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Path-integral derivation of the equations of the anomalous Hall effect
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A path-integral (Lagrangian) formalism is used to derive the effective equations of motion of the anomalous
Hall effect with Berry’s phase on the basis of the adiabatic condition |En±1 − En| � 2π h̄/T , where T is the
typical timescale of the slower system and En is the energy level of the fast system. In the conventional definition
of the adiabatic condition with T → large and fixed energy eigenvalues, no commutation relations are defined for
slower variables by the Bjorken-Johnson-Low prescription except for the starting canonical commutators. On the
other hand, in a singular limit |En±1 − En| → ∞ with specific En kept fixed for which any motions of the slower
variables Xk can be treated to be adiabatic, the noncanonical dynamical system with deformed commutators
and the Nernst effect appears. In the Born-Oppenheimer approximation based on the canonical commutation
relations, the equations of motion of the anomalous Hall effect are obtained if one uses an auxiliary variable
X (n)

k = Xk + A(n)
k with Berry’s connection A(n)

k in the absence of the electromagnetic vector potential eAk (X )
and thus without the Nernst effect. It is shown that the gauge symmetries associated with Berry’s connection
and the electromagnetic vector potential eAk (X ) are incompatible in the canonical Hamiltonian formalism. The
appearance of the noncanonical dynamical system with the Nernst effect is a consequence of the deformation of
the quantum principle to incorporate the two incompatible gauge symmetries.
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I. INTRODUCTION

Historically, the geometric phase or Berry’s phase [1] has
been recognized as a forgotten phase of the state vector in the
naive applications of the adiabatic theorem. The topological
aspects of Berry’s phase such as a Dirac monopole-like struc-
ture in the level-crossing problem in the precise adiabatic limit
are well known [2]. The use of Berry’s phase in the analyses of
the anomalous Hall effect [3,4] and the anomalous spin Hall
effect [5] has, however, revealed the more general aspects of
Berry’s phase, namely, a dynamical system which is not quan-
tized in the conventional canonical formalism of quantum
mechanics [6] leading to deformed commutators. The related
noncommutative geometry has been known for many years
if one chooses suitable variables in the Born-Oppenheimer
approximation which is by itself quantized by the canonical
commutation relations [7,8].

If one understands Berry’s phase as a characteristic prop-
erty of the quantum mechanical system in the adiabatic limit
[9,10], it is puzzling why Berry’s phase leads to a non-
canonical system which deforms the canonical commutation
relations dictated by the principle of quantum mechanics.1

The purpose of the present article is to clarify the puzzling as-
pect by presenting a systematic derivation of the equations of
motion of the anomalous Hall effect by the path-integral

1In the present article, Berry’s phase is considered only in the
context of quantum mechanics.

(Lagrangian) formalism, starting with the quantum system
defined by the standard canonical commutation relations. We
use the second quantized formulation of Berry’s phase which
makes it transparent that Berry’s phase appears when one
throws away some terms causing the level crossing in the
adiabatic limit [11], rather than the common view that Berry’s
phase is an additional term in the adiabatic limit.

To be explicit, the effective equations of motion of the
anomalous Hall effect, which incorporate Berry’s phase near
the level crossing point, are customarily adopted as (see, for
example, [6])

ẋk = −�kl ( �p) ṗl + ∂εn( �p)

∂ pk
, ṗk = −eFkl (�x)ẋl + e

∂

∂xk
φ(�x),

(1.1)

by adding the adiabatic Berry’s phase �kl ṗl to the equa-
tions of motion as an extra induced term. Here εn( �p)
essentially stands for the nth energy level of the fast system.
The magnetic flux �kl ( �p) of Berry’s phase, which is assumed
to be a genuine Dirac monopole form [12] for the moment,
and the electromagnetic tensor Fkl are defined by

�kl = ∂

∂ pk
Al − ∂

∂ pl
Ak, Fkl = ∂

∂xk
Al − ∂

∂xl
Ak, (1.2)

respectively. The monopole is located at the origin of mo-
mentum space, i.e., at the level crossing point in the adiabatic
level-crossing problem, but it is now assumed to be a genuine
particle in the momentum space. Here we defined pl = h̄kl to
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write all the equations in terms of pl compared to the notation
in [6], to keep track of the h̄ factor in a transparent way.

It is known that the equations in (1.1) are derived without
using any commutation relations from [13]

S =
∫

dt[pkẋk − eAk (�x, t )ẋk + Ak ( �p) ṗk − εn( �p) + eφ(�x)].

(1.3)

A simplified version of this action was used in [6]. It is usually
assumed that the action (1.3) with Berry’s phase included is a
fundamental classical action, and it has been shown [13] that
the action (1.3), which is known to belong to a noncanoni-
cal system [6], is treated by a modified canonical formalism
inverting a symplectic matrix defined by the action in the
extended phase space formalism [14]. They then derived the
deformed Poisson brackets induced by the genuine monopole
curvature �kl = εklm�m,

{xk, xl} = εklm�m

1 + e �B · ��, {pk, xl} = −δkl + e�kBl

1 + e �B · �� ,

{pk, pl} = − εklmeBm

1 + e �B · ��, (1.4)

where the factors containing �k are anomalous [13]. The
background field method applied to (1.3) in the path-integral
formalism using the Bjorken-Johnson-Low (BJL) prescription
[15], which is briefly summarized in Appendix B, gives the
commutation relations [16]

[xk, xl ] = ih̄
εklm�m

1 + e �B · ��, [pk, xl ] = −ih̄
δkl + e�kBl

1 + e �B · �� ,

[pk, pl ] = −ih̄
εklmeBm

1 + e �B · ��, (1.5)

which are exact for either Bm = 0 or �m = 0. These
anomalous commutation relations are the main fea-
tures of the action (1.3), in contrast to the canonical
commutation relations used in the Born-Oppenheimer
approximation.

We summarize briefly our main assertion in this paper:
We start with a master Hamiltonian formalism and derive
the action (1.3) by a second quantized path-integral formula-
tion [11] using the adiabatic condition |En±1 − En| � 2π h̄/T ,
where T is the typical timescale of the slower system and
En is the energy level of the fast system. In the conventional
adiabatic limit, T → large with En fixed, the extension of the
action (1.3) to the domain of variables covering the full phase
space including rapid movement is not allowed, and thus the
equal-time commutation relations are not determined by the
BJL prescription.2 One may recognize the starting canonical

2The basic idea of the BJL prescription, which is more general than
the canonical quantization in the sense that it works for the system
with quantum anomalies also, is that the equal-time commutation
relation of two operators A(t ) and B(t ) is determined by the analysis
of the short-time limit of the time-ordered product 〈TA(t1)B(t2)〉 with
t1 → t2, which in turn means that the infinitely large frequencies
of the Fourier transform of 〈TA(t1)B(t2)〉 determine the equal-time
commutation relation.

commutation relations by going back to the starting La-
grangian. In contrast, a singular limit of the adiabatic
condition with |En±1 − En| → ∞ allows any motion of the
slower variables to be regarded as adiabatic motion; we re-
gard that this limit corresponds to the customary treatment of
(1.3). In this limit, however, one recognizes that one cannot
quantize the action (1.3) in a canonical manner [13], although
the action (1.3) is derived starting with a formalism defined
in the conventional canonical commutation relations. It is
customary to regard (1.3) as a classical action and applies
a second-time quantization by applying an extended phase
space formalism [14], for example, and one obtains the de-
formed Poisson brackets (1.4) or the deformed commutators
(1.5) by a background field method [16]. The deformed phase
space volume associated with the deformed Poisson brackets
leads to a modified density of states ∝ 1 + e �B · �� and the
Nernst effect in thermal functions [6,17]. We emphasize that
(1.3) is formally invariant under both gauge transformations
of the electromagnetic field and of Berry’s phase.

