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While periodically driven phases offer a unique insight into nonequilibrium topology that is richer than its
static counterpart, their experimental realization is often hindered by ubiquitous decoherence effects. Recently,
we have proposed a decoherence-free approach of realizing these Floquet phases. The central insight is that
the reflection matrix, being unitary for a bulk insulator, plays the role of a Floquet time-evolution operator.
We have shown that reflection processes off the boundaries of systems supporting higher-order topological
phases (HOTPs) simulate nontrivial Floquet phases. So far, this method was shown to work for one-dimensional
Floquet topological phases protected by local symmetries. Here, we extend the range of applicability by studying
reflection off three-dimensional HOTPs with corner and hinge modes. We show that the reflection processes
can simulate both first-order and second-order Floquet phases, protected by a combination of local and spatial
symmetries. For every phase, we discuss appropriate topological invariants calculated with the nested scattering

matrix method.
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I. INTRODUCTION

Symmetries that are present in materials impose constraints
on the Hamiltonians that describe them. The resulting Hamil-
tonian can exhibit robust and potentially useful boundary
states [1]. These states are protected by bulk topological
invariants, a connection dubbed the bulk-boundary correspon-
dence [2,3]. Theoretically, the possible invariants depend on
the symmetries and the dimensionality of the system. They
are given by integers and may change their value only when
the bulk gap closes. The type of the topological invariant [4,5]
(Z, or Z) determines whether the system supports only one
topological phase (Z,), or there are more topological phases,
distinguished by a different number of symmetry protected
boundary modes (Z).

In a static D-dimensional system described by a Hermi-
tian Hamiltonian operator, the presence of particle-hole (P)
and/or chiral (C) symmetries renders the energy spectrum
symmetric around zero energy. As a result, robust (D — 1)-
dimensional boundary states can only appear at zero energy
with £ = 0. Since these are local symmetries, spectrally iso-
lated boundary modes will be present simultaneously at all
surfaces of the system. The corresponding system is then in a
strong topological phase (STP). This by far does not exhaust
all possible topological states. Adding spatial symmetries
(that act nonlocally and relate different sites of the system), a
topological crystalline phase (TCP) [6,7] can be realized with
an adequate crystalline symmetry, or a weak topological phase
(WTP) with a suitable translation symmetry [8]. Another pos-
sibility that enriches the classification is nth-order (n > 1)
topological phases, with (D — n)-dimensional gapless states
[9,10]. Here, we dub all n > 1 topological systems higher-
order topological phases (HOTPs). From the listed types of
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topological phases, STPs are the most stable in the presence
of disorder because they only rely on the presence of local
symmetries [8,11].

Topological considerations are not restricted to equilib-
rium systems. In particular, periodically driven (or Floquet)
phases have been studied extensively [12-15]. Their topo-
logical properties are determined from the knowledge of the
unitary Floquet operator F, which is the time-evolution oper-
ator over the time period 7 . In this case, the relevant spectrum
is the 27t /T periodic quasienergy spectrum constructed from
the eigenphases of the Floquet operator; in the following,
we set T = 1 for convenience. Note that Floquet phases are
classified using unitary operators while conventional static
systems are classified using Hermitian operators. Similarly
to static systems, symmetries impose constraints on the
quasienergy spectrum. There are two eigenphases (0 and )
left invariant under the action of P and C. Here, differently
from static systems, topological boundary modes can occur
either at one of these eigenphases or at both. In the latter case,
the system is in an anomalous Floquet phase characterized by
topological indices beyond those possible in Hermitian sys-
tems [14—19]. Note that experimental realizations of Floquet
topological phases are much more demanding compared to
their static counterparts. The main problems, decoherence and
heating, are inherently present in most of the driving processes
[20-24].

Despite differences between static and Floquet systems,
scattering theory provides a unified framework for their topo-
logical characterization [25-28]. This theory can also be
used as a tool to perform dimensional reduction in a two-
terminal geometry, as the reflection matrix of a D-dimensional
system effectively describes a (D — 1)-dimensional system
[27,29,30]. With this tool, Hermitian systems exhibiting topo-
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logical phases of the same order n but belonging to different
symmetry classes [31] have been related following the Bott
periodicity [27,29]. In our previous work [30], we have in-
troduced an alternative dimensional reduction procedure that
works for topologically nontrivial systems with gapped bulk
and gapless boundary states that do not conduct between
the leads. This requirement is accommodated by many D-
dimensional systems exhibiting nth-order topological phases
(1 < n < D). The dimensional reduction maps the static sys-
tem onto its unitary reflection matrix. The latter describes
a (D — 1)-dimensional Floquet system in an (n — 1)th-order
topological phase, but in the same symmetry class as the static
system.

From a practical point of view, this dimensional re-
duction procedure implies that we can use Hamiltonian
systems in higher-order topological phases to simulate
lower-dimensional Floquet topological phases [30]. Such an
approach of simulating Floquet systems is advantageous to
implementing the phase in a driven(-dissipative) system as
it eliminates the need for an external driving field, as well
as decoherence-related problems caused by the noise in the
driving field. Indeed, noise-induced decoherence in single-
particle driven systems is by now a well-recognized problem,
and a large number of publications address this issue, both
theoretically and experimentally [21,22,32-47].

Experimental verification of our results is based on two
prerequisites: (1) the experimental realization of HOTPs
[48-62], and (2) the measurement of the eigenphases of
the reflection matrix [62-65]. So far, acoustic [52-59], pho-
tonic [48-50], phononic [51], microwave [60], topoelectric
[61], and condensed-matter [62] platforms were successfully
adapted to realize HOTPs. For some of these systems, the re-
flection matrix eigenvalues can be directly visualized [62,65],
while for others they can be inferred from interferometric
techniques [63,64].

Motivated by the possibility to simulate periodically driven
phases as the reflection properties of static systems, we study
different realizations of HOTPs that, once mapped to lower-
dimensional counterparts, realize various kinds of Floquet
phases. In particular, we first consider a prototype of the three-
dimensional (3D) system with zero-energy corner modes, a
Benalcazar-Bernevig-Hughes (BBH) model [9]. By modify-
ing this system in one spatial direction, it can also realize a
second-order topological phase with hinge modes. We con-
sider cases when these hinge states are protected by either
translation or point group symmetries, in addition to the lo-
cal symmetries. This presents an advancement compared to
Ref. [30], which studied only scattering regions with gapless
corner states that are robust to any spatial symmetry breaking.
We thus show that reflection matrices can simulate a wider
range of Floquet topological phases than realized in the previ-
ous work, e.g., weak or crystalline Floquet topological phases.
Given the fact that the classification of Floquet phases only
relies on the matrices being unitary, we will call them unitary
phases in the following.

