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We explore the physics of the quantum Hall effect using the Haldane mapping of dimerized SU(N + M ) spin
chains, the large N expansion, and the density matrix renormalization group technique. We show that while
the transition is first order for N + M > 2, the system at zero temperature nevertheless displays a continuously
diverging length scale ξ (correlation length). The numerical results for (N, M ) = (3, 1), (2, 2), (5, 1), and (7, 1)
indicate that ξ is a directly observable physical quantity, namely the spatial width of the edge states. We relate the
physical observables of the quantum spin chain to those of the quantum Hall system (and, hence, the ϑ vacuum
concept in quantum field theory). Our numerical investigations provide strong evidence for the conjecture of
superuniversality which says that the dimerized spin chain quite generally displays all the basic features of
the quantum Hall effect, independent of the specific values of N and M. For the cases at hand we show that
the singularity structure of the quantum Hall plateau transitions involves a universal function with two scale
parameters that may in general depend on N and M. This includes not only the Hall conductance but also the
ground state energy as well as the correlation length ξ with varying values of ϑ ∼ π .
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I. INTRODUCTION

In this paper we are addressing several long standing
issues relating to the robustness of the integer quantum Hall
plateaus as well as the concept of superuniversality in the
theory of dimerized quantum spin chains. How is the physics
of SU(N + M ) spin chains, the main focus in this paper,
related to the physics of the quantum Hall effect (QHE)?
The answer to this question is twofold. First, using replica
field theory, Levine, Libby, and Pruisken showed that the
physics of the QHE can be inferred from the grassmannian
U (N + M )/U (N ) × U (M ) sigma models in the presence of
the so called ϑ angle [1–5]. While N and M are integers,
the physics of the electron gas is recovered in the analytic
continuation N, M → 0 (replica limit). Second, Haldane has
shown that the low energy physics of the SU(2) spin chain can
be mapped onto that of an SU(2)/U (1) sigma model [6,7].
In this special case with N, M = 1 the angle ϑ only takes
on the value 0 or π depending on whether the spin S is an
even or odd multiple of 1

2 . In later work [8] it was argued that
the mapping can be generalized to include SU(N + M ) spin
chains with a dimerization parameter which we term ε. This
leads to the same grassmannian sigma model with a parameter
ϑ that varies continuously with varying values of ε.

The above derivations [6–8] are valid in the S → ∞ limit.
However, they have technical problems that complicate a sys-

*a.m.m.pruisken@contact.uva.nl
†bimla.danu@physik.uni-wuerzburg.de
‡shankar@imsc.res.in

tematic 1/S expansion of the parameters of the field theory.
An alternative derivation detailed in Ref. [9] resolves these
problems for the SU(1 + 1) case and formulates a well de-
fined 1/S expansion. These results are easily generalized to
the SU(N + M ) case and will be presented in a forthcoming
publication [10].

It is well known that the sigma model flows toward the
strong coupling regime [3,11] which is, generally speaking,
inaccessible analytically. However, it is also well known
that this regime is numerically accessible, namely based
on the density matrix renormalization group (DMRG)
approach to quantum spin chains [12,13]. The main purpose
of the present paper, therefore, is to use the DMRG as an
unequivocal test of the distinctly different strong coupling
ideas that over the years have emerged in the study of both
SU(N + M ) quantum spin chains [9,14] and the closely
related grassmannian U (N + M )/U (N ) × U (M ) sigma
model [4,15].

Quite surprisingly, the fundamental significance of the
“massless chiral edge excitations” in the problem of the QHE
or equivalently, the “dangling edge spins” in the quantum
spin chain, has not been fully appreciated so far. These edge
excitations are important not only in the definition of the
transport coefficients (“conductances” [9,14,16,17]) but also
in our conceptual understanding of more general issues in
quantum field theory, notably the quantization of topological
charge, the existence of robust topological quantum numbers,
etc. [4,18].

Advances along these lines have ultimately led to the res-
olution of old controversies that have spanned the subject to
date. We mention, in particular, the “large N” picture of the ϑ
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vacuum concept [19–23] as opposed to the distinctly different
“instanton” picture [24–26]. However, these different views
have in fact turned out to be complementary [4,15]. This new
development is consistent with the original critique by Jevicki
[27] and is diametrically opposite to what historically has been
dubbed “the arena of bloody controversies” [28].

