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Starting with general semiclassical equations of motion for electrons in the presence of electric and magnetic
fields, we extend the Chambers formula to include, in addition to a magnetic field, time-dependent electric
fields, and bands with Berry curvature. We thereby compute the conductivity tensor σαβ (B, ω) in the presence of
magnetic field for bands in two (2D) and three (3D) dimensions with Berry curvature. We focus then on several
applications to magnetotransport for metals with Fermi surface topological transitions in 2D. In particular,
we consider a rectangular lattice and a model related to overdoped graphene, to investigate the signatures of
different types of Fermi surface topological transitions in metals in the Hall coefficient, Hall conductivity σxy, and
longitudinal conductivity σxx . The behavior of those quantities as a function of frequency, when the electric field
is time dependent, is also investigated. As an example of nonzero Berry curvature, we study the magnetotransport
of the Haldane model within this context. In addition, we provide the linear and nonlinear electric current formula
to order E 2.
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I. INTRODUCTION

The majority of metals are well described by the Fermi
liquid theory. Within this formalism the classical Hall effect
arises due to the electron path curvature in the presence of
an external magnetic fields [1]. It is characterized by the Hall
coefficient RH = Ey/( jxBz ), where jx is the current density
perpendicular to the applied magnetic field Bz and Ey is
the induced electric field. In the case of a single band the
Hall coefficient depends only on the sign of the charge and
the density of the carriers. Therefore the Hall coefficient at
zero temperature is widely used as a measure of the num-
ber of electrons or holes enclosed in a closed orbit [1,2].
However, the Hall coefficient may deviate from the simple
form of counting of the number of electrons or holes en-
closed in the electron-and hole-like pockets. It happens, e.g.,
in multiband systems and in the systems close to the Fermi
surface topological transitions (FSTTs), as they are connected
to singularities in the density of states, called Van Hove
singularities [3–6].

There have been extensive studies of Lifshitz transitions
(pocket appearing/disappearing or neck formation/collapse)
and associated Van Hove singularities in a variety of materials
including cuprates, iron based superconductors, cobaltates,
Sr2RuO4, and heavy fermions [7–17]. Most of these materials
show logarithic-type Van Hove singularity, which corresponds
to a logarithmic singularity of the density of states at the
Lifshitz transition in 2D. However, there is a recent surge of
interest in higher order Van Hove singularities, which man-
ifest itself in the stronger than logarithmic singularity in the

density of states. These are the result of more complicated
FSTTs. A prominent example is Sr3Ru2O7, where a n = 4
Van Hove singularity connected to a more complicated FSST,
is shown to exist in the presence of an external magnetic field
[18]. Higher order Van Hove saddle points has been observed
in highly overdoped graphene and twisted bilayer graphene
[19–22] and may be highly relevant for the recently observed
phases of Bernal bilayer graphene [23,24].

In this paper, we study the evolution of the Hall coef-
ficient across a FSTT that correspond to a high-order Van
Hove singularities using the Boltzman equation in the pres-
ence of a static magnetic field, a Berry curvature �(k) and
a low-frequency electric field E(r, t ) = E(r) exp(iωt ). The
solution of the Boltzmann equation is provided in form of the
Chambers formula [25], which is widely used in studies of
the magnetotransport [1,2,26–34]. We extend the Chambers
formula to the case of Berry curvature.

The equations of motion used in this paper are correct to
leading order in the electric field E and magnetic field B, but
remarkably, retain the same form when corrected to order E2

and B2 [35,36]. However, using the methods presented here
it is possible to study the Boltzmann equation for arbitrary
magnetic fields and electric fields with sufficiently accurate
equations of motion [35]. To illustrate this idea we use the
leading order equations of motion to study the solution to the
Boltzmann equation in the magnetic field B and to quadratic
order in the electric field E2 (within the leading order equa-
tions of motion). We ignore the Zeeman splitting and consider
spinless fermions thereby reducing to the case of negligible
spin orbit coupling [35–39], thus avoiding more complicated
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expressions [40]. We also neglect any changes to the chemical
potential due to the magnetic field, these can be incorporated
straightforwardly [35–39].

The main contributions of this paper are: (i) short and
clear derivations of the Boltzmann equation relevant to the
semiclassical motion of Fermi liquids, including the Berry
curvature for leading order equations of motion; (ii) explicit
solution of that Boltzmann equation to all orders in the
magnetic and electric fields (formally exact), which can be
implemented numerically for leading order equations of mo-
tion; (iii) method for semi-analytical asymptotic expansions
of the Boltzmann equation solution to all orders in magnetic
field and to an arbitrary (finite) order in the electric field for
any set of equations of motion; and (iv) explicit expansion
of Boltzmann equation solution to linear and quadratic orders
in the electric field with Berry curvature using the developed
method, thus obtaining linear and bilinear response (recently
introduced in Refs. [41,42]), using the leading order equa-
tions of motion.

It is worth emphasizing that the paper is valid within the
different Fermi surface topologies but away from the tran-
sition points. At the transition points, as the Fermi velocity
approaches zero, quantum effects become important as well
as possible out-of-equilibrium effects in a time-dependent
electric field. In particular magnetic breakdown quantum de-
scription of field-induced tunneling between semiclassical
orbits shall be considered carefully close to Van Hove singu-
larities [43,44].

The rest of the paper is organized as follows: In Sec. II
we review the semiclassical equations of motion in the pres-
ence of external fields and Berry curvature, as well as the
Boltzmann equation that follows. In Sec. III we derive the
new 2D and 3D version of the Chambers formula with Berry
curvature and time dependent external electrical field. In
Secs. IV–VI we apply these results to specific classes of ma-
terials. In Sec. IV we discuss the case of a Lifshitz transition
of the form neck formation/collapse verifying that the rapid
change between electron like to hole like Fermi surfaces leads
to a rapid change of the Hall coefficient, which we also study
as a function of frequency. In Sec. V we present the applica-
tion to FSTT that corresponds to a higher Van Hove saddle
in graphene and show how different FS topologies lead to
different responses in conductivities. In Sec. VI we study the
Hall conductivity of the Haldane model, as a representative
example of a system with Berry curvature. In Sec. VII we
conclude.

II. SEMICLASSICAL EQUATIONS OF MOTION -
BOLTZMANN EQUATION AND SOLUTION

The semiclassical equations of motion for electrons of a
single particle Hamiltonian H (k) to leading order in elec-
tric and magnetic fields was discussed in numerous works
[35,37–39,45–49] and can be written as

dr
dt

= D−1(r, k, t )[∇kεM (k) + eE(r, t ) × �(k)

+e(�(k) · ∇kεM (k))B(r, t )], (1)

dk
dt

= −D−1(r, k, t )[eE(r, t ) + e∇kεM (k) × B(r, t )

+ e2(B(r, t ) · E(r, t ))�(k)]. (2)

Here we have introduced D−1(r, k, t ) = 1
1+eB(r,t )·�(k) . The

Berry curvature �(k) is defined as the pseudovector �(k) =
∇k × A(k), where A(k) = i〈u(k)|∇k|u(k)〉 is the Berry con-
nection and |u(k)〉 an eigenstate of the Hamiltonian H (k). The
electron dispersion up to the second order of the magnetic
fields can be written as [37,38]

εM (k) = ε(k) − m(k) · B

with

m(k) = −i
e

2h̄
〈∇ku| × [H (k) − ε(k)]|∇ku〉. (3)

For simplicity, we consider below two dimensional (2D) case
with both the electric and magnetic fields being uniform. Fur-
thermore we consider time-independent magnetic field along
z axis (which in 2D is out of plane). The electric field is taken
weakly time dependent, that we can neglect the induction of
the magnetic field. In two dimensions (2D), the Berry curva-
ture is perpendicular to the plane �z(k) = ∂kxAy − ∂kyAx =
−2 Im〈∂kx u | ∂ky u〉 and �(k) · ∇kεM (k) = 0. This configura-
tion considerably simplifies the set of Eqs. (1)–(2).