The rest of the paper is organized as follows. In Sec. II,
we discuss details of the scattering setup and present the
symmetry constraints obeyed by the scattering/reflection ma-
trix. In Sec. III, we study reflection matrices of different 3D
systems and show they realize first- and second-order unitary

b
il

VL W W
A X
£V N

11

e
- L §
I

—h=

T
o
—
—
—,

vl
pa—

P N S ——
)
]
|
|

FIG. 1. (a) Sketch of the two-lead geometry for a two-
dimensional scattering region, represented by a gray background.
Here, the sites of the system are represented by blue dots while the
red dots denote those sites to which leads are attached. This setup
has N; = 1 (see main text for its definition), meaning that each lead
is only attached to the first layer of sites. The leads are described
by idealized waveguides, represented with black lines. They are
connected to the system via weak links, colored in green. (b) 3D
scattering system with N, = 2, indicating that each lead is attached
to two layers of the system. For clarity, we have plotted only sites on
the visible surfaces of the 3D system and have omitted plotting the
waveguides.

topological phases. We characterize these unitary systems in
Sec. IV using a nested scattering matrix procedure. Finally, in
Sec. V, we discuss our results and outline directions for future
research.

II. METHODS

In this section, we first review the scattering setup used to
simulate unitary topological phases before we discuss the role
of local symmetries.

A. Scattering setup

The scattering setup consists of a static system that sup-
ports a HOTP, and two translationally invariant leads attached
to opposite surfaces of this system; see Fig. 1. Unless other-
wise specified, we orient the leads along the x direction, and
denote them as the left and right leads. The scattering matrix
relates incoming to outgoing lead modes via Yoy = S ¥in. In
a two-terminal geometry assumes the general form

s = <: j) (1)

here, r and r’ are the reflection matrices of the left and right
leads, respectively, while ¢ and ¢’ are the transmission matri-
ces. In the following, we consider transport at E = 0, which is
the special point for the particle-hole and the chiral symmetry.

We construct the left and right leads out of arrays of decou-
pled and translationally invariant waveguides (chains). The
Hamiltonian of the ith chain reads H; = }_, #sin kxc,ickﬂ

where CL (ck,) is the electron creation (annihilation) oper-
ator and #; > 0 is the hopping amplitude along each chain.
Here, the index i denotes the transversal (spatial) position
of the waveguide. We assume that each waveguide probes
N, degrees of freedom located on or near the surface of the
system. In particular, in the following we are interested in
staggered systems such that N; = 1 probes half of the unit
cell and N; = 2 the full unit cell. As a result, the (effective)
number of incoming (outgoing) modes per waveguide equals
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Ny; see Fig. 1. We define the interface region as the set of
all sites to which a chain is attached. The reflection process
at transversal site i of the left interface region is described
by the N; x N; matrix r;, which is a diagonal subblock of r;
in the following, we denote this N; x N, scattering matrix as
an element of the scattering matrix. Similarly, there are the
reflection elements r; that describe an incoming mode at site
i that is reflected back into the site j. Due to the fact that we
are considering systems which are insulating in the bulk and
at surfaces, we expect r;; to decay as a function of distance
between i and j. This means that r is endowed with a spatial
structure; the incoming and outgoing modes can be labeled
by the real-space positions i along the transversal direction.
Since the leads are attached to the surfaces of a D-dimensional
system, the reflection matrix probes only the surface and the
index i naturally has dimension (D — 1). This special way of
designing the lead modes provides access to the transversal
dimension of the system. It simplifies the discussion and
allows us to draw conclusions about the spatial position of
the relevant modes. Further, this lead construction is directly
implementable in metamaterials, which so far have been the
main platforms realizing HOTPs, as we have mentioned in the
introduction. When considering topological electronic circuits
[61], for instance, such a lead can be created by connecting
one electric cable to each of the circuit nodes representing the
boundary of the system. Note, however, that this specific con-
struction is irrelevant for the topological classification (being
basis independent), and thus, experimentally, also different
mode structures are allowed.

In our previous work [30], we have shown that the reflec-
tion process from a boundary of a static 2D BBH system can
simulate four different one-dimensional (1D) unitary phases
(via the natural identification F <> r). The kind of unitary
phase that is realized depends on the parameters of the BBH
model and N;. If the leads are attached to the outermost
sites of the scattering region (N; = 1), the reflection matrix
simulates the trivial phase or topological phases with either
0 modes or w modes. The analog of an anomalous unitary
phase is obtained when the reflection matrix is “thicker” and
probes the full unit cell, consisting of two layers of sites, i.e.,
Ny = 2. In Figs. 1(a) and 1(b) we show a setup with N; = 1
and N; = 2, respectively.

We note in passing that, in experiments, it iS important
that the scattering setup is designed such that the leads only
weakly perturb the system. This requirement is realized if the
coupling between leads and the system ¢, is weak, i.e., such
that the level broadening I' >~ tlzs /t; is smaller than the energy
gap of the system. In our numerical simulations performed
with the Kwant code [66], the system is always in its ground
state. We have thus taken #;; = #; to ensure a good visibility of
topological features.

B. Symmetry constraints

Simulating Floquet physics using the unitary reflection ma-
trix r requires that r and the Floquet operator F obey the same
symmetry constraints. We first discuss the case of the on-site
symmetries: 7, P, and C, with T the time-reversal symme-
try. They can be written as 7 = UK, P = UpK, and C =
Uec, where U, Up, Uc are unitary operators and /C denotes

complex conjugation. To determine the restrictions imposed
on S, r, and F by these symmetries, it is crucial to know how
they act on the Hamiltonian H [31].

Since the scattering matrix S is calculated from the
Schrodinger equation describing the full, system-plus-lead
problem [27,30], it has been shown that [67]

UrS*U; =S', UpS*U}, =S, UcS'UL =S. ()

On the other hand, the Floquet operator constraints follow
from the definition of this operator JF = exp[—i f, H(t)d1],
where exp denotes the time-ordered exponential [14,28]. This
gives

UrFUL = F', UpF*UL = F, U F'US =F.  (3)

We see that both S and F behave identically under the
action of local symmetries. If the scattering region does not
conduct between the leads, the only nonzero parts of S are its
reflection matrices. Hence, r inherits the symmetry and the
unitarity from S and can be directly interpreted as F (having
the correct symmetries).

Spatial symmetries U impose additional restrictions on
incoming/outgoing modes. We consider the ones that act in
a plane parallel to the system-lead interface, which is spanned
by a momentum k). The Schrédinger equation provides the
constraint

USk)U" = S(Rky), “)

where Rk is the transformed momentum vector due to the
action of the spatial symmetry.

III. RESULTS

In this section, we extend the results of Ref. [30], focusing
on 3D Hamiltonian systems in second- and third-order topo-
logical phases. We show that unitary reflection matrices can be
interpreted as Floquet operators that realize first- and second-
order topological phases. To make the rest of this section more
accessible, we begin by highlighting our results and the types
of scattering problem we consider, before showing the details
of the calculations.

In Sec. IITA, we consider a 3D HOTP with eight gap-
less corner modes, as shown in Fig. 2(a). The system is an
insulator, so there is no transmission between the two leads
attached to left and right surfaces lying in the yz plane (and
hence called yz surfaces). As a result, the reflection matrix that
relates incoming and outgoing modes of the lead is unitary.
Due to the way we constructed our leads (see Sec. IT A), it
is possible to label every incoming plane wave according to
its position in the yz plane. If it impinges on a zero-energy
state, it will be reflected with a 7 -phase shift due to a resonant
scattering [25]. Thus, incoming and outgoing plane waves at
the corners of the lead differ by a w-phase shift. The plane
waves reflecting from the other sites on the surface of this
system will experience position-dependent phase shifts that
assume nonquantized values and form bands [30]. In total,
there are four resonant scatterings per lead, corresponding to
four w modes in the eigenphase spectrum of r. Every 7 mode
is pinned to a corner of the lead, and thus the reflection matrix
r is a 2D Floquet operator in a second-order unitary phase
with 7 modes at the corners [68,69].