It is clear that the conflicting views in quantum field theory
have had a dramatic impact on the development of a micro-
scopic theory of the quantum Hall effect. Besides the robust
quantization which emerged as a new and unexpected feature
of the ϑ angle, the idea of a continuously diverging correlation
length ξ—describing the quantum Hall plateau transition—
has been a particularly difficult stumbling block for many
years [29–31]. These otherwise well established experimental
phenomena were believed to be “incompatible” [29,30,32]
with the general views based on the large N picture which
indicated, amongst many other things, that the transition at
ϑ = π is a first order one, for all values N + M > 2. Such
beliefs have, in turn, set the stage for incorrect mathematical
claims and ideas in the literature such as the “failure” of the
replica method, the “superiority” of supersymmetric represen-
tations, etc. [32–34].

More recently the large N steepest descend methodology
of the CPN−1 model has been revisited [4,15]. Unlike the pre-
vailing expectations in the field, it was shown that the physics
of the QHE is, in fact, displayed by the ϑ vacuum concept in
general, for all non-negative values of N and M. This naturally
leads to the idea of superuniversality of topological principles
which means that mathematical issues such as the replica limit
only play a role of secondary significance.

In what follows we shall further explore and extend the
superuniversality concept based on the DMRG simulations of
the open spin chain with an odd number of spins and finite
N and M. We use the phrase open to indicate that the spin
chain has physical edges (free boundary conditions). Also,
dimerized systems with an odd number of spins are very
useful in demonstrating the physics of the QHE, as detailed
in Refs. [9,14].

The numerical data for the ground state energy with vary-
ing system size or length (L) and dimerization (ε) are being
compared with the large N approach to spin chains [35,36]
as well as grassmannian sigma models [4,15]. The DMRG
results now serve as a direct check on the general expectation
in the field which says that the transition at ε = 0 (or ϑ = π )
is a first order one, for N + M > 2.

The primary focus of this paper, however, is on the physics
of the “edge” the details of which are difficult to obtain analyt-
ically. We are specifically interested in the magnetic properties
of spin chains since they can be used as a probe for the “mass-
less chiral edge excitations” in the problem [16,17,37,38] or,
equivalently, the “dangling edge spins” [9,14]. The DMRG
data now indicate that the spatial width or “penetration depth”
of the edge excitations diverges continuously as ε approaches
the critical value (or, equivalently, as the angle ϑ approaches
π ). This directly measurable physical quantity is naturally
identified with the correlation length ξ of the system.

Next, there is the problem of extracting the most funda-
mental quantity from DMRG, namely the Hall conductance
σH with varying L and ε. Generally speaking, this kind
of computation is complicated since it demands an explicit

J(1+ )J(1- )

FIG. 1. Interacting dimerizd spin chain.

knowledge of the “bulk” excitations and those of the “edges”
[4,39]. However, by making use of the dual symmetry of the
spin chain, along with the macroscopic conservation law for
the magnetization, one can introduce an alternative definition
of the linear response formula that is suitable for DMRG
purposes. This permits a numerical study of the robustness
of the QHE as well as the critical singularities of the quantum
Hall plateau transition.

In the last part of this paper we propose an extended ver-
sion of the superuniversality concept that includes the critical
behavior of not only the Hall conductance but also the ground
state energy as well as the correlation length. After a simple
rescaling of the numerical data with N + M > 2 we find that
the singularity structure can be expressed in terms of a single
universal function F (X ) where X generally denotes the linear
dimension of the system, i.e. it stands for either L or ξ .

II. DIMER MODEL

Introducing a dimerization parameter ε defined by assign-
ing couplings J (1 + ε) and J (1 − ε) to adjacent spin pairs (see
Fig. 1), we can write the Hamiltonian of the SU(N + M ) spin
chain as follows:

H = J
∑

j

N+M∑
α,β=1

{(1 + (−1) jε)Ŝ j,αβ · Ŝ j+1,βα}. (1)

Here the spin operators satisfy the commutation rela-
tion [Ŝαβ, Ŝμν] = δμβ Ŝαν − δαν Ŝμβ . They are in the spin-
1/2 representation of SU(N + M ) with the little group
U (N ) × U (M ).

