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Transmission of a single electron through a Berry ring
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A theoretical model of transmission and reflection of an electron with spin is proposed for a mesoscopic ring
with rotating localized magnetic moment. This model may be realized in a pair of domain walls connecting two
ferromagnetic domains with opposite magnetization. If the localized magnetic moment and the traveling spin
is ferromagnetically coupled and if the localized moment rotates with opposite chirality in the double path, our
system is formulated in the model of an emergent spin-orbit interaction in a ring. The scattering problem for
the transmission spectrum of the traveling spin is solved both in a single-path and a double-path model. In the
double path, the quantum-path interference changes dramatically the transmission spectrum due to the effect of
the Berry phase. Specifically, the spin-flip transmission and reflection are both strictly forbidden.
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I. INTRODUCTION

As an elementary particle, an electron has two basic prop-
erties, namely the electric charge —e and the spin angular
momentum //2 (where /i is the reduced Planck constant).
The quantum transport of electrons in nanostructures form
a diverse field, which has been intensively studied in re-
cent decades [1]. One of the central issues in this subject
is the quantum coherence, or the quantum-path interference
observed in the transport of electrons in matter. In this con-
nection, ring structures of mesoscopic scale provide us with
fascinating playgrounds for quantum-path interference [2].

As a typical example, we may name the observation of the
Aharonov-Bohm (AB) effect in fabricated mesoscopic rings
of normal metals and semiconductors [3,4]. The oscillation of
the magnetoresistance with period //e was a manifestation of
the AB effect [5], which proves that the vector potential link-
ing the closed circuit is a real physical quantity that modulates
the quantum phase of the encircling electrons. It should be
noted that the AB effect originates from the electromagnetic
interaction of the point charge and is independent of the spin
degrees of freedom.

Another topic in this subject in recent years is the spintron-
ics in nanostructures of magnetic materials. In the absence of
external magnetic field, ferromagnetic materials are usually
divided into mesoscopic domains of ordered phase. In the
wall of neighboring domains with opposite magnetization, a
gradual rotation of the localized magnetic moments connects
the two domains continuously.
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In 1999, Ono and coworkers [6] reported, with an inge-
nious experimental setting, the observation of propagation of
the magnetic domain walls in submicronmeter size wires of
NiFe under the external magnetic field. After this, a number
of experimental studies have been devoted to the observation
and control of the motion of domain walls [7]. With the aim to
utilize the magnetic domain walls for the element of memory
and logic devices, the studies on the fabrication and measure-
ments of the nanowires of magnetic materials are accumulated
[8.9].

On the other hand, the transmission of electrons through a
domain wall has long been a subject of interest because the
interaction of electron spins and the localized magnetic mo-
ments will affect the transmission probability and thus plays
an important role of determining the macroscopic resistance
of such materials [10—17]. Theoretically, the spin-dependent
problem of transport has attracted attention not only for do-
main walls but also in various settings of mesoscopic systems
[18-23]. The effect of Rashba spin-orbit interaction [24]
in mesoscopic structures has also been studied for poten-
tial application to spin-interference devices [25-30]. From
theoretical interest, it may also be regarded as a kind of quan-
tum tunneling of a particle with internal degrees of freedom
[31-34].

In the present paper, we consider the transmission of a
single electron with spin through a single domain wall as well
as a pair of domain walls with opposite chirality of the local-
ized magnetic moment. For simplicity, the whole processes
are regarded as coherent processes, and we concentrate on
the calculation of the transmission and reflection probabilities
with spin-flip and spin-nonflip. The results derived here could
be incorporated into the Landauer-Biittiker formula [35,36]
to evaluate the currents in actual experimental data. It will
be shown that the spin-flip transmission through a coupled

©2022 American Physical Society
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(a)

FIG. 1. Model of (a) a single- and (b) double-domain walls in
ferromagnetic nanowires. The small arrows in the left and right leads
indicate the magnetization in the ferromagnetic regions. The shaded
region represents the domain walls. In the upper part of (a) and (b),
the rotation of the localized magnetic moments in each domain wall
is schematically shown.

double-domain walls with opposite chirality is totally forbid-
den. Furthermore, the spin-conserved transmission spectrum
shows a sharp oscillatory line-shape as a function of the inci-
dent energy. This is a result of the quantum-path interference
due to the Berry phase [37].