In the Born-Oppenheimer approximation that is based on
canonical commutation relations, one first observes that the
gauge symmetry of Berry’s connection is a measure of the
validity of the Born-Oppenheimer approximation where the
total system is written as � = ∑

l ϕl (P)φl (x, P). The gauge
symmetry of Berry’s connection implies that the subsystem
ϕl (P)φl (x, P), which consists of a specific energy level of
the fast system φl (x, P) and the slower system ϕl (P) with
Berry’s connection A(l )

k (P), is treated independently of the
total system �. This independence of each subsystem is
not compatible with the electromagnetic gauge symmetry
of the vector potential eAk , which acts on all the subsys-
tems universally in � = ∑

l ϕl (P)φl (x, P). Thus a subsystem
which satisfies the gauge symmetry of Berry’s connection
cannot incorporate consistently the electromagnetic potential
eAk , as we demonstrate explicitly. Namely, the electromag-
netic gauge symmetry and the gauge symmetry of Berry’s
connection are not compatible in the Born-Oppenheimer
approximation which is defined by canonical commutation
relations. We also discuss an algebraic manifestation of this
incompatibility. We argue that this incompatibility in the
Born-Oppenheimer approximation is a restatement of the
failure of the canonical quantization of the action (1.3) in
the presence of the electromagnetic vector potential eAk and
Berry’s phase. This is because if the canonical quantization
of the action (1.3) should be defined, it would imply that
the Born-Oppenheimer approximation, which is defined by
canonical commutation relations, satisfies the gauge sym-
metry of the electromagnetism and the gauge symmetry of
Berry’s connection simultaneously. We explicitly demonstrate
that the Born-Oppenheimer approximation, when converted
to the Lagrangian (path-integral) formalism, can incorpo-
rate the vector potential eAk (X ) in a gauge-invariant manner,
but the resulting action is not amenable to the conventional
canonical formulation of quantum mechanics. We conclude
that the equations of motion of the anomalous Hall effect
(1.1) are generally valid in the precise adiabatic limit, but
the appearance of the noncanonical dynamical system and
the Nernst effect is based on the deformation of the quan-
tum principle to incorporate the two incompatible gauge
symmetries.
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II. PATH-INTEGRAL DERIVATION

We use the path-integral formulation of Berry’s phase dis-
cussed in [11]. We adopt the Hamiltonian of the form H =
H0 + H1 assuming that the slower particle is charged with
q = −e (e > 0) and the fast particle is neutral for simplicity,

H0(X, P + eA(X )) = 1

2M
[Pk + eAk (X )]2 − eφ(X ),

(2.1)
H1(x, p; P + eA(X )) = H1(xk, pk ; Pk + eAk (X )),

with the canonical quantization of fast variables

[pk, xl ] = h̄

i
δkl , [pk, pl ] = 0, [xk, xl ] = 0, (2.2)

and the canonical quantization of slower variables

[Pk, Xl ] = h̄

i
δkl , [Pk, Pl ] = 0, [Xk, Xl ] = 0, (2.3)

by treating H0(X, P) as the slower system; from now on,
we use the capital characters Xk and Pk for slower variables
unless stated otherwise (in contrast, the lowercase letters are
sometimes used for slower variables also to respect the past
usages). The use of the covariant derivative, Pk + eAk (X ),
ensures the electromagnetic gauge invariance. We discuss the
case of a single fast particle and a single slow particle, for sim-
plicity, although our use of the second quantization can cover
a slightly more general case.3 We start with the fundamental
path integral

Z =
∫

DPkDXk exp

(
i

h̄

∫ T

0
dt{[Pk (t ) − eAk (X (t ))]Ẋk (t ) − H0(X (t ), P(t ))}

)

×
∫

Dψ�Dψ exp

{
i

h̄

∫ T

0
dt

∫
d3x

[
ψ (t, �x)�ih̄∂tψ (t, �x) − ψ (t, �x)�H1

(
h̄

i
�∇, �x; P(t )

)
ψ (t, �x)

]}
(2.4)

with

Pk (t ) = Pk (t ) + eAk (X (t )), (2.5)

where we used the invariance of the path-integral measure DPkDXk = DPkDXk . We use the second quantization for the fast
system, which is convenient to analyze the level crossing and Berry’s phase [11]. It is confirmed that the BJL prescription
reproduces the canonical commutation relations (2.3) and

[ψ (t, �x), ψ†(t, �y)] = δ(�x − �y) (2.6)

in the path-integral formula of (2.4). We expand the field variable ψ (t, �x) into a complete set of orthonormal bases {φk (�x; P(t ))}
defined by

H1

(
h̄

i
�∇, �x; P(t )

)
φn(�x; P(t )) = En(P(t ))φn(�x; P(t )), ψ (t, �x) =

∑
n

an(t )φn(�x; P(t )). (2.7)

We then have

Z =
∫

DPkDXk exp

(
i

h̄

∫ T

0
dt{[Pk (t ) − eAk (X (t ))]Ẋk (t ) − H0(X (t ), P(t ))}

)

×
∫

�nDa�
nDan exp

{
i

h̄

∫ T

0
dt

∑
n

[a�
n(t )ih̄∂t an(t ) − En(P(t ))a�

n(t )an(t )]

}
exp

{
i

h̄

∫ T

0
dt

∑
n,l

〈n, t |ih̄∂t |l, t〉a�
n(t )al (t )

}



∫

DPkDXk exp

(
i

h̄

∫ T

0
dt{[Pk − eAk (X )]Ẋk − H0(X, P)}

)

×
∫

�nDa�
nDan exp

{
i

h̄

∫ T

0
dt

∑
n

[a�
n(t )ih̄∂t an(t ) − (

En(P) − A(n)
k (P)

˙
P

k)
a�

n(t )an(t )]

}
, (2.8)

where we defined

〈n, t |ih̄∂t |l, t〉 =
∫

d3xφ†
n (�x; P(t ))ih̄∂tφl (�x; P(t )),

A(n)
k (P)

˙
P

k
(t ) ≡ 〈n, t |ih̄∂t |n, t〉

=
∫

d3xφ†
n (�x; P(t ))ih̄

∂

∂P
k
(t )

φn(�x; P(t ))
˙

P
k
(t ). (2.9)

3The general proof of the adiabatic theorem [10] includes the case of degenerate states. We can incorporate the case with the degeneracy of
n-states of the fast system using an internal U (n) symmetry for a single particle. See also [18].
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The diagonal element A(n)
k (P)

˙
P

k
is commonly called Berry’s

phase. The assumption of the diagonal dominance, which
was used in the last step of the above path-integral formula,
corresponds to the adiabatic approximation and it is valid only
for

|En±1(P) − En(P)| � h̄
2π

Ts
, (2.10)

where Ts stands for the typical timescale of the slower system;
usually Ts is estimated by the period of the slowly varying
variable Pk (t ), Pk (0) = Pk (Ts). We understand that h̄(2π/Ts)
stands for the typical energy scale contained in Pk (t ).4 This
condition means that the movement (or energy) of the slower
system is much slower (or smaller) than the level spacing
of the fast system. If this adiabaticity condition is not satis-
fied, one needs to retain the nondiagonal transition elements
〈n, t |ih̄∂t |l, t〉 in (2.8), and the path integral is reduced to the
starting expression (2.4) after summing over n and l . This
shows that one would recover the starting universal canonical
commutation relations for the slower variables (2.3) if one
evaluates the fast system exactly without using the adiabatic
approximation5 in the present setting.

