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Modification of transition radiation by three-dimensional topological insulators
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We study how transition radiation is modified by the presence of a generic magnetoelectric medium with
a special focus on topological insulators. To this end, we use the Green’s function for the electromagnetic
field in presence of a plane interface between two topological insulators with different topological parameters,
permittivities, and permeabilities. We employ the far-field approximation together with the steepest descent
method to obtain approximate analytical expressions for the electromagnetic field. Through this method, we find
that the electric field is a superposition of spherical waves and lateral waves. Contributions of both kinds can
be attributed to a purely topological origin. After computing the angular distribution of the radiation, we find
that in a region far from the interface the main contribution to the radiation comes from the spherical waves.
We present typical radiation patterns for the topological insulator TlBiSe2 and the magnetoelectric TbPO4. In
the ultrarelativistic case, the additional contributions from the magnetoelectric coupling appreciably enhance the
global maximum of the angular distribution. We also present an analytic expression for the frequency distribution
of the radiation for this case. We find that in the limit where the permittivities are equal, there still exists transition
radiation of the order of the square of the topological parameter with a pure topological origin.
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I. INTRODUCTION

Once the Vavilov-Čerenkov radiation was discovered [1,2]
and understood [3], the paradigm that a particle with constant
velocity traveling through a medium cannot radiate was bro-
ken down. As confirmation of the paradigm shift a few years
later, the theoretical development of transition radiation [4]
and its experimental verification [10] opened a gate to new
research in electromagnetic radiation. Transition radiation is
a phenomenon that occurs when a charged particle with con-
stant velocity crosses an interface between two media with
different permittivities and permeabilities. The original work
of Ginzburg and Frank [4] showed the existence of backwards
radiation emitted relative to the particle motion, which con-
stituted an important distinction with the Vavilov-Čerenkov
radiation that is emitted forwards in right-handed homoge-
neous media. Additionally, it was shown that the frequency
of this backwards radiation was mainly in the visible range of
the electromagnetic spectrum and that the radiation intensity
was logarithmically proportional to the Lorentz factor of the
particle. Interestingly, if the media is left-handed the Vavilov-
Čerenkov radiation can be emitted backwards too. This exotic
electromagnetic phenomenon was predicted by Veselago [5]
and subsequently studied in Refs. [6–9].

Despite the first measurement of transition radiation in
the optical region by Goldsmith and Jelley [10] the interest
devoted to this subject was not increased, because the low
intensity of the radiation seemed to prohibit its use for the
detection and identification of individual particles. The situa-
tion changed when Garibian [11] demonstrated that transition
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radiation by an ultrarelativistic particle will be emitted in the
x-ray regime. Shortly after, Garibian [12] studied a particle
emitting transition radiation by passing through a layer of
matter of finite thickness and he found that the energy lost
was directly proportional to the Lorentz factor of the parti-
cle in the ultrarelativistic regime. This theoretical discovery
of x-ray transition radiation paved the way towards using
transition radiation in high-energy physics as a tool for par-
ticle identification at high momenta [13]. This was achieved
by implementing and designing transition radiation detectors
[14,15], which have been used and are currently being used
or planned in a wide range of accelerator-based experiments,
such as UA2 [16], ZEUS [17], NA31 [18], PHENIX [19,20],
HELIOS [14], D∅ [21,22], kTeV [23], H1 [24,25], WA89 [26],
NOMAD [27], HERMES [28], HERA-B [29], ATLAS [30],
ALICE [31], CBM [32], and in astroparticle and cosmic-ray
experiments: WIZARD [33], HEAT [34], MACRO [35], AMS
[36], PAMELA [37], and ACCESS [38].

Besides the applications for high-energy physics, transition
radiation has also been studied in new kinds of materials
such as chiral matter [39] and even in photonic topological
crystals [40]. Other new interesting type of materials are
topological insulators (TIs), to which this paper is devoted.
Three-dimensional TIs are a novel state of matter exhibiting
insulating bulk and conducting surface states protected by
time-reversal symmetry [41,42]. Their topological behavior
was predicted in Refs. [43,44] where two types have been
distinguished: strong three-dimensional TIs exhibit an odd
number of surface states on each surface, whereas the weak
ones have an even number of them on all but a single sur-
face [43,45]. The experimental discovery of the first strong
three-dimensional TI in Bi1−xSbx was confirmed in the work
[46]. This led to the detection of a huge variety of TIs as
reported in [47] and the more recently discovered new class
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of topological insulators, called axion insulators [48]. They
have the same bulk as TIs, with gapped bulk and surface
states, where the topological properties are protected by in-
version, instead of time reversal symmetry. They can arise up
in magnetically doped-TI heterostructures with magnetization
pointing inwards and outwards from the top and bottom inter-
faces of the TI [48]. When time-reversal symmetry is broken
at the interface between a 3D strong TI and a regular insulator,
either by the application of a magnetic coating and/or by
doping the TI with transition metal elements, the opening of
the gap in the surface states induces several exotic phenomena
which can be tested experimentally. Among them, we find
the quantum anomalous Hall effect [49,50], the quantized
magneto-optical effect [51,52], the topological magnetoelec-
tric effect [41,53,54] and even radiative effects as the reversed
Vavilov-Čerenkov radiation [55], which was recently theoret-
ically predicted. Also the image magnetic monopole effect
has been analyzed in Ref. [56] but its direct experimental
verification still remains an open challenge. These effects can
be also produced in axion insulators.

The aim of the present work is to study how transition
radiation is modified by strong three-dimensional TIs by com-
bining the analysis of usual transition radiation given in the
references [4,57,58] with the Green’s function method that
we will present here. This paper is organized as follows. In
Sec. II, we describe the modified Maxwell equations which
describe the electromagnetic response of three-dimensional
TIs from an effective field theory point of view. Also in this
section, we review the Green’s function method to obtain the
time-dependent electromagnetic field arising from arbitrary
sources in the presence of two semi-infinite magnetoelectric
media with different values of the topological parameter, per-
mittivities and permeabilities separated by a planar interface
that encodes the manifestation of the topological magne-
teoelectric effect. Section III is devoted to analyzing the
electromagnetic field associated with transition radiation. To
this end, we consider a charged particle moving with con-
stant velocity v in the direction perpendicular to the interface
between the two magnetoelectrics. Our formalism yields ana-
lytic results for the physical quantities involved. The far-field
expressions for the electric and magnetic induction fields are
calculated. In Sec. IV, we present the angular distribution
of the transition radiation for two cases: (i) when the ob-
server is located at the upper magnetoelectric medium and the
incident particle parts from this medium towards the lower
one, and (ii) when the trajectory of the particle is reversed
and the observer is at the lower magnetoelectric medium.
Here we present radiation patterns to illustrate our results
and the differences between this transition radiation and the
usual one. We analyze different limiting cases, finding that
when the permittivities and permeabilities are equal, there
still exists transition radiation of the order of the square of
the topological parameter. Section V is devoted to obtain an
analytical expression for the frequency distribution of transi-
tion radiation in the ultrarelativistic case. We focus on two
cases: when the particle moves from vacuum into a non-
magnetical strong three-dimensional TI, referred as vacuum-
to-TI case, and the swapped case dubbed as TI-to-vacuum
case. Section VI comprises a concluding summary of our
results.

II. MODIFIED MAXWELL EQUATIONS

As in all studies regarding the electromagnetic response
of a certain system, our starting point will be the Maxwell
equations and constitutive relations of the involved material.
For a three-dimensional TI these are [53,59,60]

∇ · B(r; ω) = 0, (1)

∇ × E(r; ω) = iωB(r; ω), (2)

∇ · D(r; ω) = �E (r; ω), (3)

∇ × H(r; ω) + iωD(r; ω) = jE (r; ω), (4)

where �E (r; ω) and jE (r; ω) denote the source term for
electromagnetic waves generated by external charges and cur-
rents, respectively, E(r; ω) stands for the electric field and
B(r; ω) is the induction field. For these materials, both fields
are connected with the displacement field D(r; ω) and the
magnetic field H(r; ω) via

D(r; ω) = ε0ε(r; ω)E(r; ω) + α�(r; ω)

πμ0c
B(r; ω)

+ PN (r; ω), (5)

H(r; ω) = B(r; ω)

μ0μ(r; ω)
− α�(r; ω)

πμ0c
E(r; ω)

− MN (r; ω), (6)

where α is the fine structure constant and ε(r; ω), μ(r; ω),
and �(r; ω) are the dielectric permittivity, magnetic perme-
ability, and axion coupling, respectively. Here the PN (r; ω)
and MN (r; ω) terms are the noise polarization and magnetiza-
tion, respectively. These are Langevin noise terms that model
absorption within the material [61].

The axion coupling �(r; ω) takes even multiples of π

in weak three-dimensional TIs and odd multiples of π in
strong three-dimensional TIs, with the magnitude and sign
of the multiple given by the strength and direction of the
time-symmetry-breaking perturbation. It is worth noting that
the modified Maxwell Eqs. (1)–(4) can be derived from the
Lagrangian density L = L0 + L�, where L0 is the usual
Maxwell Lagrangian density and L� is given by

L� = α

4π2

�(r; ω)

μ0c
E(r; ω) · B(r; ω). (7)

In the context of condensed matter, � is known as the (scalar)
magnetoelectric polarizability [62], but in field theory, this
quantity is called the axion field, which generates axion elec-
trodynamics and whose Lagrangian is just the above one [63].
In this way, for three-dimensional TIs, this additional � term
induces field-dependent effective charge and current densities
which model the topological magnetoelectric effect [41,53].
From a broader perspective, bi-isotropic materials couple the
electric and magnetic field to each other by means of magne-
toelectric parameters χ and κ characterizing nonreciprocity
and chirality respectively. We can regard the constitutive
relations (14) and (15) as those for a bi-isotropic material
plate D = ε0εE + (χ − iκ )

√
ε0μ0 H and B = μ0μH + (χ +

iκ )
√

ε0μ0 E yielding the identifications χ = αμ�(r; ω)/π
and κ = 0. In this framework, the axion coupling endows the
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FIG. 1. Two semi-infinite magnetoelectric media with different
magnetoelectric polarizabilities �1 and �2, having different permit-
tivities ε1 and ε2, different permeabilities μ1 and μ2, and separated
by the planar interface.

nonreciprocal feature to the TIs which breaks time-reversal
symmetry as mentioned in Introduction. Moreover, TIs are
classified as Tellegen media because they do not present any
chirality [64].