Now we derive of the Boltzmann equation for our case.
The derivation is the same in 2D or 3D so the dimensionality
will be denoted by d and we will distinguish the differences
in the next subsections. Let us take a small volume in phase
space then the total number of particles in the system satisfies
the continuity equation [35,45,50,51]:

∂[D f ]

∂t
+ ∇ · (wD f ) = D

τS (k)
( f0 − f ), (4)

where f = f (k, r, t ) is the distribution of electrons while
f0 = f0(εM (k)) is the Fermi-Dirac distribution, τS (k) is the
relaxation time and w = ( dr

dt ,
dk
dt ), ∇ = (∇r,∇k ) is the six

velocity in phase space. Using the identity [38,50]

∇ · w = − d

dt
ln (D(k, r, t ))

= − ∂

∂t
ln (D(k, r, t )) − w · ∇ ln (D(k, r, t )) (5)

we obtain the Boltzmann equation for the distribution of elec-
trons:

∂

∂t
[ f (k, r, t )] + w · ∇[ f (k, r, t )] = [ f0(εM ) − f (k, r, t )]

τS (k)
(6)

with dk
dt and dr

dt being given by Eq. (2). By considering
spatially uniform magnetic and electric fields, the equation be-
comes

∂ f

∂t
+ dk

dt

df

dk
= − 1

τS (k)
( f − f0(εM)). (7)
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The solution to Eq. (7) is given by [52]

f (k, t ) = f (k0, t0) exp

(
−

∫ t

t0

ds

τS (k(s))

)

+
∫ t

t0

ds
f0{εM[k(s)]}

τS (k(s))
exp

(
−

∫ t

s

dt ′

τS (k(t ′))

)
. (8)

In the above f (k0, t0) corresponds to the initial conditions.
The components of the current density are given by

Jα (t ) = −e
∫

D(k)
dd k

(2π )d

drα

dt
f (k, t ), (9)

where the volume V of the unit cell of the lattice is set to unity
and d = 2, 3 is the dimensionality of the system. If the initial
time is set to t0 → −∞ then

f (k, t )=
∫ t

−∞
ds

f0{εM[k(s)]}
τS (k(s))

exp

(
−

∫ t

s

dt ′

τS (k(t ′))

)
(10)

and we note if we further linearize Eq. (10) we recover the
linear response equations.

III. GENERAL RESULTS

We first present here the general formulas, while the deriva-
tions are left for the Appendix B. The 2D and 3D cases are
treated separately, due to the differences in the equations of
motion Eq. (2), when the Berry curvature is taken into ac-
count. As stressed in the introduction, the formulas are exact
within the accuracy of the leading order equations of motion
in the fields E and B.

A. Three-dimensional case

To find k(t ), the equation of motion is given by Eq. (2). In
the limit where E(t ) is small, the last term of Eq. (2) can be
taken as a perturbation. In that spirit let us denote by k0(t ) the
solution to the equation:

dk0(t )

dt
= −eD−1(k0)[∇kεM (k(t )) × B]k=k0

(11)

and write: E(t ) = λE(t ) with λ = 1. Then Eq. (2) becomes
analytically dependent on the parameter λ and its solutions

can be written as an analytic asymptotic series of the form
[53–55]:

k(t ) = k0(t ) + λk1(t ) + λ2k2(t ) + · · · (12)

with k1(t0) = k2(t0) = k3(t0) = · · · = 0.. These expansions
and the method below are valid to any accuracy with respect
to the external fields in the equations of motion. To order λ:

dk1(t )

dt

= −e
∑

β

k1β (t )

[
∂

∂kβ

(
D−1(k)[∇kεM (k(t )) × B]

)]
k=k0

− eD−1(k0(t ))[E(t ) + e(B · E(t ))�(k0(t ))]. (13)

Taking into account that dε(k(t ))
dt = ∇kε(k(t )) · dk

dt , we can
also write perturbatively:

εM (t ) = ε0(t ) + λε1(t ) + λ2ε2(t ) + · · · (14)

with ε0(t0) = εM (t0) and ε1(t0) = ε2(t0) = ε3(t0) = · · · = 0.
Again this is valid for any accuracy of the equations of motion.
Then to order λ and for t > t0:

ε1(t ) = e
∫ t

t0

dsD−1(k0(s))

× [∇kεM (k(s)) · (E(s) + (B · E(s))�(k(s)))]k=k0

and to order λ2

ε2(t ) = e
∫ t

t0

ds
∑
αβ

Eβ (s)k1α (s)
∂

∂kα

[
D−1(k0(s))

×
[

∂

∂kβ

εM (k(s))+eBβ (∇kεM (k(s)) · �(k(s)))

]]
k=k0

We introduce for convenience the quantities:

u0(k) ≡ D−1(k)[∇kεM (k) + e(�(k) · ∇kεM (k))B]

η(t ; t0) ≡ exp

(
−

∫ t

t0

ds

τS (k0(s))

)

As a result, we obtain the current to linear order in E :

J (1)
α (t ) = −e2

∫
d3k

(2π )3 [E(t ) × �(k)]α f0{εM[k(t )]} − e
∫

d3k

(2π )3 D(k)u0α (k)
∂ f0{εM[k0(t )]}

∂ε

×
∫ t

−∞
D−1(k0(t ′))∇kε(k0(t ′)) · [E(t ′) + e(B · E(t ′))�(k0(t ′))]η(t ; t ′)dt ′ (15)

where the first term generalizes the Streda formula [37], while the second term generalizes the Chambers formula [25]. Next, to
order E2 we obtain

J (2)
α (t ) = −e

∫
d3k

(2π )3
D(k)u0α (k)

[
e
∂ f0{ε[k0(t )]}

∂ε

∫ t

−∞
dt ′ ∑

γ

k1γ (t ′)
∂

∂kγ

[D−1(k0(t ′))[∇kε(k0(t ′)) · [E(t ′)

+ e(B · E(t ′))�(k0(t ′))]]]η(t ; t ′) + e2 ∂2 f0{ε[k0(t )]}
∂ε2

∫ t

−∞
dt ′D−1(k0(t ′))∇kε(k0(t ′)) · [E(t ) + e(B · E(t ′))�(k0(t ′))]

× η(t ; t ′)
∫ t

t ′
dlD−1(k0(l ))∇kε(k0(l )) · [E(l ) + e(B · E(l ))�(k0(l ))] + e

∂ f0{ε[k0(t )]}
∂ε
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×
∫ t

−∞
dt ′D−1(k0(t ′))∇kε(k0(t ′)) · [E(t ′) + e(B · E(t ′))�(k0(t ′))]η(t ; t ′)

∫ t

t ′
dl

∇kτS (k0(l )) · k1(l )

τ 2
S (k0(l ))

]

− e3
∫

d3k

(2π )3
[E(t ) × �(k)]α

∂ f0(ε(k))

∂ε

∫ t

−∞
dt ′D−1(k0(t ′))∇kε(k0(t ′)) · [E(t ′) + e(B · E(t ′))�(k0(t ′))]η(t ; t ′). (16)

The first term is a shift of the Fermi-Dirac distribution due
to the electric field, the second term is the quadratic shift, the
third term is a novel one that corresponds to a nonconstant
relaxation time and the last term generalizes the Berry dipole
introduced in [41,42] to potentially any magnetic field and
electric fields with arbitrary time dependence. As it is ex-
plained in Appendix D, it is important in order convergence
to be guaranteed, that the eigenvalues of the matrix:

Mαβ (s) = −e
∑
γ δ

εαγ δBδ

∂

∂kβ

[
D−1(k0(s))

[
∂

∂kγ

εM (k0(s))

]]

is smaller than 1
τS (k) .

B. Two-dimensional case

We can now reduce all previous results to 2D. The equa-
tion of motion reads:

dk
dt

= −D−1(r, k, t )(eE(t ) + e∇kεM (k) × B). (17)

If we introduce for convenience the notation:

u2D
0 (k) = D−1(k)∇kεM (k), (18)

we arrive at a similar expression for the current as Eqs. (15)
and (16) with the only differences that u0 is replaced by u2D

0 ,
the integration over all k’s is now a 2D integration and B ·
E(t ) → 0. The result for the linear response is

J (1)
α (t ) = −e2

∫
d2k

(2π )2 [E(t ) × �(k)]α f0{εM[k(t )]}

− e2
∫

d2k

(2π )2 D(k)u2D
0α (k)

∂ f0{εM[k0(t )]}
∂ε

×
∫ t

−∞
D−1(k0(t ′))∇kε(k0(t ′)) · E(t ′)η(t ; t ′)dt ′.

