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Bosonization of Majorana modes and edge states
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We present a bosonization procedure, which replaces fermions with generalized spin variables subject to local
constraints. It requires that the number of Majorana modes per lattice site matches the coordination number
modulo two. If this condition is not obeyed, then bosonization introduces additional fermionic excitations not
present in the original model. In the case of one Majorana mode per site on a honeycomb lattice, we recover
a sector of Kitaev’s model. We discuss also decagonal and rectangular geometries and present bosonization
of the Hubbard model. For geometries with a boundary we find that certain fermionic edge modes naturally
emerge. They are of different nature than edge modes encountered in topological phases of matter. Euclidean
representation for the unconstrained version of a spin system of the type arising in our construction is derived
and briefly studied by computing some exact averages for small volumes.
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I. INTRODUCTION

Bosonization is an old subject, which is of interests both
in condensed matter and high energy physics. The Jordan-
Wigner transformation [1] is one of the most famous methods.
It provides an effective bosonization procedure in (1 + 1)-
dimensions. Its nonlocal character in higher dimensions leads
to the search of alternative methods. There exists a zoo
of proposals [2—-15], including approaches motivated by the
Tomonaga-Luttinger model [16], generalizations or modifi-
cations of Witten’s non-Abelian bosonization [17], as well
as purely algebraic approaches [18]. Bosonization is also
closely related to the subject of dualities, such as the Kramers-
Wannier duality [19,20] or the more recent web of dualities
[11,21-23].

Besides classical applications such as solving certain many
body quantum models exactly [24] or overcoming sign prob-
lems in Monte Carlo studies [25,26], bosonization has been
invoked in the study of problems in quantum computation
[27,28] and topological phases of matter [29-33]. In Ref. [34]
a two-dimensional quantum spin liquid model integrable us-
ing bosonization methods has been proposed. More recently,
certain bosonization techniques were used to study inhomo-
geneous Luttinger liquids [35], quantum phase diagram in
one-dimensional superconductors [36], and also the fractional
quantum Hall fluids [37].

In Ref. [4] a bosonization technique, here referred to as
the I model, was proposed. It transforms in a local way a
fermionic model into a generalized spin system subject to
constraints. This correspondence was then made more pre-
cise in [38]. Generalization and new proofs were given in
[5,39]. Constraints present in the I' model were interpreted
as the pure gauge condition for a certain Z, gauge field.
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Modification of these constraints turned out to be equivalent
to coupling fermions to an external gauge field.

The most general version of the I' model developed so far
is subject to several important limitations. First, it corresponds
to a system with one fermion (hence two states) per lattice site.
In this paper we lift this restriction and bosonize systems with
arbitrary, not necessarily even, number of Majorana modes
(which are in a certain sense halves of an ordinary fermion)
per lattice site. Second, in the formulations considered before
the present paper it was crucial that all lattice sites have
an even number of neighbors. This covers many interesting
examples, including the toroidal geometries frequently used
in lattice simulations. Nevertheless, already for finite square
lattices (say, with open boundary conditions) there exists an
issue related to the existence of the boundaries. As remarked
in [[5], Appendix B], coordination number changes for ver-
tices on the boundary, which may call for an adjustment of
the bosonization procedure. It was argued that some Majorana
modes may be present on the boundary. In this paper we come
back to this issue and discuss it in detail.

We emphasize that the notion of a Majorana fermion used
here has almost nothing to do with the one from high energy
physics [40], which refers to a spinor field invariant under
charge conjugation transformation. In particular Lorentz sym-
metry (or lack thereof) plays no role. Here Majorana fermions
are self-adjoint operators obeying canonical anticommutation
relations. Every standard fermion may be decomposed into
a pair of Majoranas (real and imaginary part) in a canoni-
cal way; on the other hand pairing of Majoranas into usual
fermions depends on a choice of additional structure in the
space of Majorana modes [41].

One source of interest in Majorana modes in physics comes
from the theory of superconductivity [42,43]. In the presence
of Abrikosov vortices [44] there may exist a finite number of
Majorana zero modes per vortex, which resemble properties
of Majorana particles [45]. Such phenomenon exists for
example for chiral two-dimensional p-wave superconductors
[46]. Analogous vortex-related modes can be also found in
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superfluid *He [47]. Majorana zero modes are expected to
appear also in the Moore—Read quantum Hall state [48] with
filling fraction v = % (the so-called Pfaffian state). Quite
generally, free fermion systems characterized by nonzero Z,
topological invariant, such as the Kitaev’s quantum wires
[49], are expected to host Majorana zero modes on the
boundary. Another exciting features of Majorana modes is
their potential in topological quantum computation [27,50],
related to the possibility to realize non-Abelian anyons.
Feasibility of such topological quantum computation is still
being investigated [51].