155121-3



S. FRANCA, F. HASSLER, AND 1. C. FULGA

PHYSICAL REVIEW B 105, 155121 (2022)

S L Ve
g
L] ’YZ /)\
"YI Az T ‘,\/yy
(b)
A A
T2D
Y
2

\

FIG. 2. Sketch of 3D finite-sized HOTPs. The unequal hoppings
Ve and X, (@ = X, y, z) lead to staggering indicated by the thickness
of the lines. The topological zero modes are shown in red. In panel
(a), |Yul < |Xe| and the system exhibits corner states at £ = 0. In
panel (b), [y, < [Acy] but |y;| = |A;], so the system hosts counter-
propagating modes on its vertical hinges.

The remainder of Sec. III deals with two kinds of 3D
systems with gapless and dispersing hinge modes. These
modes enable conduction along the hinges, and therefore the
reflection matrices of these 3D systems are not unitary for
all scattering setups, as was the case for a scattering region
with corner modes. However, an example of a scattering setup
that does produce a unitary reflection matrix is shown in
Fig. 2(b). Here, we see that leads are oriented perpendicular
to the direction of the hinge modes, such that they detect no
conduction.

The lead detects hinge modes of the 3D HOTP that
translate into dispersing boundary modes in the eigenphase
spectrum of the reflection matrix. Whenever the hinge modes
of the 3D HOTP cross zero energy, the boundary modes of
r will show 7 crossings in the eigenphase spectrum. If the
Hamiltonian hinge modes are protected by translation (or
some crystalline) symmetry in addition to a local symmetry,
then 7 implements a 2D unitary WTP (or TCP).
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FIG. 3. In panel (a), we plot the low-energy spectrum of a 3D
system in the HOTP, with eight zero modes colored in red. Panel
(b) shows the probability distribution of these midgap modes. We
assume the system is cubic, with L = 10 sites in each direction with
Yo =0.1and A, = 1.

A. 3D system with corner modes

As amodel of a 3D system with corner modes, we consider
the 3D BBH model. This is a tight-binding model of spinless
electrons on a cubic lattice, as represented in Fig. 2(a). The
hoppings between nearest-neighbor sites are staggered in all
three directions, such that the resulting cubic unit cell has
eight sites in total. Some of these hoppings have negative
values, in order to ensure a flux of 7 threading each face of
the cube.

In momentum space with wave vector k = (ky, ky, k;), the
Fourier transform of the real-space Hamiltonian shown in
Fig. 2(a) reads [9]

h3p (k) = (yx + Ax €Os kx)N:To0x + Ay SINKe7); ToOY
+ (yy + Ay cos k)N, Tooo + A, sin kyn, 7,00
+ (y; + A cos k. )nyTy00 — A sink;ny 00,  (5)

where y, and X, are the intracell and intercell hoppings in the
o (¢ = x, y, z) direction. The Pauli matrices o, 7, and  denote
the sublattice degrees of freedom, corresponding to the 8 sites
per unit cell.

The Hamiltonian in Eq. (5) obeys the symmetries 7 =
K, P=n,10,K, and C = n,5y0,, i.e., [h,T]={h, P} =
{h,C} = 0. On a finite system with L? sites, it supports eight
zero modes provided that |y,| < |Ay|; see Fig. 3(a). These
zero modes are corner states, as can be deduced from their
probability distribution plotted in Fig. 3(b). The existence of
corner modes and their number is related to the nontrivial
value of the topological index [9]. The presence of P (C)
symmetry forces this index to be of the Z, (Z) type. However,
having a single zero-energy state per corner makes the value
taken by the particle-hole invariant equal to the one taken by
the chiral invariant. For this reason, one of these two symme-
tries can be treated as redundant. Thus, in the following, we
discuss our results only in terms of the particle-hole symme-
try.

The topology of this system [9] is related to the dimer-
ization patterns (topological or trivial) of the hinges, akin to
the topology of the Su-Schrieffer-Heeger (SSH) model [70]
(see Fig. 2). If the hopping strengths are independent of di-
rection, y, = y and A, = A, the bulk gap closes at |y| = [A][,
marking a topological transition between a HOTP (|y| < [A|)
and a trivial phase (]y’| > |A|). On the other hand, if the hop-
pings become direction dependent, then the phase transition
between a HOTP and a phase without zero-energy corner
modes may then occur via a boundary (either hinge or surface)
gap closing. For example, setting |y,| = |A,| while keeping
[Veyl < |Agy| creates two counterpropagating modes along
every hinge in the z direction, shown in Fig. 2(b).

We construct a unitary system by attaching two leads
probing opposite yz surfaces of the 3D system. We set the
interface region to be only one layer (half of a unit cell) of
surface sites thick, i.e., N; = 1. In the following, we study the
reflection matrix r,p of the left lead (the result 7}, for the right
lead is equivalent).

For a system with |y, | < |A4|, the eigenphase spectrum of
ryp is plotted in Fig. 4(a). There are four modes at eigenphase
¢ = m shown in red that are pinned to the corners of the 2D

. 0,7
lead. We can define a quantity £%™ = (—1)"mes that counts
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FIG. 4. The eigenphase spectra of rp are plotted for different
dimerizations and interface thicknesses for L = 10. In the first three
panels N, = 1 indicating that each of the two leads is attached only
to the first layer of boundary sites. As a result, the matrix r,p contains
100 entries in total. In panel (a), we choose y, = 0.1 and A, = 1. In
panel (b), . = 2.1, . = 0.1, A, = 1. In panel (¢), yy, = 2.1, Ao =
1. Panel (d) corresponds to panel (a) except for N; = 2 such that ryp
contains 200 entries in total. Red (blue) dots denote the 7 (0) modes.
The probability distributions of topologically protected modes are
given in the insets.

the parity of the number of isolated modes (denoted as N:ﬁodes)
per corner at ¢ = 0, . For Fig. 4(a), we obtain £7 = —1 and
£ = 1. In the following, we use this quantity as a topological
index. In Sec. IV, we will see how is it related to the invariant
calculated within the scattering theory.

Next, we consider a system that has a trivial (intracell)
dimerization along the x edges (|y| > [Ac]) while |y, | <
|Ay,;| along the other edges. Note that the Hamiltonian sys-
tem does not support zero-energy modes in this case. The
eigenphase spectrum of its reflection matrix ryp is plotted in
Fig. 4(b). There are four 0 modes localized at the corners
of the lead indicating that the reflection matrix detects the
nontrivial topology of the yz surface [30]. This setup therefore
allows ryp to simulate a second-order Floquet phase with 0
modes [68,69]. A single 0 mode per corner of a 2D system
leadsto £” = 1 and €% = —1.

If the 3D scattering region has a trivial dimerization along
all edges (|yo| > |Aql), the eigenphases are not quantized to
the values 0 and 7 anymore. In fact, all eigenvalues of 7,p
form complex-conjugate pairs, as seen in Fig. 4(c), such that
the reflection matrix is topologically trivial and £° = £7 = 1.