Our main focus is on the open spin chain with edges. This
displays an obvious dual symmetry ε ↔ −ε, provided the total
number of sites is odd, say 2Ns + 1. The effective action of
this system is quite simple in the limit where M is finite and
N → ∞ or vice versa. For example, the ground state involves
Ns disconnected dimers with a total energy

E0(ε) = −Nse2(1 + |ε|), (2)

where e2 is the dimer energy for coupling J [35,36]. This
result is precisely the same for a closed system with 2Ns

sites, indicating that a first order quantum phase transition
takes place when the parameter ε goes through zero. The sole
difference, however, is that a dangling spin appears at the edge
of an open chain. The effective action now involves the solid
angle �[V ] of the SU(N + M ) matrix variable V ,

�[V ] =
∫ β

0
dt trV ∂tV

†�. (3)

Here � is a diagonal matrix

� =
(

1N 0
0 −1M

)
(4)

and 1N and 1M denote N × N and M × M identity matri-
ces, respectively. Assume that for ε < 0 the dangling spin is
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located at the edge on the left ( j = 0); then, for ε > 0 the
single spin appears at the edge on the right ( j = L = 2Ns).
The complete effective action for the open spin chain in the
large N limit now equals

Sopen → F0 + Sedge[V ]. (5)

Here F0 = βE0(ε) denotes the bulk free energy, β is the
inverse temperature, and Sedge[V ] describes the critical theory
of the edge,

Sedge[V ] = i
k(ε)

2
�[V (L)] + i

1 − k(ε)

2
�[V (0)], (6)

with k(ε) = 1
2 (1 + ε

|ε| ) the Heaviside step function.

A. Haldane mapping

Next, to make contact with the theory of the nonlinear
sigma model we write

Sedge[V ] = i

2
�[V (0)] + 2π ik(ε)C[Q]. (7)

Here Q = V †�V ∈ U (N+M )
U (N )×U (M ) has a fractional topological

charge − 1
2 < C[Q] � 1

2 . Expressed as a two-dimensional
space-time integral we can write [1–5]

C[Q] = 1

16π i

∫
d2x trεμνQ∂μQ∂νQ, (8)

with εμν the Levi-Civita symbol. This expression must be
compared with the more general results of linear response
theory. Similar to the dimer model, the purpose of the general
theory is to formulate an effective action for the edge modes V
or Q relative to a theory of bulk excitations. The latter always
corresponds to a compact space-time geometry or, for that
matter, a closed spin chain. Specifically, we must compare

2π ik(ε)C[Q] ↔ σ0

8

∫
d2x tr(∂μQ)2 + 2π iσHC[Q]. (9)

We know—from replica field theory of the electron gas—
that the quantities σ0 = σ0(ε; β, L) and σH = σH (ε; β, L)
precisely stand for the Kubo formulas for the macroscopic
“longitudinal” and “Hall” conductance, respectively. Appar-
ently the spin chain with N → ∞ displays the QHE:

σ0(ε; β, L) ↔ 0, σH (ε; β, L) ↔ k(ε) (10)

for all β and L. At the same time, one can probe the critical
edge excitations more directly by measuring the local magne-
tization M j ∝ tr〈Ŝ j�〉. Equation (6) implies

M j=0 = 1
2 [1 − k(ε)], M j=2Ns = 1

2 k(ε). (11)

Notice that sum
∑

j M j = 1
2 is a conserved quantity as it

should be. Equation (11) now indicates that at criticality, a
spin 1

2 gets transported over macroscopic distances, from one
edge of the spin chain to the other.

In conclusion, one can say that the dimer model provides
a very simple but profound demonstration of the superuni-
versal features of the ϑ vacuum concept that are inaccessible
otherwise.

L

Quantum Hall phase

(spin liquid phase)

Critical phase

( )

FIG. 2. Sketch of |ε| = m(L) (solid red line) with m(L) given by
Eqs. (13) and (14). This line defines the correlation length ξ (ε) which
diverges continuously as ε → 0, see text.

