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We construct a single-particle Green function, which can identify topological phases of interacting systems.
The Green function is defined by an effective Bloch Hamiltonian, which is equal to the inverse of the full Green
function of interacting particles at zero frequency. Topological phases of interacting systems can be detected by
the coincidence of the poles and the zeros of the diagonal components of the constructed Green function. The
crosses of the zeros in the momentum space are also a signal of nontrivial topological phases. As a demonstration,
we identify the topological phases in a minimal model of magnetic insulators. The model describes the double
exchange process between itinerant electrons and magnetic moments in the presence of the spin-orbital coupling
and the ionic potential of the itinerant electrons. The identification of topological phases by the zero’s crosses is
consistent with the topological invariant. We also found an antiferromagnetic state with topologically breaking of
the spin symmetry, where electrons with one spin orientation are in topological insulating state, while electrons
with the opposite spin orientation are in topologically trivial one.
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I. INTRODUCTION

Topological phases of interacting systems have attracted
a lot of research attention [1,2]. The long-range ordering es-
tablished by the particle interactions may intriguingly impact
on the topology of the ground state, and as a result exotic
states may emerge. One of the most fundamental methods
for solving the many-body problem of interacting particles
is the Green function method [3]. It has widely been used
and has many successful applications, ranging from high-
energy physics to condensed matters. While the dynamics
of interacting systems can closely be determined by the
Green function, the presence of particle interactions com-
plicates determining the topological invariant. When the
interactions are present, the Hamiltonian of the systems is
no longer the single-particle one, and it cannot define the
topological invariant in the same way as the noninteracting
Hamiltonian does. However, the topological invariant can still
be expressed in terms of the single-particle Green function,
but the general formulas for the topological invariant are
rather complicated [4–7]. Fortunately, they were simplified
by using the Green function at zero frequency [8–10]. The
inverse of the Green function at zero frequency can play
like an effective single-particle Bloch Hamiltonian, that could
define the topological invariant of interacting systems [8–10].
This approach has widely been used to identify the topological
phases of interacting systems [1,11–17]. Alternatively, the
role of the zeros and poles of the single-particle Green func-
tion in the relation with the topological phase transition was
also noticed [18–21]. The topological invariant corresponds
to the zeros of the Green function at the edge, and one can

use the zeros to identify the topological phases in interacting
systems [18–21].

Recently, a fundamental relation between the eigenvectors
and the eigenvalues of Hermitian operator is rediscovered
[22]. The eigenvector-eigenvalue relation shows the equiva-
lence between the vanishing of the Bloch wave function and
the coincidence of the poles and the zeros of the diagonal
components of the Green function in the noninteracting sys-
tems [22,23]. On the other hand, the zero points of the Bloch
wave function are the source of nontrivial topology of the
systems. In particular, in two-dimensional gapped systems,
they give nonzero integer contributions to the quantum Hall
conductivity [24–26]. Misawa and Yamaji showed a close
relation between the coincidence of the poles and the zeros
of the diagonal components of the Green function and the
zero’s crosses in the momentum space [23]. Therefore, the
crosses of the zeros of the diagonal components of the Green
function can be used as a signal of nontrivial topology [23].
This approach can be used as an alternative and simple method
to identify the topological states. The zero’s crosses are more
simply determined and analyzed than the topological invari-
ant or edge modes. However, the approach is limited to the
noninteracting systems.