(19)

For completeness we include the formula for the nonlinear
response in 2D in the Appendix (B3) and we proceed to the
scaling analysis below.

1. Scaling analysis in 2D

From the expression of the current we obtain the expression
of the conductivity, which is divided into a part that we call
topological and a regular part:

σαβ (e, τS, T, B, ω, εM ) = −e2
∫

d2k

(2π )2 εαβ�(k) f0T {εM[k(t )]} − e
∫

d2k

(2π )2 ∇kα
εM (k)

∂ f0T {εM[k0(t )]}
∂ε

×
∫ t

−∞
dt ′D−1(k0(t ))∇kβ

εM (k0(t ′)) · exp (iω(t ′ − t )) exp (−(t − t ′)/τS ) (20)

with σ
top
αβ (e, τS, T, B, ω, εM ) = −e2

∫
d2k

(2π )2 εαβ�(k) f0T (εM (k(t ))) and

σ
reg
αβ

(e, τS, T, B, ω, εM ) = −e
∫

d2k

(2π )2 ∇kα
εM (k)

∂ f0T {εM[k0(t )]}
∂ε

×
∫ t

−∞
dt ′D−1(k0(t ′))∇kβ

εM (k0(t ′)) · exp (iω(t ′ − t )) exp (−(t − t ′)/τS ) (21)

Where we assume a constant relaxation time τS . By introducing B = eB, t̃ = (t ′ − t )/τS , EM = τSεM, ω̃ = ωτS and taking
into account the equations of motion, we obtain for the regular part of the conductivity:

σ
reg
αβ

(e, τS, T, B, ω, εM ) = −eτ−1
S

∫
d2k

(2π )2 ∇kα
EM (k)

∂ f0T τS (EM (k))

∂E

×
∫ 0

−∞
D−1(k0(t̃ ))∇kβ

EM (k0(t̃ )) · exp (iω̃t̃ ) exp (t̃ )dt̃ = eτ−1
S σ

reg
αβ

(1, 1, T τS, eB, ωτS, τSεM ) (22)

where in the above equation, we have used the notation:

∂ f0T (εM (k))

∂ε
≡ ∂

∂εM

(
1

1 + exp (βεM )

)
= ∂

∂EM

(
1

1 + exp (βEM/τS )

)
≡ ∂ f0T τS (EM (k))

∂E . (23)

This scaling relation will be useful for the nu-
merical calculations in the following sections. In ad-

dition, as σ
reg
αβ (1, 1, T τS, eB, ωτS, τSεM ) is a power se-

ries in eB, it is impossible to completely disentangle
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FIG. 1. The real and imaginary part of the Hall number for four
different frequencies, B=0.01 and ωcτS = 0.01 for the example of
the rectangular lattice. The Lifshitz transition occurs is at μ = 0.25.
The results are valid away form μ = 0.25 where magnetic break-
down phenomena should be taken into account for a full analysis.

all the powers of e that enter the expression for the
conductivity.

IV. LIFSHITZ TRANSITION OF NECK FORMATION/
COLLAPSE ON RECTANGULAR LATTICE

We use the frequency dependent Chambers formula to cal-
culate the components of the conductivity tensor in the case
of an energy dispersion of the form

ε(k) = −2tx cos (kx ) − 2ty cos (ky) (ty > tx ). (24)

We define μc = 2(ty − tx ) and μ0 = 2(ty + tx ). For this band
we have got the following topologies:

−μ0 < μ < −μc electron pockets,

−μc < μ < μc open Fermi surface,

μc < μ < μ0 hole pockets. (25)

FIG. 2. Same as in Fig. 1 the real and imaginary part of the
Hall number for four different frequencies and now for ωcτS = 1.
As before, the results are valid away from the Lifshitz transition.

The components of σ for all three cases read (the details of all
calculations in this section are left in Appendix C1):

σ i
xx = 2σ0

K

∑
n

[1 + iωτS]sech2
[

nπK ′
2K

]
sin2

[ nπui
2K

]
[1 + iωτS]2 + [nωcτS]2 , (26)

σ i
yy = σ0δi,o

K

1

1 + iωτS

+ 2σ0

K

∑
n

[1 + iωτS]sech2
[

nπK ′
2K

]
cos2

[ nπui
2K

]
[1 + iωτS]2 + [nωcτS]2 , (27)

σ i
xy = (δi,o + δi,e − δi,h)

σ0

K

×
∑

n

(nωcτS )sech2
[

nπK ′
2K

]
sin

[ nπui
K

]
[1 + iωτS]2 + [nωcτS]2 , (28)

where h stands for hole orbits, e stands for electron orbits and
o stands for open orbits. Furthermore, we have defined that

κ =
√

μ2
0−μ2

μ2
0−μ2

c
, ω0 = eB

√
4txty, m0 = 1√

4txty
, σ0 = e2τS

√
4txty,

and K (κ ) is the complete elliptic integral of the first kind. In
the case of closed surfaces K ≡ K (κ ), K ′ ≡ K (

√
1 − κ2). For
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FIG. 3. Dispersion for graphene with third-nearest neighbors for c/t = 1/4 where the higher order Van Hove singularity (cusp, on the left)
can be visualized at G = 2π

3 (0, 1). For c/t = 1/3 (on the right) it is a nodal point with ill-defined gradient. For the plots we take t = 30.

open surfaces we substitute K (κ ) → 1
κ

K (1/κ ) and similarly
for K ′ [56]. In addition

ωc =
{ πω0

2K (κ ) closed orbits
πκω0

2K (1/κ ) open trajectories
. (29)

FIG. 4. Real and imaginary part of Hall coefficient for ωcτS = 0.3.

FIG. 5. Real and imaginary part of Hall conductivity for ωcτS =
0.3 for the simple model of highly doped graphene. On the left figure,
the Fermi surfaces in different regimes have been depicted, so the
topological transition is evident. The shaded areas, around FSTTs,
denote where magnetic breakdown phenomena should be taken into
account for a full quantitative analysis.
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FIG. 6. Real and imaginary part of the conductivity σxx (which is
the same as σyy) for ωcτS = 0.3.

Finally ui and uo are defined via Jacobean elliptic functions:

sn(ue, κ ) =
√

μ0 − μc

μ0 − μ
, (30)

sn(uh, κ ) =
√

μ0 − μc

μ0 + μ
, (31)

sn(κuo, 1/κ ) =
√

μ0 + μ

μ0 + μc
. (32)

For closed Fermi surfaces the sums are over positive odd
integers while for open surfaces the sums are over positive
even integers.

The calculation of the Hall number for both high and low
magnetic fields leads to expressions that are independent of
the frequency and similar to the ones calculated in [56]. For
completeness we present the formulas in the Appendix C1. In
Figs. 1 and 2 we present the results for two limiting values of
ωcτS = 0.01 
 1 and for ≈1. For each of these values several
different frequencies have been chosen. The magnetic field is
B = 0.01 in units of hc/(a2e) where a is the lattice constant
(for simplicity we work with a = h = c = 1). Consistently

FIG. 7. Real and imaginary part of Hall coefficient for ωcτS = 1.

with the fact that at μ/ty = 0.25, there is a regular (loga-
rithmic) Van Hove singularity (in the language of Lifshitz
transitions is classified as a neck formation/collapse), the real
part of the Hall coefficient changes sign from electron to
hole-like. At values of μ/ty close to ±1 the discontinuities
signal the change from closed pockets to open Fermi surface.
The real part does not show any significant frequency depen-
dence. On the contrary, the imaginary part displays a strong
frequency dependence with all features (change of sign at
the Lifshitz transition and discontinuity at close-open Fermi
surface transition) becoming more pronounced with increas-
ing ω. Away from these special values of μ/ty, the imaginary
part of the Hall number is practically zero, reflecting that the
dispersion relation is parabolic. Close to the Lifshitz transition
quantum tunneling must be taken into account for full quanti-
tative analysis [43,44].

V. SUPERMETAL: A SIMPLE MODEL
FOR HIGHLY DOPED GRAPHENE

A. A relevant tight binding model

We will consider a Hamiltonian on hexagonal lattice,
which is relevant to recent studies of graphene that showed
the emergence of a higher order Van Hove singularity [21,22].
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FIG. 8. Real and imaginary part of Hall conductivity for ωcτS = 1.