The slower system standing on the specific nth level

a†
n(0)|0〉 (2.11)

of the fast system, namely, the fast system being constrained
to the nth level, is described by the path integral derived from
(2.8)6 by noting a†

n(t )an(t ) = a†
n(0)an(0):

Zn =
∫

DPkDXk

× exp

(
i

h̄

∫ T

0
dt

{
[Pk − eAk (X )]Ẋk − H0(X, P)

− [
En(P) − A(n)

k (P)Ṗk
]}) (2.12)

with H0(X, P) = 1
2M P

2
k − eφ(X ). This formula is valid under

the crucial constraint (2.10). The Lagrangian appearing in this

4We use Ts for the period of the slower dynamical system to dis-
tinguish it from the T-ordering operation, whenever necessary. It is
convenient to choose the upper bound of the time integral in the path
integral (2.8) to agree with this period Ts.

5For the moment, we understand the condition (2.10) in the manner
of the standard adiabatic condition T → large with energy eigenval-
ues fixed.

6The conversion of the path integral to the time-evolution operator
for the variables {an, a†

n} is∫
�nDa�

nDan exp

{
i

h̄

∫ T

0
dt

∑
n

[an(t )�ih̄∂t an(t )

−(En(P(t )) − A(n)
k (P(t ))

˙
P

k
(t ))a�

n(t )an(t )

]}

→ exp

{∑
n

−i

h̄

∫ T

0
dt (En(P(t )) − A(n)

k (P(t ))
˙

P
k
(t ))a†

n(0)an(0)

}
.

path integral

Ln = [Pk − eAk (X )]Ẋk + A(n)
k (P)Ṗk −

(
1

2M
P

2
k + En(P)

)
+ eφ(X ) (2.13)

precisely agrees with the common Lagrangian in condensed
matter physics (1.3) if one identifies

Pk → pk, Xk → xk, and εn(p) = 1

2M
P

2
k + En(P),

(2.14)

respectively, and if one uses the adiabatic Berry’s phase A(n)
k

associated with the specific nth level of the fast system. Our
path-integral formulation thus naturally reproduces the com-
mon formulas (1.3) in the precise adiabatic limit but with
the adiabatic Berry’s phase A(n)

k instead of a genuine Dirac
monopole. The action appearing in (2.12) is invariant under a
gauge transformation of Berry’s phase

A(n)
k (P) → A(n)

k (P) + ∂

∂Pk
ω(n)(P) (2.15)

with different ω(n)(P) for each n if one chooses the peri-
odic boundary condition Pk (0) = Pk (T ). The induced Berry’s
phase term is invariant by itself:∫ T

0
dt

{
A(n)

k (P) + ∂

∂Pk
ω(n)(P)

}
Ṗk

=
∫ T

0
dtA(n)

k (P)Ṗk +
∫ T

0
dt

d

dt
ω(n)(P(t ))

=
∫ T

0
dtA(n)

k (P)Ṗk . (2.16)

This gauge invariance is a direct consequence of the adiabatic
(diagonal) approximation in (2.9), which is based on the cru-
cial condition (2.10). This gauge invariance is thus a measure
of the validity of the adiabatic approximation.

A. Equations of motion without using commutation relations

It is important that the path integral (2.12) with the La-
grangian (2.13) is an approximation in the following two
senses: First, it is an approximation since all the states other
than n and their mixings with the state n have been neglected.
Second, to justify the above truncation, the valid energy do-
main of the path-integral formula (for slower variables) is
limited to the very slow motions of the slower variables. If
one goes outside this energy domain, the above path-integral
formula with the given Ln is not accurate.

We recall that the equations of motion are defined in the
path integral without using canonical commutation relations:
We illustrate it by starting with the identity∫

DPkDXk exp

[
i

h̄
S(P, X )

]

=
∫

D(Pk + αk )D(Xk + βk ) exp

[
i

h̄
S(P + α, X + β )

]

=
∫

DPkDXk exp

[
i

h̄
S(P + α, X + β )

]
, (2.17)
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where S = ∫
dtL and αk (t ) and βk (t ) are infinitesimal arbi-

trary functions of t but independent of Pk and Xk . The first
equality in (2.17) is an identity since the path integral in terms
of {Pk, Xk} and the path integral in terms of {Pk + αk, Xk +
βk} are the same; namely, the change of the naming of path-
integral variables does not change the path integral itself. The
basic postulate of the path integral is that

D(Pk + αk )D(Xk + βk ) = DPkDXk, (2.18)

namely, no nontrivial Jacobian for this form of the change
of variables, and thus we obtain the last line of (2.17). After
expanding the action in the linear order of the infinitesimal αk

and βk in the last expression of (2.17), one obtains〈
T �

∫
dt ′αk (t ′)

δS

δPk (t ′)

〉
= 0,

〈
T �

∫
dt ′βk (t ′)

δS

δXk (t ′)

〉
= 0. (2.19)

By taking the functional derivative of these relations with
respect to αk (t ) and βk (t ), respectively, one obtains (1.1)〈

T �

{
Ẋk (t ) + �

(n)
kl (P)Ṗl (t ) − ∂

[
1

2M P
2
k + En(P)

]
(t )

∂Pk

}〉
= 0,

〈
T �

{
Ṗk (t ) + eFkl (X )Ẋl (t ) − e

∂

∂Xk
φ(X (t ))

}〉
= 0, (2.20)

with the Berry’s curvature defined in the nth level of the fast
system

�
(n)
kl (P) = ∂A(n)

l (P)

∂Pk
− ∂A(n)

k (P)

∂Pl
. (2.21)

In the present simple case, the difference between the
covariant T � product and the ordinary T product does not
appear, and thus one may replace T � by T in the above
formula. It is important that the quantum equations of motion
are derived without using the commutation relations in the
path-integral (Lagrangian) formalism.

B. Commutation relations

The fundamental canonical commutation relations are al-
ways valid in the precise treatment of the fast system without
adiabatic approximations. This observation is natural and con-
sistent with our basic path-integral formulation (2.8); if one
sums over all the levels n and l of the fast system, one comes
back to the starting fundamental formula (2.4) for which one
obviously recovers the basic canonical commutation relations
by the BJL procedure for the slower variables. The basic
canonical commutation relations are valid exactly in this case,
which covers all the allowed energy range of the fast and
slower systems.

It is important how one incorporates the above general ob-
servation into the understanding of the path-integral formula
for a slower system

Zn =
∫

DPkDXk exp

{
i

h̄

∫ T

0
dtLn

}
(2.22)

with the Lagrangian (2.13) which agrees with the common
Lagrangian in condensed matter physics (1.3).

When one discusses the commutation relations, one may
consider two main options:

(i) The above effective Lagrangian is defined in the (con-
ventional) adiabatic limit T → large and thus it is not used
to quantize the slower variables by the BJL prescription, for
which infinitely large frequencies are crucial. A natural ex-
tension of the above Lagrangian to the nonadiabatic domain,
where one defines the commutation relations by the BJL pro-
cedure and thus one can estimate the plausible commutators,
is to go back to the starting well-defined path-integral formula
(2.4) which gives rise to the normal canonical commutation
relations

[Pk, Xl ] = h̄

i
δkl , [Pk, Pl ] = 0, [Xk, Xl ] = 0 (2.23)

with Pk (t ) = Pk (t ) + eAk (X (t )). This is based on the assump-
tion that the starting Lagrangian is valid in the nonadiabatic
domain as well as the adiabatic domain where one recognizes
Berry’s phase. This appears to be logically consistent and we
call this interpretation as a standard adiabatic approximation
in this article; the procedure described above shall be illus-
trated later in a concrete example of a Weyl fermion appearing
in the two-level crossing in condensed matter physics. In this
option, the path integral (2.22) is a formal object that may
be used to derive the equations of motion of the anomalous
Hall effect (1.1), which is derived without using commutation
relations. The formula (1.1) is then regarded as a useful but
approximate formula valid only in the standard adiabatic con-
dition (2.10).7 In this understanding, we do not encounter the
Nernst effect.