The aim of the present paper is twofold. First, we extend
the approach, proposed by Misawa and Yamaji, to interacting
systems. We construct a single-particle Green function, which
can determine the topological phases of interacting systems. It
is defined by an effective Bloch Hamiltonian, which is equal
to the inverse of the original Green function at zero frequency.
The coincidence of the poles and the zeros of the diagonal
components of the constructed Green function in the momen-
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tum space is the source of nontrivial topology of interacting
systems. The zero’s crosses in the momentum space can be
used to identify the topological phases of interacting systems.
In interacting systems, the topological invariant or the edge
modes are not simply determined and analyzed. However, the
momentum dependence of the zeros or the poles of the diag-
onal components of the constructed Green function is simply
determined and analyzed. The topological phase identification
by the zeros behavior is an alternative and simple method
to investigate the topology of interacting systems. In contrast
to the previous studies [18–21], where the zero-energy zeros
of the full Green function of interacting particles are used to
determine the topological phases, in our proposed approach,
the nontrivial topology of interacting systems is determined
by the zeros of the generalized Bloch wave function, and it
is consistent with the crosses of the zeros of the diagonal
components of the constructed Green function in the momen-
tum space. In addition, in contrast to the zeros of the Green
function, the zeros the diagonal components of the constructed
Green function are still present in the noninteracting case
[23]. The second aim of the present paper is to investigate
the topological phases of magnetic insulators in the presence
of the spin-orbital coupling (SOC). The magnetic topological
insulators (MTIs) have attracted a lot of research attention
due to the emergence of nontrivial topology and magnetism as
well as the high potential of their applications in science and
technology [27,28]. The spontaneous magnetization can play
like an external magnetic field, and it can give rise to the quan-
tum anomalous Hall effect [27,28]. In the previous studies, we
proposed a minimal model for the MTIs [13,14]. It is based on
the Kane-Mele and the double exchange models [29,30]. In
the proposed model, the SOC causes a topologically nontrivial
insulating state, while the spin exchange between itinerant
electrons and magnetic moments gives rise to a magnetic
ordering [13,14]. The interplay between the SOC and the spin
exchange results in the coexistence of nontrivial topology and
magnetism. In particular, the quantum spin Hall (QSH) effect
is observed in the antiferromagnetic state [13,14]. However,
in the previous studies the ionic potential of itinerant elec-
trons was not considered [13,14]. It is originally present in
the Kane-Mele model [29]. The ionic potential breaks the
sublattice symmetry and drives the topological insulator to
topologically trivial one [29]. Both the spin exchange and the
ionic potential preserve the topological symmetry between the
electron spin orientations, i.e., electrons of both spin orienta-
tions simultaneously form either topological or topologically
trivial insulators [13,29]. However, we find that the mutual
interplay between the ionic potential and the spin exchange
can give rise to a topologically breaking of the spin symme-
try. Electrons with one spin orientation form a topological
insulator, while electrons with the opposite spin orientation
form another topologically trivial insulator. As a demonstra-
tion of the proposed method, we identify the topological
phases by the crosses of the zeros of the diagonal compo-
nents of the proposed Green function. The phase topology
identification is consistent with the topological invariant of the
phases.

The paper is organized as follows. In Sec. II we construct
a single-particle Green function, which can describe the topo-
logical nature of interacting systems. In Sec. III we present

a demonstration of using the topological Green function to
identify the topological nature of magnetic insulators. Finally,
the conclusions are presented in Sec. IV.

II. TOPOLOGICAL GREEN FUNCTION

We consider a general many-body interacting fermion
system. We assume that Hamiltonian of the system can be
separated into noninteracting and interacting parts, i.e.,

H = H0 + H1, (1)

where H is Hamiltonian of the system, and H0 (H1) is its
noninteracting (interacting) part. We also assume that the non-
interacting Hamiltonian is quadratic, i.e.,

H0 =
∑
iα, jβ

c†
iαhiα, jβc jβ, (2)

where c†
iα (ciα) is the creation (annihilation) operator for

fermion at lattice site i with quantum index α. α may in-
clude the spin, orbital, sublattice... indices. When the periodic
boundary conditions of the lattice are imposed, the noninter-
acting Hamiltonian can be rewritten in the momentum space

H0 =
∑
k,αβ

c†
kαhαβ (k)ckβ. (3)

ĥ(k) is the so-called Bloch Hamiltonian (we use the hat
symbol to denote the matrix form). The fermion dynamics
can be analyzed through the Green function. We consider the
Matsubara Green function

Giα, jβ (iω) = −
∫

dτ 〈T ciα (τ )c†
jβ〉eiωτ , (4)

where iω is the (imaginary) Matsubara frequency. In the zero-
temperature limit the discrete Matsubara frequency becomes
continuous. The noninteracting Green function can be repre-
sented through the eigenvectors and eigenvalues of the Bloch
Hamiltonian

giα, jβ (iω) =
[

1

iω1̂ − ĥ

]
iα, jβ

=
∑

n

ψ (iα)
n

[
ψ

( jβ )
n

]∗

iω − en
, (5)

where ψ
( jβ )
n is the ( jβ )th component of the eigenvector ψ̂n of

ĥ and en is its corresponding eigenvalue, i.e.,

ĥψ̂n = enψ̂n. (6)