By considering third-nearest-neighbors tunneling the simple
Hamiltonian that generates higher order Van Hove singulari-
ties, as a consequence of FSTTs, reads

H =
(

0 f (k)
f ∗(k) 0

)
(33)

where

f (k) = −t[e−iky + e
i
2 (

√
3kx+ky ) + e

i
2 (−√

3kx+ky )]

− c[ei2ky + e−i(
√

3kx+ky ) + e−i(−√
3kx+ky )] (34)

and energy dispersion E±(k) = ±√
f ∗(k) f (k).

This leads to a higher order Van Hove saddle in both E±(k)
at wave vector G = 2π

3 (0, 1) (for lattice constant a = 1) for
c = t

4 while for c = t
3 it is a nodal point with closure of

gap and ill defined gradient. It is rather instructive to present
the contour plots of E+ for both cases in Fig. 3. The higher
order saddle for c = t

4 is a cusp at G = 2π
3 (0, 1), based on the

catastrophe theory classification [5,20].

B. Numerical results

The numerical results for the Hall coefficient as well as the
conductivity components are presented in Figs. 4–9. From the

FIG. 9. Real and imaginary part of the conductivity σxx (same as
σyy) for ωcτS = 1.

scaling formula Eq. (22) T τS → 0 and we take eB → 0.01 for
the calculations. In this case ωc is defined as ωc = eB

m∗c with the
effective mass m∗ ∝ t−1. We have chosen again two values of
ωcτS (0.3 and 1) and for each one three frequencies ω for the
time-dependent electric field. For c/t = 1/4, the higher order
Van Hove singularity is at μ/t = 0.25. This explains the sharp
features of the conductivities and the change of sign of the
Hall coefficient at that value. In Fig. 5(a) the Fermi surface
topology is depicted across both sides of the discontinuous
behavior. The maximum of the real part of the conductivity
takes place when the area of the Fermi surface is largest. The
frequency dependence is pronounced in the imaginary part of
the Hall coefficient RH and around the value of μ/t = 0.25.
Away from μ/t = 0.25 the imaginary part of RH is zero, while
for the real part of RH the behavior is linear in μ/t . This result
is very well explained by the fact that away from the FSTT, the
dispersion relation is very well approximated by a parabolic
one with precisely this behavior as the imaginary part of ρxy is
0 and for the real part ρxy ∝ B/(ne), where n is the density
of electrons, which is linear in μ. As a result RH exhibits
that behavior for μ/t > 1. As the frequency is increased the
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FIG. 10. Energy contours of the Haldane model, the parameters
we use are mentioned in the text.

region where there is appreciable effect of the singularity is
larger.

VI. HALL CONDUCTIVITY OF THE HALDANE MODEL

We consider the Haldane Hamiltonian on a honeycomb
lattice with H (θ ) = d0(θ ) + d(θ ) · σ where

d0(θ ) = −2t2[cos θ1 + cos θ2 + cos(θ1 + θ2)] cos φ,

dx(θ ) = −t1(1 + cos θ1 + cos θ2),

FIG. 11. The real part of the Hall conductivity. In the various
parts of the curve, the Fermi surface topology is shown. All
conductivities are in units of e2τS . For the second term of
Eq. (18), which we call “regular” term, we use the scaling relation:
σ

reg
αβ (e, τS, T, B, ω, εM ) = eτ−1

S σ
reg
αβ (1, 1, T τS, eB, ωτS, τSεM ). As

before, the shaded areas denote the places where magnetic
breakdown phenomena should be taken into account for a full
quantitative analysis.

FIG. 12. Imaginary part of the Hall conductivity. This comes
solely from the second term of Eq. (18).

dy(θ ) = t1(sin θ1 − sin θ2),

dz(θ ) = m − 2t2[sin θ1 + sin θ2 − sin(θ1 + θ2)] sin φ,

and σ denotes the Pauli matrices. The energy eigenvalues
are given by E± = d0 ± |d1|. For simplicity, we choose φ =
π/2, m = 0 and consider E+ for t1 = 50 and t2 = 25 with a
nontrivial Chern number of –1. The energy contours of the
model is presented in Fig. 10. We numerically calculate the
Hall conductivity and present the results in Figs. 11–14. The
real part of the Hall conductivity shows different behavior
in different regimes of the chemical potential reflecting the
different Fermi surface topology. This topology of the Fermi
surface is shown in the insets of Fig. 2, in each segment
where the behavior is different. In the value of the total Hall
conductivity a constant − 1

2π
has been added in Fig. 2, due

to the contribution of the lower band. The results are for
ωcτS = 0.3, where ωc = eB

m∗c and the effective mass m∗ ∝ t1−1

and eB = 0.01. The contributions from the different terms of

FIG. 13. First term of Hall conductivity as given by Eq. (18). It
has no frequency dependence. The range of the values is from 0 to
π/2, indicating that, for e = 1, the Chern number is -1.
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FIG. 14. The real part of the second term of Hall conductivity.

Eq. (19) are presented separately and the significant role of
the second term of Eq. (19) is clearly demonstrated.

VII. CONCLUSIONS

In this paper a generalization of the celebrated Cham-
bers formula has been introduced, relevant to time-dependent
electric fields and bands with Berry curvature. The nonlin-
ear conductivity, to order E2 in the electric field has been
also computed within the leading order equations of motion
method. These general formulas have been used to study a
number of examples. In particular, we studied bands where
by changing the chemical potential a range of FSTTs become
available. These FSTTs lead to Van Hove singularities at the
Fermi surface where the high density of states but our paper
is valid away from the regions close to the topological transi-
tions to avoid considering quantum Hall or out-of-equilibrium
effects. Due to the change of the Fermi surface from hole like
to electron like there is a jump in the Hall coefficient of the
material at the Fermi surface topological transition, while a
wealth of different features and signatures appear both in real
and imaginary parts of the Hall coefficient and conductivities,
especially pronounced at higher frequencies. Different types
of FSTTs provide their signatures on the conductivities. Fur-
thermore, the Hall conductivity of the Haldane model has been
studied.

The main assumption of the general part of our paper
is that the system is a Fermi liquid and the effects of the
interactions can be included in the lifetime and the effective
mass. There is recent seminal paper that takes into account
strong interactions [57] and presents a formula that does not
require the existence of quasiparticles. We leave as a future
work how to bridge the two approaches. Given the enormous
interest in the field, we believe that this paper will stimulate
significant future activity associated with applications of the
extended, formally exact Chambers formulas presented here.
This paper is based on simplified semiclassical equations of
motion that are commonly used but are only strictly valid to
leading order in the electric and magnetic fields. As it has been
already emphasized, close to Van Hove singularities, magnetic

breakdown effects (quantum tunneling), must be taken into
account [43,44]. These will be considered elsewhere.
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APPENDIX A: CHAMBERS FORMULA

1. Boltzmann Equation

Following the Chambers original paper [25] we write the
current as

Jα (t ) = −e
∫

d3k

(2π )3

drα

dt
(k) f (k, t ) (A1)

with f (k, t ) being the solution to the Boltzmann equation:

∂ f (k, t )

∂t
+ dk

dt

∂ f (k, t )

∂k
= 1

τS (k)
{ f0[εM (k)] − f (k, t )}

(A2)
with

dk
dt

= −e[∇kε(k) × B + E(t )], (A3)

dr
dt

= ∇kε(k). (A4)

The solution as is well known, is given by

f (k, t ) =
∫ t

−∞

f0{ε[k(t ′)]}
τS (k(t ′))

exp

(
−

∫ t

t ′

ds

τS (k(s))

)
dt ′. (A5)

2. Momentum as a function of time

In the limit where E(t ) is small the second term on the
right-hand side of Eq. (A3) may be viewed as a perturbation.
In that spirit let us denote by k0(t ) the solution to the equation:

dk0(t )

dt
= −e∇kε(k0(t )) × B. (A6)

If we write: E(t ) = λE(t ) with λ = 1, then the solution to
Eq. (A3) can be written as

k(t ) = k0(t ) + λk1(t ) + λ2k2(t ) + · · · (A7)

with k1(t0) = k2(t0) = k3(t0) = · · · = 0. Then, to order λ we
obtain

dk1(t )

dt
= −e

[∑
α

k1α (t )
∂

∂kα

∇kε(k0(t ))

]
× B − eE(t ).