B. Instantons

Provided N, M and L are finite, one always finds that the
discontinuity in Eqs. (2) and (10) gets smoothed out due
the tunneling events (instantons) between the two different
dimer states. The situation is completely analogous to the
recently revisited large N expansion of the CPN−1 model or
SU(N )/U (N − 1) nonlinear sigma model [4]. In brief, the
dimensionless ground state energy Eg = 2E0(ε)/Le2 with L =
2Ns the length of the spin chain, can in general be written as
follows:

Eg = −d − b
√

ε2 + m2(L). (12)

Here b, d = 1 + O( 1
N+M ), whereas the function m(L) is the

most significant quantity. It has the general form

m(L) = L−α0 e−β0L−γ0 , (13)

with positive coefficients α0, β0, and γ0 given by

α0 = 1, β0 = (NM )3/2

2(N + M )2
, γ0 = 1

2
ln

(NM

4

)
. (14)

C. “Phase” diagram

It is important to keep in mind that Eqs. (12) and (13) apply
to closed spin chains without edges. Nevertheless, in what
follows we will argue the instanton results explain most of
the important features of open systems as well. For example,
one might expect that the quantity m(L) in Eq. (12) primarily
affects the critical regime|ε| � m(L) where the discontinuities
in Eg and σH are smoothed out. On the other hand, the effect of
m(L) is negligible or exponentially small in the quantum Hall
regime |ε| � m(L) where Eq. (10) is likely to be valid. There
are, in fact, two important conclusions that one can draw at
this stage.

(1) The line |ε| = m(L) represents the interface between
the two distinctly different physical regimes in the problem,
see Fig. 2. It is natural to identify the function

ξ (ε) = m−1(ε) (15)

as the correlation length in the problem. Remarkably, ξ (ε)
diverges in a continuous fashion as ε passes through zero.
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(2) Exact expressions for the response parameters σ0 and
σH in Eq. (9) have been obtained based on the closely related
large N steepest descend methodology of the CPN−1 model
[4]. Specifically, one measures the response of the system to
a change in boundary conditions (BC), namely in going from
periodic BC in space-time to an open system or free BC. In
this special case, the response can be very simply expressed
in terms of ordinary derivatives of the ground state energy Eg

of the closed system (with periodic BC). Given the anisotropic
space-time geometry at hand we now have σxx 
= σtt and we
can write

σtt = 0, σxx = −m(L)
∂Eg

∂m(L)
= m2(L)√

ε2 + m2(L)
,

σH = 1

2

[
1 − ∂Eg

∂bε

]
= 1

2

[
1 + ε√

ε2 + m2(L)

]
. (16)

III. NUMERICAL OBJECTIVES

Figure 2 and, in particular, Eq. (15) immediately reveal
what happens to the “dangling edge spin” of the open chain
as one approaches the critical point. For example, imagine
that L � 0 in Fig. 2 actually stands for the position along a
semi-infinite spin chain. Then it is natural to assume that for a
given value of ε > 0 the phrase “critical phase” really means
“massless chiral edge excitations” that are spread out over the
region 0 � L < ξ (ε). So rather than being confined to the sin-
gle lattice site at the edge (L = 0)—as naively expected on the
basis on the large N result of Eq. (7)—the edge excitations are
carried in practice by a whole range of spins and eventually,
as ε approaches zero, by the entire spin chain. The divergent
correlation length ξ (ε) is therefore the mechanism that enables
the dangling spin to travel over macroscopic distances, from
one edge of the spin chain to the other, as ε passes through the
critical point. In different words, the divergent length scale
ξ (ε) unifies the different types of quantum critical behavior
in the problem, notably the quantum Hall plateau transition in
1 + 1 space-time dimension that occurs for ε = 0 (or ϑ = π )
on the one hand, and the massless chiral edge excitations (dan-
gling edge spins) that generally exist when ε 
= 0 (or ϑ 
= π )
on the other. These previously unrecognized features of the
ϑ angle concept are quite remarkable, especially since they
are expected to hold independent of the nature of the quantum
phase transition at ε = 0 (or ϑ = π ). More specifically, the
transition need not necessarily be a second order one; the
aforementioned features are also displayed by systems—like
the present ones—that undergo a first order transition.