In the next section, the problem is formulated as a sim-
plified one-dimensional scattering problem for a single- and
double-path model of transmission lines. The calculation of
the transmission and reflection probabilities for the two mod-
els are done in Sec. III. Also, the eigenvalue problem is solved
for an isolated ring in that section. The conclusions are given
in Sec. IV.

II. MODEL

First, we consider transmission of an electron in ferromag-
netic nanowires through a single domain wall as shown in
Fig. 1(a). It is assumed that the left domain is filled with
localized magnetic moment with up direction and the right
domain with down. Actually in a very narrow ferromagnetic
nanowires, it is considered that the magnetic moment has an
easy axis parallel to the direction of the wire axis because of
the shape anisotropy [6]. For definiteness, we assume here the
up and down direction for the localized magnetic moments
in the domain. For the domain wall, there are typically two
kinds, the Bloch-wall [38] and the Neel-wall [39]. In the
Bloch-walls, the localized magnetic moments gradually rotate
from up to down within the plane perpendicular to the axis
connecting the two domains. In the Neel-walls, the localized
moments rotate within the plane containing the axis, which
connects the domains. We assume here the Bloch-type domain
wall.

It is assumed that the domain wall with length L connects
the left and the right domain along the y axis, 0 <y < L.
For the direction of the localized magnetic moment and the

electron spin, we introduce the (x, z) axes. Note that the axes
(x, z) are for the internal degrees of freedom, and should not
be confused with the dynamical variable y. However, it is
convenient to consider a set of variables (x, y, z) in order to vi-
sualize the spatial pattern of the magnetic moments as shown
in Fig. 1. We are interested in the probability of transmission
and reflection of an electron with spin, hereafter called a
traveling spin or simply a spin, interacting with the localized
magnetic moment. The wave function of the traveling spin is
written as

[V () = ay)lu) + b(y)ld), (1

where |u) and |d) are up-spin and the down-spin states, re-
spectively, and a(y) and b(y) are their amplitudes. We consider
a one-dimensional tunneling problem of the traveling spin
described by the Hamiltonian

wod:

Hy = m dy? +M.G, 2)
in which m is the effective mass of the electron, M is the
localized magnetic moment, and & are Pauli spin matrices,
G = (0y, 0y, 7). It is assumed that M is a smoothly varying
function of y. See Meijer [27] for the derivation of one-
dimensional model from a two-dimensional Hamiltonian in
the case of thin nanowires.

It is assumed that, in the domain wall, the traveling spin
and the localized moment M are ferromagnetically coupled
with the energy,

M -G = —My(cos 6o, — sin o), 3

where 6 is the angle of M with respect to the z axis, and M is
its amplitude of interaction with the traveling spin. This is the
sd-exchange interaction, which is originated from quantum
mechanical scattering processes [15], and should not be con-
fused with the classical electromagnetic interaction between
the magnetic moment of the traveling spin and the magnetic
field in the ferromagnetic material.

We may assign the chirality of the localized moment in
the Bloch wall. It is defined as the direction of rotation of M
viewed from behind along the y axis. We assign the chirality
+ to the domain wall in which the localized moment rotates
in the counterclockwise as shown in Eq. (3) and in Fig. 1(a).
It should be noted that Bloch walls with chirality — are also
possible in which the magnetic interaction is written as

M-G = —My(cos o, + sinfay). @)
In the left domain y < 0, the interaction is set to be
M -& = —Myo.,
and in the right domain,
M -G = Myo,.

In actual cases, the magnetic interactions with the traveling
spin may induce the change of the direction of M. This will
pose an interesting problem of the movement of the domain
wall caused by the current [12,40,41]. We assume, in the
present paper, that the localized moments are heavy enough
or intrinsically pinned [42] so that their direction is unaffected
by the back reaction from the traveling spin. The localized
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magnetic moments are considered to be a source of static
potential to the traveling spin. Furthermore, the angle 6 of the
localized moment is assumed to change as a function of y as
0(y) = (y/L)m for 0 < y < L. It is convenient to extend the
definition of 6 to —oo < 8 < oo. By introducing the unit of
energy Eoy = hi*m?/(2mL?), the Hamiltonian H is rewritten
into a very simple dimensionless form, H; = Hy/Ey as

e
H = —z T Vi(0). ®)
Here, the interaction V() is given by
V(@) = —uo,, 6 <0,
= —u(cosfo, —sinfo,), 0<O <
= uo,, w<6, (6)

with u = My/E, being the normalized magnetization. The
magnitude of x depends both on the magnetic interaction M,
and the width of the wall. Note that with this definition of
the variable 6, both the position of the traveling spin and its
interaction energy are expressed simultaneously by 6.