In the momentum space, the noninteracting Green function
reads

gαβ (k, iω) =
[

1

iω1̂ − ĥ(k)

]
αβ

=
∑

n

ψ (α)
n (k)

[
ψ (β )

n (k)
]∗

iω − en(k)
, (7)

where ψ̂n(k) and en(k) are the eigenvector and eigenvalue of
ĥ(k)

ĥ(k)ψ̂n(k) = en(k)ψ̂n(k). (8)

ψ̂n(k) is just the Bloch wave function, and en(k) describes
the energy band of noninteracting fermions. The formula in
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Eq. (5) or in Eq. (7) is just the single-particle representation
of the noninteracting Green function. It describes the single-
particle dynamics of the noninteracting systems. Recently,
Misawa and Yamaji showed that the diagonal components of
the Green function gαα (k, iω) can determine the topological
states of the noninteracting systems [23]. In the momentum
space, some poles and zeros of the diagonal components of
the Green function coincide at the zero points of the Bloch
wave function. Because the zero points of the Bloch wave
function are the source of nontrivial topology of the systems
[23–25], the coincidence of the poles and the zeros of the
diagonal components of the Green function in the momentum
space can be used to identify the topological phases. When the
poles and the zeros coincide, they also guarantee the crosses
of the zeros in the momentum space [23]. Therefore, the zero’s
crosses can also be used to detect the topological states of the
noninteracting systems.

In the presence of interactions, we construct a Green func-
tion in the single-particle representation

G̃iα, jβ (iω) =
∑

n

� (iα)
n

[
�

( jβ )
n

]∗

iω − En
, (9)

where �̂n are required to be orthonormal, i.e.,

�̂†
n �̂m =

∑
iα

[
� (iα)

n

]∗
� (iα)

m = δnm. (10)

In contrast to the noninteracting case, both �̂n and En are yet
unknown. They are determined from the condition that the
Green function in Eq. (9) satisfies the Dyson equation

ˆ̃G(iω) = ĝ(iω) + ĝ(iω)	̂(iω) ˆ̃G(iω), (11)

where 	̂(iω) is the self energy, which contains all interaction
effects. Inserting the single-particle representation (9) into the
Dyson equation (11), we obtain∑

lγ

[hiα,lγ + 	iα,lγ (iω)]� (lγ )
m = Em� (iα)

m . (12)

It turns out that �̂m and Em are just the eigenvector and
eigenvalue of [ĥ + 	̂(iω)]. One can notice that Eq. (12) is
valid for any frequency ω, and in general, both �̂m and Em

depend on ω. However, Eq. (12) does not always have a solu-
tion, which satisfies the orthonormality condition in Eq. (10).
Therefore, the constructed Green function in Eq. (9) does
not always exist. The orthonormality condition in Eq. (10) is
mandatory, because without it, Eq. (12) cannot be obtained.
However, solutions �̂m and Em of Eq. (12), that satisfy the
orthonormality condition, may exist at some particular ω. In

these cases, the constructed Green function ˆ̃G(iω) is equal to
the original Green function Ĝ(iω) at the particular ω. If we
set iω = Em in the self energy, Eq. (12) becomes the so-called
quasiparticle equation [31]:∑

lγ

[hiα,lγ + 	iα,lγ (Em)]� (lγ )
m = Em� (iα)

m . (13)

This equation may have several solutions and Em are the poles
of the original Green function Ĝ(iω). The Green function
defined by the single-particle representation in Eq. (9) with
solutions �̂m and Em of Eq. (13) is just the quasiparticle

approximation of the original Green function [31]. It describes
the quasiparticle dynamics of interacting systems. If we take
the limit ω → 0 in the self energy, Eq. (12) becomes∑

lγ

[hiα,lγ + 	iα,lγ (i0)]� (lγ )
m = Em� (iα)

m . (14)