Equally remarkable and important, however, is the fact that
the diverging correlation length ξ (ε) now manifests itself as
a directly observable physical quantity of the system. This
is so because the local magnetization of the ground state
M j (ε) is in fact a probe for the massless excitations that
propagate along the edges. However, unlike the large N result
of Eq. (11), one expects that M j (ε) is now spread out over the
entire range 0 � j < ξ (ε) rather than the single lattice site at
j = 0 alone.

In what follows we embark on the numerical investigations
of the physical scenarios discussed above in the context of
dimerized spin chains.

IV. DMRG RESULTS AND DISCUSSION

Our numerical studies are based on the DMRG technique
[12,13]. Our main focus is on the ground state properties of the
open dimerized SU(N + M ) spin chain with S = 1

2 and an odd
number of sites. We have used both infinite and finite system
DMRG algorithms and constructed the superblock configura-
tion with one exact site in the middle of adjacent blocks at
each iteration. For each different set of N and M we use a
different number (p) of the most probable eigenstates of the
reduced density matrix. The DMRG calculations were done
with p � 216. In the finite system DMRG algorithm we have
used eight to ten sweeps for convergence purposes. Our results
are accurate up to density matrix truncation errors on the order
of 10−7. It should be mentioned that we are working with a
single irreducible representation of SU(N + M ) characterized
by the little group U (N ) × U (M ). This representation is the
same as the Hilbert space of M fermions that can occupy
N + M states. We initially construct the basis with a definite
number of fermions in each state. This defines the Cartan
subgroup of N + M − 1 mutually commuting generators. The
SU(N + M ) symmetric Hamiltonians we need to numerically
diagonalize will hence be block diagonal in the different
sectors of the quantum numbers. However, we have not kept
track of these quantum numbers in our DMRG calculations.

A. Ground state energy

In Fig. 3 we plot the data for the dimensionless ground state
energy Eg versus ε,

Eg = E0/Nse2, (17)

where e2 = J × NM(1 + 1
N+M ) denotes the exact dimer en-

ergy for coupling strength J [10]. The results for different
values of (N, M ) = (3, 1), (5, 1), (7, 1), and (2,2) and a
range of values of L = 4, 8, 14, 24, 34, 50, and 110 compare
very well with the large N expression of Eq. (2). The main
difference is the smoothening of the discontinuity at ε = 0
valid for all finite values of N, M, and L. Moreover, for each
given value of L, the data with increasing N clearly display
a tendency toward the dimer model result Eg = −1 − |ε|.
Therefore, the main features of Fig. 3 are all in remark-
able qualitative agreement with the instanton expressions of
Eqs. (12) and (13).

To account for the fact that the DMRG data and the large N
results of Eqs. (12)–(16) really belong to two different physi-
cal systems (open versus closed) we mention the following.

(1) Critical phase. The instanton expressions generally
provide a good description of the numerical data in the critical
phase |ε| � m(L). Specifically, we obtain a good fit using
Eqs. (12) and (13) with the coefficients b and d given by

b ∼ 1 − b1

N + M
, d ∼ 1 + d2

(N + M )2
(18)

and with b1 and d2 positive constants. In addition to this,
we find that the function of m(L) in Eq. (13) applies to the
DMRG data as well. Specifically, we employ the general ex-
pression m(L) = L−α0 e−β0L+γ0 with α0, β0, and γ0 serving as
N, M-dependent fitting parameters. It should be mentioned
that any detailed comparison of the DMRG data with the
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FIG. 3. DMRG results for the dimensionless ground state energy (Eg) vs dimerization parameter (ε) for different N, M values and system
sizes (L). The dashed lines represent the large N saddle point result of Eq. (2).

numerical values of Eq. (14) is moot. This is so because
the physical mechanisms describing the function m(L) are
generally very different depending on whether one considers
an open spin chain rather than closed systems.