(ii) The second option may be to adopt a singular limit of
the adiabatic condition (2.10) defined by

|εn±1 − εn| → ∞ (2.24)

with fixed εn = 1
2M P

2
k + En(P), for which any ordinary mo-

tions of slower variables Xk (t ) and Pk (t ) are regarded as
adiabatic. One may then treat the above effective adiabatic
Lagrangian (2.13) to be a classical one since the commutation
relations are generally modified in this singular limit. The
Lagrangian is then extended to the nonadiabatic domain as
it is and then quantized by a suitable means. Another impor-
tant property is that Berry’s phase �

(n)
kl (P) becomes generally

an exact Dirac monopole in this singular limit. This is the
scheme one applied to (1.3) in the past. One then applies a
renewed (second-time) quantization by BJL or other methods
to the effective Lagrangian (1.3) or equivalently to (2.13) and
recognizes the appearance of the noncanonical system with
anomalous Poisson brackets (1.4) or anomalous commutation
relations (1.5) in the background field method.

As for the appearance of a noncanonical property (i.e.,
not quantized in a conventional manner) of the Lagrangian

7In this viewpoint, our understanding of the adiabatic Berry’s phase
in the anomalous Hall effect is analogous to that of Schwinger’s
anomalous magnetic moment in QED, which modifies the low-
energy effective equations of motion of spin by an order-h̄ correction
but does not modify the canonical commutation relations of the
electron field.
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(1.3) or (2.13) for eAk = 0,8 we attribute it to the truncation
of the well-defined quantum system (2.4) to subsystems in
which both the gauge symmetry of the electromagnetic vector
potential and the newly introduced gauge symmetry of the
adiabatic Berry’s phase (2.15) are formally preserved in the
singular limit (2.24), but they are incompatible in the Hamilto-
nian formalism. The algebraic compatibility shall be analyzed
in Sec. III B later in the context of the Born-Oppenheimer
approximation.

This second option singles out the slower system con-
strained to the neighborhood of a specific nth energy level En

of the fast system by a singular limit of the adiabatic condition
(2.24). If one is interested in a specific nth energy band and its
intraband physics such as the Nernst effect in condensed mat-
ter physics, this second option may be physically a sensible
one.

III. BORN-OPPENHEIMER APPROXIMATION AND
CONSTRAINED DYNAMICS

A. A manageable model

An analysis of a manageable model in the Born-
Oppenheimer approximation, which is readily compared to
the scheme with Berry’s phase in Sec. II, shall be given in
this section to illustrate that the Born-Oppenheimer approx-
imation, which operates within the scheme of the canonical
Hamiltonian formalism, does not deform the principle of
quantum mechanics in the slower system, although the aux-
iliary variables which satisfy the deformed commutation
relations are commonly used to describe the anomalous Hall
effect [7,8].

In the formulation of the Born-Oppenheimer approxima-
tion, one starts with the time-independent master Schrödinger
equation (using a simplified model described by xk and X k , as
an example),

[H0(X, P) + H1(x, p; P)]�(x, P) = E�(x, P), (3.1)

which implies that we adopt the representation of xk and Pk

diagonal, although the canonical formalism is basically sym-
metric with respect to coordinates and momenta; the possible
inclusion of the vector potential eAk (X ) and the associated
complications will be discussed later. The canonical quantiza-
tion of the fast variables is

[pk, xl ] = h̄

i
δkl , [pk, pl ] = 0, [xk, xl ] = 0, (3.2)

and the canonical quantization of the slower variables is given
by

[Pk, Xl ] = h̄

i
δkl , [Pk, Pl ] = 0, [Xk, Xl ] = 0. (3.3)

The present analysis goes through for any finite N number of
fast coordinates xk without any significant modification. We
however consider a single freedom for each of the fast and
slower systems, for simplicity.

8The canonical quantization is possible for eAk = 0, if one uses
X (l )

k = Xk − A(l )
k as an auxiliary variable.

As a first step, we confirm that the typical quantum
mechanical solutions of H0(X, P) generate slow motions com-
pared to the expected motion in H1; we thus treat Pk as slower
variables. We then expand the total wave function

�(x, P) =
∑

n

ϕn(P)φn(x, P) (3.4)

by solving the equation

H1(x, p; P)φn(x, P) = En(P)φn(x, P) (3.5)

with Pk treated as background variables; the states {φn(x, P)}
are assumed to form a complete orthonormal basis set of the
fast system. By inserting (3.4) into Eq. (3.1) and multiplying
by φ�

l (x, P) and integrating over xk , one obtains

∑
n

{∫
d3xφl (x, P)�H0(X, P)φn(x, P) + En(P)δl,n

}
ϕn(P)

= Eϕl (P). (3.6)

We tentatively adopt in this subsection for simplicity

H0 = 1

2M
P2

k + Mω2
0

2
X 2

k , (3.7)

which makes the analysis transparent without extra techni-
cal complications. We give later a nontrivial example. Using
the completeness relation

∑
l ′ φ

�
l ′ (x, P)φl ′ (y, P) = δ3(xk −

yk ), we have

∑
n

∑
l ′

{
Mω2

0

2

(
δll ′ −h̄

i
∇k + All ′

k (P)

)

×
(

δl ′n −h̄

i
∇k + Al ′n

k (P)

)
+ 1

2M
P2

k δln

+ En(P)δl,n

}
ϕn(P) = Eϕl (P), (3.8)

where Xk = −h̄
i

∂
∂Pk

= −h̄
i ∇k and

All ′
k (P) =

∫
d3xφl (x, P)�

−h̄

i

∂

∂Pk
φl ′ (x, P). (3.9)

If one assumes the diagonal dominance (adiabatic approxi-
mation), namely, if one assumes that the slower variables Pk

do not cause a sizable mixing of fast systems described by
φl (x, P) [see (2.10)], or assuming that the properties of the
slower system ϕl (P) are well described by ignoring the effects
of all the states φl ′ (x, P) with l ′ = l , one obtains{

Mω2
0

2

[
Xk + A(l )

k (P)
][

Xk + A(l )
k (P)

] + 1

2M
P2

k + El (P)

}
×ϕl (P) = Eϕl (P), (3.10)

where we defined

A(l )
k (P) ≡ All

k (P) =
∫

d3xφl (x, P)�
−h̄

i

∂

∂Pk
φl (x, P),

(3.11)

which is often called Berry’s connection for the specific level
l; A(l )

k (P) is an order-h̄ quantity. This is the standard formula
of the Born-Oppenheimer approximation.
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It is thus obvious that the slower variables X k are quan-
tized in the standard manner only once as in (3.3), and the
deformation of commutation relations [X k (t ), X l (t )] = 0 is
not induced by Berry’s connection. The system of the lth
subsector (3.10) has an interesting gauge symmetry defined
by the simultaneous transformations

A(l )
k (P) → A(l )

k (P) + h̄∂kα
(l )(P),

ϕl (P) → eiα(l ) (P)ϕl (P), (3.12)

which keeps �l (x, P) = ϕl (P)φl (x, P) of each lth subsector
invariant for a choice of α(l )(P) for each l independently; the
gauge variation of A(l )

k (P), which is induced by the phase
change of φl (x, P), keeps �l (x, P) invariant if one compen-
sates it by the phase change of ϕl (P). This gauge symmetry is
thus a measure of the independence of the specific �l (x, P)
from other sectors with l ′ = l , which is a measure of the
validity of the adiabatic approximation. This gauge symmetry
is manifest in Eq. (3.10) if one recalls that the combination