One can prove that 	̂(i0) is Hermitian [8–10]. Therefore
the eigenvalues Em are real and the eigenvectors �̂m can
satisfy the orthonormality condition. Ĥ topo ≡ ĥ + 	̂(i0) =
−Ĝ−1(i0) is called topological Hamiltonian. It can define the
topological invariant of interacting systems in the same way
as the noninteracting Bloch Hamiltonian does [8–10]. In the
momentum space, Eq. (14) reads

[ĥ(k) + 	̂(k, i0)]�̂m(k) = Em(k)�̂m(k). (15)

�̂m(k) can be considered as a generalized Bloch wave func-
tion of the topological Hamiltonian. The Green function,
defined by the single-particle representation in Eq. (9) with
eigenvectors �̂m(k) and eigenvalues Em(k) of Ĥ topo(k) can be
rewritten as

ˆ̃G
topo

(k, z) =
∑

m

�̂m(k)�̂†
m(k)

z − Em(k)
= 1

z1̂ − Ĥ topo(k)
. (16)

ˆ̃G
topo

(k, z) is called “topological Green function” [9,17]. One

can use ˆ̃G
topo

(k, z) to calculate the topological invariant of
interacting systems [8]. In particular, in two-dimensional in-
sulators, the Hall conductivity calculated by the Kubo formula

with ˆ̃G
topo

(k, z) is equal to the one of the original interacting
system [8,26].

One can notice that in the noninteracting case, the Green
function, the quasiparticle Green function and the topolog-
ical Green function are identical. In some cases, where the
self energy is independent on frequency, for example in
the Hartree-Fock approximation, these Green functions are
also identical. However, in general, they are different when
the particle interactions are present. The topological Green
function has the single-particle representation and the topo-
logical Hamiltonian is Hermitian, therefore the properties of
the topological Green function are similar to the ones of
the noninteracting Green function. In particular, the diagonal
components of the topological Green function also satisfy

G̃topo
αα (k, z) =

∑
n

∣∣� (α)
n (k)

∣∣2

z − En(k)
=

∏
l

[
z − E (α)

l (k)
]∏

l [z − El (k)]
, (17)

where E (α)
l (k) is the lth eigenvalue of the minor M̂ (α)(k),

which is generated by removing the αth row and column of
Ĥ topo(k) [22,23]. Equation (17) shows that E (α)

l (k) is also the
zero of the diagonal topological Green function G̃topo

αα (k, z).
The eigenvectors and the eigenvalues of Ĥ topo(k) also satisfy
the following relation [22,23]:

∣∣� (α)
n (k)

∣∣2 =
∏

l

[
En(k) − E (α)

l (k)
]

∏
l �=n

[
En(k) − El (k)

] . (18)

This equation shows when |� (α)
n (k)|2 = 0, some poles and

zeros of the diagonal topological Green function coincide and
vice versa. In gapped systems, the zero points of � (α)

n (k) give
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nonzero contributions to the topological invariants determined
by Ĥ topo(k) [24,25]. Therefore, the topological phases of in-
teracting insulators can also be determined by the coincidence
of the poles and the zeros of the diagonal components of the
topological Green function. When the poles and the zeros
coincide, they also guarantee the crosses of the zeros in the
momentum space [23]. This allows us to use the zero’s crosses
in the momentum space to identify the topological phases of
interacting insulators. The topological Green function for in-
teracting systems was previously noticed [9,17]. However, in
contrast to the previous studies, only its diagonal components
are relevant to the topological phase identification through the
coincidence their poles and zeros. When the self energy is
determined, the momentum dependence of the zeros can be
obtained and analyzed more simply than direct calculations of
the topological invariants or edge modes.

The topological Green function can also determine
the topological phases of interacting gapless systems
[17]. In the gapless systems such as the Weyl or Dirac
semimetals, the energy bands touch or cross at the gapless
points. The topological gapless points of interacting semimet-
als are also determined by the touch points of the eigenvalues
of the topological Hamiltonian [17]. From the Cauchy inter-
lacing inequalities [23]

El (k) � E (α)
l (k) � El+1(k), (19)

one can notice that the zeros of the diagonal topological
Green function also touch at the gapless points. Therefore,
we can also detect the gapless points by the zeros. However,
in addition to the topological gapless points, the zeros may
accidentally touch or cross at high symmetry points of the
Brillouin zone. This additionally requires a careful selection
of the topological gapless points from the zero’s behavior.
However, if the zeros do not touch or cross, the interacting
systems are definitely not gapless.