Finally, a 2D anomalous second-order unitary phase with
corner modes occurring simultaneously at =0 and ¢ =7
[68,69] can be realized by coupling a lead to the full unit
cell (with N; = 2) of a HOTP (]y| < |A]). In Fig. 4(d), we
plot the ¢ spectrum of such r,p. Since there are four corner
modes at ¢ =0 and at ¢ = m, the indices read £° = —1
and £ = —1. Thus choosing different parameters in (5), it
is possible to realize four distinct 2D second-order Floquet
phases. In fact, these four phases are the only possible ones
in symmetry class D when the fourfold rotation symmetry
is enforced as it is the case for all our unitary 2D systems.
This symmetry constraint follows from Eq. (4) and the fact

that we considered 3D scattering regions with C; symmetry
resulting from setting ¥, = ¥, and A, = A,. When present,
the fourfold rotation symmetry implies that topological corner
states occur at the same eigenphase(s) for all the corners of a
square-shaped system.

The presence or absence of an anomalous topological
phase for N; = 2 versus N; = 1 is related to the parity of the
number of orbitals per site in the reflection matrix. To see this,
consider the maximally dimerized limit, |y| — 0 in Fig. 2(a),
in which zero-energy corner modes are localized on a site and
decoupled from the rest of the system. The presence of these
states results in the formation of ¢ = 7 modes in the spectrum
of the reflection matrix, due to resonant reflection. However,
since rpp is real, its eigenvalues can only be real or come in
complex-conjugate pairs. As such, for Ny = 2, the decoupled
corner state of the 3D system must produce both a w mode
and a 0 mode in ryp in order to satisfy the even parity of
reflection matrix orbitals. This leads to an anomalous phase,
as shown in Fig. 4(d). In contrast, when N; = 1, ¥ modes and
0 modes cannot form simultaneously due to the odd parity of
orbitals [see Figs. 4(a)—4(c)]. The above argument generalizes
to thicker interface regions. Thus, we expect the nontrivial
phases of rp to be anomalous when N; is even and not
anomalous when N, is odd.

Note that in Appendix A, we explore the topological phase
transitions between unitary phases with and without topolog-
ical states in more detail. There, we also verify our numerical
results using analytical reflection matrices calculated with the
boundary Green’s function technique [71]. In Appendix B, we
examine the effect of a transversal coupling on the waveguide
modes, such that the leads are no longer formed out of decou-
pled chains.

B. 3D system with hinge modes protected
by a translation symmetry

In the following, we investigate reflection matrices of a 3D
second-order topological phase with gapless hinge states. A
weak HOTP with hinge modes can be realized by coupling a
stack of 2D BBH systems [9] with a nearest-neighbor hop-
ping y, along the z direction, as shown in Fig. 2(b). The
momentum-space Hamiltonian of this 3D system reads

hwrp(k) = hap(k) + v sink;nooo, ©)
where
hop(k) = (Yx + Ay cOs ki )n,0y + Ay sinkyn,oy
+ (yy + Ay cos ky)ncop + Ay sin kyny00

is the Hamiltonian of a 2D BBH system.

The Hamiltonian Eq. (6) is particle-hole and chiral sym-
metric. The latter symmetry can be treated as redundant as
explained in Sec. III A. We therefore focus on the P symmetry
related topological protection in the following.

In Fig. 5(a), we show the low-energy spectrum of a finite
system in the topological phase (|y;| = |yx,| < |A.,|) and
observe a dispersing mode (shown in red) crossing £ = 0.
Looking at the spatial profile of these modes in Fig. 5(b),
we observe they are located at the hinges. Extending the 3D
system in the z direction while keeping it finite in the xy
plane, the momentum k, is a good quantum number, and the
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FIG. 5. A finite 3D system with 10 x 10 x 10 sites in the weak
HOTP, with parameters y, = 0.1 and A, = A, = 1. Panels (a) and
(b) show the spectrum and the probability distribution of states
forming the band that crosses E = 0 (depicted in red). Panels (c)—(f)
correspond to a system which consists of 10 x 10 sites in the xy
plane and which is infinite along the z direction. Panel (c) depicts
the spectrum of the Hamiltonian as a function of k. In the remaining
panels, we show the eigenphase spectrum of the reflection matrix
ryp for various configurations. In panel (d), we consider an N; = 1
interface. There are two dispersing bands (the mode shown in red
is doubly degenerate) that cross ¢ = 7 at k, = 0, w. In panel (e),
the Hamiltonian system with y, = 2.1 is probed with an N; =1
thick interface. We observe two bands (colored in blue) that cross
¢ =0 at k;, = 0, . To produce panel (f), we use N; = 2 and a 3D
system with gapless hinge modes (y, = 0.1). There are two bands
that simultaneously cross ¢ = 0, 7 (blue and red).

dispersion relation along every z edge is given by y, sin k,. We
plot the spectrum of this system in Fig. 5(c), and count four
gapless, dispersing hinge bands in total. Each band supports
two counterpropagating modes per hinge.

We now attach leads to the system that is infinite in the
z direction as illustrated in Fig. 2(b). We assume these leads
probe only the surface layer of sites (N; = 1). The eigenphase
spectrum of a unitary rpp(k;) is plotted in Fig. 5(d). Because
Hamiltonian hinge states are gapless at k, = 0, 7, the incom-
ing modes of the lead will get reflected with a 7 phase shift
at these momenta. For this reason, we observe two dispersing
bands that cross ¢ = 7w at momenta k, = 0, 7. The states that
form these bands are pinned to z edges of the lead.

Note that both for the Hamiltonian and for the reflec-
tion matrix, the midgap boundary modes are topologically
protected. Particle-hole symmetry implies that for each
Hamiltonian eigenstate and energy E and momentum k., there
must exist an eigenstate at —E and —k,. Similarly, for any
eigenstate of the reflection matrix at ¢ and k, there must exist
one at —¢ and —k,. Thus, the boundary-localized midgap
bands cannot be pushed away from E = 0, or from ¢ = 0 and
¢ = m, without breaking P.

Taking into account all these properties, we define a quan-
tity éa,(TOg(lzz) that counts the parity of the number of bands
that cross ¢ = w(0) per z edge. Here, IEZ denotes (a set of)
high-symmetry momenta {0, 7z}. Looking at the spectrum in
Fig. 5(d), we see that £&F,p(k;) = —1 and &Qpp(k;) = 1.

We now analyze the same scattering setup but with an
opposite dimerization (|y,| > |A,|) in the x direction. The
eigenphase spectrum of ryp(k;) is plotted in Fig. 5(e) for this
case. There are two pairs of counterpropagating edge modes
crossing ¢ = 0 atk, = 0, 7. As before, each pair is located at
a single hinge such that 5\({,@(1}1) = —1 and E{,TVTP(IEZ) =1.1If
[Vxy] > |Ax,yl, the reflection matrix of this 3D system shows
no topological features (we opt to not show its ¢ spectrum).

Lastly, we discuss the setup with a thicker interface region
(Ng = 2) that relates a 3D system with gapless hinge modes
with leads. In analogy with Sec. III A, we expect this setup to
yield r,p that simulates a weak anomalous unitary phase. The
eigenphase spectrum of r,p is plotted in Fig. 5(f). We observe
gapless states at ¢ = 0, & for k, = 0, 7, leading to nontrivial
values £5p(k;) = —1 and £Qpp(k;) = —1.