The Pauli matrices are written as

ox = |u)(d| + |d)(ul,
oy = —i(lu)(d| — |d)(ul),
|u) (u| — |d)(d]. (N

o;

In the two-vector representation of |u) and |d), they are ex-
plicitly written as

_ (0 1 (0 —i (1 0
%“=\1 o) *=\i o) %==lo -1)
and satisfy the well-known relations,

0,0, = i0;, 0,0, =i0y, 0,0, =Ii0,. 8)

Next, we will consider a case of transmission of a spin
through a pair of domain walls. It is assumed that these two
domain walls have an identical width and are isolated from
each other by a strip of nonmagnetic material or a void. This
type of nanostructures will be fabricated by connecting two
identical ferromagnetic nanowires to two common leads, and
by introducing domain walls to the two bridges. Although
this is a challenge, it will be achieved by the states of the art
fabrication technique of magnetic domain conduit [9].

We are interested in the interference of two paths of trans-
mission of a spin. The spacial pattern of localized moments in
the domain wall may have two choices with respect to the chi-
rality, either it is both the same or opposite each other. Since
the case of the same chirality is trivial, we concentrate here
on the case where the chirality is opposite, namely localized
moments rotate in the clockwise direction and anti-clockwise
direction in the respective domain walls as schematically
shown in Fig. 1(b).

Our model is clearly visualized by the transmission line
of a mesoscopic wire and a ring connected to it as shown in
Fig. 2(b). Note that these figures represent only the topological
equivalence to the configuration shown in Fig. 1(b).

Figure 2(b) reminds us of the well-known setting of the
quantum transport through the Aharonov-Bohm ring (AB-
ring) [3]. In the case of AB-ring, an essentially spinless

(a)

e/

(b)

4

FIG. 2. Model of transmission lines for (a) a single-domain wall
and (b) double-domain wall.

charged particle feels the gauge field due to the magnetic
flux, which is not in contact with the particle. This induces
a nontrivial structure in the transmission amplitude and per-
sistent currents through a mesoscopic ring of normal metals
[4]. In contrast, we study in the present paper the case of a
particle with spin but essentially no charge under the con-
tact interaction with the localized magnetic moments. It is
expected that the Berry phase [37] will play an essential role
in determining the transmission spectrum. In the next section,
we solve the scattering problem of a spin through a single-
path and a double-path transmission lines, and see how the
quantum interference in the Berry ring changes the spectra
dramatically.

III. CALCULATIONS

A. Single-path transmission

First, we solve the scattering problem through a single
path described by H,(0) for an incident electron with majority
spin, namely up-spin, coming from the left domain. In order
to achieve this goal, the eigenvalue problem for H(6) in the
domain wall is solved. The eigenstate |y (6)) is written as

in a 2-vector, and we have

W(O) = aO)lu) + bO)Id) = (Zg;) ©
d* (a cos®
T de2\b) M\ —sino

—sinf \ (a a
—cos 9) (b) - E<b> (10)
for the eigenvalue E.

In order to solve the eigenvalue problem in the domain
wall, we introduce an SU(2) gauge field with the unitary
transformation [11],

H,(6) = U(0)H,0)U(6), (11)
[V(0)) = U@y (6)), (12)
where
Uu®)= ;0 = 91 sin 2 13
(0) =exp —lzdy —cosz —151n§oy, (13)
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FIG. 3. Dispersion relation for the energy as a function of ¢ in
the domain wall with (a) u = 0.1 and (b) & = 5.

and where 1 indicates the 2 x 2 identity matrix. The trans-
formed Hamiltonian for 0 < 6 < 7 is written as