Using the above constitutive relations (5) and (6), one can
show that the frequency components of the electric field obey
the inhomogeneous Helmholtz equation

∇ × 1

μ(r; ω)
∇ × E(r; ω) − ω2

c2
ε(r; ω)E(r; ω)

− i
ωα

πc
∇�(r; ω) × E(r; ω) = iωμ0j(r; ω), (8)

where j(r; ω) = jE (r; ω) + jN (r; ω) is the total current den-
sity, and jN (r; ω) = −iωPN (r; ω) + ∇ × MN (r; ω) is the
source term for electromagnetic waves generated by noise
fluctuations within the material. If the axion coupling is homo-
geneous, �(r; ω) = �(ω), then the last term on the left-hand
side vanishes and one finds that the propagation of the electric
field is the same as in a conventional magnetoelectric. As a
result, electromagnetic waves propagating within a homoge-
neous three-dimensional TI retain their usual properties. Thus
the effects of the axion coupling are only felt when the axion
coupling depends on spatial coordinates, as it happens at the
interface of two materials having different constant values
of �, for example. When � is restricted to a nondynamical
field, the theory is usually referred as �-Electrodynamics
[55,65,66], which has the necessary topological features to
model the electromagnetic behavior of three-dimensional TIs
[53] and also naturally existing magnetoelectric media [67,68]
such as Cr2O3 with � � π/36 [51].

In order to solve Eq. (8) that dictates the dynamics for the
electric field, we will employ the Green’s function method,
which is the solution to the wave equation (8) for a single
frequency point source. Its advantage lies in the ability to
compute E(r; ω) at any point from an arbitrary distribution
of current sources, once one has at hand the Green’s func-
tion of the desired configuration. In our case, let us consider
two semi-infinite magnetoelectric media separated by a planar
interface located at z = 0, filling the regions U1 and U2 of
the space, as shown in Fig. 1. Additionally, we assume that
the axion coupling � is piecewise constant taking the values
� = �1 in the region U1 and � = �2 in the region U2. This

is expressed as

�(z) = �1H (z) + �2H (−z), (9)

where H (z) is the Heaviside function.
Fortunately, the Green’s function G(r, r′; ω) for this con-

figuration was already deduced in Ref. [69], which in
particular connects the distribution of current sources to the
electric field via

E(r; ω) = iωμ0

∫
d3rG(r, r′; ω) · j(r′; ω). (10)

Two important features of the Green’s function should be
remarked. The first one is related to its reflective and trans-
missive behaviors. As can be seen from Fig. 1, for a field
point at z > 0 and if the source is in region U1 (z′ > 0) there
are two contributions, one from direct propagation from the
source to the field point, which is given by the free space
Green’s function G(0)(r, r′; ω), and one from reflections from
the surface, which is given by the reflective part of the Green’s
function G(1)(r, r′; ω). For z < 0, the only contribution is
from the transmission at the surface, which is given by the
transmissive part of the Green’s function G(1)(r, r′; ω). Thus
we can split the Green’s function into two main parts

G(r, r′; ω) =
{
G(0)(r, r′; ω) + G(1)(r, r′; ω), z > 0,

G(1)(r, r′; ω), z < 0,

(11)
each of which can be computed separately. All the compo-
nents of this Green’s function can be found in Ref. [69].
The second feature of this Green’s function comes from the
nature of three-dimensional TIs or magnetoelectric media,
which it describes. As it is well-known TIs break time-
reversal-symmetry meaning that they can be classified as
noncreciprocal media [70]. A nonreciprocal medium violates
time-reversal symmetry and, hence, the Lorentz reciprocity
principle for the Green’s tensor [71]

G(r, r′; ω) �= GT (r′, r; ω). (12)

The breakdown of this principle has the important conse-
quence that the symmetry relations [71]

r12
σ = −r21

σ ,
μ2(ω)

kz,2
t21
σ = μ1(ω)

kz,1
t12
σ , (σ = TM, TE), (13)

for the standard Fresnel coefficients are no longer valid for
our configuration. Here r12

σ stands for the reflexion Fresnel
coefficient with polarization σ , whose superscripts denotes
the medium 1 as an upper layer and the medium 2 as the
lower one or vice versa. Analogously, this notation applies
for the transmission Fresnel coefficient t12

σ . We denote by

kz, j =
√

k2
j − k2

‖ the z component of the wave vector k j± =
(kx, ky,±kz, j ) with wave number k j = √

ε j (ω)μ j (ω) ω/c for
j = 1, 2. Henceforth, every subscript on a physical quantity
will denote that it is related to the medium 1 or medium 2.

In addition to Eq. (8), it is important to consider the bound-
ary conditions that the electric and magnetic field must satisfy.
Assuming that the time derivatives of the fields are finite in the
vicinity of the interface at z = 0 as well as the noise terms,
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the modified Maxwell equations (1)–(4) and the constitutive
relations (5) and (6) yield the following boundary conditions:

[ε0εEz]
z=0+
z=0− = �Bz|z=0

cμ0μ1μ2
, [Bz]

z=0+
z=0− = 0, (14)

[
B‖

μ0μ

]z=0+

z=0−
= − �E‖|z=0

cμ0μ1μ2
, [E‖]z=0+

z=0− = 0, (15)

for vanishing external sources at the interface, where

� = αμ1μ2(�2 − �1)/π. (16)

The notation is [V]z=0+
z=0− = V(z = 0+) − V(z = 0−), V|z=0 =

V(z = 0), where z = 0± indicates the limits z = 0 ± a, with
a a positive real number such that a → 0, and V an arbitrary
vector field, respectively.

In the case of a strong three-dimensional TI located in
region U2 of Fig. 1 (�1 = π ) in front of a regular insulator
(�2 = 0) in region U2, we have

� = α(2m + 1), (17)

where m is an integer depending on the details of the time-
reversal-symmetry breaking at the interface.

III. ELECTROMAGNETIC FIELD OF THE TRANSITION
RADIATION

Let us now consider a particle with charge q and constant
velocity vez, perpendicular to the interface defined by the xy
plane (z = 0) where ez = (0, 0, 1), as shown in Fig. 1. The
external charge and current densities in frequency space are

�E (r′; ω) = −q

v
δ(x′)δ(y′)e−iω z′

v , (18)

jE (r′; ω) = qδ(x′)δ(y′)e−iω z′
v ez, (19)

where v is assumed to be positive. As in the original study
[4], we will consider an infinite path for the charge, i.e.,
its movement will occur in the interval z′ ∈ (−∞,∞). This
means that the particle comes from the upper medium, crosses
the interface and continues its path through the lower medium.
As discussed in Ref. [58], a charged particle with sufficient ve-
locity can also emit Vavilov-Čerenkov radiation in any of the
two media. To focus on the physics of the transition radiation,
we select the charge velocity as

v < min
{ c

n1
,

c

n2

}
, (20)

assuring that Vavilov-Čerenkov radiation does not occur
within any of the media, where n1 = √

ε1(ω)μ1(ω) denote
the refractive index of medium 1 and n2 = √

ε2(ω)μ2(ω) that
of medium 2 . In a more general treatment, one would have
to separate Vavilov-Čerenkov and transition radiation as ana-
lyzed in the work [72] or even study the possibility of a hybrid
radiation due to the interference of both kinds of radiation as
investigated in Ref. [73].

As the current density has a single component, then the
relevant components of the Green’s function at both sides
of the interface are only Giz(r, r′; ω) with i = x, y, z, whose
explicit components are written in Appendix A. Employing
these components we perform the indicated convolution of
Eq. (10) by substituting the current density (19). The involved

integrals can be simplified by converting to polar coordinates,
after which the angular integrals are computed analytically
using integral representations of the Bessel functions. The
resulting Hankel transforms of the electric field components
in the reflective region, upon carrying out the integral over

the parallel wave vector magnitude k‖ =
√

k2
x + k2

y and the

coordinate z′, are

E x
1 (r; ω) = −iqωμ0μ1(ω)

∫ 0

∞
dz′ eik1R

4πR

x(z − z′)
R2

e−iω z′
v

− iqωμ0μ1(ω)

4πk2
1

x

R‖

∂

∂R‖

∫ 0

∞
dz′e−iω z′

v I1

+ iqωμ0μ1(ω)

4πk1

y

R‖

∂

∂R‖

∫ 0

∞
dz′e−iω z′

v I2, (21)

E y
1 (r; ω) = −iqωμ0μ1(ω)

∫ 0

∞
dz′ eik1R

4πR

y(z − z′)
R2

e−iω z′
v

− iqωμ0μ1(ω)

4πk2
1

y

R‖

∂

∂R‖

∫ 0

∞
dz′e−iω z′

v I1

− iqωμ0μ1(ω)

4πk1

x

R‖

∂

∂R‖

∫ 0

∞
dz′e−iω z′

v I2, (22)

E z
1 (r; ω) = −iqωμ0μ1(ω)

×
∫ 0

∞
dz′ eik1R

4πR

[
1 − (z − z′)2

R2

]
e−iω z′

v

− qωμ0μ1(ω)

4πk2
1

∫ 0

∞
dz′e−iω z′

v I3, (23)

where R‖ =
√

x2 + y2, R2 = x2 + y2 + (z − z′)2 and the fol-
lowing integrals were defined

I1 =
∫ ∞

0
k‖dk‖R12

TM,TM(k‖)J0(k‖R‖)eikz,1(|z|+|z′ |), (24)

I2 =
∫ ∞

0

k‖dk‖
kz,1

R12
TE,TM(k‖)J0(k‖R‖)eikz,1(|z|+|z′|), (25)

I3 =
∫ ∞

0

k3
‖dk‖
kz,1

R12
TM,TMJ0(k‖R‖)eikz,1(|z|+|z′|). (26)

Analogously for the transmissive region, we have

E x
2 (r; ω) = − iqωμ0μ2(ω)

4πk2
2

x

R‖

∂

∂R‖

∫ −∞

0
dz′e−iω z′

v I4

+ iqωμ0μ2(ω)

4πk2

y

R‖

∂

∂R‖

∫ −∞

0
dz′e−iω z′

v I5,

(27)

E y
2 (r; ω) = − iqωμ0μ2(ω)

4πk2
2

y

R‖

∂

∂R‖

∫ −∞

0
dz′e−iω z′

v I4

− iqωμ0μ2(ω)

4πk2

x

R‖

∂

∂R‖

∫ −∞

0
dz′e−iω z′

v I5,

(28)

E z
2 (r; ω) = −qωμ0μ2(ω)

4πk2
2

∫ −∞

0
dz′e−iω z′

v I6, (29)

155120-4



MODIFICATION OF TRANSITION RADIATION BY … PHYSICAL REVIEW B 105, 155120 (2022)

where the following integrals were also defined

I4 =
∫ ∞

0
k‖dk‖T 12

TM,TMJ0(k‖R‖)eikz,2(|z|+|z′|), (30)

I5 =
∫ ∞

0

k‖dk‖
kz,2

T 12
TE,TMJ0(k‖R‖)eikz,2(|z|+|z′|), (31)

I6 =
∫ ∞

0

k3
‖dk‖
kz,2

T 12
TM,TMJ0(k‖R‖)eikz,2(|z|+|z′ |). (32)

In the components (21)–(23) and (27)–(29) terms of order
higher than R−2 were neglected and the four modified Fres-
nel coefficients required for the electric field components are
given as follows [69]:

R12
TM,TM = (ε2kz,1 − ε1kz,2)�μ + �2kz,1kz,2

(ε2kz,1 + ε1kz,2)�μ + �2kz,1kz,2
, (33)

R12
TE,TM = −2μ2n1kz,1kz,2�

(ε2kz,1 + ε1kz,2)�μ + �2kz,1kz,2
, (34)

T 12
TM,TM = n2

n1

2ε1kz,1�μ

(ε2kz,1 + ε1kz,2)�μ + �2kz,1kz,2
, (35)

T 12
TE,TM = −2μ2n1kz,1kz,2�

(ε2kz,1 + ε1kz,2)�μ + �2kz,1kz,2
, (36)

where �μ = μ1μ2(kz,1μ2 + kz,2μ1) and we recall that � was
defined in Eq. (16) and specified for TIs in Eq. (17). For these
modified Fresnel coefficients the notation for the superscripts
described for the usual Fresnel coefficients (13) is used, while
the subscripts show explicitly a mixture between polarizations
TE and TM [69]. Naturally, the coefficients (33)–(36) reduce
correctly to the standard ones when � = 0.