X (l )
k = Xk + A(l )

k (P) (3.13)

defines a covariant derivative with respect to (3.12) [7,21],
which satisfies

[
X (l )

k , X (l )
m

] = − h̄

i

[
∂kA(l )

m (P) − ∂mA(l )
k (P)

]
. (3.14)

In this derivation, we used the momentum representation
where the momentum is diagonal, Xk = − h̄

i
∂

∂Pk
, which satis-

fies the standard canonical commutation relations (3.3).
We now discuss the corresponding equations of motion of

slower variables to compare the final formula with the one
given by Berry’s phase. The effective Hamiltonian for the
slower system constructed on the lth level of the fast system
is given by (3.10)

Hl (P) = 1

2M
P2

k + Mω2
0

2

[
Xk + A(l )

k (P)
][

Xk + A(l )
k (P)

]
+ El (P) (3.15)

with El (P) arising from the lth level of the fast system. We ex-
amine the quantum mechanical equations of motion of slower
variables generated by the effective Hamiltonian, which is
constrained to the lth level of the fast system, using the canon-
ical commutation relations (in the Heisenberg picture)

Ṗm = i

h̄
[Hl , Pm] = −Mω2

0

[
Xm + A(l )

m (P)
]
,

Ẋm = i

h̄
[Hl , Xm] = Mω2

0

2

{[
Xk + A(l )

k (P)
] ∂

∂Pm
A(l )

k (P)

+ ∂

∂Pm
A(l )

k (P)
[
Xk + A(l )

k (P)
]}

+ ∂

∂Pm

[
P2

k

2M
+ E (P)

]

= − ∂

∂Pm
A(l )

k (P)Ṗk + ∂

∂Pm

[
P2

k

2M
+ El (P)

]
, (3.16)

where the last expression is valid when one ignores the pos-
sible operator ordering problem.9 If one uses the auxiliary
variables X (l )

m ≡ Xm + A(l )
m (P) in (3.13) specific to the lth

level, one has an equivalent set of equations of motion (again
by ignoring the possible operator ordering problem) [7]

Ṗm = −Mω2
0X (l )

m ,

Ẋ (l )
m = −�

(l )
mk (P)Ṗk + ∂m

[
P2

k

2M
+ El (P)

]
(3.17)

with �
(l )
mk (P) = ∂

∂Pm
A(l )

k (P) − ∂
∂Pk

A(l )
m (P).

If one uses the electromagnetic scalar potential eφ(X ) in-
stead of the harmonic potential, (3.17) becomes

Ṗm = e
∂

∂X (l )
m

φ(X (l ) ),

Ẋ (l )
m = −�

(l )
mk (P)Ṗk + ∂m

[
P2

k

2M
+ El (P)

]
. (3.18)

The set of equations (3.18) correspond to the common equa-
tions of the anomalous Hall effect in condensed matter physics
(1.1) [7].

One may notice that the auxiliary variables X (l )
m (3.13) give

rise to the noncommutative geometry

[Pk, Pl ] = 0,
[
Pk, X (l )

m

] = h̄

i
δkm,

[
X (l )

k , X (l )
m

]
= − h̄

i

[
∂kA(l )

m (P) − ∂mA(l )
k (P)

]
, (3.19)

specific to the lth level of the fast system, in contrast to
the starting canonical commutation relations (3.3). But this
is not the deformation of the principle of quantum mechan-
ics, since these commutation relations of X (l )

m = Xm + A(l )
m (P)

are dictated by the canonical commutation relations (3.3) of
the variables Xm and Pk ; every quantity expressed in terms
of Xm and Pk is described by the conventional canonical
commutation relations, and thus no Nernst effect in (3.18).
The appearance of noncommutative geometry in the sense
of (3.19) is an artifact of the choice of the auxiliary vari-
ables X (l )

m specific to the subsystem defined by �l (x, P) =
ϕl (P)φl (x, P). In the present example, Xm [= X (l )

m − A(l )
m (P)]

stand for the proper coordinates of the total system of slower
particles and exhibit no noncommutative geometry.

We next examine the electromagnetic current. The mea-
surement of the transverse velocity as an anomalous Hall
effect implies that one adopts the measured electric current

jm ≡ −eẊ (l )
m = −eẊm − eȦ(l )

m = −eẊm − e

(
∂

∂Pk
A(l )

m

)
Ṗk .

(3.20)

9The issue of operator ordering appears when one replaces
{[Xk + A(l )

k (P)] ∂

∂Pm
A(l )

k (P) + ∂

∂Pm
A(l )

k (P)[Xk + A(l )
k (P)]} with 2 ∂

∂Pm

A(l )
k (P)[Xk + A(l )

k (P)]. This kind of ordering problem is common
in the operator formulation in quantum mechanics. In the present
case, A(l )

k (P) is of order O(h̄) and we are interested in the order
O(h̄) corrections to the equations of motion. We can thus ignore the
operator ordering issue which would give O(h̄2) terms.
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On the other hand, if one evaluates the current in the starting
Hamiltonian (3.1) by gauging the vector potential one has

Jk = − δ

δAk (X )
[H0(X, P + eAk (X ))

+ H1(x, p; P + eAk (X ))]
∣∣
Ak=0

= −e
δ

δPk
[H0(X, P + eAk (X ))

+H1(x, p; P + eAk (X ))]
∣∣
Ak=0

= −e
δ

δPk
[H0(X, P) + H1(x, p; P)]

= −eẊk (3.21)

using the equations of motion for the starting exact Hamil-
tonian. Thus the exact current before one makes any
approximation agrees with the time derivative of the slower
coordinates. If one recalls that the total wave function is given
by �(x, P) = ∑

l �l (x, P) = ∑
l ϕl (P)φl (x, P) and one is an-

alyzing the anomalous Hall effect in the subspace �l (x, P) =
ϕl (P)φl (x, P), one may expect the relation

d

dt

∑
l

A(l )
m (P) = 0 (3.22)

in (3.20). This fundamental property (3.22) is ensured by
(2.4) in the Lagrangian formalism, which states that the ex-
act evaluation of the fast system does not generate Berry’s
phase, combined with the adiabatic condition (2.10) which
implies the diagonal dominance. In the Hamiltonian formal-
ism one can argue the same conclusion directly from (3.11)
after a suitable regularization.10 The relation (3.22) implies
that the electric current conservation is satisfied when one
considers all the bands together, although the current con-
servation is generally modified for each band separately in
the Born-Oppenheimer approximation based on the canonical
commutators, if one adopts the current (3.20). This obser-
vation implies that the introduction of the electromagnetic
vector potential eAk (X ), which couples to the current, is not
straightforward in the Hamiltonian of the Born-Oppenheimer
approximation. This issue is analyzed in the next subsection.

B. Gauge symmetries of electromagnetism and Berry’s phase

The introduction of the electromagnetic vector poten-
tial Ak (X ) into the adiabatic Hamiltonian with Berry’s
connection does not proceed in a simple manner in the Born-
Oppenheimer approximation, which is defined by canonical
commutation relations. This complication is related to the
appearance of the noncanonical system in the common de-
scription of the anomalous Hall effect (1.3) with Berry’s
phase, since the Born-Oppenheimer approximation operates
in a canonical Hamiltonian formalism and a natural formu-
lation with both Ak (X ) and A(l )

k (P) would imply a canonical
system instead of the noncanonical system in (1.3).

10Intuitively, if one defines the completeness relation of φl (x, P)
by

∑
l φl (x, P)φ†

l (y, P′) = δ(x − y)δP,P′ , one has d
dt

∑
l Al (P) =

d
dt

∫
dx limy→x δ(x − y)(1/�P)[δP+�P,P − δP,P] = 0.