Hy(® A ! 14
s()—_ﬁ_lay@'i'z_ﬂar (14)
This unitary transformation induces the change of coordinate
system from the space-fixed frame to that rotating along the
direction of the instantaneous magnetic moment. If the cou-
pling constant w is much larger than unity, the spin-flipping
term proportional to o, in the right-hand side of Eq. (14)
may be negligible, so that the traveling spin will follow the
localized magnetic moment adiabatically. We call this new
frame of coordinate a rotating coordinate. It should be noted
that the second term of Eq. (14) is given as a product of
momentum and the spin variable. This is regarded as repre-
senting a kind of emergent spin-orbit interaction introduced
by a gauge transformation with U (6).
Since H,(6) does not contain the variable @ in the potential
term, we can solve the eigenvalue equation

Hy(O)1Y(0) = E|y(9))
by the method of characteristics. Putting
(0)) = " (alu) + bld)), (15)

for constants a and b and for complex ¢, we find

. 1
(¢° — wa — igh = (E - Z)a’

1
iga + (¢ + p)b = (E - Z)b’ (16)
which leads to the eigenvalue equation,
1\2
(E—qz—z) —u?—¢*=0. 17)

The above equation has solutions,

E=Ei(qmn)=q+73E£V@+u> (18)

The upper branch E = E (g) always has a minimum at
g = 0, while the point ¢ =0 is a minimum point in the
lower branch £ = E_(gq) for the strong coupling u > ;11, but
it becomes a local maximum point for weak coupling p < %.
In Fig. 3, two examples of the dispersion curves are shown.
Inversely, for a fixed value of energy E, the eigenvalues of the
wave number ¢ are obtained by solving the equation (18). This
gives a quartet of generally complex numbers ¢ = +¢q, £ ig;,

1/4

FIG. 4. Phase diagram for the values of ¢ in the (E, u) plane.
The dispersion relation £ = E(g, i) has solutions g with (a) four
complex numbers, (b) four real numbers, (b’) four pure imaginary
numbers, (¢) two real and two pure imaginary numbers, and (d) two
real positive and two real negative numbers. The shaded area is
unphysical region.

where ¢, and g; are real numbers. With an inspection of the
solution of the quadratic equation of ¢, the phase diagram
representing the nature of ¢ is obtained as plotted in Fig. 4.
The (u, E) plane is divided into five regions according to
the character of g, namely, (a) —u < E < —u?, four com-
plex numbers, (b) —u? < E < % — ., and p < 1, four real
numbers, (b') —pu? < E < % — wand % < w, four pure imag-
inary numbers, (c) % —u<E< % + i, two real and two
pure imaginary numbers, and (d) % + u < E, tworeal positive
numbers and two real negative numbers.

It should be noted that the spin-conserved transmission
becomes allowed energetically for u < E, with the boundary
shown by a thin straight line in the region c. In the region
satisfying the conditions, u <E < pu+ + and —u + 1 <E,
there are two evanescent states in addition to two propagat-
ing states in the domain wall, even though both the up-spin
and down-spin states are energetically allowed to exist here.
We solve the scattering problem of the traveling spin under
the condition that an up-spin comes from the left domain
with energy E(> —u) and momentum gy = +/E + . Note
that the direction of the magnetic field is reversed from up
in the left domain to down in the right domain. Therefore,
the spin-conserved transmission |u) — |u) is allowed ener-
getically only for u < E, while the spin-flip transmission
|luy — |d) is allowed for —uu < E. For a given incident energy
E, the four eigenstates in the domain wall are written as

[91(0)), 192(0)), 193(0)), 1¥4(0)), where
9,(0)) = e (ajlu) + bjld)), j=1,2,3,4, (19)
in which a; and b; are determined by Eq. (16) as

a; = iqj, (20)
bj=—(e;+p), j=12.734, 2h

with
e]=E—qf—%, j=1,2,34. (22)
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The eigenfunction in the space-fixed coordinate is given by

[¥;(0)) = UTO)|¥;(0))
= ¢4/? cz~c:0s§—|-lrsing |ut)
A )

0 0
+ (—a.,- sin 3 +bjcos 5) |d) }, (23)

where we used the relations

50 u) % 14y — sin 21y
e Ylu) = cos —|u) — S1in — .
2 2

i?

