a
v�=p, while sa

p� and
θb

v=p� are gone; note that the e∓inã
l� in the last factor is nonvan-

ishing only if it is multiplied to an e±iãl� from the previous
e±i(d�ã)p� factor. When p 	= 0 and n 	= 1, we may solve for
fractionally charged anyons [21]; when p = 0, we may further
simplify the model to a Zn toric code. Recently in [24] it was
emphasized that the topological low-energy physics of this
model does not involve states with large values of |sp|, so the
local Hilbert space on p can also be trimmed to finite, making
all the local Hilbert spaces finite dimensional (in fact [24]
encompassed more general cases including twisted bosonic
topological orders, as long as the Hall conductivity vanishes).

Apparently, such exactly solvable Hamiltonian becomes
unavailable when both p, q are nonzero, i.e., when the Hall
conductivity does not vanish, in echo with the Kapustin-
Fidkowski no-go theorem [10]. In particular, the background
fields must couple to the system only through the Hamil-
tonian, but not the eigenvalues of any local microscopic
operator, so we may no longer define some b̃l as a remi-
niscence of (nb − dθb)l/2π under the constraint gb

l = e−iqAl

when q 	= 0. On the other hand, we may not define b̃ as a
reminiscence of (nb − dθb − qA)l/2π either because in that
case the first term of Hcomm would involve (db̃ − ns − qdA)2,
violating the invisibility requirement of a 2π background flux;
we may not use cos(db̃ − ns − qdA) either because then the
s operator which importantly carries electric charge (when
p 	= 0) would have dropped out. This is why we emphasize
[11] that the usual procedure to obtain exactly solvable lattice
Hamiltonian from an exactly solvable-coarse grained effective
theory becomes unsuccessful here for general values of cou-
plings p, q, due to the difference in the physical requirements
satisfied by a 2π background flux on a coarse-grained “lattice”
versus on an actual microscopic lattice.

APPENDIX B: DETAILS FOR LOCAL LOW-ENERGY
SUBSPACE

The local Hamiltonian on each link can be expressed as
(the link index is omitted in this section)

Hlink = 1

2
(εbb2 + εaa2) − Ub cos[n(b − b̄0)]

− Ua cos[n(a − ā0)], (B1)
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where we remind the commutation relation is [b, a] = i2π/n,
and ā0, b̄0 are terms that commute with a and b; the elec-
tromagnetic background couples to the system through ā0, b̄0.
The task of this section is to perturbatively find the low-energy
subspace of Hlink under the assumption ε � U (where ε is
the scale of εa and εb, and U the scale of Ua and Ub). The
low-energy subspace turns out to be an emergent Zn space
with nearly degenerate energies. More particularly, we will do
the following:

(i) construct n trial wave functions that are nearly orthog-
onal up to error exponentially small in

√
U/ε, and denote the

space spanned by them as T ;
(ii) show there is large energy gap O(

√
εU ) between when

Hlink is projected into T and into the orthogonal subspace T⊥;
(iii) show Hlink projected into T is nearly proportional to

the identity matrix, up to error O(ε), which is smaller by
O(

√
ε/U ) compared to the large gap O(

√
εU );

(iv) show Hlink mixes T and T⊥ at order O(ε), again
smaller by O(

√
ε/U ) compared to the large gap O(

√
εU ).

This means Hlink has an actual low-energy subspace L that
is n dimensional, well separated in energy from L⊥, and the
energy split within L is O(ε) which is O(

√
ε/U ) compared

to the gap O(
√

εU ); moreover, the error between the actual L
and the trial T is O(

√
ε/U ).

To motivate our construction of the trial wave functions,
first we only take εa and Ub terms into consideration,

Hlink,b = 1

2
εaa2 − Ub cos[n(b − b̄0)], (B2)

which analogously describe the one-dimensional, quantum
mechanical motion of a particle in a sinusoidal potential.
As long as the potential is deep enough, the neighborhood
around each minimum, located at b̄ j = 2π

n j + b̄0 with j ∈ Z,
can be effectively described by the Taylor expansion to the
quadratic order. Therefore, the low-energy eigenfunctions are
approximately those of infinitely many harmonic oscillators at
the potential minima, the approximate Hamiltonians of which
can be written as

Hj ≈ 1

2
εaa2 + 1

2
Ubn2(b − b̄ j )

2 = ωb

(
c†

j c j + 1

2

)
(B3)

with excitation energy

ωb = 2π
√

Ubεa (B4)

and standard construction of ladder operators c j . The solution
of the low-energy states is

|φ(Nb)
j 〉 ≡

∫
dbC(Nb)H (Nb)

(
b − b̄ j

Wb

)
e−(b−b̄ j )2/2W 2

b |b〉, (B5)

where Nb represent the energy level, C(Nb) = 1

π1/4
√

Wb

√
2Nb Nb!

is a normalization factor, H (Nb)(x) is the Nbth order Hermite
polynomial, and

Wb =
√

2π

n

( εa

Ub

) 1
4

(B6)

is the half-width of each state. For finding the low-energy
subspace we only need Nb = 0, and for controlling errors we
will only include small values of Nb in later considerations.