(A8)
In addition

dε(k(t ))

dt
= ∇kε(k(t )) · dk

dt
= −e∇kε(k) · [∇kε(k) × B + E(t )]

= −e∇kε(k(t )) · E(t ). (A9)

We can now similarly expand in powers of λ:

εM (t ) = ε0(t ) + λε1(t ) + λ2ε2(t ) + · · · (A10)
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with ε1(t0) = ε2(t0) = ε3(t0) = · · · = 0. To order λ for t > t0:

ε1(t ) = e
∫ t

t0

∇kε(k0(s)) · E(s)ds (A11)

and

ε2(t ) = e
∑
αβ

∫ t

t0

Eβ (s)k1α (s)
∂2

∂kα∂kβ

ε(k0(s))ds. (A12)

3. Calculation of the current in linear response in 3D

We first note the identity:∫ t

−∞

dt ′

τS (k(t ′))
exp

(
−

∫ t

t ′

ds

τS (k(s))

)
= 1, (A13)

therefore there is no need to expand the term∫ t
−∞

dt ′
τS (k(t ′ )) exp(− ∫ t

t ′
ds

τS (k(s)) ) in Eq. (A5). As a result we

obtain:

f (k, t ) = f0(ε(k0(t )))

+∂ f0(ε(k0(t )))

∂ε

∫ t

−∞
dt ′ ε1(t ′)

τS (k0(t ′))
η(t ; t ′).

Noticing that the current is written as

Jα (t ) = ∂ f0{ε[k0(t )]}
∂ε

∫ t

−∞

ε1(t ′)
τS (k0(t ′))

η(t ; t ′)dt ′ (A14)

to obtain the result to first order in the electric field (linear
response), all terms ∼E2 are neglected and a term is dropped
due to the relation: −e

∫
d3k

(2π )3 ∇kε(k) f0{ε[k0(t )]} = 0 as there
is no current without an electric field. Then

Jα (t ) = −e
∫

d3k

(2π )3 ∇kα
ε(k) ·

[
∂ f0{ε[k0(t )]}

∂ε

∫ t

−∞
dt ′ ε1(t ′)

τS (k0(t ′))
η(t ; t ′)

]
(A15)

The first term in the bracket in Eq. (A15) is what Chambers calculated and it is given by [25,26], we can integrate it by parts
using d

dt ε1(t ) = −e∇kε(k0(t )) · E(t ) to obtain the final expression:

Jα (t ) = −e2
∫

d3k

(2π )3 ∇kα
ε(k)

∂ f0(ε(k))

∂ε

∫ t

−∞
dt ′∇kε(k0(t ′)) · E(t )η(t ; t ′). (A16)

4. Calculation of nonlinear current to order E2

To proceed with the next order term, we note that

f (k, t ) �
∫ t

−∞

f0(([ε0 + ε1 + ε2](t ′)))
τS ([k0 + k1 + k2](t ′))

exp

(
−

∫ t

t ′

ds

τS ([k0 + k1 + k2](s))

)
dt ′

∼=
∫ t

−∞

f0{ε[k0(t )]}
τS (k0(t ′))

η(t ; t ′)dt ′ + ∂ f0{ε[k0(t )]}
∂ε

∫ t

−∞

ε1(t ′) + ε2(t ′)
τS (k0(t ′))

η(t ; t ′)dt ′

+ 1

2

∂2 f0{ε[k0(t )]}
∂ε2

∫ t

−∞

ε2
1 (t ′)

τS (k0(t ′))
η(t ; t ′)dt ′ − ∂ f0{ε[k0(t )]}

∂ε

∫ t

−∞

ε1(t )

τS (k0(t ′))
∇kτS (k0(t ′)) · k1(t ′)

τS (k0(t ))
η(t ; t ′)dt ′

+ ∂ f0{ε[k0(t )]}
∂ε

∫ t

−∞

ε1(t )

τS (k0(t ))
η(t ; t ′)

∫ t

t ′

∇kτS (k0(l ))k1(l )

τ 2
S (k0(l ))

dldt ′, (A17)

where Eq. (A13) has been used. Integrating the above expression by parts and using the formula for the current:

J (2)
α (t ) = −e2

∫
d3k

(2π )3 ∇kα
ε(k)

∂ f0(ε(k))

∂ε

∫ t

−∞
dt ′∇kε(k0(t ′)) · E(t )η(t ; t ′)

− e
∫

d3k

(2π )3 ∇kα
ε(k)

∂ f0(ε(k))

∂ε

∫ t

−∞
dt ′ ε2(t ′)

τS (k0(t ′))
η(t ; t ′)

− 1

2
e
∫

d3k

(2π )3 ∇kα
ε(k)

∂2 f0(ε(k))

∂ε2

∫ t

−∞
dt ′ ε2

1 (t ′)
τS (k0(t ′))

η(t ; t ′)

− e2
∫

d3k

(2π )3 ∇kα
ε(k)

∂ f0(ε(k))

∂ε

∫ t

−∞
dt ′∇kε(k0(t ′)) · E(t ′)η(t ; t ′)

∫ t

t ′

∇kτS (k0(l )) · k1(l )

τ 2
S (k0(l ))

dl (A18)

finally, after another integration by parts, we obtain the expression of the nonlinear current:

J (2)
α (t ) = −e2

∫
d3k

(2π )3 ∇kα
ε(k)

∂ f0(ε(k))

∂ε

∫ t

−∞
dt ′∇kε(k0(t ′)) · E(t )η(t ; t ′)

− e2
∫

d3k

(2π )3 ∇kα
ε(k)

∂ f0(ε(k))

∂ε

∫ t

−∞
dt ′ ∑

βγ

Eβ (t ′)k1γ (t ′)
∂2

∂kγ ∂kβ

ε(k0(t ′))η(t ; t ′)
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− e3 ∂2 f0{ε[k0(t )]}
∂ε2

∫ t

−∞
dt ′∇kε(k0(t ′)) · E(t ′)η(t ; t ′)

∫ t

t ′
∇kε(k0(l )) · E(l )dl

− e2
∫

d3k

(2π )3 ∇kα
ε(k)

∂ f0(ε(k))

∂ε

∫ t

−∞
dt ′∇kε(k0(t ′)) · E(t ′)η(t ; t ′)

∫ t

t ′

∇kτS (k0(l )) · k1(l )

τ 2
S (k0(l ))

dl (A19)

APPENDIX B: INCLUSION OF BERRY CURVATURE

1. Calculation of the current in 3D in linear response

The distribution function is written as

f (k, t ) �
∫ t

−∞

dt

τS (k0(t ))
f0(εM (k(t )))η(t ; t ′) + ∂ f0(εM (k0(t )))

∂ε

∫ t

−∞
dt ′ ε1(t ′)

τS (k0(t ′))
η(t ; t ′). (B1)

Substituting Eq. (B1) into Eq. (9) we get that the current is:

Jα (t ) = −e
∫

d3k

(2π )3

drα

dt
D(k) f (k, t )

= −e
∫

d3k

(2π )3 D(k)[u0α (k) + D−1(k)[eE(t ) × �(k)]α]

×
[

f0(εM (k(t )))
∫ t

−∞

dt ′

τS (k0(t ′))
η(t ; t ′) + ∂ f0(εM (k0(t )))

∂ε

∫ t

−∞
dt ′ ε1(t ′)

τS (k0(t ′))
η(t ; t ′)

]

Following similar steps as before to obtain the linear response, we get Eq. (15) of the main text.