We comment on the origin of this complication from a
point of view of algebraic consistency in the framework of the
Born-Oppenheimer approximation. We start with the canoni-
cal universal coordinates of the slower system

[Xk, Xl ] = 0, [Xk, Pl ] = ih̄δkl , [Pk, Pl ] = 0. (3.23)

We define the covariant derivative Pk + eAk (X ) after gauging
the electromagnetic interaction and we define the covariant
derivative Xk + A(n)

k (P) after inducing Berry’s connection in
the Hamiltonian formalism. The gauge symmetry of Berry’s
connection is a measure of the validity of the adiabatic approx-
imation by constraining the coordinates of the slower system
to ϕn(P). We have

[Pk + eAk (X ), Pl + eAl (X )] = −ih̄e(∂kAl (X ) − ∂lAk (X )),[
Xk + A(n)

k (P), Xl + A(n)
l (P)

] = ih̄
(
∂kA(n)

l (P) − ∂lA(n)
k (P)

)
,[

Pk + eAk (X ), Xl + A(n)
l (P)

] = −ih̄δkl − e
[
A(n)

k (P), Al (X )
]
,

(3.24)

where the last relation complicates the analysis, although
all the commutation relations are controlled by the origi-
nal canonical commutation relations (3.23). The last relation
in (3.24) shows that the curvature on the right-hand side
is nonvanishing, which implies that the two gauge symme-
tries are not commuting.11 This algebraic complication is the
cause of the failure of the Born-Oppenheimer approximation,
which operates in the framework of the canonical Hamiltonian
formalism, in the presence of the electromagnetic potential
eAk (X ). In the Hamiltonian formalism in (3.15), if one gauges
the electromagnetic vector potential eAk (X ) by the minimal
gauge principle Pk → Pk + eAk (X ), one obtains

Hl = 1

2M
[Pk + eAk (X )]2 + Mω2

0

2

[
Xk + A(l )

k (Pk

+eAk (X ))
][

Xk + A(l )
k (Pk + eAk (X ))

] + El (Pk

+eAk (X )), (3.25)

but this is not consistent since Xk in eAk (X ) needs to be
replaced by the covariant derivative Xk + A(l )

k (P) in the
Hamiltonian formalism, ad infinitum.

We now show that the path-integral (Lagrangian) formal-
ism is flexible and show how it realizes the electric gauge
invariance by sacrificing the canonical quantization. One may
start with

L = PkẊk − Hl (X, P)

= PkẊk −
[

1

2M
P2

k + Mω2
0

2

[
Xk + A(l )

k (P)
][

Xk

+A(l )
k (P)

] + El (P)

]
, (3.26)

where Hl (X, P) is the Born-Oppenheimer Hamiltonian in
(3.15). One may then define the path integral∫

DPDX exp

{
i

h̄

∫
dt[PkẊk − Hl (X, P)]

}
, (3.27)

11Besides, it contains the term [A(n)
k (P), eAl (X )] which is nonlocal

and described by a Moyal product.
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which gives rise to the canonical commutation relations if the
BJL prescription is applied by assuming that Hl (X, P) is valid
for any motion of Pk and Xk ; cf. (2.24). One may next rewrite
this path integral as

∫
DPDX (l ) exp

{
i

h̄

∫
dt

[
PkẊ (l )

k + A(l )
k (P)Ṗk

−
(

1

2M
P2

k + Mω2
0

2
(X (l )

k )2 + El (P)

)]}
, (3.28)

where X (l )
k = Xk + A(l )

k (P) and we used DPDX = DPDX (l ).
The BJL prescription when applied to this path integral gives
rise to canonical [Xk, Xl ] = 0, [Pk, Pl ] = 0 and [Xk, Pl ] =
ih̄δkl , although with noncommutative geometry [X (l )

k , X (l )
n ] =

− h̄
i �

(l )
kn for the auxiliary variable X (l )

k . One may add an elec-

tromagnetic gauge-invariant term − ∫
dteAk (X (l ) )Ẋ (l )

k to the
action by hand; then one obtains

∫
DPDX (l ) exp

{
i

h̄

∫
dt

[
PkẊ (l )

k − eAk (X (l ) )Ẋ (l )
k + A(l )

k (P)Ṗk

−
(

1

2M
P2

k + Mω2
0

2

(
X (l )

k

)2 + El (P)

)]}
. (3.29)

The above extra electromagnetic coupling would be induced
from the minimally coupled Hamiltonian

(
1

2M
[Pk + eAk (X (l ) )]2 + Mω2

0

2

(
X (l )

k

)2 + El (Pk + eAk (X (l ) ))

)

by a change of the variable Pk + eAk (X (l ) ) → Pk if the term
A(l )

k (P)Ṗk should be absent, but in reality because of A(l )
k (P)Ṗk

the manipulation in Hamiltonian formalism does not work.
Note that the current to which the vector potential eAk (X (l ) )
at the point X (l ) couples is chosen as the current Ẋ (l )

k ; cf.
(3.20). The term − ∫

dteAk (X (l ) )Ẋ (l )
k is analogous to the

Wess-Zumino term by satisfying the gauge invariance by itself
in the Lagrangian formalism. See also (2.16). The Lagrangian
in (3.29), which is confirmed not to be quantized in a canon-
ical manner, agrees with (1.3) or (2.13) if one changes the
dummy path-integral variable X (l )

k → Xk and replaces the har-

monic potential by the scalar potential Mω2
0

2 (Xk )2 → −eφ(Xk ).
This analysis shows how the Lagrangian formalism maintains
the electromagnetic gauge invariance in the presence of eAk by
sacrificing the canonical formalism of quantum mechanics.

The Nernst effect is attributed to the noncanonical behavior
and a modification of the density of states D = (1 + e �B · ��)
[6], which is derived from the deformed commutators (1.4)
[8,17]; the same result is obtained by a more general treatment
of the action (1.3) [13] in a singular adiabatic limit (2.24),
namely, for any ordinary movements of slower variables in
(1.3). From a point of view of gauge symmetries, the Nernst
effect is regarded as a manifestation of the stricture of the
electromagnetic gauge symmetry when the slower freedom is
constrained to a specific nth state ϕn(P) in (3.4) by imposing
the gauge invariance of Berry’s connection, as we have seen
in the framework of the Born-Oppenheimer approximation

defined by canonical commutators.12 Note that the breaking
of the gauge symmetry of Berry’s connection would imply
that the adiabatic approximation is not accurate, while the
breaking of the electromagnetic gauge symmetry would imply
the inconsistency of the theory.

IV. DISCUSSION AND CONCLUSION

We attempted to understand why Berry’s phase defined in
the adiabatic limit leads to a noncanonical dynamical system
with deformed commutators that have been opened up by the
applications of Berry’s phase to the anomalous Hall effect.
We start with the derivation of the action (1.3) or (2.13) in
the path-integral (Lagrangian) formalism based on the generic
adiabatic condition

|En±1 − En| � h̄
2π

T
, (4.1)

where T stands for the typical timescale of the slower system
Xk , and En is the nth energy level of the fast system. Re-
gardless of the specific interpretations of the condition (4.1),
one can derive the equations of motion of the anomalous
Hall effect (1.1). In the conventional understanding of the
adiabatic condition by letting T → large with fixed energy
eigenvalues En of the fast system, the BJL prescription is not
applicable. But the conventional canonical commutation rela-
tions of slower variables are reproduced by applying the BJL
prescription to the original exact Lagrangian, which works
for the adiabatic as well as nonadiabatic motions. The same
conclusion is attained using an exactly solvable model of
Berry’s phase [19] which covers from the adiabatic domain
to the nonadiabatic domain. In this understanding of Berry’s
phase, no Nernst effect arises.