To justify our negligence of the higher-order terms in the
Taylor expansion of cosine function at each minimum, and
our elimination of the overlap between different minimums’
orbitals, we will need the width of each state to be much
smaller than the distance between two minima of the potential.
We thus reach our first “separation of length scale” condition
of the solvable limit:

Wb � 2π

n
⇒ εa

Ub
� (2π )2. (B7)

Near this limit, we can estimate the correction of a small
but finite Wb to the energy gap. First, the higher order
of the expansion of the potential {Ub(1 − cos[n(b − b̄0)]} ≈
Ub[ n2(b−b̄ j )2

2! − n4(b−b̄ j )4

4! + · · · ] lead to the correction of energy
gap between the ground states and the first excited states:

�b ≡ 〈
φ

(1)
j

∣∣Hlink,b|φ(1)
j

〉 − 〈
φ

(0)
j

∣∣Hlink,b

∣∣φ(0)
j

〉
≈ ωb

{
1 − n2

6
W 2

b + O
(
W 4

b

)}
(B8)

(same for all j). This correction decreases the gap while it
indeed approaches zero as Wb → 0. There is also an order
O(W 2

b ) mixing between different Nb states. Second, the over-
lap integral between neighboring orbits

tb ≡ 〈
φ

(0)
j

∣∣Hlink,b

∣∣φ(0)
j+1

〉 ≈ ωb
π2

n2W 2
b

e−π2/n2W 2
b (B9)

can lead to an energy splitting up to 4tb in the infinitely degen-
erate ground-state space. Since tb is exponentially suppressed,
compared to other quantities of order O(1) or other errors of
order O(W 2

b ), we can safely neglect the splitting in the said
limit.

Now we have a new set of basis states describing the
low-energy physics of the system, spanned by infinitely many
highly localized orbits |φ(Nb)

j 〉. Our next step would be solving
the remaining terms,

Hlink,a = 1

2
εbb2 − Ua cos[n(a − ā0)] (B10)

in this basis. Note that the Ua term commutes with Hlink,b and
only changes |φ(Nb)

j 〉 to |φ(Nb)
j+1 〉. It remains to consider the εb

term in the |φ(Nb)
j basis. We approximate

b2
∣∣φ(Nb)

j

〉 = b̄2
j

∣∣φ(Nb)
j

〉 + (. . . ), (B11)

where the b̄ j ≡ (2π/n) ĵ + b̄0 operator (with ĵ measuring the
value of j), well defined at least for states |φ(Nb)

j 〉 with small
values of Nb, measures the center coordinates. We claim that
for small values of Nb the neglected terms (. . . ) are suppressed
under suitable assumptions of parameters; we will justify the
claim in details later. This means that at low energies we
no longer need to consider the continuous b variable but can
concentrate on a discrete b̄ space for each level Nb (only small
Nb are of interest). The basis of the conjugate variable of b̄
operator, a (not to be confused with ā), is then defined by

|a(Nb)〉 ≡
∑

j

eib̄ j a
∣∣φ(Nb)

j

〉
(B12)

and is the projection of a. The value of a is confined onto the
“first Brillioun zone” in the reciprocal space of the b̄ j lattice,
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i.e., a ∈ [0, 2π ). Since the roles of a and b̄ are conjugate, we
can switch the perspective and now interpret a as a coordi-
nate on a ring. Thus, we can regard −Ua cos[n(a − ā0)] term
as a sinusoidal potential subjected to the periodic boundary
condition identifying a = 0 and a = 2π . This potential has n
minima located at āma = 2πma

n + ā0, ma ∈ Zn. We can solve
the Hamiltonian around each minimum, again treating the
potential in the neighbors of the minima as quadratic:

Hma ≈ 1

2
εbb̄2 + 1

2
Uan2(a − āma )2 = ωa

(
d†

ma dma + 1

2

)
(B13)

with the standard construction of ladder operators dm, and
excitation energy

ωa = 2π
√

εbUa. (B14)

Then, the eigenstates under this approximation are∣∣
̃ (Nb,Na )
ma

〉 =
∫

da√
2π

C(Na )Hk

(a − āma

Wa

)
e−(a−āma )2/2W 2

a |a(Nb)〉
(B15)

with half-width Wa in the a space:

Wa =
√

2π

n

( εb

Ua

) 1
4
. (B16)

Each level labeled by (Nb, Na) then would be n-fold de-
generate, with energy E (Nb,Na ) = ωb(Nb + 1

2 ) + ωa(Na + 1
2 ).