The quasiparticle Green function also has the single-
particle representation, but its effective Hamiltonian may be
not Hermitian. Therefore the eigenvector-eigenvalue relation
may not be valid, and the poles and the zeros of the quasipar-
ticle Green function may not coincide at the zero points of the
generalized Bloch wave function. However, it seems that the
quasiparticle Green function can still describe the topology of
interacting particles at exceptional points or in open systems
[32–34].

III. TOPOLOGICAL PHASES IN MAGNETIC INSULATORS

We consider a minimal model for MTIs [13,14]. It consists
of a tight binding model of electrons in the presence of the
intrinsic SOC and magnetic impurities. The intrinsic SOC
may give rise to a topological insulating state. A spontaneous
magnetization may occur as a consequence of the spin ex-
change between electrons and magnetic impurities. The model
Hamiltonian reads

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ − iλ
∑

〈〈i, j〉〉,s,s′
νi jc

†
isσ

z
ss′c js′

− �

2

∑
iσ

εic
†
iσ ciσ − J

∑
i,ss′

Sic
†
isσss′cis′ , (20)

where c†
iσ (ciσ ) is the creation (annihilation) operator for elec-

tron with spin σ at site i of a honeycomb lattice. 〈i, j〉 and
〈〈i, j〉〉 denote the nearest-neighbor and next-nearest-neighbor
lattice sites, respectively. t is the hopping parameter for the
nearest-neighbor sites, and λ is the strength of the intrinsic
SOC. The sign νi j = ±1 when the hopping direction is anti-
clockwise (clockwise) [29]. The honeycomb lattice is divided
into two penetrating sublattices a and b. εi = ±1 when the
lattice site i belongs to the sublattice a (b). � is a staggered
ionic potential, which breaks the sublattice symmetry of the
honeycomb lattice. Si is spin of magnetic impurity at lattice
site i. σ = (σ x, σ y, σ z ) are the Pauli matrices. J is the spin
exchange between conduction electrons and magnetic impuri-
ties. When the spin exchange J = 0, the model in Eq. (20) is
reduced to the Kane-Mele model [29]. The SOC opens a gap
and induces the QSH state, where the spin Hall conductivity is
quantized [29]. The ionic potential drives the phase transition
between the QSH state and topologically trivial band insulator
[29]. When λ = 0 and � = 0, the Hamiltonian in Eq. (20)
describes the double exchange of electrons [30]. The spin
exchange drives the system from paramagnetic to magnetic
states [30]. The double-exchange model was widely used to
study the magnetic phases in a number of materials, includ-
ing the maganites, kagome magnets and related compounds
[35–39]. We treat the spin of magnetic impurities Si as the
classical spin, and this rules out the Kondo effect. In addi-
tion, the ferromagnetic spin exchange (J > 0) does not favour
the Kondo singlet formation [40]. The antiferromagnetic spin
exchange (J < 0) may give rise to the competition between
the Kondo singlet formation and magnetic interactions [41].
However, the Kondo singlet formation are hardly present in
magnetic topological insulators, and we do not consider the
Kondo effect and related phenomena here. When the ionic
potential is absent (� = 0), the spin exchange and the SOC
mutually interplay, and as a consequence the model in Eq. (20)
exhibits a magnetic topological phase transition at half filling
[13]. With a fixed SOC, the spin exchange drives the system
from the paramagnetic topological (QSH) state to an antiferro-
magnetic topological (QSH) state, and then to a topologically
trivial antiferromagnetic state [13]. We will examine the mu-
tual effect of the ionic potential and the spin exchange on
the magnetic topological phase transition at half filling. In the
following we use t = 1 as the unit of energy.