C. 3D system with hinge states protected by a mirror symmetry

Another way to create hinge modes in 3D systems is to
replace dimerization along the z direction in 3D BBH model
Eq. (5) with a nondimerized nearest-neighbor hopping that
preserves the mirror symmetry M at a plane perpendicular
to z. The system then implements a second-order TCP. For
concreteness, we consider the momentum-space Hamiltonian

hrep(k) = (yx + Ay €OS k)N, To0x + Ay Sin k1), o0,
+ (¥y + Ay cO8 ky)n:To00 + Ay sinkymy 700
+ (Y + vz cosk)n 0, + v sinkn,ty0,. (7)

Besides the local symmetries P = n,790,K and C = .70,
(here again, the C symmetry can be considered as redundant)
there is also a mirror symmetry M, (k;) = nom,op, where

i,
m, = <€o (1)) ®)

This symmetry relates the Hamiltonian at different momenta
as

M (ke (ke ky, k)M (k) = hrep(he, ky, —k). (9)

The Hamiltonian is mapped onto itself for two val-
ues (0 and m) of momentum k,, such that the mirror
symmetry is an element of the little group at these
points. This mirror symmetry operator can be written
in the form M,(k,) =V (k,)D(k,)VT(k,), where D(k,) =
diag(1, 1,1, 1, e, e’k % ¢'*) is a diagonal matrix of
eigenvalues and V (k) is a unitary matrix composed of respec-
tive eigenvectors.

At momentum k, = m, the mirror symmetry operator has
two fourfold degenerate eigenvalues 1 and —1. The rotated
Hamiltonian V (0 )hrcp (ky, ky, 7 )W T(mr) is block diagonal and
consists of two matrix blocks that represent momentum-space
Hamiltonians of neighboring xy layers. These two layers have
opposite values of mirror symmetry eigenvalues. For k, # 7,
the effective decoupling between two layers is absent because
the unitary transformation V (k;)hrcp(ky, &y, k)VT(k,) does
not produce a block-diagonal matrix.

In Fig. 6(a) is plotted the spectrum of the Hamiltonian for
the system that is infinite in the z direction and finite in the
other two directions. Here, we use |y;| = |yxy| < |Ay,|. There
are eight bands that cross £ = 0 at k, = m as the coupling
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1.5
(a) B
0

FIG. 6. Panel (a) shows the low-energy spectrum of a Hamil-
tonian system which is infinite in the z direction and consists of
10 x 10 sites in the xy plane. The bands that cross E = 0 are shown
in red. The sum of the probability distributions of gapless states at
k., = m is given in panel (b). In these panels, we use y, = y, = 0.1,
Ay = Ay, = 1,and y;, = 0.1. Panels (c)—(e) show the eigenphase spec-
tra of the reflection matrix r,p. In panel (c), we consider N; = 1 and
¥x = 0.1. There are four dispersing bands, colored in red, that cross
¢ =m at k, = w. For panel (d), we consider the 3D system with
oppositely dimerized x edges (y, = 2.1) and N; = 1 and observe
four bands (blue) that cross ¢ = 0 at k, = . In panel (e) the 3D
system has gapless hinge modes probed by leads with an N; =2
thick interface region. We observe the presence of dispersing bands
that cross ¢ = 0, 7 simultaneously.

between adjacent xy layers with amplitude |y,|+/2(1 + cosk;)
vanishes. In Fig. 6(b) is plotted the probability distribution of
midgap states at k, = . We conclude that these midgap bands
describe states localized at the hinges of a 3D system.

Next, we calculate the reflection matrix r,p of the system
by attaching two leads as illustrated in Fig. 2(b). We start with
an Ny = 1 thick interface region. The eigenphase spectrum
of ryp is plotted in Fig. 6(c). We observe four dispersing
bands crossing ¢ = £ at k, = m. These bands are split into
pairs of doubly degenerate bands, and every pair is located at
one z edge of the 2D system. Therefore, defining a quantity
&7 (k, = m) that simply measures the parity of the number
of 7 modes per edge is not useful as &7-p(k, = 7) = 1 in this
case. It is possible to find an appropriate invariant but not as
straightforward as before. Hence, we refrain from doing so
here, and direct the reader to Sec. IV for more details.

As before, we proceed by changing the dimerization pat-
tern of the 3D system such that |y,| > |A,|. The ¢ spectrum
of rpp is shown in Fig. 6(d), where we see four dispersing
bands crossing ¢ = 0 at k, = . Finally, we demonstrate that
the reflection matrix r,p can simulate the anomalous Floquet
TCP by doubling the thickness of the interface region. Its
eigenphase spectrum is plotted in Fig. 6(e). We see two sets
of bands crossing ¢ =0, 7 atk, = «.

IV. CHARACTERIZATION

This section is devoted to the characterization of the
different 2D unitary topological phases described in Sec. III.

(2) Dfﬂ (b)
r T
(] 2 ( oTP = 7 P/
/ r
7
(]

FIG. 7. Sketch of the absorbing terminals (blue) used to char-
acterize 2D unitary systems. In panel (a) are shown four pointlike
terminals that probe the corners of a 2D system described by ryp.
In panel (b), the terminals are placed on z edges that also host
propagating topological modes of a 2D system described by r,p.

We do this by using topological indices devised for period-
ically driven systems, as we have seen in Sec. IIB that a
unitary reflection matrix obeys the same symmetry conditions
as F. Since our approach only provides access to r,p which
corresponds to the time evolution at the stroboscopic time
T =1, we will not use topological invariants that require
the knowledge of a unitary time-evolution operator U (¢) at
all times ¢ [19,72]. While such an approach is possible in
principle, as shown in Ref. [30], it is more cumbersome than
using scattering theory based topological invariants that only
need the knowledge of the time evolution at stroboscopic
times [28].

First, we discuss why scattering theory can be used to
identify (static and dynamic) topological phases. Such char-
acterization procedure relies on having a unitary reflection
matrix for a scattering region in the topological or trivial
phase. This matrix has a different structure in these two phases
due to, e.g., a resonant reflection occurring once the incident
wave probes a pointlike state at the same (quasi)energy as its
own [25]. One can then define a quantity that captures these
differences and use it as a topological invariant. Importantly,
the scattering topological invariant is defined such that it
changes its value at the phase transition point of the system it
characterizes. At this point, the reflection matrix is singular as
a result of a nonzero conductivity between the leads enabled
by a gap closing in the scattering region.

The above-mentioned requirement of a unitary reflec-
tion matrix for a characterization procedure is automatically
obeyed in the trivial phase that does not conduct in the bulk
or at its boundaries. For a system in the topological phase,
whether the reflection matrix is unitary or not depends on the
order of the topological phase and what boundary conditions
are applied. In the case of STPs, we direct the interested reader
to Ref. [27]. Here, we focus on 2D systems realized in Sec. 11T
that have topological states either at the corners or at a pair
of z edges. Since these states are not present at all boundaries
of the system, a suitable transport experiment that detects a
unitary r may be designed with a finite-sized system. For the
reasons explained later, we call the leads that probe a unitary
topological phase absorbing terminals.