We will refer to the n states with Nb = Na = 0 and ma =
0, 1, . . . , n − 1 as the trial ground states.

We again need the width of those states to be much smaller
than the distance between two minima of the potential, and
thus reach our second “separation of length scale” condition
of the solvable limit:

Wa � 2π

n
⇒ εb

Ua
� (2π )2. (B17)

We can also discuss the effect of a small but nonvanishing
Wa. Similar to the previous discussion, the higher order of the
expansion of the potential leads to the correction of energy
gap between the ground states and the first excitation states:

�a = ωa

{
1 − n2

6
W 2

a + O
(
W 4

a

)}
(B18)

which is unimportant in the Wa → 0 limit. Again, different Na

states have an order O(Wa)2 mixing. And the overlap integral
between two neighboring orbits

ta ≡ 〈

̃

(0,0)
ma

∣∣Hlink,a

∣∣
̃ (0,0)
ma+1

〉 ≈ ωa
π2

n2W 2
a

e−π2/n2W 2
a (B19)

can lead to an exponentially small energy splitting of up to
4ta among the n-fold-degenerate ground states, which can be
neglected in the Wa → 0 limit.

Now we come back to the approximation b2 → b̄2 in (B11)
that is yet to be justified. We show this can be justified in under
yet another condition. Writing b2 = b̄2

j + 2b̄ j (b − b̄ j ) + (b −
b̄ j )2, the terms neglected in (B11) are

1

2
εb(b2 − b̄2) = ωa

∑
j,ma

iWbWa
n

2π
(c†

j + c j )(d
†
ma − dma )

+ ωa

∑
j

W 2
a W 2

b

2

( n

2π

)2
(c†

j + c j )
2, (B20)

where, as said before, the b̄ operator and the associated
dma , d†

ma are well defined for small values of Nb, and we have
neglected the terms that are exponentially suppressed in 1/W 2

b
since we are justifying the error being polynomial in W 2

b or
smaller. Note that although we used multiple ladder operators
to express the original operator, it should be kept in mind
that the problem we are considering here is just a single-
body problem. It is thus remarkable that these terms cannot
mix different states in the degenerate ground-state manifold
spanned by 
̃

(Nb,Na )
ma , so they can at most modify the size of

the excitation gaps and the form of the trial ground states. For
Nb and Na of order 1, the matrix elements of c, c† and d, d† are
of order 1. There are several types of terms: First, the cc, cd ,
c†d , cd† terms annhilate the trial ground states. Second, the
c†c terms only positively modify the excitation gap �b (by
the same amount for all j’s), and hence unimportant. Third,
the c†d† mix the trial ground states (Nb, Na) = (0, 0) with
(1,1); but since Wa,Wb are small, the matrix element of order
ωaWbWa is indeed small compared to the energy difference
ωb + ωa between (0, 0) and (1, 1). Finally, there is a c†c†

term with matrix element ωaW 2
a W 2

b (n/2π )2/2; to justify our
approximation this term must be small compared to the energy
difference 2ωb between (0,0) and (2,0). This leads to the last
“separation of energy scale” condition of the solvable limit:

ωa
W 2

a W 2
b

2

( n

2π

)2
� 2ωb ⇒ εb

Ub
� 4n2. (B21)

In summary, in a solvable limit where the three conditions
(B7), (B17), and (B21) are all satisfied, we can perturba-
tively solve for the nearly degenerate ground states of the link
Hamiltonian (B1). Since we have four independent parame-
ters, this limit is always reachable. We find the n-fold trial
ground states

∣∣
̃ (0,0)
ma

〉 =
√

Wa

πWb

∑
j∈Z

ei n
2π

b̄ j āma e−b̄2
j (n/2π )2W 2

a /2

×
∫

db e−(b−b̄ j )2/2W 2
b |b〉 (B22)

with b̄ j = (2π/n) j + b̄0 and ama = (2π/n)ma + ā0, ma ∈
Zn; note that when ma shifts by n, the wave function changes
by an overall phase that depends on b̄0, which commutes with
the link operators b, a. We can also take the linear combination
that is more localized in the b basis:∣∣
 (0,0)

mb

〉 ≡ 1√
n

n−1∑
ma=0

e−i n
2π

āma b̄mb
∣∣
 (0,0)

ma

〉
=

√
Wa

nπWb

∑
zb∈Z

einzbā0 e−b̄2
mb+nzb (n/2π )2W 2

a /2

×
∫

db e−(b−b̄mb+nzb )2
/2W 2

b |b〉. (B23)

Again, mb is Zn valued in the sense that, when mb shifts by n,
the wave function changes by an overall phase that depends
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on ā0, which commutes with the link operators b, a. With
two small widths, Wb =

√
2π
n ( εa

Ub
)

1
4 , Wa =

√
2π
n ( εb

Ua
)

1
4 , we can

separate neighboring Gaussian wave packets in either the a
or b basis. Those Gaussian envelopes are very narrow and
resemble delta function in one space but are very broad in
the other basis. Illustrations of 


(0,0)
mb in b basis can be found

in Fig. 3. Denoting the n-dimensional subspace spanned by
the trial ground-state wave functions as T , the true n-fold
ground subspace L of Hlink differs from T by a bounded error
O(W 2

b ,W 2
a ,WaWb), and the split among the actual ground

states in L is bounded by the same order compared to the gap
with L⊥, which is of order min(ωa, ωb).