We use the dynamical mean field theory (DMFT) to cal-
culate the Green function and its self energy [42,43]. The
DMFT is widely and successfully applied to correlated elec-
tron systems, including the double-exchange model [35–37].
Within the DMFT, the self energy only depends on frequency.
Therefore, the Dyson equation of the Green function reads

Ĝ(k, z) = [z − Ĥ0(k) − 	̂(z)]−1, (21)

where Ĝ(k, z) and 	̂(z) is the Green function and the self
energy of electrons. Here, we represent the creation operator
for electrons in the row vector with the spin and the sublat-
tice indices (c†

ka↑, c†
kb↑, c†

ka↓, c†
kb↓) [13]. The Green function

Ĝ(k, z) and the self energy 	̂(z) are 4 × 4 matrices. Ĥ0(k)
is the noninteracting Bloch Hamiltonian, which has the block
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form in the spin index

Ĥ0(k) =
(

ĥ↑(k) 0
0 ĥ↓(k)

)
, (22)

where

ĥσ (k) =
(−σλξk − �/2 −tγk

−tγ ∗
k σλξk + �/2

)
.

Here we have used the following notations: γk = ∑
δ eik·rδ ,

ξk = i
∑

η νηeik·rη , where δ and η denote nearest-neighbor and
next-nearest-neighbor sites of a given site in the honeycomb
lattice. Within the DMFT the self energy is diagonal 	̂(z) =
diag[	a↑(z), 	b↑(z), 	a↓(z), 	b↓(z)], because the DMFT ne-
glects intersite correlations. Therefore, the Green function
also has the block form in the spin index. This allows us
to consider the electron dynamics and topology in each spin
sector. In the strong coupling regime (J � t, λ) and in the
nonfrustrated lattices, the strong spin exchange between elec-
trons and magnetic impurities favors the magnetic ordering in
the z-axis direction [13]. However, the lattice frustration may
favor noncollinear magnetic states [44,45]. The self energy
	ασ (z) is calculated from a single site of the α-sublattice
embedded in a self-consistent dynamical mean field [13]. For
classical spin of magnetic impurities, the effective single site
can exactly be solved and the self energy can self consistently
be determined [13]. Without loss of generality, we set the
magnitude of the impurity spin S = 1. Once the self energy
and the Green function are obtained, we can compute the mag-
netization and determine the magnetic nature of the ground
state. The magnetization of the α sublattice is determined by

mα = 1

2N

∑
k,σ

σ 〈c†
kασ ckασ 〉, (23)

which can directly be calculated from the Green function
in Eq. (21). When ma = mb �= 0, the ground state is ferro-
magnetic, and when ma = −mb �= 0 it is antiferromagnetic.
The Chern number can also be computed by the generalized
Thouless-Kohmoto-Nightingale-den Nijs formula

Cσ = 1

2π

∫
d2kF xy

σ (k), (24)

where Fab
σ (k)=∂kaAb

σ (k)−∂kbAa
σ (k), Aa

σ (k)=i
∑

m:Emσ (k)<0

[�̂†
mσ (k)∂ka�̂mσ (k)] [8,26]. A nonzero integer value of Cσ

implies a topologically nontrivial insulating state of electrons
with spin σ , while Cσ = 0 indicates a topologically trivial one.
The Chern number can numerically be calculated by using the
efficient computing method [46].

We consider the regime, where the ground state is the Z2

topological insulator at J = 0 [29]. In Fig. 1 we plot the
dependence of the sublattice magnetizations and the Chern
number on the spin exchange J for each spin orientation.
Figure 1 shows a critical spin exchange Jm

(for λ = 0.5 and � = 1, Jm ≈ 0.6), which separates the
antiferromagnetic ground state (ma = −mb �= 0) from the
paramagnetic one (ma = mb = 0). The magnetic phase tran-
sition is a common feature of the double exchange model
[30,35,37–39]. The SOC and the ionic potential do not qual-
itatively change the phase transition. However, the Chern
numbers significantly change when the ionic potential is
present. Figure 1 shows three different topological regions,

FIG. 1. The Chern number Cσ for spin orientation σ and the
sublattice magnetization mα via the spin exchange J at fixed SOC
λ = 0.5 and ionic potential � = 1.