2. Calculation of nonlinear current to order E2 in 3D

In this case, the distribution function reads:

f (k, t ) ∼=
∫ t

−∞

f0(ε(k0(t )))

τS (k0(t ′))
η(t ; t ′)dt ′ + ∂ f0(ε(k0(t )))

∂ε

∫ t

−∞

ε1(t ′) + ε2(t ′)
τS (k0(t ′))

η(t ; t ′)dt ′

+ 1

2

∂2 f0(ε(k0(t )))

∂ε2

∫ t

−∞

ε2
1 (t ′)

τS (k0(t ′))
η(t ; t ′)dt ′

− ∂ f0(ε(k0(t )))

∂ε

∫ t

−∞
dt ′ dε1(t ′)

dt
η(t ; t ′)

∫ t

t ′

∇kτS (k0(l )) · k1(l )

τ 2
S (k0(l ))

dl. (B2)

Then, we obtain for the current:

Jα (t ) = −e
∫

d3k

(2π )3 D(k)[u0α (k) + D−1(k)e[E(t ) × �(k)]α]

×
[∫ t

−∞
dt ′ f0{ε[k0(t )]}

τS (k0(t ′))
exp

(
−

∫ t

t ′

ds

τS (k0(s))

)
+ ∂ f0{ε[k0(t )]}

∂ε

∫ t

−∞
dt ′ ε1(t ′) + ε2(t ′)

τS (k0(t ′))
η(t ; t ′)

+ 1

2

∂2 f0{ε[k0(t )]}
∂ε2

∫ t

−∞

ε2
1 (t )

τS (k0(t ))
η(t ; t ′)dt ′ − ∂ f0{ε[k0(t )]}

∂ε

∫ t

−∞
dt ′ dε1(t ′)

dt
η(t ; t ′)

∫ t

t ′

∇kτS (k0(l )) · k1(l )

τ 2
S (k0(l ))

dl

]
.

Focusing on terms ∝ E2 and using partial integration and some simplifications, finally Eq. (16) of the main text is obtained.

3. Calculation of the current in 2D

Having introduced u2D
0 in the main text and following an identical derivation to Sec. B 2 the results in 2D for the nonlinear

response reads:

J (2)
α (t ) = −e2

∫
d2k

(2π )2 D(k)u2D
0α (k)

[
∂ f0(ε(k0(t )))

∂ε

∫ t

−∞
dt ′ ∑

βγ

Eβ (t )k1γ (t ′)
∂

∂kγ

[
D−1(k0(t ′))

∂

∂kβ

ε(k0(t ′))
]
η(t ; t ′)

+ e
∂2 f0(ε(k0(t )))

∂ε2

∫ t

−∞
dt ′D−1(k0(t ′))∇kε(k0(t )) · E(t ′)η(t ; t ′)

∫ t

t ′
D−1(k0(l ))∇kε(k0(l )) · E(l )dl
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+∂ f0(ε(k0(t )))

∂ε

∫ t

−∞
dt ′D−1(k0(t ′))∇kε(k0(t ′)) · E(t ′)η(t ; t ′)

∫ t

t ′

∇kτS (k0(l )) · k1(l )

τ 2
S (k0(l ))

dl

]

− e3εαβ

∫
d2k

(2π )2 Eβ (t )�(k) · ∂ f0(ε(k))

∂ε

∫ t

−∞
dt ′D−1(k0(t ′))∇kε(k0(t ′)) · E(t ′)η(t ; t ′). (B3)

APPENDIX C: HALL COEFFICIENT CALCULATIONS FOR RECTANGULAR LATTICE

In Ref. [56] the authors have solved Boltzmann transport equations for this energy dispersion analytically. Then they
calculated the velocities ux and uy and took their Fourier series expansions, which are shown below:

ui
0x(t ) = (1 − 2δi,h)

2π

m0K (κ )

∞∑
n=1

sech

[
(2n − 1)πK ′

2K (κ )

]
sin

[
(2n − 1)πui

2K (κ )

]
sin

[
(2n − 1)πω0t

2K (κ )

]
, (C1)

ui
0y(t ) = 2π

m0K (κ )

∞∑
n=1

sech

[
(2n − 1)πK ′

2K (κ )

]
cos

[
(2n − 1)πui

2K (κ )

]
cos

[
(2n − 1)πω0t

2K (κ )

]
, (C2)

where i = e for electrons and i = h for holes. For open surfaces the corresponding results are:

uo
0x(t ) = 2πκ

m0K (1/κ )

∞∑
n=1

sech

[
nπK ′

K (1/κ )

]
sin

[
nπuo

K (1/κ )

]
sin

[
nπκω0t

K (1/κ )

]
, (C3)

uo
0y(t ) = 2πκ

m0K (1/κ )

{
1

2
+

∞∑
n=1

sech

[
nπK ′

K (1/κ )

]
cos

[
nπuo

K (1/κ )

]
cos

[
nπκω0t

K (1/κ )

]}
, (C4)

where the definitions of m0, κ , ω0, K , and K ′ are given in the main text.
For electron and hole pockets we can write for simplicity:

u0x(t ) = ũx

∞∑
n=1

ax
n sin

[
(2n − 1)πω0t

2K (κ )

]
, (C5)

u0y(t ) = ũy

∞∑
n=1

ay
n cos

[
(2n − 1)πω0t

2K (κ )

]
. (C6)

Equation (17) is also true for open surfaces. But in the case of uy(t ) we should write

uo
x(t ) = ũx

∞∑
n=1

ax
n sin

[
nπκω0t

K (1/κ )

]
, (C7)

uo
y(t ) = ũy

{
1

2
+

∞∑
n=1

ay
n cos

[
nπκω0t

K (1/κ )

]}
. (C8)

Both for holes and electrons the results read for closed Fermi surfaces:

σxy = e3B

(2π )2

∫ 4K/ω0

0
ũx

∞∑
n=1

ax
n sin

[
(2n − 1)πω0t

2K (κ )

]
dt

∫ t

−∞
ũy

∞∑
m=1

ay
m cos

[
(2m − 1)πω0t ′

2K (κ )

]
exp{−[1/τS + iω](t − t ′)}dt ′

= e3B

4π
ũxũy

∞∑
n=1

ax
nay

n

2n − 1

[1/τS + iω]2 + [ (2n−1)πω0
2K (κ )

]2 , (C9)

σxx = e3B

(2π )2

∫ 4K/ω0

0
ũx

∞∑
n=1

ax
n sin

[
(2n − 1)πω0t

2K (κ )

]
dt

∫ t

−∞
ũx

∞∑
m=1

ax
m sin

[
(2m − 1)πω0t ′

2K (κ )

]
exp (−[1/τS + iω](t − t ′))dt ′

= e3B

(2π )2 ũ2
x

∞∑
n=1

(ax
n)2 [1/τS + iω]

[1/τS + iω]2 + [ (2n−1)πω0
2K (κ )

]2

2K (κ )

ω0
, (C10)

σyy = e3B

(2π )2

∫ 4K/ω0

0
ũy

∞∑
n=1

ay
n cos

[
(2n − 1)πω0t

2K (κ )

]
dt

∫ t

−∞
ũy

∞∑
m=1

ay
m cos

[
(2m − 1)πω0t ′

2K (κ )

]
exp (−[1/τS + iω](t − t ′))dt ′

= e3B

(2π )2 ũ2
y

∞∑
n=1

(
ay

n

)2 [1/τS + iω]

[1/τS + iω]2 + [ (2n−1)πω0
2K (κ )

]2

2K (κ )

ω0
. (C11)
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For open Fermi surfaces:

σxx = e3B

(2π )2

∫ 4K/κω0

0
ũx

∞∑
n=1

ax
n sin

[
nπκω0t

K (1/κ )

]
dt

∫ t

−∞
ũx

∞∑
m=1

ax
m sin

[
mπκω0t

K (1/κ )

]
exp (−[1/τS + iω](t − t ′))dt ′

= e3B

(2π )2 ũ2
x

∞∑
n=1

(
ax

n

)2 [1/τS + iω]

[1/τS + iω]2 + [ nπκω0
K (1/κ )

]2

K (1/κ )

κω0
, (C12)

σxy = e3B

(2π )2

∫ 4K/κω0

0
ũx

∞∑
n=1

ax
n sin

[
nπκω0t

K (1/κ )

]
dt

∫ t

−∞
ũy

{
1

2
+

∞∑
m=1

ay
m cos

[
mπκω0t

K (1/κ )

]}
exp (−[1/τS + iω](t − t ′))dt ′

= e3B

(2π )2 ũxũy

∞∑
n=1

ax
nay

n

nπ

[1/τS + iω]2 + [ nπκω0
K (1/κ )

]2 , (C13)

σyy = e3B

(2π )2

∫ 4K/κω0

0
ũy

{
1

2
+

∞∑
n=1

ay
n cos

[
nπκω0t

K (1/κ )

]}
dt

∫ t

−∞
ũy

{
1

2
+

∞∑
m=1

ay
m cos

[
mπκω0t

K (1/κ )

]}
exp (−[1/τS + iω](t − t ′))dt ′

= e3B

(2π )2

ũ2
y

[1/τS + iω]

K (1/κ )

κω0
+ e3B

(2π )2 ũ2
y

∞∑
n,1

(
ay

n

)2 [1/τS + iω]

[1/τS + iω]2 + [ nπκω0
K (1/κ )

]2

K (1/κ )

κω0
. (C14)

From which if ũx, ũy, ax
n, ay

n are substituted, Eqs. (26), (27), and (28) follow. As we emphasized in the main text, the sums are
over positive odd integers while for open surfaces the sums are over positive even integers.