Note that we can also express the trial ground states in the
a basis:∣∣
̃ (0,0)

ma

〉 =
√

Wb

nπWa

∑
za∈Z

∫
da e−i n

2π
b̄0(a−āma )e−W 2

b (n/2π )2a2/2

× e−(a−āma+nza )2/2W 2
a |a〉 (B24)

and ∣∣
 (0,0)
mb

〉 =
√

Wb

πWa

∑
j∈Z

∫
da e−i n

2π
b̄mb ae−W 2

b (n/2π )2a2/2

× e−(a−ā j )2/2W 2
a |a〉. (B25)

Note that these expressions are not entirely symmetric with
those in the b basis. This is because we started with Hlink,b

and only separated the excitation energy in Hlink,b from the
perturbation strength. If we also impose a constraint similar
to (B21), εa/Ua � 4n2, we would be able to neglect the dif-
ference between those different forms and conveniently write
the trial ground states in the form of (B23) or (B24) for both

mb in the b basis and 
̃ma in the a basis. Let us simplify the
discussion by taking

εb = εa = ε, Ua = Ub = U, W ≡
√

2π

n

( ε

U

) 1
4 → 0

(B26)

while fixing �0 = 2π
√

Uε. The asymmetry between the trial
wave-function expressions in the b basis and the a basis is of
order O(W 2) (where W is the width of both types of Gaussian
pockets), which is indeed the order that our trial ground sub-
space differs from the actual ground subspace, and therefore
there is no contradiction with apparent symmetry between a
and b.

APPENDIX C: JUSTIFICATION FOR PROJECTING
MANY-BODY COUPLING TERMS INTO LOCAL

LOW-ENERGY SUBSPACE

After obtaining the local low-energy subspace for Hlink on
each link, our next step of solving the entire Hamiltonian is to
project the Va and Vb terms into the nearly degenerate subspace
formed by tensoring these local low-energy spaces. At first
sight this seems problematic because the Va,Vb terms, propor-
tional to (d�a − 2πsa)2

p� and (db − 2πsb)2
p, respectively, are

unbounded, and hence it seems the mixing they cause between
the local low-energy states and the local excited states (the
gaps are of or greater than order

√
εU ) would be unboundedly

large even if we assumed V � √
εU . Now, we show this is not

the case.
First of all, the remaining steps to solve for the low-

energy many-body topological physics does not rely on the
Va,Vb terms taking this particular quadractic expression. They
can be modified into other functions F [(d�a − 2πsa)2

p�] and
F [(db − 2πsb)2

p], where F is a monotonically increasing
function but bounded above when the argument is large, e.g.,
F [x] = ξ [1 − exp(−x/ξ )] with arbitrary positive ξ . Hence,
the potential problem is immediately circumvented.

Even with our current choice of the quadratic expression,
we can show the undesired mixing is indeed controlled by
V/

√
εU � 1 as desired. It suffices to focus on the Vb term

since any argument would work for the Va term in a similar
manner. To prove this claim, we first note that the sufficient
condition of treating Vb term as a perturbation (compared to
the energy scales in the link local Hilbert space) is to require
that, for any excited state |
k〉 and any low-energy state |
0〉
of local Hamiltonian

∑
l Hlink,l to satisfy∣∣〈
k|Vb(db − 2πsa)2

p|
0〉
∣∣ � |Ek − E0|. (C1)

We now take a specific |
0〉 = |{mb
l }, {sb

p}, {θb
v }〉, whose ex-

plicit expression is given in Eq. (29). Applying the Vb term
yields

(db − 2πsb)2
p

∣∣{mb
l

}
,
{
sb

p

}
,
{
θb

v

}〉
=

∑
{zb

l }

∫
{bl}

[
d (b − b̄mb,zb ) + 2π

n

([
:

qdA

2π
:

]
− vb

)]2

p

×
(∏

l

eizb
l ·(pA� )l� e

−b̄2
mb

l ,zb
l

(n/2π )2W 2
a /2

e
−(bl−b̄mb

l ,zb
l

)2/2W 2
b

)
⊗
l,p,v

|bl〉|(sb + dzb)p〉
∣∣θb

v

〉
, (C2)

where vb is the number of anyonic excitaitons defined in
Eq. (34), and [: x :] ≡ x − [x] always has magnitude that is
less than 1