On the other hand, if one considers a singular limit of the
adiabatic condition

|En±1 − En| → ∞ (4.2)

with En fixed, the effective adiabatic Lagrangian is generally
converted to be a classical one (since the commutation rela-
tions are generally modified in this limit) and any ordinary
motion of the slower variables satisfies the adiabatic condition
(4.1). This singular limit changes the adiabatic Lagrangian,
such as (1.3) and (2.13), to a dynamical system which is
not quantized in a canonical manner in the presence of the
vector potential eAk (X ). One thus arrives at the deformed
commutation relations such as (1.4) and (1.5), which in turn
leads to the Nernst effect. In the absence of the vector potential
eAk (X ) = 0, one still encounters the noncommutative geom-
etry but dynamically one has a canonical system and thus no
Nernst effect.

In the Born-Oppenheimer approximation, which is de-
fined in a Hamiltonian formalism with canonical commutation
relations, one can derive the equations of motion of the
anomalous Hall effect (1.1) in the absence of the vector

12In the formulation in Sec. II, the singular limit of the adiabatic
condition (2.24) effectively constrains the system to a specific state
with En.
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potential eAk (X ) = 0 if one introduces the auxiliary variables

X (n)
k = Xk + A(n)

k (P), (4.3)

but no Nernst effect. In the Hamiltonian formulation of
the Born-Oppenheimer approximation, one cannot incorpo-
rate the vector potential eAk (X ) in a consistent manner. We
attribute this failure of the Born-Oppenheimer approxima-
tion in the presence of eAk (X ) to the incompatibility of
the gauge symmetry of Berry’s connection, which projects
the total system of �(x, P) = ∑

n ϕn(P)φn(x, P) to a spe-
cific subsystem ϕn(P)φn(x, P), and the electromagnetic gauge
symmetry which acts universally over all the subsystems of
�(x, P). Note that the variable (4.3) is a covariant deriva-
tive for the subsystem ϕn(P)φn(x, P) of this gauge symmetry
of Berry’s connection. We explicitly demonstrated that the
Born-Oppenheimer approximation, when converted to the La-
grangian (path-integral) formalism, can incorporate the vector
potential eAk (X ) in a gauge-invariant manner, but the resulting
action is not amenable to the conventional canonical formula-
tion of quantum mechanics.

We thus conclude that the equations of motion of the
anomalous Hall effect (1.1) are generally valid in the adi-
abatic limit, but the interpretation of the dynamical system
represented by the action (1.3) is more involved. The appear-
ance of the noncanonical dynamical system and the Nernst
effect is based on the deformation of the quantum principle to
incorporate the two incompatible gauge symmetries of elec-
tromagnetic vector potential and Berry’s connection.

From a point of view of practical applications, if one is
interested in a specific energy band and its intraband physics
in condensed matter physics, the choice of the singular limit
of the adiabatic condition (4.2) may be a sensible one. The
constrained dynamics of the slower system to the specific nth
state imposed by a singular limit of the adiabatic condition
combined with the vector potential eAk (X ) is then responsible
for the deformation of the canonical formalism which leads
to the deformed commutators and the Nernst effect in the
adiabatic action of the anomalous Hall effect.
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APPENDIX A: TWO-BAND MODEL AND COMMUTATION
RELATIONS

We illustrate that the general analysis in Sec. II works in
the simple Weyl model with an explicit form of Berry phase.
The model is defined by

H = −μ �p(t ) · �σ , (A1)

where �σ stands for the pseudospin that describes the upper
and lower crossing bands.

We thus start with the Schrödinger equation ih̄∂tψ (t ) =
Hψ (t ) or the Lagrangian (in the spirit of the second quan-
tization) given by [20]

L = ψ†(t )[ih̄∂t − H]ψ (t ), (A2)

where the two-component spinor ψ (t ) specifies the movement
of upper and lower levels which appear in the band-
crossing problem. In the present context, the fast variables
are given by the spin freedom ψ (t ) characterized by the
energy scale μ| �p(t )|, and the slower variables are given
by the angular freedom of �p(t ). For simplicity, we as-
sume the magnitude | �p(t )| to be time independent. We then
perform a time-dependent unitary transformation ψ (t ) =
U ( �p(t ))ψ ′(t ), ψ†(t ) = ψ ′†(t )U †( �p(t )) with U ( �p(t ))†μ �p(t ) ·
�σU ( �p(t )) = μ| �p|σ3. This unitary transformation is explicitly
given by a 2 × 2 matrix U ( �p(t )) = (v+( �p) v−( �p)), where

v+( �p) =
(

cos θ
2 e−iϕ

sin θ
2

)
, v−( �p) =

(
sin θ

2 e−iϕ

− cos θ
2

)
, (A3)

which correspond to the use of instantaneous eigenfunc-
tions of the operator μ �p(t ) · �σ , namely, μ �p(t ) · �σv±( �p) =
±μ| �p|v±( �p), where �p(t ) = | �p|(sin θ cos ϕ, sin θ sin ϕ, cos θ )
with time-dependent θ (t ) and ϕ(t ).

Based on this transformation, the equivalence of two La-
grangians is derived, namely, L in (A2) and

L′ = ψ ′†[ih̄∂t + μ| �p|σ3 + U ( �p(t ))†ih̄∂tU ( �p(t ))]ψ ′. (A4)

The starting Hamiltonian (A1) is thus replaced by [20]

H ′(t ) = −μ| �p|σ3 − U ( �p(t ))†ih̄∂tU ( �p(t ))

= −μ| �p|σ3 − h̄

(
(1+cos θ )ϕ̇

2
ϕ̇ sin θ+iθ̇

2

ϕ̇ sin θ−iθ̇
2

(1−cos θ )ϕ̇
2

)
. (A5)

We note that 2μ| �p| = |ε1 − ε2| in the notation of (2.10) in
Sec. II. The adiabatic condition (2.10) is thus written

2μ| �p| � 2π h̄/T, (A6)

where T is the typical timescale of the slower dynamical
variable and customarily taken as the period of the slower
dynamical variable (i.e., angular freedom) of �p(t ), and we
estimate ϕ̇ ∼ 2π/T . We thus have from (A5)

H ′
ad 
 −μ| �p|σ3 − h̄

(
(1+cos θ )ϕ̇

2 0

0 (1−cos θ )ϕ̇
2

)
. (A7)

Berry’s phase is given by the second term and one recognizes
the familiar monopole-like expression in the diagonal.13

The BJL prescription, whose essence is illustrated in
Appendix B, requires the condition

μ| �p| � 2π h̄/T = h̄ω (A8)

for the fixed μ| �p| to analyze the equal-time commutation
relations of slower variables. To see the implications of the
nonadiabatic condition (A8) explicitly, it is convenient to per-
form a further unitary transformation of the fermionic variable
ψ ′(t ) = U (θ (t ))ψ ′′(t ), ψ ′(t )† = ψ ′′†(t )U †(θ (t )) with [11]

U (θ (t )) =
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)
(A9)

13Berry’s phase in a realistic two-band model in condensed mat-
ter physics in the adiabatic limit has been analyzed in detail by
Nagaosa [21].
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in addition to (A4), which diagonalizes the dominant Berry’s
phase term. The Hamiltonian (A5) then becomes

H ′′(t ) = −μ| �p|U (θ (t ))†σ3U (θ (t ))

+ [U ( �p(t ))U (θ (t ))]† h̄

i
∂t [U ( �p(t ))U (θ (t ))]

= −μ| �p|
(

cos θ − sin θ

− sin θ − cos θ

)
− h̄

(
ϕ̇ 0
0 0

)
. (A10)

Note that the first term is bounded by μ| �p| and the second
term is dominant for the nonadiabatic case μ| �p| � 2π h̄/T .
We emphasize that both (A5) and (A10) are exact expressions.