(2) Spin liquid phase. Similar conclusions apply to the
CPN−1 results for the conductances. For example, if one in-
serts the DMRG data for Eg in Eq. (16), then one would
naively conclude that the spin chain does not display the
quantum Hall effect. The problem, of course, is that the subtle
features of the edges are being mishandled since the Eg in
Eq. (16) is really defined for closed systems.

We now proceed and embark on the magnetic features of
the open spin chain. Along the way we will find an alternative
definition of the Hall conductance and obtain a better insight
into the physical properties of both the critical and spin liquid
phases of the problem.

B. Massless chiral edge excitations

To define the penetration of the edge excitations into the
interior of the system, it is convenient to introduce the “cumu-
lative” edge magnetization

P( j) =
j∑

i=0

M(i), (19)

with j ∈ {0, 1, 2, . . . , 2Ns} denoting the lattice site. Since the
total magnetization is a conserved quantity, we use the nor-
malization P(L) = ∑L

i=0 M(i) = 1 with L = 2Ns. In Fig. 4
we plot the numerical data for [1 − P( j)] versus j2 on a log-

linear scale for different values of ε close to the critical point.
Discarding the antiferromagnetic fluctuations in P( j)—which
are relatively small—we have

P( j) = 1 − A exp {−B j2}, (20)

with A, B > 0, provided L is large enough. It is clear that
Eq. (20) really stands for the probability of finding the
dangling edge spin somewhere in the region of the lattice sites
between j and 0. Figure 4 clearly indicates that B = B(ε)
generally decreases as ε goes to zero. It is therefore natural

FIG. 4. DMRG data of log[1 − P( j)] vs j2, see text. The solid
lines represent the optimal fitting based on Eq. (20).
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FIG. 5. DMRG results for the Hall conductance (σ̃H ) vs dimer-
ization parameter (ε) for different N, M values and system sizes (L).

to identify the quantity ξ (ε) = 1/
√

B as the continuously
diverging correlation length of the system.

C. Hall conductance

A remarkable feature of open spin chains in the spin
liquid phase |ε| > m(L) is that the quantization of the Hall
conductance is directly related to the conservation of total
magnetization. This is obviously the case in the large N limit
where m(L) = 0, see Eqs. (10) and (11), but the same is true
in general. For example, from Eq. (20) we infer that σH (ε) =
1 − P( j) provided ξ (ε) < j < L. It is not difficult to general-
ize this statement to include the critical phase |ε| < m(L) or
L > ξ (ε). Specifically, if we denote the magnetic definition of
the Hall conductance by σ̃H (ε), then we can write

σ̃H (ε) = 1 − 1
2 [P(Ns) + P(Ns − 1)], (21)

which is nothing but the total magnetization of exactly the
right half of the spin chain. Notice that duality of the spin
chain ε ↔ −ε implies that

σ̃H (ε) = 1 − σ̃H (−ε). (22)

This fundamental symmetry, sometimes termed “particle-
hole” symmetry, was originally predicted as a corollary of the
renormalization theory of the quantum Hall effect [3]. It is
clearly recognizable in the numerical data plotted in Figs. 5
and 6. These DMRG results are very similar to the plots
obtained using the large N expression for σH , Eq. (16). In
particular, Fig. 5 indicates that σ̃H with varying ε approaches
the dimer result k(ε) of Eq. (11) as N increases, keeping L
fixed and finite. Therefore, just like the ground state energy
Eg we again find remarkable qualitative agreement with the
instanton expression for m(L) in Eq. (16).

Finally, it is interesting to notice that the numerical data
of Fig. 5 and the flow lines of Fig. 6 are akin to the results
of the first experiments on quantum criticality in the quantum
Hall regime [40]. This illustrates the fact that superuniversal-
ity has a much broader range of validity than SU(N + M )
spin chains, the free electron gas (N = M = 0), and large
N expansions alone. In fact, extensive research over many

$()0 0.2 0.4 0.6 0.8 1
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300 L

σ̃H

=0.00001

=0.00002
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=0.0003

=0.001

=0.004

FIG. 6. DMRG results for the Hall conductance (σ̃H ) vs system
size (L) for N = M = 2 and different values of the dimerization
parameter (ε). The solid lines with 0.3 � σ̃H � 0.7 are the best fit
based on the function σ̃H = 1

2 ± �1 exp{β1L + 2.1 ln L} with posi-
tive coefficients �1 ∝ |ε| and β1. Those with σ̃H � 0.3 and σ̃H �
0.7 have been obtained using σ̃H = �2 exp{−β2L2} and σ̃H = 1 −
�2 exp{−β2L2}, respectively, with positive �2 and β2.

years has shown that the same basic phenomena are being
displayed by entirely different physical systems. The most
obvious examples include the electron gas in the presence
of the Coulomb interaction [4,18] and also the problem of
“macroscopic charge quantization” in the single electron tran-
sistor [41,42].