2 . Then we recognize that, up to an exponentially
small error, bl − b̄mb

l ,z
b
l
= 2π

n
Wb√

2
(c†

l,mb
l +nzb

l
+ cl,mb

l +nzb
l
) with c†

l, j

the ladder operators introduced in Eq. (B3) on link l. There-
fore, the effect of Vb operator on this state can be described
as

(db − 2πsb)2
p

→
(

2π

n

)2[ Wb√
2

d (c† + c) +
([

:
qdA

2π
:

]
− vb

)]2

p
, (C3)

where c†
l ≡ ∑

j c†
l, j change the excitation number Nb of Hlink,b

at l [defined in Eq. (B2)] by 1 so that the energy is changed
by ωb. Since ([: qdA

2π
:] − vb)p will be an O(1) number for the

final solution we are interested in, the amplitude of perturbing
this |
0〉 out of the low-energy subspace of

∑
l Hlink,l will

be ∼VbWb ∼ Vb(εa/Ub)1/4, which is small compared to the
local energy gap ωb ∼ √

εaUb. The above description also
suggests that the eigenvalues of Vb term has a systematic error
2VbW 2

b (2π/n)2 originating from clc
†
l terms, relative to the

expression in Eq. (32). This constant shift of energy does not
affect any discussion in the main text.
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APPENDIX D: DETAILS FOR MANY-BODY GROUND
STATES AND EXCITATIONS

Following the solving procedure towards the many-body
problem in Sec. III B, we need to consider the equivalent con-

figurations generated by the Z/nZ reminiscence of the 0-form
R/2πZ gauge invariance (8) rescaled by n/2π [combined
with (6)], which do not alter the conditions (34) and (35)
with given values of vb and va. The explicit transformations,
labeled by t b

v ∈ Zn and t a
v� ∈ Zn, respectively, are

T
({

t b
v

})∣∣{mb
l

}
,
{
sb

p

}
,
{
θb

v

}〉 ≡ e−i
∑

l� mb+dtb

n �l·(pA� )l�

∣∣∣∣{n

⌊
:

mb + dtb

n
:

⌋
l

}
,

{(
sb − d

⌊
mb + dtb

n

⌋)
p

}
,
{
θb

v

}〉
(D1)

T�
({

t a
v�

})∣∣{ma
l�
}
,
{
θa

v�

}
,
{
sa

p�

}〉 ≡ ei
∑

l (qA)l·� ma+d�ta

n �l�

∣∣∣∣{n

⌊
:

ma + d�t a

n
:

⌋
l�

}
,
{
θa

v�

}
,

{(
sa − d�

⌊
ma + d�t a

n

⌋)
p�

}〉
, (D2)

where we define �x� to be the nearest integer that is not larger than x, and �: x :� ≡ x − �x�. For integer x, n�: x
n :� simply means

x modn in the range {0, 1, . . . , n − 1}. Formally, these transformations are equivalent to substituting {θ} → {θ + 2πt}. We claim
that the suitable linear combinations of all gauge-equivalent states that simultaneously diagonalize Ha and Hb are |C〉 and |C�〉
given in Eqs. (38) and (39). These states are manifestly the eigenstates of Hb and Ha, respectively, but we need to show that they
are actually simultaneous eigenstates of both terms. To verify this, we show |C〉 is a linear combination of all |C�〉. We express
|C〉 in the ma basis:

|C〉 =
∑

{t b
v },{ma

l� },{sa
p� }

∏
l,v,p

∫
dθb

v dθa
v�e

i
(

sb,C rep−d� mb,C rep+dtb

n �
)

p
·θa

v�

e−iθb
v ·(sa )p�

× exp

{
−i

2π

n

(
n

⌊
:

mb,C rep + dtb

n
:

⌋
+ dθb + qA

2π

)
l
·
(

ma + d�θa + pA�

2π

)
l�

}

× exp

{−i(2πt b
v + θb

v ) · (
[: pd�A�

2π
:] − va

)
p�

n
− i

⌊
mb,C rep + dtb

n

⌋
l
· (pA�)l�

}∣∣{ma
l�
}
,
{
θa

v�

}
,
{
sa

p�

}〉
. (D3)

We first treat the summation over t b
v ∈ Zn on each vertex v:∑

t b
v

exp

{
i
2π

n
tb
v ·

(
d�ma +

[
pd�A�

2π

]
+ va

)
p�

}
(D4)

which yields the constraint (1/n)(d�ma + [ pφ�

2π
] − va)p� ∈ Z on each dual plaquette. Next we do the integral over θb

v ∈ (−π, π ]
on each vertex v: ∫

dθb
v exp

{
iθb

v ·
(

(d�ma + [ pd�A�

2π

] + va)p�

n
− sa

p�

)}
(D5)

which complete the constraint (35). Then, we can rewrite the summation over {ma
l�} and {sa

p�}, as a combined summation over

both topological class C� and the gauge transformations {t a
v�} on the representative configurations {ma,C� rep

l� } and {sa,C� rep
p� }. We

thus reach the linear combination

|C〉 =
∑
C�

∏
l

e−i 2π
n (mb,C rep+ qA

2π
)l·(ma,C� rep+ pA�

2π
)l� |C�〉 (D6)

as desired.