Our next step is to solve the integrals over k‖. Focusing
on the radiation emitted by the particle, we will implement
the far-field approximation. To this aim we employ a steepest
descent method [74–79]. By means of this method, whose
application with full details to the involved integrals is in
Appendix B, we obtain the following results after dropping
terms of order higher than r−2 for the electric field due to
reflection

E1(r; ω) = βn1qωμ0μ1(ω)eik1r

4πk1r
sin θ1

{
eθ1

[
1

1 + βn1 cos θ1
+ R12

TM,TM(θ1,�)

1 − βn1 cos θ1

]
+ eφ

R12
TE,TM(θ1,�)

1 − βn1 cos θ1

}

+ H
(
θ1 − θdisc

1

)qμ0μ1(ω)n2
2vk2eiπ/4

4πn1(k2r sin θ1)2

(
i − n2 cot θ1√

n2
2−n2

1

)−3/2

1 + β

√
n2

2 − n2
1

eik2r sin θ1−
√

k2
2−k2

1 r cos θ1

×
⎡
⎣− R̃12

TM,TM

n1

⎛
⎝eρ − n2 ez√

n2
1 − n2

2

⎞
⎠ − R̃12

TE,TM√
n2

1 − n2
2

eφ

⎤
⎦. (37)

For the transmissive one, we finally have

E2(r; ω) = βn2qωμ0μ2(ω)eik2r

4πk2r
sin θ2

{
eθ2

T 12
TM,TM(θ2,�)

1 + βn2 cos θ2
+ eφ

T 12
TE,TM(θ2,�)

1 + βn2 cos θ2

}

+ H
(
θ2 − θdisc

2

)qμ0μ2(ω)n2
1vk1eiπ/4

4πn2(k1r sin θ2)2

(
i + n1 cot θ2√

n2
1−n2

2

)−3/2

1 + β

√
n2

1 − n2
2

eik1r sin θ2−
√

k2
1−k2

2 r cos θ2

×
⎡
⎣ T̃ 12

TM,TM

n2

⎛
⎝eρ + n1 ez√

n2
2 − n2

1

⎞
⎠ + T̃ 12

TE,TM√
n2

2 − n2
1

eφ

⎤
⎦, (38)

where β = v/c, r =
√

x2 + y2 + z2, eφ = (− sin φ, cos φ, 0)
with φ denoting the azimuthal angle, eρ = (cos φ, sin φ, 0),
θ1 ∈ [0, π/2) and θ2[0, π/2) are the incidence and refrac-
tion angles respectively which define the unitary vectors
eθ1,2 = (cos θ1,2 cos φ, cos θ1,2 sin φ,− sin θ1,2) at both sides
of the interface. Both angles are measured from the nor-
mal to the interface as Snell’s law dictates and θ1 coincides
with the zenith angle of the observer. The integrations
over z′ have been carried out and are translated in the
Čerenkov denominators 1 ± βn1,2 cos θ1,2 inside the keys,
where for absorbing media, the condition Im(n1), Im(n2) > 0
ensures a convergent integral over z′. Also in the electric
fields (37) and (38) the following coefficients have been

introduced

R̃12
TM,TM = n2

2μ
2
1 − n2

1μ
2
2 + �2

n2μ1μ2

√
n2

1 − n2
2

, (39)

R̃12
TE,TM = − 2n1�

n2μ1

√
n2

1 − n2
2

, (40)

T̃ 12
TM,TM = − 2n2√

n2
2 − n2

1

, (41)

T̃ 12
TE,TM = − 2�

μ1

√
n2

2 − n2
1

, (42)

155120-5



O. J. FRANCA AND STEFAN YOSHI BUHMANN PHYSICAL REVIEW B 105, 155120 (2022)

which arose as consequence of the approximation of the
integrals near to the interface. Physically the coefficients (39)–
(42) account for the reflected and transmitted surface waves
measured by an observer located close to the interface. For
full details, please see Appendix B.

We have verified that the electric fields (37) and (38)
satisfy the boundary conditions (14) and (15). At this point
is necessary to discuss the physical meaning of the electric
field given by Eqs. (37) and (38). First of all, we can verify
that er1,2 · E1,2 = 0 as required for the spherical contribution,
with er1,2 = (sin θ1,2 cos φ, sin θ1,2 sin φ, cos θ1,2). Secondly,
we observe that the electric field in both media consists of
a sum of two kind of waves: spherical and lateral. Let us
describe the first of them. The spherical wave contribution
decays as r−1 as usual, nevertheless it can be split into two
terms: one associated to the free space contribution plus one
proportional to the modified Fresnel coefficient R12

TM,TM in
the reflective region or T 12

TM,TM in the transmissive one that
includes a quadratic contribution of the topological param-
eter �, as can be seen from Eqs. (33) and (35). This first
contribution oscillates throughout the eθ direction of the cor-
responding medium. Then, the second term proportional to the
mixed coefficient (R12

TE,TM in medium 1 or T 12
TE,TM in medium

2) tells us that it has a topological origin, because it does not
exist in the standard case (� = 0). Moreover, this second part
of the spherical wave contribution is linear in the topological
parameter �, as Eqs. (34) and (36) show, and due to its vec-
torial dependence it only oscillates in the eφ direction parallel
to the interface.

Besides the spherical contribution we find the lateral
wave contribution. This contribution is modulated by the
corresponding Heaviside function of the medium, which dis-
criminates if the lateral wave should be neglected or not by
means of what we call the discarding angle. For the medium
1, the discarding angle θdisc

1 located at the upper hemisphere
is given by [74]

θdisc
1 = π

4
+ n1

n2
+ 1

4

(n1

n2

)2
+ O

(n1

n2

)3
. (43)

The discarding angle θdisc
2 for medium 2 at the lower hemi-

sphere is given by [74]

θdisc
2 = n1

n2
(
√

2 − 1) + O
(n1

n2

)3
, (44)

which is measured from the interface between the media.
Closer inspection of Eqs. (43) and (44) shows that they do not
depend on the topological parameter �. This is due to the fact
that they are obtained through the branching points defined by

kz,2 =
√

k2
2 − k2

1 sin2 θ1 = 0 in the upper hemisphere and by

kz,1 =
√

k2
1 − k2

2 sin2 θ1 = 0 in the lower one, which clearly
do not depend on �. Physically speaking such angles do

not depend on the topological parameter � because they are
characterized by the refractive indexes of both media. Thus
they are defined by bulk properties, which are unaffected
by the topological parameter �. The full derivation of both
discarding angles θdisc

1 and θdisc
2 can be found in Ref. [74].

Turning now to the functional dependence of the lateral
waves, we observe an algebraic decay 1/ρ2 = 1/(r sin θ1,2)2

for observation points near to the interface. The angular de-
pendence of these lateral waves is the same of those generated
by a vertical dipole [75], which can be expected because the
medium becomes polarized due to the moving charge. Also
we appreciate, in the eρ direction, that the phase velocity of
these waves corresponds to the one of the opposite medium. In
addition to the angular restriction that the Heaviside function
imposes, the lateral wave contribution of the electric fields
(37) decays exponentially away from the interface if n2 >

n1 and conversely for Eq. (38). Since these waves are only
observed close to the surface, they are surface waves. Further-
more, the fields (37) and (38) show two terms with different
directions of oscillation. The first one along the eρ and ez

directions is associated to the coefficients R̃12
TM,TM in medium

1 or T̃ 12
TM,TM in medium 2. More interesting results the second

one that oscillates along the eφ direction. We appreciate its
proportionality to the crossed coefficients R̃12

TE,TM or T̃ 12
TE,TM,

due to this dependence it becomes linear in the topological
parameter �, as Eqs. (40) and (42) show. Moreover, it has a
topological origin, because it does not exist in the standard
case (� = 0).

To conclude this section, we would like to give two final
comments. First, we would like to remark that lateral waves
have been studied intensely in the literature [74,75,80,81]
and their mathematical origin has been clearly understood,
concretely, it comes from the fact that all the integrals over
k‖ involved in Eqs. (21)–(29) only have branch-point singu-
larities. And finally, despite the full mathematical meaning of
these waves whose full details are in Appendix B, they can be
interpreted physically for an observer in medium 1 as a part of
a spherical wave in medium 2 that is propagating along the in-
terface, and is being refracted back as evanescent waves [75].

IV. ANGULAR DISTRIBUTION OF RADIATION

In this section, we will determine the angular distribution
of radiation in the upper hemisphere. Henceforth, we will
focus only on the spherical wave contribution meaning, ac-
cording to our results, that our materials choice should provide
a suitable discarding angle θdisc

1 (43) in order to assure the
absence of the surface waves.