which are separated by Jc1 and Jc2 (for λ = 0.5 and � = 1,
Jc1 ≈ 2.2, Jc2 ≈ 3.0). When J < Jc1, the Chern number C↑ =
−C↓ = 1. In this region the charge Hall conductivity vanishes,
while the spin one is quantized. It is the SQH effect. When
Jc1 < J < Jc2, electrons with different spin orientations have
different topological invariants. Electrons with spin up form a
Chern topological insulator with C↑ = 1, while electrons with
spin down are in topologically trivial insulating state (C↓ =
0). This shows a topologically breaking of the spin symmetry.
Only when � → 0, Jc1 = Jc2, the topological symmetry of
two spin orientations is restored. It indicates an essential role
of the ionic potential in the topologically breaking. However,
the ionic potential alone cannot break the topological symme-
try of two spin orientations, because in the absence of the spin
exchange, two spin orientations are topologically symmet-
ric, i.e., electrons with both spin orientations simultaneously
form either topological or topologically trivial insulators [29].
When J > Jc2, electrons with both spin orientations are in
topologically trivial insulator, because C↑ = C↓ = 0.

The topological states can also be detected by the crosses of
the zeros of the diagonal components of the topological Green
function. In contrast to the Chern number, the zeros are simply
determined and analyzed. We obtain the analytical expression
of the zeros

E (α)
σ (k) = −εᾱσλξk − εᾱ�/2 + 	ᾱσ (i0), (25)

where the sublattice index ᾱ = b, a when α = a, b, respec-
tively. In Fig. 2 we plot the zeros of the diagonal topolog-
ical Green function and the spectral functions ρaσ (k, ω) =
−ImGασ (k, ω + i0+)/π in the three typical topological phase
regions. The peaks of the spectral functions resemble the
quasiparticles and describe the energy bands. Figure 2 shows
that the spectral functions clearly display upper and lower
bands separated by a gap for all values of J . Both the SOC
and the spin exchange open the gap [13]. However, the spin
exchange first reduces the band gap opened by the SOC, and
then increases the band gap after closing it [13]. The gapless
points are the evidence of the topological phase transition.
In the region of weak spin exchange J < Jc1, in both spin
sectors the zeros cross each other as shown in Fig. 2. The
zero’s crosses are the evidence of a topological state, because
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FIG. 2. The spectral function of electrons (the color density plot) and the zeros of the diagonal topological Green function (the green and
magenta solid lines) along the high symmetry lines of the Brillouin zone for various values of the spin exchange J and fixed SOC λ = 0.5 and
� = 1. The upper (lower) row presents the plots for the spin up (down) orientation. Due to the overlap between the spectral functions of two
sublattices, the color density plots show the maximum values between the sublattice spectral functions.

they are a consequence of the coincidence of the poles and
zeros, or equivalently, of the existence of the zero points
of the generalized Bloch wave function of the topological
Hamiltonian. Therefore, electrons with both spin orientations
are in the topological insulating state. However, the zero’s
crosses alone cannot reveal the value of the Chern numbers.
Because this region adiabatically connects with the Z2 topo-
logical insulator at J = 0, the ground state could be the QSH
one. In the intermediate region Jc1 < J < Jc2, in the spin-up
sector, the zeros cross each other, while in the spin-down
sector they do not cross. This implies that electrons with
spin up form a Chern topological insulator, and electrons
with spin down are in a topologically trivial insulating state.
The cross behavior of the zeros is consistent with the Chern
numbers. When the spin exchange is large, J > Jc2, in both
spin sectors the zeros do not cross each other as shown in
Fig. 2. This shows that electrons with both spin orientations
form topologically trivial insulator. In contrast to the Chern
number, the momentum dependence of the zeros is simpler
obtained and analyzed. Equation (25) clearly shows that the
spin exchange impacts on the momentum dependence of
the zeros through the self energy at zero frequency. Within
the DMFT, the self energy only shifts the zero’s momen-
tum dependence. However, in magnetic states, the shifting
of the self energy is spin dependent. In the antiferromag-
netic state 	a↑(i0) − 	a↓(i0) = −[	b↑(i0) − 	b↓(i0)], and
the ionic potential plays like a staggered chemical potential,
which leads to 	a↑(i0) + 	a↓(i0) = −[	b↑(i0) + 	b↓(i0)].
Therefore, the self energy can be represented as