APPENDIX E: DETAILS FOR HALL CONDUCTIVITY AND FRACTIONALIZED ELECTRIC CHARGE

We first calculate the expectation value of the local electric charge density (10). In the presence of a background A and
arbitrary anyon excitations. assembling terms in (28), (D1), and (38), we have

〈C|psb
p|C〉 = 1

N
∑

{t b
v },{zb

l }

∏
v,l

∫ π

−π

dθb
v p

(
sb,C rep + dzb − d

⌊
mb,C rep + dtb

n

⌋)
p
e
−b̄2

n�: mb,C rep+dtb
n :�l ,z

b
l

(n/2π )2W 2

, (E1)

where we formally recovered a normalization factor N . The integral over {θv} along with the summation over {t b
v }, {zb

l } is
equivalent to a infinite integral over the b̄ variable on every link, as long as each term of the integrand only depends on b̄ variable
on one link (a similar and detailed derivation of this can be found below in the calculation of the Berry curvature). Therefore,
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the expectation can be evaluated as

〈C|psb
p|C〉 = 1

N
∏

l

∫
db̄l · p

n

(
db̄ + nsb,C rep − dmb,C rep − qdA

2π

)
p
e−b̄2(n/2π )2W 2

= − p

n

q(dA)p

2π
+ p

n

(
vb +

[
qdA

2π

])
p
. (E2)

A similar derivation gives the response on dual plaquette p�
0:

〈C|qsa
p� |C〉 = −q

n

p(d�A�)p�

2π
+ q

n

(
va +

[
pd�A�

2π

])
p�

. (E3)

The results are interpreted in the main text in Sec. IV.
Then we calculate the globally defined Hall conductivity. It is given by the Chern number over the αx, αy ∈ [0, 2πn) space of

holonomies, averaged over n2 visited states [22]:

2πσH = 1

n2

∫ 2πn

0
dαx

∫ 2πn

0
dαy

B
2π

, B ≡ −i

(〈
∂C0

∂αx

∣∣∣∣∂C0

∂αy

〉
−

〈
∂C0

∂αy

∣∣∣∣∂C0

∂αx

〉)
. (E4)

Importantly, the integrand is a Berry curvature B/2π and the integral is the Chern number that must be an integer. Now we
evaluate this integrand. For simplicity we start with the class C0 in which mb,C rep

l = 0, sb,C rep
p = 0. First note the terms that give

rise to the Berry curvature come from an average over 〈 ∂C0
∂A�

l�
| ∂C0
∂Al

〉 (or its conjugation, depending on the orientation of l) for all

unit cells. Because of translational invariance of the problem, the calculation reduces to a single link, e.g., l0:

B = 4
∑
zb

l0

∫ 2πn

0
dθb

v1
dθb

v2

∑
t b
v1

,t b
v2

(
− pq

n

)
zb

l0 b̄l0

( n

2π

)2
W 2e−b̄2

l0
(n/2π )2W 2

/N ′,

b̄l0 ≡ 2π

(
zb

l0 + 2πt b
v1

+ θb
v1

− 2πt b
v2

− θb
v2

2πn

)
, (E5)

where v1 and v2 are the two end points of link l0, N ′ =
√

π

nW (2πn)2 is a normalization factor, and we have neglected the
infinitesimal background field. Then, the summation of t b and the integral over θb on [0, 2π ) on each vertex can make up
to an integral over θb on [0, 2πn):

B = 4
∑
zb

l0

∫ 2πn

0
dθb

v1
dθb

v2

(
− pq

n

)
zb

l0 b̄l0

( n

2π

)2
W 2e−b̄2

l0
(n/2π )2W 2

/N ′,

b̄l0 ≡ 2π

(
zb

l0 + θb
v1

− θb
v2

2πn

)
. (E6)

Integrating over θb
v2

yields

B = 2
∑
zb

l0

∫ 2πn

0
dθb

v1
(−pq)zb

l0

(
e
−

(
zb

l0
−1+ θb

v1
2πn

)2

n2W 2

− e
−

(
zb

l0
+ θb

v1
2πn

)2

n2W 2
)/

N ′

= (4πn)(−pq)
∫ ∞

−∞
dz e−z2n2W 2

/N ′ = − pq

πn
, (E7)

where in the second line we have combined the summation
over zb

l0 and integral over θb
v1

to make up an infinite integral.
We thus find a constant Berry curvature all over the domain of
integral. Substituting into (E4) confirms that the Hall conduc-
tivity 2πσH = −2pq/n.