0 (7]
2% |d) = sin §|u) + cos §|d)' 24)

The wave function |\W(6)) in the domain wall is then expressed
as

4
(W(©)) =) vil¥;6)), (25)

j=1

where y; are unknown parameters to be determined.

There are two cases according to the incident energy: In the
case 1 where u < E, both of the spin conserved and spin flip
transmission and reflection are allowed energetically. In the
case 2 where —u < E < u, only the spin flip transmission
and spin conserved reflection are allowed.

To begin with, we discuss the case 1. The wave function
|W;(0)) in the left domain (6 < 0) has the form

[W(0)) = (7 + re ) u) + pe ™ |d),  (26)

in which r is the amplitude of spin conserved reflection and
p is the amplitude of the spin flip reflection, and ¢ and k are
given by

g =vVE+p, 27
ko = VE — . (28)

In the right domain (& < 6), the wave function |W,(0)) is
given as

| (0)) = 10 d) 4 0"y, (29)

in which ¢ is the amplitude of spin flip transmission and
n is the amplitude of spin conserved transmission. The un-
known 8 parameters (y1, ¥2, ¥3, V4, I, t, p, 1) are determined
by the continuity condition of |W;(#) and their derivatives at
the boundaries, & = 0 and 6 = 7, for up-spin and down-spin
components. These give § linear simultaneous equations for 8
unknowns, which are solved by the inversion of matrices. The
probability of spin-conserved transmission 7}, 4 and spin-flip
reflection R4_, | are given by

ko
Typ = —nl?, (30)
q0

k
Ry, = q—2|,0|2’ €19}

respectively. The probability of spin-flip transmission T;_, |
and spin-conserved reflection Ry_, 4 are given by

Tioy =t (32)

Ry = Ir2, (33)

T, (a)
0.8 o
0.6
F
0.4
0.2 TT*)T
0.0

0 20 40 60 80 100

FIG. 5. Transmission spectra in a single domain wall with
(@) u=1and(b) u=5.

respectively. For the case 2 below threshold —u < E < p,
the same argument is proceeded with the only change that
the propagating states become evanescent states so that ky is
replaced by —ikg with kg = v/ — E.

In Fig. 5, two examples of the calculated transmission
probabilities 73,4 and T}_, | through a single domain wall are
presented. In Fig. 5(a) the results for relatively weak-coupling
case i = 1, and in Fig. 5(b) an intermediate-coupling case
u =5 are shown. The reflection probabilities are small and
not shown here. Note a sharp structure in 73_,4 just above
the threshold energy £ = p in Fig. 5(b). This is a resonant
transmission due to the existence of evanescent states in the
domain wall, as discussed above.

B. Isolated Berry ring

We proceed to our main target: the study of transmission
and reflection of a spin through double path domain walls, or a
transmission line of Berry ring. First, we solve the eigenvalue
problem for an isolated ring, where the radius R and the polar
angle @ are defined as shown in Fig. 2. The width L of the
domain wall discussed in the Sec. III A is given by L = R.
The Hamiltonian H, for the isolated ring is given by

2

Ho=——
do?

+ V.(6). (34)
Here, the interaction potential V,.(0) is given by
V.(0) = —u(cosfo, —sinfao,), 0<L 0O <27, (35)

By the unitary transformation U () = e~ 29 the Hamiltonian
is transformed into

i d i Y
H,(0) = _<_ + _Uy> — 1Oz, (36)

155117-5



MASEIM BASSIS KENMOE AND YOSUKE KAYANUMA

PHYSICAL REVIEW B 105, 155117 (2022)

200
150
£ 100
o) _—
& —
00— ———
—
————
==

0 5 10 15
y7;

20 25

FIG. 6. Eigenenergies in an isolated Berry ring as a function of
(. The red lines are lower branch E_(g, 1) and the blue lines are the
upper branch E, (g, ). The parameter ¢ is an orbital angular mo-
mentum, which takes quantized values (n + %), n=0,1,2,....

as before. The eigenvalues are given by

Es(g. ) =¢+ i £V + ¢, 37)
with the eigenfunctions in the rotating coordinate,
Vs 4(0)) = €7 (as g|u) + by 4ld)), (38)
in which
a4 = Ciqiq, (39)
byg=—Cign£Vu?+4q%), (40)

where C. , is the normalization constant. The space-fixed
coordinate representation is given as