For the purpose of the current section, we need to express
the electric field of the lower hemisphere in terms of the
variables that describe the upper one [4,57]. This can be done
by employing Snell’s law, valid for three-dimensional TIs and
magnetoelectric media [59,60], which allows us to write the
full electric field in terms of θ1 in the following compact way:

E1(r; ω) = βn1qωμ0eik1r

4πk1r
sin θ1

{
eθ1

[
μ1(ω)

1 + βn1 cos θ1
+ μ1(ω)R12

TM,TM(θ1,�)

1 − βn1 cos θ1
− n1μ2(ω)T 12

TM,TM(θ1,�)

n2(1 + βn2 cos θ2)

]

+ eφ

[
μ1(ω)R12

TE,TM(θ1,�)

1 − βn1 cos θ1
−n1μ2(ω)T 12

TE,TM(θ2,�)

n2(1 + βn2 cos θ2)

]}
, (45)
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where n2 cos θ2 =
√

n2
2 − n2

1 sin2 θ1 . In this final expression for the electric field, the four modified Fresnel coefficients given in
Eqs. (33)–(36) have been converted to angular functions through the substitutions kz,1 = k1 cos θ1 kz,2 =

√
k2

2 − k2
1 sin2 θ1 , as a

consequence of the steepest descent method employed to approximate the involved integrals.
Using Maxwell equations to leading order in 1/r, we verify the expressions

er1 · E1 = 0, er1 · B1 = 0, B = er1 × (n1E1), (46)

which are the distinctive feature of the radiation fields [82], with n1 = √
ε1μ1. We observe that the three vectors E1, B1, and er1

define a right-handed triad resulting in the Poynting vector for the material medium 1. Then, the angular spectral density of the
radiation over the solid angle � can be defined through the Poynting vector, but recalling expressions (46) it can be defined in
the following fashion [83]:

d2E1

dωd�
=

√
ε0ε1

μ0μ1

r2

π
E∗

1(r; ω) · E1(r; ω), (47)

which for our configuration leads to

d2E1

dωd�
= q2

4πε0

√
ε1

μ1

v2

4π2c3
sin2 θ1

{[
μ1

1 + βn1 cos θ1
+ μ1R12

TM,TM(θ1,�)

1 − βn1 cos θ1
− n1μ2T 12

TM,TM(θ1,�)

n2(1 + βn2 cos θ2)

]2

+
[
μ1R12

TE,TM(θ1,�)

1 − βn1 cos θ1
− n1μ2T 12

TE,TM(θ1,�)

n2(1 + βn2 cos θ2)

]2}
, (48)

where we assumed frequency-independent values for ε1, μ1, ε2, and μ2 in order to apply the formula (47) as well in what
follows of the current work. The subindex of E1 denotes that the observer is located at the upper hemisphere and the particle
comes from medium 1 towards medium 2.

Some comments regarding this angular distribution are now in order. The expression (48) has no linear contribution in the
topological parameter � and is an even function of the angle φ, the last fact being a consequence of the azimuthal symmetry of
the problem (recall Fig. 1). The first term consists in a sum of three terms that represent: (i) the field of the charged particle q
moving in medium 1 until reaching the origin at the interface of the medium 2. (ii) The field of the charged particle q moving
from the origin into the medium 2. (iii) The field of the electrical image of the particle moving from the interior of medium 2
towards the origin at the interface [4,57]. This situation is the same as in the standard electrodynamics situation but the Fresnel
coefficients have additional contributions due to the topological parameter, see Eqs. (33) and (35). These contributions modify
the image electric charge and have the consequence that the well-known relationship ε1n2(1 + r12

TM) = ε2n1t12
TM [71] for the

standard Fresnel coefficients does not hold for these materials, see discussion of Sec. II. Furthermore, Eq. (48) has a second
term whose origin is completely topological, as can be appreciated from the dependence of the mixed Fresnel terms R12

TE,TM

(34) and T 12
TE,TM (36). Interestingly, this second term can be interpreted qualitatively by applying the ideas of fields generated

by dynamical images of the work [55], which extended the original ones developed in Refs. [56,63]. In our case, we will have
a superposition of the electric field of two image magnetic monopoles with same strengths but opposite signs: (i) One image
magnetic monopole g1 = qR12

TE,TM ∼ −q� ∼ −qα starting at the same moment as the electric charge q from the point origin
going into the medium 2. (ii) And another one with strength g2 = qT 12

TE,TM ∼ q� ∼ qα moving from the interior of medium 2
towards the origin at the interface and stopping at that point.

Setting μ1 = μ2 = 1 and � = 0, i.e., turning off the topological parameter or the magnetoelectric coupling constant and for
nonmagnetic media, Eq. (48) reproduces the original result by Frank and Ginzburg [4,57] for two different dielectric media:

d2E1

dωd�
= q2√ε1

4πε0

v2

4π2c3
sin2 θ1

⎡
⎣ 1

1 + βn1 cos θ1
+ r12

TM(θ1)

1 − βn1 cos θ1
− n1t12

TM(θ1)

n2
(
1 + β

√
n2

2 − n2
1 sin2 θ1

)
⎤
⎦

2

, (49)

where r12
TM(θ1) = R12

TM,TM(θ1, 0) and t12
TM(θ1) = T 12

TM,TM(θ1, 0) denote the standard Fresnel coefficients for the TM polarization.
At an interface made up of an ideal conductor and an upper nonmagnetic medium with constant permittivity ε1, the expression

(48) reproduces the Frank and Ginzburg formula [4,57]

d2E1

dωd�
= q2√ε1

4πε0

v2

4π2c3

sin2 θ1(
1 − β2n2

1 cos2 θ1
)2 , (50)

which constitutes another consistency check for our results.
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Equation (48) can be easily approximated for nonrelativistic particles (β  1)

d2E1

dωd�
= q2

4πε0

√
ε1

μ1

v2

4π2c3
sin2 θ1

{[
μ1 + μ1R12

TM,TM(θ1,�) − n1μ2

n2
T 12

TM,TM(θ1,�)

]2

+
[
μ1R12

TE,TM(θ1,�) − n1μ2

n2
T 12

TE,TM(θ1,�)
]2
}
. (51)

Before presenting plots that illustrate the behavior of the
angular distribution of radiation (48), we remark the pres-
ence of the denominators of the type 1 ± βn1 cos θ1 and 1 +
β

√
n2

2 − n2
1 sin2 θ1 that are characteristic of the radiation of a

relativistic particle. Of course, from the Vavilov-Čerenkov ra-
diation we recognize that these denominators can be zero to a
certain angle corresponding to the well-known Čerenkov cone
ray in the corresponding medium. This is described when the
intensity becomes infinite. However, given our selection of the
particle velocity discussed in Sec. III the Vavilov-Čerenkov
conditions are not fulfilled and we will obtain a pure transition
radiation phenomenon.

Recalling the expressions (33)–(36) for the modified Fres-
nel coefficients, the transition radiation of Eq. (48) receives
additional contributions of order �2 and �4. Nevertheless, the

FIG. 2. Comparison of the angular distribution of standard tran-
sition radiation and the pure topological term of Eq. (48) when
the radiation is generated by a particle with λ = 3000 Å and two
different velocities. The standard (� = 0) transition radiation for an
interface constituted by vacuum and a standard dielectric medium
with ε2 = 4 and μ2 = 1 corresponds to the dashed purple line. The
green solid line represents the pure topological term of Eq. (48)
but for an interface constituted by vacuum and the topological in-
sulator TlBiSe2 with ε2 = 4, μ2 = 1 and � = 11α. Polar plot for
v = 0.75c, here the topological contribution was multiplied by a
factor of 785.4319. The radial axis indicates the dimensionless an-
gular distribution (q2v2/4πε04π 2c3)−1 d2E1/dωd� in the respective
direction. The charge moves from right to left.

second term with a purely topological origin is of order �2

and it does not have the term without any modified Fresnel
coefficients, implying that it has a slightly different angular
behavior with respect to the whole transition radiation phe-
nomenon. For this reason, we present first this term in Figs. 2
and 3, which contrast the behavior between such term for
the topological insulator TlBiSe2 and the standard (� = 0)
transition radiation. Both angular distributions of radiation
observed in the upper hemisphere are generated by a particle
with λ = 3000 Å and two different velocities, v = 0.75c for
Fig. 2 and v = 0.99c for Fig. 3. Standard transition radia-
tion for an interface constituted by vacuum and a standard
dielectric medium with ε2 = 4 and μ2 = 1 corresponds to the
dashed purple line in Figs. 2 and 3. On the other hand, the
solid green lines represent the pure topological contribution

FIG. 3. Comparison of the angular distribution of standard tran-
sition radiation and the pure topological term of Eq. (48) when
the radiation is generated by a particle with λ = 3000 Å and two
different velocities. The standard (� = 0) transition radiation for an
interface constituted by vacuum and a standard dielectric medium
with ε2 = 4 and μ2 = 1 corresponds to the dashed purple line. The
green solid line represents the pure topological term of Eq. (48)
but for an interface constituted by vacuum and the topological in-
sulator TlBiSe2 with ε2 = 4, μ2 = 1 and � = 11α. Polar plot for
v = 0.99c, here the topological contribution was multiplied by a
factor of 361.3548. The radial axis indicates the dimensionless an-
gular distribution (q2v2/4πε04π 2c3)−1 d2E1/dωd� in the respective
direction. The charge moves from right to left.
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FIG. 4. Angular distribution of transition radiation generated by
a particle with v = 0.75c and λ = 3000 Å. The case of standard
(� = 0) transition radiation for an interface constituted by vac-
uum and a standard dielectric medium with ε2 = 4 and μ2 = 1
corresponds to the dashed purple line. The green solid line repre-
sents the same quantity but for an interface constituted by vacuum
and the topological insulator TlBiSe2 with ε2 = 4, μ2 = 1, and
� = 11α. Polar plot for transition radiation obtained by Eq. (48).
The radial axis indicates the dimensionless angular distribution
(q2v2/4πε04π 2c3)−1 d2E1/dωd� in the respective direction. The
charge moves from right to left.

of Eq. (48) discussed above but for an interface constituted
by vacuum and the topological insulator TlBiSe2 with ε2 =
4, μ2 = 1, and � = 11α [84]. Figures 2 and 3 represent the
polar plots of the radiation in which the interface lies on the
line (π/2 − 3π/2) and the charge moves from right to left
along the line (0 − π ). The vacuum region is in the upper
hemisphere θ1 ∈ (0, π/2) and the standard dielectric medium
or the topological insulator TlBiSe2 in the lower hemisphere
θ1 ∈ (π/2, π ). Though we find the characteristic lobes of
transition radiation for both polar plots, we observe clearly
how the angles of maximal emission of these lobes are shifted
for the velocity v = 0.75c in Fig. 2. In spite of this, the shift
in such angles is imperceptible when the velocity is v = 0.99c
in Fig. 3, i.e., in the ultrarelativistic regime the angles of max-
imal emission of the lobes coincide providing the possibility
of an enhancement of the whole phenomenon. To perform this
comparison, we multiplied by a factor of 785.4319 the pure
topological term in Fig. 2 and by 361.3548 in Fig. 3.