In the calculation above, the only approximation we made
is that the overlap between different Gaussian wave packets is
negligible. The errors introduced by such overlaps are always

exponentially suppressed by a factor of e−π2/n2W 2
, and thus

can be arbitrarily small in W ∼ √
ε/U → 0 limit. The errors

introduced by using our trial wave functions rather than the
exact ones, O(

√
ε/U , ε/V,V/

√
εU ), are also controlled to

be small in the said limit. Since the integral (E4) is the first
Chern class of a U(1) principal bundle of the ground-state
wave functions on the base manifold of a torus parametrized
by the holonomies αx and αy, it must be quantized. So the
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Hall conductivity must be the calculated fraction, as long as
the excitation gap is not closed. This completes the proof of
the exactness and robustness of the Hall conductivity.

APPENDIX F: IDENTIFYING THE TOPOLOGICAL
ORDERS FOR THE MODELS IN REF. [15]

At the end of Sec. II we briefly mentioned the relation
between this work and [15]. A family of Hamiltonians were
introduced in [15], with the “c = 1” cases (in their notations)
coinciding with the Hamiltonians we constructed (their “d”
corresponds to our n), although the motivating reasons are
quite different. In a followup study [16], the relation between
the “c = 1” cases (in the absence of electromagnetic back-
ground) and the Zn toric code was argued. On the other hand,
the other cases of integer “c 	= 1” were more mysterious; the
nature of their topological orders was not identified. Both
the “c = 1” and “c 	= 1” models were studied with sign-free
Monte Carlo numerical simulation; however, a connection
to Chern-Simons theory was not established and solutions
(or a path towards the solutions) were not obtained. In this
Appendix, note the following:

(i) We first explain how to suitably identify the topological
orders for the models considered in [15], especially the myste-
rious “c 	= 1” cases. We will show that in the topological limit
the “c 	= 1” models do not lead to new topological orders; they
reduce to certain “c = 1” cases.

(ii) Then, based on this observation, we sketch how to
solve the “c 	= 1” Hamiltonians in the topological limit.

In Appendix B2 of [15] a mapping between their lat-
tice models and Chern-Simons–type theories was attempted.
However, even in the “c = 1” cases which coincide with
our Hamiltonians, the attempted mapping disagrees with our
(A1). More exactly, it was suggested in [15] that the lattice
Hamiltonians map to Chern-Simons–type space-time lattice
theories similar to our (A1), but with 1 instead of n in front of
our second and third terms: the Dirac string couplings. Here
we emphasize that the Dirac string coupling coefficient being
n instead of 1 is important, for it determines the topological
order. To see this, for simplicity let us turn off the electromag-
netic coupling; then, if we sum out the Dirac strings sa and sb,
the gauge fields a, b are indeed restricted to (2π/n)Z mod2π ,
as expected for a Zn toric code. On the other hand, if the Dirac
string coupling coefficient were 1 instead of n, then a, b would
have been reduced to multiples of 2π , but then the adb term
would always have dropped out for being a multiple of 2π and
the theory would have become topologically trivial.

To suitably identify the topological order for the models
in [15], we should use their Eq. (20) instead. One may note
that, upon rescaling their real valued α1, α2 by d (our n) and
taking the small λ (our ε) limit, the topological ]part of their
Eq. (20) takes the form [in the following our integers (m, n)
correspond to (c, d ) in [15]]

mn

2π

∑
plaq p

ap(db)p − n
∑

plaq p

apsb
p − n

∑
link l

sa
l bl

+
∑

cube c

θa
c (dsb)c +

∑
vert v

θb
v (∂sa)v (F1)

which, when m = 1, is our (A1) (dropping the electromag-
netic coupling for now). This addresses the nature of the
topological orders for the m = 1 cases.

How about the more mysterious m 	= 1 cases? To un-
derstand them, we first consider the level n′ = mn doubled
Chern-Simons theory on lattice, i.e., (F1) but with the Dirac
string couplings being n′ = mn instead of n; this is simply
the theory for the Zn′ toric code. Then, what does it mean
to reduce the Dirac string coupling from n′ = mn to n? This
corresponds to condensing those Wilson loops La and Lb in
(A1) when they take values (charges) nZ modn′ under a and
b, respectively. Equivalently, this corresponds to gauging the
1-form Zm × Zm subgroup out of the global 1-form Zn′ × Zn′

symmetry [11]. When m does not divide n, this is in fact a
classic example of gauging a 1-form symmetry with mixed
anomaly. In general, when a theory contains gauge anomaly,
some sectors of the anomalous theory will vanish, while some
sectors will remain as a nonanomalous theory. Now we show
that in the present case, the remaining nonanomalous theory
is simply the theory of level ñ = n/gcd(m, n).