D. Singularity structure open chains

Of principal interest are three distinctly different functions
F (X ) that diverge continuously as X goes to infinity.

(i) The first and most significant of these is the second
derivative of the ground state energy Eg at the critical point

FEnergy(L) = ∂2Eg

∂ε2

∣∣∣∣
ε→0

↔ 1

m(L)
. (23)

The quantity 1/m(L) on the right-hand side indicates the
instanton result of Eqs. (13) and (14) for the closed spin sys-
tem with varying size L. We therefore expect that the DMRG
data for FEnergy(L) diverge exponentially as L increases. An
explicit demonstration of this divergence can be taken as the
experimental proof of a first order quantum phase transition
at ε = 0 (or θB = π ). The most practical way of extracting
Eq. (23) from DMRG is to first compute ∂Eg/∂ε for a discrete
set of ε values and subsequently determine the second deriva-
tive using the standard numerical programs. For the purpose
of the present paper, it suffices to fix the spacing �ε at 10−5.
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FIG. 7. DMRG results for the functions FEnergy(L) and FEdge(ξ )
for different N, M values, see text. The solid lines are optimal fittings
based on Eqs. (26) and (28).

In Fig. 7(a) we plot the DMRG data sets for four different
values of N and M.

(ii) The second most significant quantity is the correlation
length ξ with varying ε. We have seen that unlike Eq. (23),
the ξ is solely defined as a quantity of the edge. As a practical
rule we demand that ξ for any given value of ε is determined
by the equation P( j = ξ ) = 1 − e−1.5 ≈ 0.78% where P( j)
is defined by Eq. (19). In words, there is a 78% probability
of finding a dangling spin somewhere in the region of lattice
sites 0 � j � ξ .

In Fig. 7(b) we plot 1/ε versus the DMRG data for ξ for
the aforementioned values of N and M. The different data sets
provide and estimate for the function FEdge(ξ ), i.e.,

FEdge(ξ ) = 1

ε
↔ 1

m(ξ )
, (24)

where the right-hand side is the result of the large N theory,
see Eq. (15). Indeed, the plots of Figs. 7(a) and 7(b) clearly
indicate that the functions FEnergy(L) and FEdge(ξ ) display the
same qualitative features for varying values of N and M.

(iii) From the physics point of view, our main interest is
obviously in the singularity structure of the quantum Hall
plateau transition described by the function

FHall(L) = ∂σ̃H

∂ε

∣∣∣∣
ε→0

↔ 1

m(L)
, (25)

with σ̃H defined by Eq. (21). Just like Eq. (23), the most prac-
tical way of extracting Eq. (25) from DMRG is to compute σ̃H

for a discrete set of ε values and subsequently determine the
derivative using the standard numerical programs.

In a subsequent paper we will show that the large N limit
of Eq. (25), like Eq. (23), is 1/m(L) [10]. For comparison we
plot, in Fig. 8, the DMRG data sets for the three different
functions FEnergy(L), FEdge(ξ ), and FHall(L), taking the case
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FIG. 8. DMRG results for the functions FHall(L), FEnergy(L), and
FEdge(ξ ) with N = M = 2, see text. The solid lines are optimal fit-
tings based on Eqs. (26) and (28).

N = M = 2 as a representative example. Once more, apart
from a simple rescaling of the X and/or Y axis, the results
look qualitatively very similar.