For sake of comparison between the standard transition
radiation and all the modifications arisen from the strong
three-dimensional TI, we have plotted both situations de-
scribed through Eq. (48) in Figs. 4 and 5. These figures show
the angular distribution of radiation for transition radiation
observed in the upper hemisphere generated by a particle with
v = 0.75c and λ = 3000 Å for the same media of Figs. 2 and
3. Again the standard (� = 0) transition radiation for a stan-
dard dielectric medium with ε2 = 4 and μ2 = 1 corresponds

FIG. 5. Angular distribution of transition radiation generated by
a particle with v = 0.75c and λ = 3000 Å. The case of standard
(� = 0) transition radiation for an interface constituted by vacuum
and a standard dielectric medium with ε2 = 4 and μ2 = 1 corre-
sponds to the dashed purple line. The green solid line represents the
same quantity but for an interface constituted by vacuum and the
topological insulator TlBiSe2 with ε2 = 4, μ2 = 1, and � = 11α.
Standard plot for transition radiation obtained by Eq. (48). The scale
is in arbitrary dimensions. The charge moves from medium 1 to
medium 2.

to the dashed purple line in Figs. 4 and 5, meanwhile the solid
green lines represent the same quantity but for the topological
insulator TlBiSe2 with ε2 = 4, μ2 = 1, and � = 11α [84].
Figure 4 represents a polar plot of the radiation as well as
Figs. 2 and 3, so the same specifications of that figures do
apply. Here we find the characteristic lobes of transition radi-
ation and observe that the modifications due to the topological
nature of the TlBiSe2 are almost imperceptible. Numerically
we found that these differences are of the order 10−3 for
these parameters, for which � = 11α is the highest value
available for TlBiSe2. Figure 5 is a standard plot of the angular
distribution of radiation (48), where we could observe that
its maxima coincide with the lobes’ maxima of Fig. 4. Again
the modifications due to the topological nature of the TlBiSe2

are almost imperceptible supporting the behavior of Fig. 4.
The surface waves are discarded because for such parameters
Eq. (43) gives a discarding angle θdisc

1 � 1.3479 � 77.2289◦,
which is far away from the lobes and the main contribution of
the angular distribution.

However, if we move to the ultrarelativistic regime and if
we increase the topological parameter the modifications to the
transition radiation become evident. Figures 6 and 7 illustrate
this by comparing the standard transition radiation and its
modifications described through Eq. (48). These figures show
again the angular distribution for transition radiation observed
in the upper hemisphere generated by a particle with v =
0.99c and λ = 3000 Å. The standard (� = 0) transition ra-
diation for an interface constituted by vacuum and a standard
dielectric medium with ε2 = 3.4969 and μ2 = 1 corresponds
to the dashed purple line in Figs. 6 and 7. On the other
hand, the solid green lines represent the same quantity but
for an interface constituted by vacuum and the magnetoelec-
tric TbPO4 with ε2 = 3.4969, μ2 = 1, and � = 0.22 [85,86].
Figure 6 represents a polar plot of the radiation and the same
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FIG. 6. Angular distribution of radiation for transition radiation
generated by a particle with v = 0.99c and λ = 3000 Å. The case
of standard (� = 0) transition radiation for an interface constituted
by vacuum and a standard dielectric medium with ε2 = 3.4969 and
μ2 = 1 corresponds to the dashed purple line. The green solid line
represents the same quantity but for an interface constituted by
vacuum and the magnetoelectric TbPO4 with ε2 = 3.4969, μ2 =
1, and � = 0.22. Polar plot for transition radiation obtained by
Eq. (48). The radial axis indicates the dimensionless angular distri-
bution (q2v2/4πε04π 2c3)−1 d2E1/dωd� in the respective direction.
The charge moves from right to left.

FIG. 7. Angular distribution of radiation for transition radiation
generated by a particle with v = 0.99c and λ = 3000 Å. The case
of standard (� = 0) transition radiation for an interface constituted
by vacuum and a standard dielectric medium with ε2 = 3.4969 and
μ2 = 1 corresponds to the dashed purple line. The green solid line
represents the same quantity but for an interface constituted by vac-
uum and the magnetoelectric TbPO4 with ε2 = 3.4969, μ2 = 1, and
� = 0.22. Standard plot for transition radiation obtained by Eq. (48).
The scale is in arbitrary dimensions. The charge moves from medium
1 to medium 2.

specifications from Figs. 2–4 apply here. Nevertheless, here
we have in the lower hemisphere θ1 ∈ (π/2, π ) the standard
dielectric medium or the magnetoelectric TbPO4. Again the
characteristic lobes of transition radiation emerge but now
they are sharped and compressed against the polar axis. This
behavior respects the typical behavior of a ultrarelativistic
particle where the maximum angle of the distribution is very
small being of the order of the ratio of the rest energy of
the particle to its total energy [82]. This maximum allows
to appreciate clearly the difference between the modifications
due to the magnetoelectric TbPO4, whose corresponding max-
imum is greater than the one related to the standard transition
radiation. Figure 7 is a standard plot of the angular distribution
of radiation (48), where we could observe that its maxima
coincide with the lobes maxima of Fig. 6. Also the modifica-
tions due to the magnetoelectric TbPO4 are visible supporting
the behavior seen in Fig. 6. Recalling that the particle moves
from right to left along the line (0 − π ), this means that
strong three-dimensional TIs or magnetoelectric media en-
hance the backward emitted radiation. The surface waves are
again safely discarded because for such parameters Eq. (43)
gives a discarding angle θdisc

1 � 1.39165 � 79.7356◦, which
is far away of the lobes and the main behavior of the angular
distribution.

Naturally, one can also analyze the current phenomenon
for the opposite direction of the velocity (recall Fig. 1), which
means that the particle moves from medium 2 into medium
1. For such case, the sign in front of β in all terms in the
denominator of Eq. (48) should be reversed as well as the
indexes 1 into 2 and vice versa. Thus the radiation patterns
will depend on the sign particle velocity with respect to
the medium, which will respect the directivity of the phe-
nomenon present in standard electrodynamics. Figures 8 and
9 illustrate this situation for the same media used in Figs. 6
and 7, in this way the same specifications for the dashed
purple lines and the solid green lines apply to Figs. 8 and 9
too. In these last figures, we show the angular distribution of
the radiation in the lower hemisphere for a charged particle
moving from left to right along the line (π − 0) of Fig. 8.
Here the particle travels with λ = 3000 Å and v = 0.534c,
whose velocity is close and below the Čerenkov threshold of
the media located at v = c/1.87 � 0.534759c in agreement
with our velocity choice of Eq. (20). Comparing Figs. 6 and 7
with these last ones, we observe that even for a � = 0.22 in
the ultrarelativistic regime the transition radiation of standard
electrodynamics is dominant and the additional contributions
that depend on � are not significant. This will be justified
quantitatively by means of the corresponding frequency dis-
tribution in the next section. Again the surface waves are
neglected because for these parameters Eq. (44) gives a dis-
carding angle θdisc

2 � 0.221505 � 12.6913◦, which means an
angle of θdisc

2 � 3.3631 � 102.6913◦ for our spherical coor-
dinate system.

As discussed in the Introduction, TIs and magnetoelectrics
can be regarded as Tellegen media and they share similar
coupling of the electric and magnetic field with Pasteur media,
which exhibit chirality. Thus the corresponding transition ra-
diation will share some similarities but also exhibit important
differences, which we will briefly address. Transition radi-
ation in chiral matter has been studied in Ref. [39] for an
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FIG. 8. Angular distribution of radiation for transition radiation
generated by a particle with v = 0.534c and λ = 3000 Å. The case
of standard (� = 0) transition radiation for an interface constituted
by vacuum and a standard dielectric medium with ε2 = 3.4969 and
μ2 = 1 corresponds to the dashed purple line. The green solid line
represents the same quantity but for an interface constituted by
vacuum and the magnetoelectric TbPO4 with ε2 = 3.4969, μ2 =
1, and � = 0.22. Polar plot for transition radiation obtained by
Eq. (48) when the sign of β and the indexes 1 and 2 are reversed.
The radial axis indicates the dimensionless angular distribution
(q2v2/4πε04π 2c3)−1 d2E2/dωd� in the respective direction. The
charge moves from left to right.

FIG. 9. Angular distribution of radiation for transition radiation
generated by a particle with v = 0.534c and λ = 3000 Å. The case
of standard (� = 0) transition radiation for an interface constituted
by vacuum and a standard dielectric medium with ε2 = 3.4969 and
μ2 = 1 corresponds to the dashed purple line. The green solid line
represents the same quantity but for an interface constituted by vac-
uum and the magnetoelectric TbPO4 with ε2 = 3.4969, μ2 = 1, and
� = 0.22. Standard plot for transition radiation obtained by Eq. (48)
when the sign of β and the indexes 1 and 2 are reversed. The scale
is in arbitrary dimensions. The charge moves from medium 2 to
medium 1.

interface between vacuum and a chiral isotropic medium with
the charge starting from the vacuum and crossing through that
medium. Based on this work, we will compare their results
with our results for the angular distribution of radiation when
dissipation is negligible for both kinds of materials.

Beginning with the similarities, both electric fields propa-
gate in the same directions eθ1 and eφ as Eqs. (57) of Ref. [39]
and our Eq. (45) show. Particularly, for both cases the φ

component is linearly proportional to the chirality or the topo-
logical parameter � standing for the nonreciprocity. Indeed,
the nonreciprocity contribution is codified in the modified
Fresnel coefficients R12

TE,TM(θ1,�) and the T 12
TE,TM(θ1,�) in

Eq. (45). Regarding the radiation patterns, the typical wider
lobes of transition radiation for low velocities are common for
both kinds of materials. In chiral matter this occurs when the
chirality is relatively weak and the ratio between the particle’s
frequency ω and the medium resonant frequency ωrm is lesser
than one. In the nonreciprocal case, this happens when the
topological parameter � is of the order of α. This can be
compared through the Figs. 4 and 5 of Ref. [39] and our
Figs. 4 and 5 for the 3D topological insulator TlBiSe2.

While both kinds of electric fields share similar linear con-
tributions in the chiral and nonreciprocal quantities, we find
that in the nonreciprocal case there are contributions of higher
order than one in the topological parameter �. These contri-
butions are included in the electric field component along eθ1

through the modified Fresnel coefficients R12
TM,TM(θ1,�) and

T 12
TM,TM(θ1,�) in Eq. (45). Regarding the radiation patterns,

Galyamin et al. [39] show that if the ratio between the particle
frequency ω and the medium resonance frequency ωrm is
greater than one, then the chiral contributions are of the same
order of magnitude and comparable regardless of the particle’s
velocity and the strength of the chirality, as their Figs. 4 and
5 illustrate. By comparing with our Figs. 6 and 7, this differs
from our findings, where the contributions of the topological
parameter � become significant only in the ultrarelativistic
regime.

Remarkably, in the ultrarelativistic regime there are two
lobes for the chiral matter emitted at different angles, when the
medium has strong chirality as Fig. 5 of Ref. [39] show. This
could explain why the chiral contributions do not increase
the standard contributions and both remain with the same
order of magnitude. Nevertheless, for a nonreciprocal medium
the transition radiation has only one lobe that is emitted at
the same angle of the standard contribution resulting in the
enhancement of the whole radiative response as our Figs. 6
and 7 for the magnetoelectric TbPO4 illustrate. This consti-
tutes the main difference between chiral transition radiation
vs nonreciprocal.