In the present case, the anomaly is manifested by the fact
that the Wilson loops that we are trying to condense have a
mutual statistics of

exp

[
i
2π

n′ (nla)(nlb)

]
= exp

[
i
2πn

m
lalb

]
, (F2)

where nla modn′ is the a charge of some Wilson loop La, and
nlb modn′ is the b charge of some Lb that has linking number 1
with La. When m divides n, the mutual statistics is trivial and
the Wilson loops can indeed be simultaneously condensed. In
this case we arrive at a level ñ = n/m theory: this can be seen
by simply rescaling the real valued a, b in (F1) by 1/m. In
the opposite scenario where m, n are coprime and m 	= 1, for
fixed la, summing over all possible lb would yield a canceled
contribution to the partition function unless la = 0 modm, i.e.,
nla = 0 modn′. This is equivalent to replacing sb → msb, i.e.,
restoring the coefficient n′ = mn in front of the asb term in
(F1), while still keeping n in front of the sab term. This theory,
however, is nothing but a level n theory, as can be seen from
rescaling the real valued a by 1/m. (The “particle-hole dual”
m = n − 1 case mentioned in [16] is a special case of this sce-
nario.) Now we are ready to explain the situation for general
values of m and n. Define the integers m̃, ñ to be the ones such
that m/m̃ = n/ñ = gcd(m, n), the greatest common divisor of
m and n. For fixed la, summing over all possible lb would
yield a canceled contribution to the partition function unless
la = 0 modm̃. But, this is equivalent to replacing sb → m̃sb,
i.e.,

mn

2π

∑
plaq p

ap(db)p − m̃n
∑

plaq p

apsb
p − n

∑
link l

sa
l bl

+
∑

cube c

θa
c (dsb)c +

∑
vert v

θb
v (∂sa)v. (F3)

Now we may rescale the real valued a and b by 1/m and ñ/n,
respectively, and we find the theory in fact reduces to a level
ñ theory. This completes the identification of the topological
orders for the models in [15]: the general values of “c” (our
m) are topologically equivalent to “c = 1” but with a changed
value of “d” (our n).

155130-19



ZHAOYU HAN AND JING-YUAN CHEN PHYSICAL REVIEW B 105, 155130 (2022)

In the above we only considered the intrinsic topological
order. But, then the coupling to electromagnetic background
is straightforward. If the sa and sb in the original anomalous
theory (F1) are coupled to A and A� with coefficients q and
p, respectively, then in the remaining nonanomalous level
ñ theory, the couplings are q̃ = q and p̃ = m̃p, respec-

tively. The Hall conductivity is then −2m̃pq/ñ = −2mpq/n,
in agreement with the numerically computed current-current
correlation from [15,16] when setting q = p = 1.

Now that we have understood the topological nature of the
Hamiltonians for m 	= 1 (“i.e. c 	= 1” in [15]), we show that
these Hamiltonians, which have the integer n replaced by the
fraction n/m in both the commutation relations (2) and the
Hamiltonian H , can still be controllably solved (applying the
bounding function F to the V terms is understood) by our
method with only slight modification. A potential problem is
that the cos ((n/m)al� ) and cos ((n/m)bl ) in the Hamiltonian
no longer commute (now [bl, al� ] = i2πm/n) if m does not
divide n. In the solving procedure, on each link we first solve
Hlink,b and find the narrow Gaussians (in the b basis) peaked
around b̄ j = (2πm/n) j + b̄0, j ∈ Z. The noncommutativity

issues are manifested by the fact that the set of such narrow
Gaussians with j ∈ Z no longer form an invariant subspace
when we consider the shift terms e±i(n/m)a in Hlink,a, which
shift a narrow Gaussian by a distance of 2π . However, this
is not a substantial problem. It is not hard to see that the
only consequence at low energy is that the low-energy states
are then the ones formed by the peaks that are commensu-
rate with each other. That is, the shifts only matter at low
energy when they act for m̃ times, i.e., (e±i(n/m)a)m̃, shifting
a narrow Gaussian peak to another one located 2πm̃ away,
separated by ñ − 1 other peaks in-between. Thus, the only
change is that effective period for the low-energy states is
2πm̃ instead of 2π , and there are ñ low-energy states on
each link, as expected based on the previous identification of
topological order. Corresponding, since we are only keeping
(e±i(n/m)a)m̃, the coupling of e±i(n/m)a to e∓ipA�

means p is
effectively rescaled to m̃p. The remaining parts of the solution
are unchanged. Hence, we still can controllably solve the
Hamiltonian, and the solution, as expected from the reasoning
before, is essentially the same as that for a level ñ theory, with
electromagnetic couplings q and m̃p.
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