For a unitary second-order topological phase, appropriate
absorbing terminals are illustrated in Fig. 7(a). They are point-
like and located at all four corners of the system such that
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they directly probe the corner states. In this way, it is possible
to detect the bulk and edge gap closing(s) of a 2D system
that separate a topological from a trivial phase [9,68,69]. For
unitary systems in Secs. III B and IIIC, suitable terminals
are placed on those edges where dispersive, topological edge
states are present, as illustrated in Fig. 7(b). Note that every
terminal is designed such that it probes four corner sites in the
case of Fig. 7(a), and two outermost layer of sites in the case
of Fig. 7(b).

In the following, we show how the scattering matrix of a
unitary system is calculated, and then we discuss topological
invariants for all three cases considered in Sec. III.

A. Nested scattering matrix procedure

To calculate the scattering matrix of the unitary system,
we follow the procedure outlined in Ref. [28]. It is based
on defining fictitious terminals assumed to absorb particles
at the stroboscopic times. These terminals are positioned at
the boundaries of interest, like the ones shown in Fig. 7. The
boundary consists of Ny sites with N; degrees of freedom per
site (following the convention outlined in Sec. Il A). Math-
ematically, the terminals are described with the rectangular
matrix P that has Ny x N entries of size N; x Ny, where N
denotes the total number of sites of the unitary system. This
matrix maps each site i € {1, ..., Ny} on the boundary to its
site j € {1, ..., N} in the Floquet system, i.e., P;; = 1y, if i
and j are the same physical site and P;; = Oy, otherwise.

In analogy to the possibility of calculating the scattering
matrix of a static system at any energy E (in this work, we
have used only E = 0), the scattering matrix of a unitary
system with eigenphases ¢, can be determined at any phase
¢ € [0, 2) in the following way:

S(¢) = Pllyxn, — € “Prap(Lyxn, — P'P)I e rypP’.
(10)

For details on how this formula is obtained and its connection
with periodically driven systems, see Appendix C.

Since the scattering matrix S(¢) is calculated from the re-
flection matrix r,p alone, we dub this procedure the method of
nested scattering matrices [30]. From now on, all nested scat-
tering matrices and their subblocks are denoted with a tilde.
The phase ¢ € [0, 27) corresponds to an additional phase
e~ accumulated during the time 7. In this sense, it serves
as a simple generalization of the stroboscopic time evolution
which at ¢ = 0 is simply given by r. In the following, we will
be mainly interested at the values ¢ = 0 (no additional phase)
and ¢ = 7 (additional minus sign). For simplicity, we denote
these specific phases (0 and 1) as .

B. Topological invariants

Scattering topological invariants are defined using local
symmetry constraints imposed on the reflection matrix 7(¢)
that is a block of S(¢). These constraints can be obtained by
combining Eq. (2) and Eq. (10). For example, the reflection
matrix 7(¢) of particle-hole symmetric unitary systems obeys

UpF($) UL, = F(—). (11)

Note that the size of a block-diagonal matrix Up used above
differs from the one in Eq. (2). Here, it has % X % entries of
size Ny x Ny.

Equation (11) implies that for ¢ = ¢ € {0, 7} the matrix 7
has a real determinant. Moreover, the reflection matrix 7(¢)
of all unitary topological phases studied in Sec. III is unitary,
provided they are probed with appropriate fictitious scattering
setups. For this reason, the determinant of 7(¢) can only take
values 1 and —1. We shall see later that this property was used
to define the scattering topological invariant of a particle-hole
symmetric system.

For topological phases protected by chiral symmetry, the
constraint on the reflection matrix reads

UcH$) Ug = F(—). (12)

As before, the sizes of a block-diagonal matrix U are differ-
ent in Eqgs. (12) and (2).

The relation Eq. (12) implies that for ¢ = @, it is possible

to find a basis in which 7(¢) is Hermitian. These specific

phases also render matrix (¢ = @) unitary for the topological

phases studied in this work. Hence, the eigenvalues of this

matrix can only take values 1 and/or —1, and the topological

invariant vg can be defined as the number of negative eigen-

values of 7#(¢) [26,27].

Lastly, we emphasize once more that for the models we
have studied, it is not necessary to calculate both particle-
hole and chiral topological invariants. The value of the chiral
invariant can be inherited from the value of the particle-hole
invariant (or vice versa) because our static scattering regions
support a minimal number of modes per (D — n)-dimensional
boundaries. The chiral invariant equals 1 whenever the P
invariant takes a nontrivial value. For this reason, we do not
write explicitly its value in the following.

1. Unitary second-order topological phase

The unitary second-order topological phases studied in
Sec. IIT A can be characterized with corner terminals illus-
trated in Fig. 7(a). It is possible to define two Z, topological
invariants as [28]

V0 = sgndet[F(¢ = 0)], v™ = sgndet[F(¢ = 7)]. (13)

We choose the convention that v® = +1 (v = —1) cor-
responds to the trivial (nontrivial) phase. The origin of the
difference in values of v? is the aforementioned resonant
reflection occurring once the phase at which terminals probe
the system has the same value as the eigenphase of a topo-
logically protected mode. The invariant v*7 is therefore in
correspondence to the quantity £%7 introduced in Sec. IIT A,
that counted the parity of the number of modes per corner at
eigenphases ¢ = 0, 7. We verified that whenever £07 = —1
s0is V07T = —1.

2. Unitary weak topological phase

As illustrated in Fig. 7(b), a WTP is characterized with
1D absorbing terminals. The scattering topological invariant

is calculated at the high-symmetry points k, € {0, 7} and
reads [73]

v o(k.) = sgn det[F($, k.)]. (14)
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Like previously, we may relate this invariant to a quantity

Ev@(TO]g(IEZ) that measures the parity of the number of hinge

states; see Sec. III B. Whenever Svf,(TOI),(lEZ) = —1, the invariant

4 p(k;) = —1 due to a resonant reflection. This prediction
was tested and verified for all the matrices r,p whose spectra
are shown in Figs. 5(c)-5(e).

3. Unitary mirror-protected topological phase

To characterize this unitary topological phase, we place the
absorbing terminals as shown in Fig. 7(b). Since every z edge
hosts a pair of propagating topological modes that become
gapless at k, = 7, the invariant Eq. (14) calculated at this
momentum gives a trivial result. This is in agreement with
having £.p(k,) = 1.

To find the invariant capable of capturing this kind of
topology, we remember that neighboring xy layers of the
Hamiltonian scattering region are effectively decoupled at
momentum k, = 7 due to mirror symmetry M. Therefore, an
incoming plane wave incident to one layer remains confined
to this layer until it gets absorbed back into the lead. Conse-
quently, the unitary system given by ryp(y, k, = 7) describes
two decoupled chains (with N; degrees of freedom per site)
spanned in the y direction. Following the same logic for the
fictitious scattering problem, the reflection matrix 7 of this
unitary system can be written in the basis in which it is a
block-diagonal matrix

T T FT0

gk =m) = (O ?_>. (15)
Here, #* denote reflection matrices of two layers with oppo-
site mirror symmetry eigenvalues, as discussed in Sec. III C.