Finally, we give our two last comments of this Section. The
first one is devoted to remark that the radiation displayed in the
upper hemisphere of Figs. 4–7, and in the lower one of Figs. 8
and 9 lies in the backward direction of the particle because
the charge is moving from right to left along the line (0 − π )
showed in Figs. 4 and 6, or from left to right along the line
(π − 0) showed in Fig. 8. Here we have only focused on this
backward radiation because the study of the forward one will
lead to the question on how to separate the Vavilov-Čerenkov
radiation from the transition radiation emitted forwards by
the particle in the corresponding medium after it crosses the
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interface. The second one is devoted to two important limit
cases from Eq. (48): (i) ε1 = ε2 and � = 0, which easily
gives 0 meaning that for an homogeneous standard dielectric
medium there is no transition radiation constituting another
consistency check for our results. (ii) ε1 = ε2 and � �= 0 leads
to the following angular distribution of radiation

d2E1

dωd�
= q2

4πε0

√
ε1

μ1

v2

4π2c3

sin2 θ1(
1 − β2n2

1 cos2 θ1
)2

× 4�2μ2
1(

4ε1μ
3
1 + �2

)2

[
�2 + 4μ2

1β
2n4

1 cos2 θ1
]
, (52)

which remarkably shows that transition radiation occurs even
if both media have the same permittivites and is of order
�2. The polar and standard plots of the transition radiation
have the same behavior as Figs. 4–7, but rescaled to order
�2, thereby we will omit them. This result contrasts clearly
with standard electrodynamics and reinforces the idea that the
topological parameter mimics a permittivity as analyzed in
Refs. [69,79] for other kind of radiations. After comparing
the angular dependence of Eqs. (50) and (52), we observe that
the first term resembles an interface made up of an ideal con-
ductor and an upper medium. Furthermore, we can simplify
Eq. (52) for an interface between vacuum and a nonmagnetic
strong three-dimensional TI with ε1 = ε2 = μ1 = μ2 = 1 and
� �= 0 resulting that

d2E1

dωd�
= q2

4πε0

v2

4π2c3

sin2 θ1

(1 − β2 cos2 θ1)2

× 4�2

(4 + �2)2
[�2 + 4β2 cos2 θ1], (53)

which shows interestingly that transition radiation will occur
for an interface with the same permittivity and permeability
as the vacuum. In this way, from Eqs. (52) and (53), we
conclude that such transition radiation has a pure topological
origin. These last results for velocities v < c/n1 comple-
ment the analysis of reversed Vavilov-Čerenkov radiation in
strong three-dimensional TIs made in Ref. [55], because from
Eq. (52), as well as from Eq. (48), we can recover such
radiation when v > c/n1.

V. FREQUENCY DISTRIBUTION OF THE RADIATION:
ULTRA-RELATIVISTIC CASE

In this section, we calculate the frequency distribution of
the radiation generated by the particle through its infinite path
along the z axis, which is obtained by integrating the angular
distribution (48) of radiation over the solid angle �

dE
dω

=
∫

�

d2E
dωd�

d�. (54)

Unfortunately the general case of Eq. (54) cannot be inte-
grated over the solid angle � analytically, but numerically can
be performed once all the parameters are specified. However,
we can provide two analytical results if we restrict ourselves
to two cases. The first one will be when the particle moves
from vacuum with ε1 = μ1 = 1 and �1 = 0 into a nonmag-
netical strong three-dimensional TI with μ2 = 1, which is of
practical interest for particle detectors. The second one will

be the opposite situation, when the particle moves from a
nonmagnetical strong three-dimensional TI with μ2 = 1 into
vacuum. Additionally, our aim will require to study both cases
only in the ultrarelativistic regime.

Let us begin with the vacuum-to-TI case. It is well-known
that the radiation of an ultrarelativistic particle with mass m
and total energy E has a sharp maximum in the direction
θ1 ∼ mc2/E ∼

√
1 − β2 [11,68,82], as can be appreciated in

Figs. 6 and 7, which means that the maximum appears at small
values of θ1. In this way, to carry out the integration indicated
in Eq. (54), it is convenient to evaluate all the terms with a
weak angular dependence under the integral sign by setting
θ1 ∼ 0 in these expressions [11]. Then, Eq. (48) becomes

d2E1

dωd�
= q2

4πε0c

F (ε2,�)(1 + √
ε2)2θ2

1

π2
(
1 − β2 + θ2

1

)2(
1 + β

√
ε2 − θ2

1

)2
,

(55)

where we defined

F (ε2,�) = [
R12

TM,TM(0,�)
]2 + [

R12
TE,TM(0,�)

]2

= [(ε2 − 1) + �2]2 + 4�2

[(
√

ε2 + 1)2 + �2]2
, (56)

by evaluating the modified Fresnel coefficients at θ1 = 0,
which can be regarded as their retarded limit [70].

If ε2 is not too close to unity, we can replace the last
factor in the denominator of Eq. (55) by (1 + √

ε2)2 [68].
After considering this last approximation and substituting in
Eq. (54), it gives the following frequency distribution of the
radiation, with logarithmic accuracy:

dE1

dω
�

∫ ∼1

0

d2E1

dωd�
2πθ1dθ1

= q2

4πε0c

F (ε2,�)

π

[
1

β2 − 2
+ ln

(
2 − β2

1 − β2

)]

� q2

4πε0c

F (ε2,�)

π
ln

(
1

1 − β2

)
. (57)

This expression shows a dependence on the topological pa-
rameter � meaning that in this ultrarelativistic regime the
frequency distribution of the radiation is sensible to changes
of this parameter, as can be seen at the level of the angular
distribution in Figs. 6 and 7.

It is worth to analyze the frequency distribution within the
perspective of the limit cases discussed at the end of Sec. IV.
First, for ε1 = ε2 = 1 and � = 0, we found a zero angular
distribution, so its frequency distribution is zero too. Secondly,
if ε1 = ε2 = 1 and � �= 0 led to the angular distribution of
Eq. (53). After applying the same ultrarelativistic approxima-
tion used above, Eq. (53) is rewritten as

d2E1

dωd�
= q2

4πε0c

�2

π2(4 + �2)

θ2
1(

1 − β2 + θ2
1

)2 , (58)

which clearly is of order �2. Then, along the same lines of
Eq. (57), we compute its frequency distribution leading to

dE1

dω
� q2

4πε0c

�2

π (4 + �2)
ln

(
1

1 − β2

)
, (59)
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which again shows a nonzero result when the strong three-
dimensional TI and the vacuum have the same permittivity
and permeability.

Lastly, we consider the TI-to-vacuum case. As discussed at
the end of Sec. IV, this problem differs from the former one
only by a change in the sign of the velocity v and the indexes
1 to 2 should be reversed in Eq. (48). Thus we apply the same
ultrarelativistic approximation done for Eq. (55) finding that

d2E2

dωd�
= q2

4πε0c

√
ε2(1 − β )2θ2

2

π2
(
1 − β2ε2 + θ2

2

)2(
1 − β

√
1 − ε2θ

2
2

)2
.

(60)
Again, we have to impose an additional condition in order to
carry out the integration over the solid angle defined by the
angle θ2. So, as long as ε2θ

2
2  1, we can approximate the

last factor in the denominator of Eq. (60) by 1 − β. After
inserting this last approximation into Eq. (60) and repeating
the same angular integral of Eq. (57) results the next frequency
distribution of radiation, with logarithmic accuracy,

dE2

dω
� q2

4πε0c

√
ε2

π
ln

(
1

1 − β2ε2

)
. (61)

Remarkably, this distribution is independent on the topo-
logical parameter � being completely the opposite situation
of the one given by Eq. (57), meaning that the standard
transition radiation is the dominant phenomenon for the TI-
to-vacuum case. This result accounts for the directivity of this
phenomenon discussed at the end of Sec. IV, but now at the
level of the frequency distribution.

Finally, from Eqs. (57) and (61), we observe that they
have the same logarithmic dependence on the velocity as the
frequency distribution of total energy for standard dielectric
media obtained by Garibian [11,68]. Nevertheless, there are
important differences to point out between the Garibian’s ones
and the quantities reported in Eqs. (57) and (61), which we
describe briefly. We start with the Garibian’s expression for
Eq. (57), which only works for ordinary dielectric media.
So, to connect both expressions, � = 0 must be taken. Then,
F (ε2,� = 0) should be replaced by the coefficient (

√
ε2 −

1)2/(
√

ε2 + 1)2 [11,68]. Then, let us move on to Garibian’s
expression for Eq. (61), which only works for ordinary dielec-
tric media as well as ours. Although the connection between
both quantities is achieved by omitting the factor

√
ε2, our fre-

quency distribution works only for v ∈ [0, c/
√

ε2) and not in
the full range v ∈ [0, c) as Garibian found [11,68]. The origin
of these discrepancies comes from the fact that both quantities
although similar they are not the same, therefore it is not
permissible to compare them. Garibian’s version of Eq. (48)
describes the angular distribution of the total energy of the
radiation and in consequence his version of Eqs. (57) and (61)
describe the frequency distribution of the total energy of the
radiation [57], which are obtained through a different proce-
dure called Hamiltonian method described in Refs. [68,87]
after decoupling the normal modes of electrodynamics. In
contrast, ours correspond to the angular distribution of the
radiation and its frequency distribution. Here we followed the
approach exposed in Refs. [4,57] and used Garibian’s expres-
sions only as a guide, because the decoupling of the normal
modes in the modified Maxwell equations (1)–(4) is tricky to

perform due to the Dirac delta coming from the gradient of
the axion coupling given by Eq. (9).

VI. CONCLUSIONS

We have analyzed the transition radiation produced by a
charged particle propagating with constant velocity v along
the z axis that crosses the interface between two generic
magnetoelectric media with special emphasis on TIs. To
achieve this goal, we employed the Green’s function of two
layered three-dimensional TIs with different permittivities,
permeabilities and topological parameters in order to obtain
the electromagnetic field in terms of Hankel transforms. By
means of the far-field approximation together with the steepest
descent method, we were able to obtain analytical expressions
for the electromagnetic field. As a consequence of this ap-
proach, the resulting field is a superposition of spherical waves
and lateral waves with contributions of both kind associated
to a purely topological origin. The calculation of the angular
distribution of the radiation shows that in a region far from
the interface the main contribution is due to the spherical
waves. In such a region of space, the main characteristics of
the transition radiation modified by strong three-dimensional
TIs are the following. (i) The angles of maximal emission are
the same as in the standard case. (ii) The directivity of the
phenomenon remains as in the standard case, which means
that the radiation patterns depend on the sign particle veloc-
ity. Remarkably, the additional contributions from the strong
three-dimensional TI are more evident when the particle parts
from the vacuum, crosses the interface and continues its path
through the TI. (iii) As in standard electrodynamics the tran-
sition radiation and Vavilov-Čerenkov radiation can coexist,
unless the charge velocity v is lower than the speed of light in
both media assuring that transition radiation will occur alone
in the backwards direction relative to the particle movement.