	ασ (i0) = εαM + εασδM, (26)

where M = [	a↑(i0) + 	a↓(i0)]/2, and δM = [	a↑(i0) −
	a↓(i0)]/2. Equation (26) shows that the self energy 	ασ (i0)
plays like a combination of staggered nonmagnetic and mag-
netic fields. Therefore, in different spin sectors the spin
exchange shifts the zeros apart differently. As a consequence,
in the intermediate region, the zeros in the spin-down sec-
tor do not cross each other, while the zeros in the spin-up
sector still cross. This leads to a topologically breaking of
the spin orientations. When the spin exchange is absent (J =
0), the self energy vanishes, and the ionic potential only
describes the phase transition from topological insulator to
topologically trivial insulator [29]. When the ionic potential
vanishes (� = 0), M = 0, the topological symmetry of the
spin orientations is restored [13]. These limiting cases show
that neither the spin exchange nor the ionic potential alone
can break the topological symmetry of two spin orientations.
The topologically breaking of the spin symmetry is a mutual
effect of the spin exchange and the ionic potential. It is a
challenge to observe and explore such topologically breaking
of the spin symmetry by experiments. Indeed, the Haldane
model was experimentally realized by ultracold atoms [47].
One may expect the Kane-Mele model or the spin version of
the Haldane model may be realized too. When a staggered
field like the self energy in Eq. (26) is imposed over the
quantum simulated lattice, the topologically breaking of the
spin symmetry would be observed. When the spin exchange
is large J > Jc2, the self energy 	ασ (i0) is large enough and
it shifts the zeros in both spin sectors away from each other.
Therefore, in this region electrons with both spin orientations
are in topologically trivial insulator.

At the topological phase transition point Jc1 (Jc2), the
spectral functions of the sublattice a and b touch each other,
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as shown in Fig. 2. This shows a gapless state in the spin
down (up) sector. The occurrence of the gapless state is a
consequence of the change of the topological invariant at the
phase transition point, and it is an evidence of the bulk-edge
correspondence. Figure 2 also shows a touch of the zeros at the
topological phase transition. Although the Cauchy interlacing
inequalities in Eq. (19) were proved only for the topological
Green function, the zero’s touch at the gapless points suggests
that the Cauchy interlacing inequalities may also be valid at
the gapless points for the poles of the full interacting Green
function and the zeros of the diagonal topological Green
function. However, it requires a further study. Nevertheless,
the numerical results show that at the gapless points, the
energy bands of interacting fermions, the poles and the zeros
of the diagonal topological Green function touch each other.
We can use either the energy bands, the poles or the zeros
to determine the gapless points, such as the Weyl nodes of
the Weyl semimetals [17]. However, except for the gapless
points, the zeros of the diagonal topological Green function
do not always lie within the band gap, especially when the
spin exchange is strong.

IV. CONCLUSION

We have constructed the topological Green function, which
can determine the topological phases of interacting fermions.
Based on the eigenvector-eigenvalue relation of Hermitian
operator, it was shown that the nontrivial topology of the
ground state can be detected by the crosses of the zeros

of the diagonal components of the topological Green func-
tion in the momentum space. The momentum dependence
of the zeros is simply determined and analyzed. As an ap-
plication, we have identified the topological phases in a
minimal model of magnetic insulators. It is found that the
interplay between the spin exchange and the ionic potential
can cause a topologically breaking of the spin symmetry.
In the antiferromagnetic state with topologically breaking
of the spin symmetry, electrons with one spin orientation
form a topological insulator, while electrons with the opposite
spin orientation form another topologically trivial one. The
topological phase identification by the zero’s crosses is con-
sistent with the topological invariant of interacting electrons.
However, the zero’s crosses can only identify the topological
phases and it seems that it cannot reveal the nonzero value of
the topological invariant. The topological Green function can
also describe the topology of gapless systems. The gapless
points can be determined by the zero’s touch in the momen-
tum space. In the noninteracting systems, the degeneracy of
the zeros corresponds to the degeneracy of the edge states
[23]. However, in interacting systems it is not clear that the
zero-edge correspondence is still valid, because the topolog-
ical Green function differs from the full Green function of
interacting particles. We leave the problem for further study.
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