1Y 4(0)) = UT(0)Y+.4(0))

) 0 0
= (' { (ai,q cos > + by 4in 5) |u)

0 1%
+ (—ai,q sin 3 + b 4 cos 5) |d) } 41

From Eq. (41), we find

Va4 (27)) = =€ |3rs 4(0)). (42)

The factor —1 is nothing but the Berry phase factor, while the
factor ¢/>" is the dynamical phase factor. The eigenvalue of ¢
is determined by the continuity condition,

[V+,4(0)) = [+ 4(27)). (43)

From Eqs. (42) and (43), the allowed values of g are quantized
as

1
q::l:<n+§>, n=0,1,2,.... 44)

The quantum number g determines the wave form of rota-
tional motion of the electron. Each eigenstate is two-fold
degenerate according to the sign of g. This is a result of the
time-reversal symmetry of our Hamiltonian.

In Fig. 6, the u dependence of the eigenenergies is plotted.
The red lines correspond to the lower branch and the blue ones
to the upper branch. Each level is composed of the two-fold

degenerate levels corresponding to the signs of ¢ = +(n + %).
The quantum number ¢ may be regarded as an orbital angular
momentum in the mesoscopic ring. A curious thing is that it
takes half-integer values to compensate the Berry phase due
to the spin part.

Note that, in the limit p — 0, the -eigenenergies
Ei (g, ) in Eq. (18) tend to distinct values E,(g,0) =
(n+1)?and E_(q,0) =n>forg =n+ 1, and E, (¢, 0) = n®
and E_(q,0)=(n+ 1) forg=—(n+13),n=0,1,2,....
Therefore, at i = 0, the eigenstates corresponding to n” are
four-fold degenerate for n > 1, and two-fold degenerate for
n = 0. This is natural because, at © = 0, the eigenstates of the
electron in the ring are degenerate with respect to the sign of
the orbital angular momentum and the sign of the spin.

The expectation value of the spin direction at 6 is calcu-
lated as

(02) = (Vg (O)|0:| Y 4 (0)) = (lasq* — b ) cos O, (45)

(02) = (Y g(DNox Y1 4(0)) = —(lax.q* — b)) sin6. (46)

We may define the chirality of the spatial pattern x} of the
traveling spin by the sign of (|ax4|* — b% ) for each eigen-
state. Inserting (39) and (40), we find x} <0 and x* > 0.
This means that the traveling spin in the lower branch follows
the spatial pattern parallel with the localized magnetic mo-
ment, and that in the upper branch antiparallel to it. As the
interaction u is switched on, the degeneracy is lifted accord-
ing to the relative relation of the chirality of the traveling spin
x°® and the chirality of the localized moment. This may be
regarded as the emergent spin-orbit interaction.

For n > 0 (n <0), the traveling electron in the lower
branch rotates in the counterclockwise (clockwise) direction
in the ring with counterclockwise (clockwise) rotation of the
spin. These are persistent currents. However, because their
eigenenergies are degenerate, they form a pair of standing
waves. The absence of persistent currents in an isolated Berry
ring is a result of time-reversal symmetry.

We define a cosine-like and sine-like standing wave states
for both of the lower and upper branches as

1
Wi o(0)) = Z- (V. (0)) — [~ (9))). 47

1
W () = E(hpzt,q(e)) + [Ye,—4(0)). (48)
These states satisfy the conditions:

Wi c(0)) = Wi (27)) = Cx gqlu),
Wi, () = Ci,g(—1)"bs glu), (49)

Wi (0) = [Wi,s(2m)) = Ci gbs q4ld),
W () = Ciqq(—1)"qld). (50)

Equations (49) and (50) imply that the spin-flip transmission
through a Berry ring is totally forbidden if the leads are
connected at 8 =0 and 6 = &. In Fig. 7, an example of the
spin profile for the cosine-like state g = 10 + % is shown. As
shown here, an electron confined in a Berry ring occupies a
standing-wave state with its spin winding along the ring.
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FIG. 7. Spin resolved amplitude of the cosine-like standing
waves in the isolated Berry ring for (a) weak-coupling case, u = 1
and (b) strong-coupling case p = 5. The red lines are the up-spin
amplitude and the blue lines are the down-spin amplitude. Only the
half cycle 0 < € < 7 is plotted here.