At k, = m, the particle-hole symmetry leads to the con-
straint [73]

Upi(¢p, m)Up = F*(—¢, 7), (16)

which allows us to define a Z, invariant
vl = sgndet[7 (g, 7)]. (17)
We now calculate this quantity numerically, and find that
for a system shown in Fig. 5(c), vgg; = land v%’(’; = —1, thus

capturing the presence of dispersive modes at ¢ = . For the
system with the eigenphase spectrum given in Fig. 5(d), the in-
variants read v%cj]i = —1and v}féj; = 1. Finally, the existence
of the anomalous unitary phase in Fig. 5(f) is confirmed by
nontrivial values of v%cj; = —1 and v’T’(’;f =—1.

V. CONCLUSION

Equilibrium systems with gapless corner states present an
opportunity to realize unitary Floquet topological phases in
a way that circumvents some of the problems connected to
their experimental realization. Namely, even though Floquet
phases result from periodic driving, we have found they can
be simulated by unitary reflection processes of the systems
supporting HOTPs. In this way, the absence of a driving field
eliminates noise-induced decoherence.

Here, we have provided examples of unitary topological
phases protected by the combination of local and crystalline

symmetries, thus expanding the range of Floquet phases ini-
tially realized with this approach [30]. First, we have studied
3D systems supporting a HOTP, showing that their reflection
matrices describe 2D systems with corner modes at eigen-
phases 0 and/or s. Other kinds of interesting 3D systems
to study are the ones with hinge modes protected either by
translation symmetry or mirror symmetry. The reflection ma-
trix from the surface bounded by these hinge modes is unitary.
It supports edge states at eigenphases 0 and/or 7 thus simu-
lating a first-order Floquet WTP and TCP, respectively. For
all phases, we have defined and calculated the topological
invariants based on scattering theory.

While we have focused exclusively on uniform, disorder-
free systems in this work, we expect our results to remain
robust against the addition of impurities. For unitary phases
with corner states, we have shown previously that the topolog-
ical phase remains intact upon adding particle-hole symmetric
disorder, provided that the bulk gap does not close [30].
Further, weak and crystalline topological phases have been
shown to be robust against disorder provided that the protect-
ing lattice symmetries are still preserved on average, both in
Hermitian [74,75] as well as unitary systems [28,76].

There are several research directions open for future works.
For example, one can study reflection matrices of systems in
HOTPs where gapless corner states are not present at every
corner [77-79]. This could possibly simulate unitary phases
with an odd number of topologically protected modes. It
would be also interesting to explore how these setups can be
realized either in superconductors, where the same formalism
applies provided that superconductivity is treated at the mean
field level [3], or in metamaterials such as topoelectric circuits
[61] or photonic systems [48]. Another possibility would be to
explore how our mapping relates classification tables of static
and Floquet phases.
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APPENDIX A: ANALYTICAL REFLECTION MATRIX

In this Appendix, we analytically calculate the reflection
matrix rpp using the boundary Green’s function [71] and the
Mahaux-Weidenmiiller formula [80]. We start from a real-
space version of the 3D tight-binding BBH model given in
Eq. (5):

_ +l il il
H=— Z(—l)n (yxczm,n,]CZm—l,nJ + )"Xc2m+1,n,lc2m,n,l)

m,n,l

§ : T ¥
+ (yycm,Zn,lcm,Zn—l,l + )")’Cm,2n+1,lcm,2n,l)

m,n,l
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+ +
+ Z(_l)n(yzcm,n,zlcm,n,zzq + ACp2141Cmn2)

m,n,l

+ H.c. (AD)

Some hoppings in the x and z direction are negative, in order
to realize a magnetic 7 flux on each face of the unit cell. As
in Eq. (5), we assume that all hopping amplitudes are real.

In the following, we derive a fixed-point boundary Green’s
function for the yz surface using the transfer matrix technique
[71]. To this end, we introduce a spinor

Woni = (Cm,2n—1,215 Cm,2n,21-1> Cm, 20,20 > Cm,2n—1,21—1)5

where the indices m, n, [ assume the values m=1,...,L,
n=1,...,W/2and [l =1, ..., H/2. For periodic boundary
conditions in the y and z directions, its Fourier transform in
the (ky, k) space reads

2 . .
W (ky» k) = \/ﬁ Z Z emkv-’_llkj "Ilm,n,l .
ky  k;

Then, the Hamiltonian Eq. (A1) can be written as

L
H= Z[Z W (kys kD Ky, k)W (K, K2 )

ky,k. Lm=1

L-1
Y W Ry k)i Wik, ko) + H.c},
m=1

X 0 0 0
0 X 0 0
0 0 X 0
. 0 0 0 X
B 0 0 _phety e
v T
+e g, ytea,
0 0 _r : D y
ntreon, v+ ny ny
Vx " V.x_k N
_yete A pte ™y 0 0
Vx Vx
22020 52.052
VoY Yo ARSI 42y Ay cos(ky )42y A, cos(k;)
where y = — &= = "0 .

)2

where

I (ky, k) = (yy + Ay cos k), vo + Ay sinky ey v,
+ (yz + X cos kz),uyvy + )‘zﬂyvm

and

m is odd,
m is even.

_ ) VxMzVo,
Vm o {Axﬂzvo,

Here, matrices p and v act on the sublattice sites in the 2D
plane.

The transfer matrix M,, (in the x direction) is given
by

=1 -1 -l

(A2)

where g,!(w) = w14 — hy(ky, k;) and 14 is a 4 x 4 unit ma-
trix. Following the procedure outlined in Ref. [71], we only
consider w = 0 in the following. Due to the staggering, the
transfer matrix 7 across a unit cell is given by the product
T = M,M,;. We obtain

0 0 pte™a o peta
Yx ]{x
0 0 yote ke, V)’*‘)M'v Ay
. V2 V2
_ V.v+e‘ky Ay _ Vz+eikz Az (; 6
Vx Yo
yore %, ke 0 0
Vx Yx s ( A3)
— y— 0 0 0
v
0 _% 0 0
2
0 0 - 0
yx
0 0 0 —&

¥

WAy
We are interested in the eigenvalues A, of T which describe the attenuation along x. For y, = y, = y and A, = A, = A they

are given by

Ax

X
A1,2=5—

(A4)

each four-times degenerate. Due to the fact that T is symplectic (which corresponds to the current conservation), the eigenvalues
obey the relation A; = 1/A%. We collect all the eigenvalues with |A| > 1 into the diagonal matrix A and decompose T into

T — Ui Up\(A
Uy Uxn)\O

0 Uy Up\
1/A*J\Uy U ’

(AS5)

The fixed-point boundary Green’s function is found using the relation

G=UnU; ' V)",

(A6)
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FIG. 8. Eigenphase spectrum of r,p for a system that is infinite in both the y and z directions. The bands obtained using the analytical
approach are shown in blue, and the numerical results are shown in red. In panel (a), the parameters are y,, = 0.1 and A, = 1. In panels (b) and
(c), we show results for y, , = 0.999 and A, = 1. For panel (b), y, = 0.1, while y, = 2.1 in panel (c).

where V) = A, vp. It reads

0 y+re R _ y+arek
Ac(Yehi+Ay) Ac(Yuhi+Ay)
0 y+re ik yFrely
G( ky, k,) = et el xx(y)?(»; +1y) )Lx(Vx)bl +Xy) (A7)
)\x(yx)hl“")%x) )\x(y)&)\l“f)\x)
yt+ie yt+re ™ 0 0

T A )

Using the Mahaux-Weidenmiiller formula, the reflection
matrix 5 (ky, k;) can be expressed as [71]

14 — iWG(ky, k)W
1y + iWG(ky, kWi

i (ky, k) = (A8)
Here, matrix W represents coupling of the lead to the system.
In this work, we assume it is a diagonal matrix with unit en-
tries, i.e., W = 14. In this case, Eq. (A8) can be simplified to

1, — iG(ky, k)

an k ,k = 2’ =
" K = 160 k)

(A9)
such that r3}) is the Caley transform of G. Note that a weak
link between the leads and the system would correspond to
W = 14/1.