E. Universality revealed

To find the best solid lines through the data in both Figs. 7
and 8 we are inspired by instanton results of Eqs. (13) and
(14). Specifically, we write

Fi(X ) = aiF (biX ), (26)

where the subscript i stands for Energy, Edge, and Hall, re-
spectively. The coefficients ai and bi are taken as independent
fitting parameters and F (X ) is an empirical function without
free parameters. To fix the thought consider the large N limit
with Fi(X ) = 1/m(X ). We can write F (X ) = X exp{X } in
Eq. (26) and

ai → N

M
, bi → 1

2
M

√
N

M
(27)

keeping in mind that N → ∞ and M is fixed and finite. Notice
that Eq. (27) implies that Fi(X ) increases as the value of N
increases. This feature is in accordance with the DMRG data
plotted in Figs. 7(a) and 7(b).

The problem, however, is to find an optimal function F (X )
such that Eq. (26) can be used for data fitting for all values of
N and M as well as the subscript i. After a lot of trial and error
we found the best function F (X ) in Eq. (26) to be F (X ) =
X 2.1 exp{X }. We will work with the completely equivalent but
more practical expression

F (X ) = X 2.1 exp
{
−2.5 + X

150

}
, (28)

which corresponds, roughly speaking, to the “average” of the
nine different DMRG data sets.

The solid lines in both Figs. 7 and 8 clearly show that
Eqs. (26) and (28) fit the DMRG data remarkably well. The
most important feature of these expressions, however, is that
each of the nine DMRG data sets can be mapped onto the
single curve Y = F (X ) after a simple rescaling of the X and
Y axes. This data collapse is plotted in Fig. 9. We see that the
rescaled DMRG data all fall nicely onto the solid line F (X ),
as expected.
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FIG. 9. Collapse of the nine different data sets of Figs. 7 and 8
after rescaling. The solid line represents the function F (X ), Eq. (28),
with X = L or ξ .

V. CONCLUSION

The principal advancement of this paper is captured in
Fig. 9. The DMRG data clearly indicate that the basic
predictions of the large N theory can be trusted all the way
down to the regime where N + M is of order unity. The results
furthermore unify the general features of a first order phase
transition with quantum phenomena that were previously un-
recognized. We mention, in particular, the robustly quantized
Hall plateaus along with the deconfinement mechanism that
facilitates the transport of a dangling spin (or massless edge
excitations) over macroscopic distances [9,14]. This mech-
anism can be depicted as a spatial separation between the
critical phase and the spin liquid phase (see Fig. 2).

We have refined and extended the concept of superuni-
versality to include the correlation length ξ that diverges
continuously as one approaches the critical point. As a result,
we can now say that the basic aspects of quantum Hall physics
are all generic topological features of the ϑ vacuum concept
on the strong coupling side, for all non-negative values of N
and M [1–4].

It should be mentioned that the space-time geometry of
the spin chain is somewhat unnatural, at least as far as the
QHE is concerned. The quasi-one-dimensional geometry with
β → ∞ and L finite is clearly very different from the truly

two-dimensional quantum Hall system which usually involves
β ∼ L. Without going into further detail, however, we can
say that as an integral aspect of the superuniversality concept
one expects that the basic phenomena are independent of
the geometry that one considers. For example, based on the
large N theory of the CPN−1 model [4] we know that the
differences are solely in the detailed behavior of the function
F (X ). Unlike Eq. (28) this function is algebraic for systems
where β and L play a role of equal significance. Specifically,

F (X ) ∝ X 1/ν, (29)

where X stands for either L ∼ β or ξ . The ν denotes the
correlation length exponent which for the systems at hand is
equal to 1/2, a well known result for a first order transition in
two dimensions.

Equation (29) is an extremely familiar statement that is
valid for both first and second order quantum phase transi-
tions. However, as one of the interesting new features of the
ϑ vacuum—and along with that, the quantum Hall plateau
transition—we now find that the correlation length ξ al-
ways diverges in a continuous manner as ϑ approaches π .
Moreover, the physical quantity ξ is directly measurable and
manifests itself most clearly as a kind of penetration depth of
the massless chiral edge excitations.

Finally, the precise correspondence between the bulk ex-
citations and those at the edges of the spin chain has been
actually established by the function F (X ) as discovered in this
paper. This remarkable topological aspect is not seen in the
theory of ordinary critical phenomena.
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