After ruling out the arising of Vavilov-Čerenkov radiation,
we studied two important configurations: vacuum-to-TI case
and the TI-to-vacuum one. To understand both cases we chose
two materials: the topological insulator TlBiSe2 with ε2 =
4, μ2 = 1, and � = 11α, and to enhance the new effects
the magnetoelectric TbPO4 with ε2 = 3.4969, μ2 = 1, and
� = 0.22. The results of the vacuum-to-TI case when the v =
0.75c and the material is the topological insulator TlBiSe2

show that the new contributions are almost imperceptible as
Figs. 4 and 5 illustrate. We find numerically that the differ-
ences are of the order of 10−3 for � = 11α being the highest
value for such strong three-dimensional TI. The differences
decreases for lower values of �, i.e., the modifications to
the transition radiation become more insignificant. However,
the results in the ultrarelativistic regime for v = 0.99c and
the magnetoelectric TbPO4 are more interesting because the
corresponding maximum is greater than the one related to
standard transition radiation. This means that the presence of
the strong three-dimensional TI increases the magnitude of the
backward radiation considerably in the ultrarelativistic regime
as can be appreciated in Figs. 6 and 7. Regarding the TI-to-
vacuum case, we used again the magnetoelectric TbPO4 as
material but even in the ultrarelativistic regime the additional
contributions are not significant because they are dominated
by the standard transition radiation, as we presented in Figs. 8
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and 9. We also analyzed two important limit cases. The first
one happens when both magnetoelectrics become a single
standard homogeneous dielectric medium, which is described
by the parameters ε1 = ε2 and � = 0. For this case, we found
null transition radiation as in standard electrodynamics. The
second limit case resulted more interesting because both mag-
netoelectrics have the same optical properties but different
topological parameters allowing the emergence of new effects.
For such case, we obtained that transition radiation occurs
and is of order �2. This situation contrasts with standard
electrodynamics where necessary ε1 �= ε2 and shows that the
topological parameter mimics the role of the permittivity.
Moreover, this limit case and its pure topological transition
radiation are reminiscent of what is reported in the work [88],
where the new optical effects are enhanced when ε1 = ε2 and
μ1 = μ2 = 1 when a static hydrogenlike ion interacts with a
planar three-dimensional TI. Although this limit case results
interesting, in practice realizing the same permittivities for
the strong three-dimensional TI and the other dielectric in a
certain setup could be complicated to achieve. Therefore our
proposal with two different permittivities could be a bit easier
to build in laboratory.

In this work, we investigated the frequency distribution of
this transition radiation too. Notwithstanding that a general
expression for the frequency distribution cannot be pro-
vided analytically, we were able to integrate the angular
distribution of radiation by restricting ourselves to the ul-
trarelativistic regime and considering a nonmagnetic strong
three-dimensional TI. For the vacuum-to-TI case, we found
that its frequency distribution depends logarithmically on the
velocity and is proportional to the sum of two squared mod-
ified Fresnel coefficients, namely [R12

TM,TM(θ1 = 0,�)]2 +
[R12

TE,TM(θ1 = 0,�)]2. In this framework, we also studied the
frequency distribution of the pure topological transition radia-
tion arisen in the limit case when the strong three-dimensional
TI has the same optical properties of the vacuum. For such
case, we found that the corresponding frequency distribution
also depends logarithmically on the velocity and is of the order
�2. On the other hand, we obtained the frequency distribution
for the TI-to-vacuum case also depends logarithmically on the
velocity but it is independent on the topological parameter,
which explains why the angular distribution of this case is
unaffected by the presence of the strong three-dimensional TI
as Figs. 8 and 9 show.

In order to observe our results in the ultrarelativistc regime,
concretely those shown in Figs. 6 and 7, the setup should
contain a source of impinging charges, a radiator (the 3D TI
or a magnetoelectric) and a transition radiation detector. First,
we remark that the particle’s velocity is independent of any
internal characteristic of the magnetoelectric or TI and this
radiation is measured by detectors located backwards to the
particle’s trajectory. Second, for an interface vacuum-TI or
a vacuum-magnetoelectric the source should provide a spa-
tially localized group of electrically charged particles, that
have approximately the same trajectory, kinetic energy and
direction. The required condition on the velocity for the par-
ticles velocity is dictated by Eq. (20). Given that the source
should be located in vacuum, the particles velocity can be
v = 0.99c or even greater. Next, if the single layer radiator is
selected as a 3D topological insulator, it would be advisable to

break the time-reversal symmetry by doping the surfaces with
thin ferromagnetic films instead of switching on an external
field, since we have assumed that charged particles are mov-
ing with constant velocity coming from vacuum and crossing
the material. Though transition radiation can be detected for
a single layer radiator, in practice optimization of particle
discrimination leads to realize multifoil radiators constituted
by a certain number of foils of thickness l1 separated by a
medium (usually a gas) of thickness l2 [15]. In this way,
our present work constitutes the first step on the study of
such possible configurations, which we leave as future work.
Then, according to Figs. 6 and 7, for ultrarelativistic veloc-
ities, the emission angle of transition radiation is closer to
0 measured from the particle’s trajectory meaning that the
transition radiation detector must be situated closer to the
beam. Lastly, the detection of the present transition radiation
could be made with current state-of-the-art transition radiation
detectors because our results provide an enhancement to the
standard transition radiation.

Finally, we remark that the pure topological transition
radiation and the transition radiation enhancement in the ultra-
relativistic regime for the vacuum-to-TI case offer an indirect
measurement of the topological parameter � as some works
in the literature have proposed [51,52,54]. Furthermore, this
work can be relevant for the current research of dark matter
detection where axions are a well-motivated candidate [89],
because for such detection condensed matter physics offers
new tools through TIs [90], antiferromagnetically doped TIs
[91,92], or multiferroics [93] by exploiting the properties of
the magnetoelectric effect also responsible of our results.
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APPENDIX A: GREEN’S FUNCTION COMPONENTS
RELEVANT FOR THE ELECTRIC FIELD

To the purpose of this article be self-contained in this
Appendix we provide the necessary details of the Green’s
function G(r, r′; ω) required to obtain the electric field via
Eq. (10) for a source and field point in an arbitrary layer.
First, the free-space part G(0)(r, r′; ω) of the Green’s function,
proportional to the unit tensor I, is given by

G(0)(r, r′; ω) = μ(ω)
eikR

4πR

[(
1 + ikR − 1

k2R2

)
I

+ 3 − 3ikR − k2R2

k2R2

R ⊗ R
R2

]
, (A1)

where R = r − r′.
Then the reflective part of the Green’s function G(1) of

Eq. (11) can be rewritten as

G(1) i j (r, r′; ω) =
∫

d2k‖
(2π )2

eik‖·R‖Ri j (z, z′; k‖, ω), (A2)
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with R‖ = (x − x′, y − y′), k‖ = (kx, ky) is the transversal
wave vector (parallel to the interface), and whose only re-
quired components in the present work are

R xz(z, z′; k‖, ω) = iμ(ω)

2kz
eikz (|z|+|z′|)

×
[
−sgn(z′)

kxkz

k2
RTM,TM + ky

k
RTE,TM

]
,

(A3)

R yz(z, z′; k‖, ω) = iμ(ω)

2kz
eikz (|z|+|z′|)

×
[
−sgn(z′)

kykz

k2
RTM,TM − kx

k
RTE,TM

]
,

(A4)

R zz(z, z′; k‖, ω) = iμ(ω)

2kz
eikz (|z|+|z′ |)

[
k2
‖

k2
RTM,TM

]
, (A5)

where μ1(ω) is the permeability of the upper medium, sgn

stands for the sign function and we recall that kz =
√

k2 − k2
‖.

Similarly, the transmissive part of the Green’s function
G(1) of Eq. (11) can be rewritten as

G(1) i j (r, r′; ω) =
∫

d2k‖
(2π )2

eik‖·R‖T i j (z, z′; k‖, ω), (A6)

whose only required components in the present work are

T xz(z, z′; k‖, ω) = iμ ′(ω)

2kz′
eikz |z|+ikz′ |z′|

×
[

sgn(z′)
kxkz

kk′ TTM,TM + ky

k
TTE,TM

]
,

(A7)

T yz(z, z′; k‖, ω) = iμ ′(ω)

2kz′
eikz |z|+ikz′ |z′|

×
[

sgn(z′)
kykz

kk′ TTM,TM − kx

k′ TTE,TM

]
,

(A8)

T zz(z, z′; k‖, ω) = iμ ′(ω)

2kz′
eikz |z|+ikz′ |z′|

×
[

k2
‖

kk′ TTM,TM

]
, (A9)

where kz′ =
√

k′ 2 − k2
‖, k′ and μ ′(ω) denote the wave num-

ber and the permeability in the source medium.
Once the labels for the upper and lower media are designed.

Through Eqs. (A1), (A2), and (A6), we obtain the four possi-
ble cases for a two layer configuration: observer and source at
the upper medium, observer and source at the lower medium,
observer at the upper medium and source at the lower one, and
viceversa.

FIG. 10. The Sommerfeld path of integration Ck‖ in the k‖
plane showing the branching cuts originating the branching points
±k1, ±k2, and 0.

APPENDIX B: APPROXIMATING THE REQUIRED
INTEGRALS FOR THE ELECTRIC FIELD

In this Appendix, we apply the steepest descent method
[74–79] to find the far-field approximation of the k‖ integrals
of the reflective (21)–(23) and transmissive electric fields
(27)–(29). Nevertheless, we will only present the calculations
for the x-component given by Eq. (21) in full detail. The other
relevant components are obtained in an analogous fashion.
To this end, we closely follow Ref. [74], which provides a
detailed account of the general procedure to deal with the
steepest descent method for these class of integrals.