C. Double-path transmission

We calculate the probability of transmission and reflec-
tion of a traveling spin through a pair of domain walls by
the simplified model of a Berry ring with attached leads as
shown in Fig. 2. For that purpose, it is more convenient to
redefine the variable 0 in the top-side path as 2w — 6 — 0.
For the sake of economy of notation, we use the same vari-
able 6, (0 < 0 < ) both for the top-side path of the ring
and the bottom-side path of the ring measured from the left
vertex.

The Hamiltonian for the double-path transmission H is
written as

2

d
H; =——+4V;00), 51
4= =3+ Va®) 51)

where V,;(0) is defined as

Vi(0) = —u(cosbo, —sinfo,), 0<O < (52)
in the bottom-side path and

Vi(0) = —u(cosbo, +sinfao,), 0<O < (53)

in the top-side path. For 8 < 0 and = < 6, V;(0) is the same
as Vs(0),

6 <0,
T <0. (54)

Va(0) = —po,
= KOz,

The eigenfunctions for the bottom-side path [{/7(9)), j =
1,2, 3, fl in the gauge transformed coordinate are the same as
those [v/;(#)), which are obtained in the previous subsection.

The eigenfunctions in the top-side path |1ﬁ}(9)) are given by
the same argument as

[W4(0)) = €% (ajlu) — bjld)), j=1,2,3,4 (55

Note the difference in the sign before b;. The corresponding
eigenfunctions in the original space-fixed coordinate are given
by

[W7(0) = U O)F76))
= eiqje{<ajcos§ + bj sin §>|u)
in? b 0 d 56
—|—(—ajsm§+ jcos§)| Yo (56)
[¥5(0)) = UT(=0)|¥(0))

. 0 0
= etqj9{<aj cos 5 + bjsin E)Iu)

0 0
+ <ajsin§ —bjcos§>|d)}, j=1,2,3,4,
(57)

respectively,

We calculate the transmission and reflection probability of
an up-spin coming from the left lead with energy E(= w).
The wave function in the left lead |\V;(6)) and the right lead
|W,(0)) are given by the same form as Eq. (26) and Eq. (29).
The wave functions in the bottom-side path and the top-side
path are given by

4
(W,(0)) = ) el 6)), (58)
=1
J4
W,(0)) =Y Bylyr0)), (59)

j=1

respectively. The 12 unknown quantities (¢, 7, p, 7,
o1, 0y, 03, A4, B1, B2, B3, Bsa) are determined by the continuity
conditions and the conservation of current at 6 =0 and
0 =m,

[W1(0)) = [W,,(0)) = |¥,(0)),
|;(0)) = |¥;,(0)) = [¥(0)), (60)

and

W () = |Wp()) = Wi (7)),
W7 (r)) = ¥, () = [W (7)), (61)

where the dash means the derivative with respect to 6.
Equations (60) and (61) constitute a set of 12 conditions
for the coefficients of |u) and |d). It is found that these si-
multaneous equations are greatly simplified if one notes the
symmetry properties of the solution. We setA; = «; + 8; and
Bj = a; — B, and compare the coefficients of |u) and |d) on
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FIG. 8. Spin-conserved transmission spectrum for the incident
up-spin in the Berry ring with 4 = 1 and u = 5.

both sides of the equations. Eliminating r, ¢, p and n, we find
that A; and B; are decoupled as

1
Z (61/‘ + EQO)QJAJ =2q, (62)
! 1

> e (qj - Eko)bjAj =0, 63)

J
> biA; =0, (64)

i

Zelqj”ajAj = 0, (65)

J
for A; and
1
Z (61;‘ + Eko)bij =0, (66)
g 1
Ze"’f’” (qj - E(IO)aij =0, ©7)
i
> a;B; =0, (68)
J

Zeiqf”bij =0, (69)

J

for B;. Another 4 equations determine the transport coeffi-
cients,

1
r=—1+§;Ajaj, (70)

1
p=3 ;B,-b,-, (71)

,u=10

0 50 100 150 200 250 300

0 50

100 150 200 250 300
E

FIG. 9. Spin-conserved transmission spectrum for the incident
up-spin in the Berry ring with © = 10 and ¢ = 15.