In the following, we compare the eigenphase spectrum of
ri} with the numerically obtained results [81]. The results
are plotted in Fig. 8 for different values of y and A. Both
approaches yield the same eigenphase spectra. In Fig. 8(a),
we show the ¢ spectrum for a 3D system in the HOTP. We
see that the bulk of the 2D system described by 3]} is gapped.
In Figs. 8(b) and 8(c), we study topological phase transitions
in the bulk of the 2D system described by a unitary 3. For
|¥x| < |Ay|, the bands close the gap at ¢ = 7 for |y, .| = |4, .|.
If the 2D system is finite in the y and z directions, this phase
transition would lead to a hybridization of 7 modes with the
bulk [30]. Once |y;| > |A«| and |y .| < |Ay ], the finite 2D
system supports 0 modes at its corners; see Fig. 4(b). The
existence of these modes is related to the nontrivial 7op(k,, k)
bulk gap around ¢ = 0 that gets closed for |y, .| = |A, .| as
shown in Fig. 8(c).

APPENDIX B: TRANSVERSAL LEAD COUPLING

So far, we have calculated the reflection matrices using a
model of idealized leads consisting of decoupled waveguides.
This approximation was used because we expect a high de-

hx(ah1+Ay)

(

gree of control over all degrees of freedom in metamaterial
platforms that were mostly used to experimentally realize
HOTPs. It would be, however, prudent to verify that our
conclusions remain intact in the presence of a transversal cou-
pling between neighboring waveguides in the plane parallel to
system-lead interface.

To simulate this effect, we allow for a nonzero coupling
t, between neighboring waveguides, which is present only on
the first 10 sites of the lead, and which has equal amplitude
in both the y and z directions. Thus, 7, will mix the incoming
and outgoing modes of different chains and alter the reflection
matrix.

In the following, we show results for different strengths of
the hopping #, on the reflection matrix of the 3D BBH model
with zero-energy corner states. The spectrum of this scattering
region and probability density of zero-energy states are shown
in Fig. 3 for z, = 0. The effect of nonzero ¢, is shown in
Fig. 9.

When ¢, is negligible compared to # =1 (the hopping
along the 1D waveguides), we expect that the inter-waveguide
coupling has little effect on the topological properties of the
reflection matrix. This expectation is confirmed for 1,/f; =
1/1000, as the ¢ spectrum and the probability density of
m-corner modes plotted in Fig. 9(a) resemble the ones in
Fig. 4(a) calculated for ¢, = 0. Larger values of #,/t; cause
spreading of all reflection matrix eigenstates in space, and this
leads to a range of effects.

The gap at ¢ = 0 is closed first, signifying a topological
phase transition that is followed by the appearance of four 0
modes pinned to the corners of the system. This is shown in
Figs. 9(c) and 9(d). With larger values of ¢,, the localization
lengths of these 0 modes increase, resulting in splitting of their
eigenphases away from ¢ = 0, see Fig. 9(e), and resulting in
a trivial phase, as clear from Fig. 9(f).

Lastly, we discuss the effect of the transverse coupling
on the w modes. In the limit z, = 0, these modes had a
localization length &, that was determined by the properties
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(a) t, = 1/1000

(b) t, = 1/100

—T —T

0 # state 9 0

# state 99

FIG. 9. Eigenphase spectrum of r,p and probability density of
corner states as a function of the transverse coupling f,. The
scattering region contains L* sites, where L = 10, and #, couples
waveguides within the first 10 sites from the scattering region. Other
parameters read y, = 0.1, A, = 1, ; = 1. The probability densities
of midgap modes are plotted only if their eigenphases differ from
¢ = 0, by less than 0.01.

of the scattering region. The presence of transverse coupling
causes the increase of this localization length, also visible in
the insets of Figs. 9(a)-9(c). As t, increases further, the large
localization length causes the eigenphases corresponding to
these corner states to split away from ¢ = &, as seen from
Fig. 9(d), eventually leading to a trivial phase [Fig. 9(e)].
Above, we have chosen a transversal coupling 7, which is
added to the first 10 sites of the lead. Its effect is to cause the
propagating modes initially located on a single waveguide to
spread in the y and z directions. When this spread is compara-
ble to the system size, the reflection matrix spectrum becomes
trivial, since an incoming mode no longer probes the scatter-
ing region locally, e.g., at a single corner. However, as long
as incoming modes, or linear superpositions thereof, are local
in the y and z directions, we expect the topological features

of the reflection matrix to remain intact. This is because, for
instance, the presence of zero-energy corner states in the 3D
HOTP must be associated to 77 modes in the reflection matrix
due to resonant scattering.

APPENDIX C: NESTED SCATTERING MATRIX FORMULA

Equation (10) is a way of determining the scattering matrix
of a periodically driven system by starting from its Floquet
operator, F. In our case, we use the same formula and replace
the Floquet operator with the reflection matrix, r,p, since we
are interested in the analogy between the two. For simplicity
and to connect with the physics of time-periodic phases, we
will use F throughout this Appendix.

In the language of periodically driven systems, the Floquet
operator J has the effect of time-evolving a given state by one
period of the drive, so from time ¢ to # + T. The projection
operator P serves to remove any portion of the state which
overlaps with the absorbing terminals. In Eq. (10) the matrix
inverse is obtained as an infinite sum, (1 — X))~ ' =1+ X +
X%+ X3+ ..., a geometric series of terms involving time-
evolution and projection operators. Physically, Eq. (10) results
from the fact that the absorbing terminals act stroboscopically
on the wave functions of the driven system; that is, they are
only active at discrete times, t = nT', with integer n.

Focusing on the ¢ = 0 case for simplicity, the first term in
the geometric series reads PFPT . Thus, an initial (+ = 0) state
located on the sites corresponding to the absorbing terminals
is time-evolved for one period, by applying F. That part of
the state which is still located on the sites of the absorbing ter-
minals att = T is then projected out (P). The rest of the state,
meaning that portion which was not located on the absorbing
sites, 1 — PTP, is again evolved for one period (up totr = 2T),
after which the projector onto the terminals is applied. This
leads to the second term of the series, PF(1 — PTP)FPT.
The third term in the series again repeats this process. The
leftover part of the state is again time-evolved and projected
out if it overlaps with the absorbing terminals, leading to
PF( —PTP)F(1 — PTP)FPT. Summing over all of these
processes up to infinitely many driving periods leads to the
geometric series whose sum is the inverse matrix appearing
in Eq. (10). The resulting scattering matrix is unitary, as can
be checked directly. This implies that, when summing up to
infinitely many periods, all of the initial state is eventually
projected out.
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