The two k‖ integrals defined in Eqs. (24) and (25) that need
to be computed in Eq. (21) are

I1 =
∫ ∞

0
k‖dk‖R12

TM,TM(k‖)J0(k‖R‖)eikz,1(|z|+|z′|), (B1)

I2 =
∫ ∞

0

k‖dk‖
kz,1

R12
TE,TM(k‖)J0(k‖R‖)eikz,1(|z|+|z′|), (B2)

where R12
TM,TM and R12

TE,TM are given by Eqs. (33) and (34).
Let us begin with I1. First, we go to the complex plane by

writing the Bessel function in terms of the Hankel function
H (1)

0 (k‖R‖) and employing the reflection formula [94], which
allows us to extend the integration interval to −∞. The result
is

I1 = 1

2

∮
Ck‖

k‖dk‖R12
TM,TM(k‖)H (1)

0 (k‖R‖)eikz,1(|z|+|z′|), (B3)

where Ck‖ is the Sommerfeld path of integration illustrated
in Fig. 10. This path avoids the branch cuts dictated by the

Hankel function H (1)
0 at the origin, kz,1 =

√
k2

1 − k2
‖ and kz,2 =√

k2
2 − k2

‖ due to the exponential and R12
TM,TM. Because we

have considered an absorbing media with Im(n1), Im(n2) >

0 the exponential will be negative assuring the required
convergence [74]. However, as the observer’s zenith angle
θ1 increases towards π/2 the path Ck‖ eventually will pass
through the branch point at k‖ = k2 for the discarding an-
gle θdisc

1 given by Eq. (43). For θ1 ∈ (θdisc
1 , π/2] crosses the

branch cut for kz,2 and changes to another sheet of the Rie-
mann surface of the squared root. Thus, in order to return to
the starting sheet, we choose the deformation of the path of in-
tegration described and justified by Baños [74]. Consequently,
if we denote by J1 and J2 the evaluations of the integral I1
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along such deformation path, we may write

I1 = J1 + H
(
θ1 − θdisc

1

)
J2, (B4)

where

J1 = 1

2

∫
C1

k‖dk‖R12
TM,TM(k‖)H (1)

0 (k‖R‖)eikz,1(|z|+|z′|), (B5)

J2 = 1

2

∫
C2

k‖dk‖R12
TM,TM(k‖)H (1)

0 (k‖R‖)eikz,1(|z|+|z′ |), (B6)

with C1 as the path without crossing the branch point for θ1 ∈
[0, θdisc

1 ) and C2 is the path other case for θ1 ∈ [θdisc
1 , π/2].

Let us compute first J1. We begin by applying the confor-
mal transformation k‖ = k1 sin γ obtaining

J1 = k2
1

2

∫
C1γ

dγ sin γ cos γ R12
TM,TM(γ )

× H (1)
0 (k1 sin γ R‖)eik1 cos γ (|z|+|z′|). (B7)

Then, we employ the asymptotic expansion of the Hankel
function [95] because we are interested only in the far-field
regime. In this way, we have

J1 = e−iπ/4k2
1

√
1

2πk1R‖

∮
C1γ

dγ
√

sin γ cos γ

× R12
TM,TM(γ )eik1R‖ sin γ+ik1 cos γ (|z|+|z′|). (B8)

Due to the location of the observer and the semi-infinite
path of the particle at the upper hemisphere, |z| = z and
|z′| = z′. So, we write |z| = r cos θ1 and R‖ = r sin θ1, i.e.,

r =
√

R2
‖ + z2. Thereby, we find

J1 = e−iπ/4k2
1

√
1

2πk1r sin θ1

∫
C1γ

dγ
√

sin γ cos γ

× R12
TM,TM(γ )eik1r cos (γ−θ1 )+ik1z′ cos γ . (B9)

Next we determine the saddle-point of J1 by choosing the sta-
tionary phase as only ϕ(γ ) = ik1r cos(γ − θ1), according to
Ref. [74]. Through ϕ′(γs) = 0 results that γs = θ1 is the saddle
point, which leads to the full stationary phase ik1r cos θ1. At
this stage, the steepest descent path is specified on the γ plane
by demanding the next condition Im[ϕ(γ )] = Im[ϕ(γs)] im-
plying that Im[ik1r cos(γ − θ1)] = Im[ik1r] over C1γ . Now,
we shift the origin to coincide with the saddle point by setting
w = γ − θ1 in J1, which yields

J1 = e−iπ/4k2
1

√
1

2πk1r sin θ1

∫
C1w

dw
√

sin(w + θ1)

× cos(w + θ1)R12
TM,TM(w + θ1)eik1[r cos w+z′ cos(w+θ1 )],

(B10)

where the reparametrized path C1w satisfies Im[ik1r cos w] =
Im[ik1r].

The following step is to introduce the conformal transfor-
mation u2/2 = ϕ(0) − ϕ(w) = ik1r(1 − cos w), whose pur-
pose is to map the steepest descent path into the real axis.
This requires the change of variable cos w = 1 − u2/2ik1r in

J1, after which we obtain

J1 = k1

i

√
1

2π sin θ1

eik1r

r

∫
C1u

duF1(u)e−u2/2, (B11)

with

F1(u) = sin1/2 [w(u) + θ1] cos [w(u) + θ1]

× R12
TM,TM[w(u) + θ1]

eik1z′ cos [w(u)+θ1]√
1 − u2

4ik1r

. (B12)

Then, we look at the behavior of F1(u) and find that it has only
one branching point when the squared root vanishes. Here we
will neglect such branch point because it matters only if we
seek corrections of higher order than r−1. As mentioned, the
u transformation mapped the steepest descent path into the
real axis. Hence, we proceed to approximate J1 with stan-
dard calculus techniques. Since we are interested only in the
dominant term of J1, it is enough to consider the zeroth-order
term in the expansion of F1(u) in its Taylor series around
u = 0 (w = 0), because most of the contribution arises from
its vicinity due to the presence of the Gaussian function e−u2/2.
Performing this, we obtain

J1 = k1

i

eik1r

r
cos θ1R12

TM,TM(θ1)eik1z′ cos θ1 . (B13)

Now, we move on to compute the integral J2 defined
in Eq. (B6), which captures the contribution of the branch
point. We start by applying the conformal transformation k‖ =
k2 cos η obtaining

J2 = k2
2

2

∫
C2η

dη cos η sin ηR12
TM,TM(η)

× H (1)
0 (k2 cos ηR‖)ei

√
k2

1−k2
2 cos2 η(|z|+|z′ |). (B14)

Then, we expand the Hankel function asymptotically due to
our interest in the far-field regime. Hence, we have

J2 = e−iπ/4k2
2

√
1

2πk2R‖

∮
C2η

dη
√

cos η sin η

× R12
TM,TM(η)eik2R‖ cos η+i

√
k2

1−k2
2 cos2 η(|z|+|z′|). (B15)

Because the observer and the semi-infinite path of the par-
ticle are both located at the upper hemisphere, |z| = z and
|z′| = z′. So, we write |z| = r cos θ1 and R‖ = r sin θ1, i.e.,

r =
√

R2
‖ + z2. Thereby, we find

J2 = e−iπ/4k2
2

√
1

2πk2r sin θ1

∫
C2η

dη
√

cos η sin η

× R12
TM,TM(η)eik2r sin θ1 cos η+i(r cos θ1+z′ )

√
k2

1−k2
2 cos2 η.

(B16)

Next we determine the saddle point of J2 by choosing
the stationary phase as only ϕ(η) = ik2r sin θ1 cos η +
ir cos θ1

√
k2

1 − k2
2 cos2 η, according to Ref. [74]. Through

ϕ′(ηs) = 0 results that there are two roots: ηs = 0
corresponding to k‖ = k2, which we select as the saddle point,
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and η̃s = −π/2 + arcsin(k1 sin θ1/k2) corresponding to the
saddle-point employed to evaluate J1. This choice will lead

to the full stationary phase ik2r sin θ1 − r cos θ1

√
k2

2 − k2
1 . At

this stage, the steepest descent path is specified on the η-plane
by demanding the next condition Im[ϕ(η)] = Im[ϕ(ηs)] im-

plying that Im[ik2r sin θ1 cos η + ir cos θ1

√
k2

1 − k2
2 cos2 η ] =

Im[ik2r sin θ1 + ir cos θ1

√
k2

1 − k2
2 ] over C2η. For this

integral, we do not need to shift the saddle point to
the origin because it is already done. So, the next step
is to introduce the conformal transformation u2/2 =
ϕ(0) − ϕ(η) = ik2r sin θ1(1 − cos η) − r cos θ1(

√
k2

2 − k2
1 −√

k2
2 cos2 η − k2

1 ) yielding to

J2 = e−iπ/4k2
2

√
1

2πk2r sin θ1
eik2r sin θ1

× e−r cos θ1

√
k2

2−k2
1

∫
C2u

du
dη

du
F2(u)e−u2/2, (B17)

with

F2(u) = cos1/2[η(u)] sin[η(u)]R12
TM,TM[η(u)]

× e−z′√k2
2 cos2[η(u)]−k2

1 . (B18)

Again this integral is real and a change of variable is needed,
but the latter is cumbersome to implement. To simplify the
task, we will explode the fact that the dominant term of J2

lies in a vicinity of u = 0 due to the presence of the Gaus-
sian function e−u2/2. This will allow us to expand F2(u) and
dη/du in series around u = 0. To this aim, we need first the
expansion

u2

2
= 1

2

⎛
⎝ik2r sin θ1 − k2r cos θ1√

1 − n2
1/n2

2

⎞
⎠η2 + O(η4). (B19)

Inverting this series yields to

η = a0u + a2

3
u3 + O(u5), (B20)

dη

du
= a0 + a2u2 + O(u4), (B21)

which immediately leads to

a0 =
⎡
⎣ik2r sin θ1 − k2r cos θ1√

1 − n2
1/n2

2

⎤
⎦

−1/2

. (B22)

For F2(u), the required expansions at order O(u2) are

cos1/2[η(u)] = 1 , sin[η(u)] = a0u,

R12
TM,TM[η(u)] = 1 + n2a0u√

n2
1 − n2

2

×
(

μ1

μ2
− ε1

ε2
+ �2

ε2μ1μ
2
2

)
. (B23)

Inserting these expansions into J2 and carrying out the inte-
gral over u finally results in

J2 = e−iπ/4k2
2a3

0

√
1

k2r sin θ1
eik2r sin θ1−r cos θ1

√
k2

2−k2
1

× e−z′√k2
2−k2

1

⎛
⎝n2

2μ
2
1 − n2

1μ
2
2 + �2

n2μ1μ2

√
n2

1 − n2
2

⎞
⎠, (B24)

where we identify the term in parenthesis as R̃12
TM,TM given by

Eq. (39). After substituting the results (B13) and (B24) into
Eq. (B4), we complete the calculation of I1.

By adapting this procedure to the remaining integral I2

defined in Eq. (B2), we obtain

I2 = J3 + H
(
θ1 − θdisc

1

)
J4, (B25)

with θdisc
1 again given by Eq. (43) and

J3 = eik1r

ir
R12

TE,TM(θ1)eik1z′ cos θ1 , (B26)

J4 = e−iπ/4k2
2a3

0√
k2

1 − k2
2

√
1

k2r sin θ1
eik2r sin θ1−r cos θ1

√
k2

2−k2
1

× e−z′√k2
2−k2

1

⎛
⎝− 2n1�

n2μ1

√
n2

1 − n2
2

⎞
⎠, (B27)

where the term in parenthesis is identified as R̃12
TE,TM of

Eq. (40). Finally, by substituting the final forms of both in-
tegrals I1 and I2 into Eq. (21) and after carrying on the
remaining partial derivatives, one arrives at the x component
of Eq. (37).
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