1 .
= —z ZB_,'e’qf'”qjaj, (72)
J
1 -
n=5 > A7 q;b;. (73)
J

In the above equations, the index j runs over j = 1, 2, 3, 4.
From Egs. (66) to (69), we find immediately

Bj=0, j=1234, (74)

namely, an antisymmetric current (circular current) is not
induced in the ring. Then from Eqgs. (71) and (72), we find
p =0 and ¢ = 0. This means that if the incident spin is up,
the spin-flip transmission and reflection are strictly forbidden.
Specifically, if the incident energy of the up-spin is below
threshold —pu < E < p, the transmission to the right domain
is totally forbidden.

In Figs. 8 and 9, the numerical results of the transmission
spectrum T;_,, are shown for weak- and intermediate-
coupling cases, and for strong-coupling case. The spin-
conserved reflection Ry_, 4 are given by

Ryt =1 =Thy.

As shown in the figures, the transmission spectra have struc-
tures of repeated peaks and sharp dips. The peak of the
transmission are due to the resonant transmission by the eigen-
states shown in Fig. 6. The value of E at sharp zero points are
given by E = n, n=1,2,3,... numerically exactly. This
dips and zeros are attributed to the destructive interference
due to the two-resonant transmissions. This ordered structure
is disturbed in the strong coupling case shown in Fig. 9, at
about £ =45 in pu = 10 and £ = 55 in p = 15. The origin
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FIG. 10. Spin-conserved transmission spectrum for the incident
minority down spin in the Berry ring with u = 5 and p = 10.

of this disorder may be assigned to the degeneracy of the
eigenstates with opposite chirality as shown in Fig. 6. Com-
paring these results with those for a single-path case shown
in Fig. 5, we can see how the quantum-path interference in
the Berry ring changes dramatically the structure of trans-
mission and reflection of a traveling spin. It is noticeable
that, if one neglects the fine interference structures, the gross
features of the line shape of T)_.4 for the double paths are
in agreement with those for a single-path case as can be seen
comparing Fig. 5 and Fig. 8. In Fig. 10, two examples of the
transmission spectra for the incident minority spin, namely
T,_,, are shown. The features of resonant transmission and
antiresonant dips are qualitatively the same as those for the
incident up-spin case. Specifically, the energies of zero point
of transmission are the same, E = n®. This means that at
this special values of energy, the Berry ring, or the double
domain walls in ferromagnets work as a complete insulator
of electrons.

IV. CONCLUSIONS

In the present paper, we studied theoretically the trans-
mission of an electron with spin through domain walls
in ferromagnetic materials. The one-dimensional scattering
problem through a domain wall was formulated as a trans-
port problem in transmission lines. Especially, the coherent
transmission through a pair of domain walls with opposite
chirality of the magnetic moment is clarified by a simplified
model of one-dimensional line containing a ring with Berry
phase. For a closed circuit, an analogy of the orbital angular
momentum and the emergent spin-orbit interaction was intro-
duced by an SU (2) gauge transformation. It was shown that
the quantum-path interference due to the Berry phase effect
greatly modifies the transmission spectrum of the electron
from that of a single-path setting.

In experiments, the Fermi energy of the electrons will be a
variable external parameter by changing the applied voltages.
Then spin-dependent drastic changes of the transmission am-
plitude as shown in Figs. 8 and 9 will be a signature of the
Berry phase effect.

It was shown that, unlike the Aharonov-Bohm ring, per-
sistent current does not exist in the Berry ring because of
the time-reversal symmetry. The coexistence of Berry phase
effect and the Aharonov-Bohm effect will be an interesting
subject in future. It will be worthwhile to clarify the effect of
the magnetic flux linking the Berry ring.

In the present paper, it is assumed that the transport of
the electron is ballistic and all the process is coherent. In
actual experimental settings, the existence of impurities and
disorders will be inevitable. Since the sharp resonance and the
antiresonances in the transmission spectrum is a result of the
interference effect in the double paths, the inelastic scattering
will have a tendency to destroy the structures. The effect of
the elastic scatterings by the disorder, on the other hand, will
pose interesting problems such as the weak localization and
universal conductance fluctuations in the presence of Berry
phase effect.
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