1. Hall coefficient for rectangular lattice at limiting cases

For the high-field limit:

1

RH
= lim

B→∞
1

B

σxy

σxxσyy + σ 2
xy

(C15)

Using the above equations, we obtain:

Re
H = − 1

π

∞∑
n=1

1(
n − 1

2

) sech2

[(
n − 1

2

)
πK ′(κ )

K (κ )

]
sin

[
(2n − 1)

πue

K (κ )

]
, (C16)

Rh
H = 1

π

∞∑
n=1

1(
n − 1

2

) sech2

[(
n − 1

2

)
πK ′(κ )

K (κ )

]
sin

[
(2n − 1)

πuh

K (κ )

]
, (C17)

Ro
H = − 1

π

∑∞
n=1

1
n2 sech2

[ nπK ′(1/κ )
K (1/κ )

]
sin2

[ nπuo
K (1/κ )

]
∑∞

n=1
1

2n sech2
[ nπK ′(1/κ )

K (1/κ )

]
sin

[ 2nπuo
K (1/κ )

] − 1

π

∞∑
n=1

1

n
sech2

[
nπK ′(1/κ )

K (1/κ )

]
sin

[
2nπuo

K (1/κ )

]
, (C18)

and we observe that in the high-field case the Hall number does not depend on the frequency. Similarly, for the low-field case
the formulas are:

1

RH
= lim

B→0

1

B

σxy

σxxσyy + σ 2
xy

, (C19)

similarly we get:

Re
H = − 4

π

[∑∞
n=1 sech2

[(
n − 1

2

)
πK ′
K

]
sin2

[(
n − 1

2

)
πue
K

]][∑∞
n=1 sech2

[(
n − 1

2

)
πK ′
K

]
cos2

[(
n − 1

2

)
πue
K

]]
∑∞

n=1

(
n − 1

2

)
sech2

[(
n − 1

2

)
πK ′
K

]
sin

[ (2n−1)πue

K

] , (C20)

Rh
H = 4

π

[∑∞
n=1 sech2

[(
n − 1

2

)
πK ′
K

]
sin2

[(
n − 1

2

)
πuh
K

]][∑∞
n=1 sech2

[(
n − 1

2

)
πK ′
K

]
cos2

[(
n − 1

2

)
πuh
K

]]
∑∞

n=1

(
n − 1

2

)
sech2

[(
n − 1

2

)
πK ′
K

]
sin

[ (2n−1)πuh

K

] , (C21)

Ro
H = − 4

π

[∑∞
n=1 sech2

[
nπK ′

K

]
sin2

[ nπuo
K

]][
1
2 + ∑∞

n=1 sech2
[

nπK ′
K

]
cos2

[ nπuo
K

]]
∑∞

n=1 n sech2
[

nπK ′
K

]
sin

[ 2nπuo
K

] . (C22)
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APPENDIX D: SOLUTION TO RELEVANT ORDINARY
DIFFERENTIAL EQUATIONS (ODEs)

1. General setup

Equation (13) is of the general form:

dX
dt

= M(t )X + V(t ). (D1)

First we need to solve for

dX0

dt
= M(t )X0, (D2)

where

X0(t ) = T

(
exp

(∫ t

t0

M(s)ds

))
X0(t0). (D3)

Here T stands for time ordering. Then, for Eq. (D1), we look
for solutions of the form

X(t ) = T

(
exp

(∫ t

t0

M(s)ds

))
Y(t ),

dX(t )

dt
= M(t )X(t ) + T

(
exp

(∫ t

t0

M(s)ds

))
dY(t )

dt

≡ M(t )X + V(t ),

⇒ dY(t )

dt
= T

(
exp

(∫ t

t0

M(s)ds

))−1

V(t ),

Y(t ) = Y0 +
∫ t

t0

T

(
exp

(∫ t ′

t0

M(s)ds

))−1

V(t ′)dt ′.

(D4)

2. Solution of Eq. (A8) in 3D

We use the results of Appendix D 1. In our case Y0 = 0
and

k1(t ) =
∫ t

t0

T

(
exp

(∫ t

t ′
M(s)ds

))
V(t ′)dt ′ (D5)

where V(t ′) = −eE(t ′) and

Mαβ (s) = −e
∑
γ δ

εαγ δBδ

∂2

∂kβ∂kγ

ε(k0(s)). (D6)

Then, for t > t0:

k1(t ) = −
∫ t

t0

T

(
exp

(∫ t

t ′
M(s)ds

))−1

V(t ′)dt ′.

3. Solution of Eq. (13) in 3D

Then Y0 = 0 and for t > t0

k1(t ) =
∫ t

t0

T

(
exp

(∫ t

t ′
M(s)ds

))
V(t ′)dt ′. (D7)

In addition:

V(t ′) = −D−1(k0(t ′))[eE(t ′) + e2(B · E(t ′))�(k0(t ′))],

(D8)
and

Mαβ (s) = −e
∑
γ δ

εαγ δBδ

∂

∂kβ

[
D−1(k0(s))

[
∂

∂kγ

εM (k0(s))

]]
,

(D9)
therefore for t > t0

k1(t ) = −
∫ t

t0

T

(
exp

(∫ t ′

t
M(s)ds

))−1

V(t ′)dt ′. (D10)

We note that the perturbative correction in Eq. (A17),
k1(l ) is linear in the external electric field as can be seen by
Eqs. (D8), (D9), and (D10). As a result, these terms are well
convergent for small electric fields. Due to the time ordered
exponential in Eq. (D9) though, there may be limitation to
how large the eigenvalues of the matrix in Eq. (D9) can be.
The reason is that although there is a damping exponential
η(t ; t0), which makes various integrals convergent while the
exponential in Eq. (D10) can lead to divergences. Therefore, it
is important that the damping term is greater that the divergent
one and as such the eigenvalues of the matrix in Eq. (D9) need
to be smaller then 1

τS (k) .

4. Solution of equations in 2D

In a similar way we’ve got Y0 = 0 and for t > t0

k1(t ) =
∫ t

t0

T

(
exp

(∫ t

t ′
M(s)ds

))
V(t ′)dt ′. (D11)

We also have that: V(t ′) = −eD−1(k0(t ′))E(t ′) and

Mαβ (s) = −e
∑

γ

εαγ B
∂

∂kβ

[
D−1(k0(s))

[
∂

∂kγ

εM (k0(s))

]]
.

(D12)
Therefore for t > t0 the solution reads:

k1(t ) = −
∫ t

t0

T

(
exp

(∫ t ′

t
M(s)ds

))−1

V(t ′)dt ′. (D13)

[1] J. M. Ziman, Principles of the Theory of Solids (Cambridge
University Press, Cambridge, 1972).

[2] A. A. Abrikosov, Fundamentals of the Theory of Metals (North
Holland, Amsterdam, 1988).

[3] L. Van Hove, Phys. Rev. 89, 1189 (1953).
[4] I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 38, 1569 (1960) [Sov. Phys.

JETP 11, 1130 (1960)].
[5] A. Chandrasekaran, A. Shtyk, J. J. Betouras, and C. Chamon,

Phys. Rev. Research 2, 013355 (2020).

[6] A. Chandrasekaran and J. J. Betouras, Phys. Rev. B 105, 075144
(2022).

[7] A. I. Coldea, S. F. Blake, S. Kasahara, A. A. Haghighirad,
M. D. Watson, W. Knafo, E. S. Choi, A. McCollam, P. Reiss,
T. Yamashita et al., npj Quantum Mater. 4, 2 (2019).

[8] Y. Okamoto, A. Nishio, and Z. Hiroi, Phys. Rev. B 81,
121102(R) (2010).

[9] E. A. Yelland, J. M. Barraclough, W. Wang, K. V. Kamenev,
and A. D. Huxley, Nat. Phys. 7, 890 (2011).