The relation (A10) shows that Berry’s phase becomes triv-
ial for the nonadiabatic limit (A8) with fixed μ| �p| and thus no
modification of commutation relations by Berry’s phase.14

On the other hand, if one considers a singular limit 2μ| �p| =
|ε2 − ε1| → ∞ in the adiabatic criterion 2μ| �p| � 2π h̄/T in
(A6), the adiabatic formula (A7) becomes exact together with
an exact Dirac monopole for any movement of slower angular
variables. This condition with the present two-band model
leads to the action (1.3) with Ak = 0 and φ = 0. One would
thus obtain the noncommutative geometry (1.5)

[Xk, Xl ] = ih̄�kl . (A11)

We next show the absence of anomalous commutation
relations induced by Berry’s phase in the present two-level
crossing model if one analyzes the exact effective Hamilto-
nian without recourse to adiabatic approximations. We first
rewrite the exact formula (A5) as

H ′(t ) = −μ| �p|σ3 − h̄

(
(1+cos θ )

2
sin θ

2
sin θ

2
(1−cos θ )

2

)

× ϕ̇ − h̄

(
0 i

2−i
2 0

)
θ̇ , (A12)

which shows that θ̇ has no nontrivial conjugate variable in
the phase space. It vanishes when one integrates

∫
dtH ′(t )

to define the action. The variable ϕ̇ appears to have nontriv-
ial conjugate variables, which are Berry’s phases and their
off-diagonal partners, and thus could contribute to the mod-
ification of commutation relations. But one can confirm that
the matrix multiplying ϕ̇ has a vanishing determinant and a
unit trace,

det

( (1+cos θ )
2

sin θ
2

sin θ
2

(1−cos θ )
2

)
= 0,

Tr

( (1+cos θ )
2

sin θ
2

sin θ
2

(1−cos θ )
2

)
= 1, (A13)

independently of θ , which imply the eigenvalues 1 and 0 and
thus dynamically trivial. To see this fact explicitly, we refer to
the unitary equivalent (A10). We emphasize that both (A12)
and (A10) are exact expressions in the scheme of [20]; (A10)

14This property has been argued to be the case in [19] using an
exactly solvable model of Berry’s model [22].

is accurate in the nonadiabatic limit with the time derivative
term being diagonal.

The exact unitary equivalent (A10) shows that ϕ̇, which
multiplies would-be Berry’s phases and their off-diagonal
partners, does not have any nontrivial conjugate variable, and
thus does not contribute to the modification of commutation
relations. The first term in (A10) is essentially the same as
the starting expression (A1) if one considers the azimuthally
symmetric configurations. Thus would-be Berry’s phases and
their off-diagonal partners in a precise treatment generate no
extra nontrivial time-derivative terms in the action, and thus
give no anomalous commutation relations.

This fact agrees with the observation made in connection
with (2.8) in Sec. II. The second quantized part in (2.8) except
for the time derivative terms a�

n(t )ih̄∂t an(t ) corresponds to the
present (A10). If one sums over n and l in (2.8), the path
integral is reduced to the original path integral (2.4) without
any extra time derivative terms added, for which the canonical
commutation relations of slower variables are recovered by
the BJL prescription. This analysis shows that the anomalous
commutation relations of slower variables do not appear if
no adiabatic approximations are made in the sector of fast
variables.15

APPENDIX B: BJL ANALYSIS OF COMMUTATION
RELATIONS

The basic idea of the BJL prescription [15] is that the
equal-time commutator of operators A(t ) and B(t ) is de-
termined by the short-time limit of the correlation function
〈TA(t1)B(t2)〉 with t1 → t2, which implies the large-frequency
limit of the Fourier transform of 〈TA(t1)B(t2)〉. It is illustrated
how the BJL prescription works in the present context for
the simple case with eAk (X (t )) = 0. We start with the path
integral (2.12) but with eAk (X (t )) = 0, for which the path
integral is well defined quantum mechanically. We assume
that the adiabatic Lagrangian is extended to the nonadiabatic
domain of slower variables [by considering a singular limit of
the adiabatic condition (4.2)]

Zn =
∫

DPkDXk

× exp

{
i

h̄

∫ T

0
dt

[
Pk (t )Ẋk (t ) + Ak (P(t ))Ṗk (t )

−
(

1

2M
P

2
k + En(P)

)
+ eφ(X )

]}
. (B1)

15To be precise, there is a difference between (A12) and (2.8)
in Sec. II. In (2.8), the fast system and slower system are clearly
separated, while in the Weyl model (A12) this separation is not
perfect as is seen in (A10). Thus we have no Berry’s phase for the
exact evaluation of the fast system in (2.8), but we have a nontrivial
Berry’s phase for an exactly solvable model [22,23] which is close to
the Weyl model. The behavior of Berry’s phase at the nonadiabatic
limit is, however, similar in either case and becomes trivial as in
(A10) which is relevant when one analyzes the possible deformation
of commutation relations by the BJL prescription.
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To sketch a BJL prescription, we analyze a simplified system
instead of (B1),

L = PkẊk + Ak (P)Ṗk, (B2)

by ignoring the terms which do not modify the commutation
relations. We start with the free part L0 = PkẊk which gives
(2.3); the starting correlation functions are defined by16

〈T X k (t )P
l
(t ′)〉 =

∫
dω

2π
eiω(t−t ′ ) h̄ω

ω2 + iε
δkl ,

〈T X k (t )X l (t ′)〉 = 0, 〈T P
k
(t )P

l
(t ′)〉 = 0. (B3)

We use the conventional T product instead of the covariant
T � product since they agree in the present simple cases.
By multiplying the Fourier transform of the first relation∫

dte−iω(t−t ′ )〈T X k (t )P
l
(t ′)〉 = h̄ω

ω2+iε δkl by ω and taking the
limit ω → ∞, one obtains the standard commutation relations
[X k (t ), P

l
(t )] = ih̄δkl . Similarly, [Xk, Xl ] = [P

k
, P

l
] = 0 by

the BJL prescription.
We next use the term containing Berry’s phase L′ =

Ak (P)Ṗk as a perturbation. One then obtains the correction
term by the perturbation

〈T X k (t )X l (t ′)〉(1)

=
∫

DPkDXk{X k (t )X l (t ′)}

× exp

{
i

h̄

∫ T

0
dt[Pk (t )Ẋk (t ) + Ak (P)Ṗk]

}

16Feynman’s iε prescription is generalized by ε = ε1 + iμ2 using
two small positive parameters ε1 and μ2 to define the correlation
function precisely.

=
∫

dt1dt2〈T X k (t )P
k′

(t1)〉

×
{

δ

δP
k′

(t1)

δ

δP
l ′

(t2)

(
i

h̄

)∫
dsL′(s)

}
〈T P

l ′
(t2)X l (t ′)〉

=
∫

ds〈T X k (t )P
k′

(s)〉
(

i

h̄

)
�k′l ′ (s)〈T Ṗ

l ′
(s)X l (t ′)〉,

(B4)

where the curvature induced by Berry’s phase is written in the
form �k′l ′ (s). Using (B3), we thus obtain

∫
dte−iω(t−t ′ )〈T X k (t )X l (t ′)〉(1)

= h̄ω

ω2 + iε

(
i

h̄

)
�kl (P(t ′))(−ih̄). (B5)

Taking the limit ω → ∞ after multiplying both hand sides by
ω, one obtains the noncommutative geometry [6,13]

[X k (t ), X l (t )] = − h̄

i
�kl (P(t )). (B6)

It has been argued in [19] that (B6) is reduced to an or-
dinary canonical commutation relation, [X k (t ), X l (t )] = 0, if
one uses an exactly solvable model of Berry’s phase [22,23]
in the evaluation (B5).
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