155123-15

https://doi.org/10.1103/PhysRev.89.1189
https://doi.org/10.1103/PhysRevResearch.2.013355
https://doi.org/10.1103/PhysRevB.105.075144
https://doi.org/10.1038/s41535-018-0141-0
https://doi.org/10.1103/PhysRevB.81.121102
https://doi.org/10.1038/nphys2073


EMMANOUIL K. KOKKINIS et al. PHYSICAL REVIEW B 105, 155123 (2022)

[10] S. N. Khan and D. D. Johnson, Phys. Rev. Lett. 112, 156401
(2014).

[11] S. Benhabib, A. Sacuto, M. Civelli, I. Paul, M. Cazayous, Y.
Gallais, M.-A. Measson, R. D. Zhong, J. Schneeloch, G. D. Gu,
D. Colson, and A. Forget, Phys. Rev. Lett. 114, 147001 (2015).

[12] S. Slizovskiy, A. V. Chubukov, and J. J. Betouras, Phys. Rev.
Lett. 114, 066403 (2015).

[13] D. Aoki, G. Seyfarth, A. Pourret, A. Gourgout, A. McCollam,
J. A. N. Bruin, Y. Krupko, and I. Sheikin, Phys. Rev. Lett. 116,
037202 (2016).

[14] Y. Sherkunov, A. V. Chubukov, and J. J. Betouras, Phys. Rev.
Lett. 121, 097001 (2018).

[15] Y. Sherkunov and J. J. Betouras, Phys. Rev. B 98, 205151
(2018).

[16] M. E. Barber, F. Lechermann, S. V. Streltsov, S. L. Skornyakov,
S. Ghosh, B. J. Ramshaw, N. Kikugawa, D. A. Sokolov, A. P.
Mackenzie, C. W. Hicks, and I. I. Mazin, Phys. Rev. B 100,
245139 (2019).

[17] I. Stewart, Rep. Prog. Phys. 45, 185 (1982).
[18] D. V. Efremov, A. Shtyk, A. W. Rost, C. Chamon, A. P.

Mackenzie, and J. J. Betouras, Phys. Rev. Lett. 123, 207202
(2019).

[19] P. Rosenzweig, H. Karakachian, D. Marchenko, K. Kuster, and
U. Starke, Phys. Rev. Lett. 125, 176403 (2020).

[20] N. F. Q. Yuan and L. Fu, Phys. Rev. B 101, 125120 (2020).
[21] N. F. Q. Yuan, H. Isobe, and L. Fu, Nat. Commun. 10, 5769

(2019).
[22] H. Isobe and L. Fu, Phys. Rev. Res. 1, 033206 (2019)
[23] H. Zhou, L. Holleis, Y. Saito, L. Cohen, W. Huynh, C. L.

Patterson, F. Yang, T. Taniguchi, K. Watanabe, and A. F. Young,
Science 375, 6582 (2021).

[24] A. Shtyk, G. Goldstein, and C. Chamon, Phys. Rev. B 95,
035137 (2017).

[25] R. G. Chambers, Proc. Phys. Soc. A 65, 458 (1952).
[26] W. Shockley, Phys. Rev. 79, 191 (1950).
[27] J. Callaway, Quantum Theory of the Solid State (Academic

Press, Boston, 1991).
[28] J. M. Ziman, Electrons and Phonons: The Theory of Transport

of Solids (Oxford University Press, Oxford, 1960).
[29] C. Kittel, Quantum Theory of Solids (John Wiley & Sons,

New York, 1987).
[30] N. Singh, Electronic Transport Theories: From Wekaly to

Strongly Correlated Materials (Taylor & Francis, Boca Raton,
2017).

[31] W. Jones and N. H. March, Theoretical Solid State Physics
(Volume 2): Non-Equilibrium and Disorder (John Wiley & Sons,
London, 1973).

[32] A. H. Wilson, The Theory of Metals (Cambridge University
Press, Cambridge, 1953).

[33] Y. M. Galperin, Introduction to Modern Solid State Physics
(CreateSpace Independent Publishing Platform, 2014).

[34] J. J. Quinn and K. S. Yi, Solid State Physics: Principles and
Modern Applications (Springer-Verlag, Berlin, 2009).

[35] Y. Gao, Front. Phys. 14(3), 33404 (2019).
[36] Y. Gao, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 112, 166601

(2014).
[37] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[38] D. Xiao, J. Shi, and Q. Niu, Phys. Rev. Lett. 95, 137204

(2005).
[39] D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Phys. Rev. Lett. 97,

026603 (2006).
[40] D. Vanderbilt, Berry Phases in Electronic Structure Theory:

Electric Polarization, Orbital Magnetization and Topological
Insulators (Cambridge University Press, Cambridge, 2018).

[41] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).
[42] J. I. Facio, D. V. Efremov, K. Koepernik, J.-S. You, I.

Sodemann, and J. van den Brink, Phys. Rev. Lett. 121, 246403
(2018).

[43] L. M. Falicov and P. R. Sievert, Phys. Rev. 138, A88 (1965).
[44] A. Alexandradinata and L. Glazman, Phys. Rev. Lett. 119,

256601 (2017).
[45] E. Deyo, L. E. Golub, E. L. Ivchenko, and B. Spivak,

arXiv:0904.1917.
[46] G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
[47] M. C. Chang and Q. Niu, Phys. Rev. Lett. 75, 1348 (1995).
[48] M. C. Chang and Q. Niu, Phys. Rev. B 53, 7010 (1996).
[49] M. C. Chang and Q. Niu, J. Phys.: Condens. Matter 20, 193202

(2008).
[50] D. Arovas, Lecture Notes in Condensed Matter Physics (A Work

in Progress) (CreateSpace Independent Publishing Platform,
2014).

[51] K.-S. Kim, H.-J. Kim, and M. Sasaki, Phys. Rev. B 89, 195137
(2014).

[52] C. MacCallum, Phys. Rev. 132, 930 (1963).
[53] W. R. Young, Pertubation Theory (unpublished).
[54] S. M. Bauer, S. Fillipov, A. L. Smirnov, P. E. Tovstik, and

R. Villancourt, Asymptotic Methods in Mechanics of Solids
(Springer International Publishing, Switzerland, 2015).

[55] A. H. Nayfeh, Pertubation Methods (John-Wiley, Hoboken,
1973).

[56] A. V. Maharaj, I. Esterlis, Y. Zhang, B. J. Ramshaw, and S. A.
Kivelson, Phys. Rev B 96, 045132 (2017).

[57] A. Auerbach, Phys. Rev. Lett. 121, 066601 (2018).

155123-16

https://doi.org/10.1103/PhysRevLett.112.156401
https://doi.org/10.1103/PhysRevLett.114.147001
https://doi.org/10.1103/PhysRevLett.114.066403
https://doi.org/10.1103/PhysRevLett.116.037202
https://doi.org/10.1103/PhysRevLett.121.097001
https://doi.org/10.1103/PhysRevB.98.205151
https://doi.org/10.1103/PhysRevB.100.245139
https://doi.org/10.1088/0034-4885/45/2/002
https://doi.org/10.1103/PhysRevLett.123.207202
https://doi.org/10.1103/PhysRevLett.125.176403
https://doi.org/10.1103/PhysRevB.101.125120
https://doi.org/10.1038/s41467-019-13670-9
https://doi.org/10.1103/PhysRevResearch.1.033206
https://doi.org/10.1126/science.abm8386
https://doi.org/10.1103/PhysRevB.95.035137
https://doi.org/10.1088/0370-1298/65/6/114
https://doi.org/10.1103/PhysRev.79.191.2
https://doi.org/10.1007/s11467-019-0887-2
https://doi.org/10.1103/PhysRevLett.112.166601
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevLett.95.137204
https://doi.org/10.1103/PhysRevLett.97.026603
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.121.246403
https://doi.org/10.1103/PhysRev.138.A88
https://doi.org/10.1103/PhysRevLett.119.256601
http://arxiv.org/abs/arXiv:0904.1917
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevLett.75.1348
https://doi.org/10.1103/PhysRevB.53.7010
https://doi.org/10.1088/0953-8984/20/19/193202
https://doi.org/10.1103/PhysRevB.89.195137
https://doi.org/10.1103/PhysRev.132.930
https://doi.org/10.1103/PhysRevB.96.045132
https://doi.org/10.1103/PhysRevLett.121.066601