The main idea underlying the I" model is to construct a rep-
resentation of the even subalgebra of fermionic operators (i.e.,
the subalgebra generated by all bilinears) in terms of “spins”
of sufficiently high dimension, or more precisely in terms of
Euclidean I matrices (satisfying anticommutations relations
on-site, but otherwise commuting). As observed in [4], hop-
ping operators for fermions may be constructed given one
I'(x, e) matrix per lattice site x for every edge e incident to the
given site. In addition, one has to impose a certain constraints
on states on the spin side. To represent the standard algebra of
fermions one has to specify, besides hopping operators, also
the fermionic parity operator on each site x. This operator has
to square to 1 and anticommute with hopping operators along
all edges incident to x. In other words, one needs an additional
" matrix. If x has an even number of neighbors, this additional
I" matrix may be obtained (up to a trivial phase factor) simply
by taking the product of all I'(x, ¢) with fixed x. We emphasize
that this construction does not work if x has an odd number
of neighbors, since then the product of all I'(x, ) commutes,
rather than anticommutes with individual I'(x, e). On the other
hand introducing the additional I" matrix as an independent
object would lead to spurious degrees of freedom. Hence in
this version one restricts to even coordination numbers.

Generalization presented in this paper is based on a few
simple observations. First, in a system featuring an odd num-
ber of Majorana modes per lattice site the on-site parity
operators do not exist. Therefore the I' model on a lattice with
sites of odd degree should feature unpaired Majorana modes.
Second, in presence of multiple fermionic modes per site
(say, due to spin or orbital degeneracy) there exist additional
independent bilinear operators, which can still be bosonized
if one further increases the number of I matrices per lattice
site. In this way one obtains a mapping between fermions and
spins with only one requirement: The number of Majorana
modes per site x should be congruent modulo two to the num-
ber of neighbors of x. Even this condition can be eventually
lifted. Indeed, if it is not satisfied, one can identify operators
corresponding to spurious degrees of freedom and choose for
them trivial dynamics decoupled from the rest of the system.

It turns out that the I' model, in particular its version for
arbitrary lattices proposed in this paper, shares some features
with models considered in [52,53] and [54], despite the fact
that its origin and motivation were different. We will now
present a short comparison between these models. In Ref. [52]
the vector exchange model defined in terms of bond algebra
was proposed. Similarly like in our case and the models dis-
cussed by Kapustin ef al. [2,3], the main idea was to say that
two models (i.e., the fermionic and bosonic ones) are equiv-
alent if and only if their operator algebras are isomorphic.

That is, the statement was purely kinematic and Hamiltonian
independent. The idea of using higher dimensional represen-
tations of Clifford algebras instead of the Pauli matrices was
introduced in [52] in order to define higher spin (e.g., %, %
etc.) analogues of the Kitaev’s model. To proceed with such
fermionization procedure the need for lattices of coordination
number different than 3 emerged. The interplay between the
dimension of the representation and the valency of lattice ver-
tices is also discussed therein. Relation between constraints
and the choice of a Z, gauge field is also discussed and the
counting of degrees of freedom is performed. In contrast, we
start with the fermionic theory and perform the bosonization
procedure based on the modification of the original I' model.
The (sector of) higher spin Kitaev’s model is a result of this
procedure. We also allow for multiple Majorana modes on dif-
ferent sites and this number may in principle vary from site to
site. As a consequence of the general bosonization procedure,
the relation of “unpaired” Majorana modes and generators of
the Clifford algebra associated to vertices is established. The
fermionization method analogous to the one in [52] was also
proposed, at the same time, in [53] and [54]. In the former
case the periodic boundary conditions were assumed, so that
the role of the analogues of Polyakov lines discussed also in
details in [39] began to be important. The role of constraints
was discussed, together with the flux-attachment mechanism
[55] and the interpretation of modifying the constraints as a
coupling to some external Z, fields. We also remark that it
was argued in [53] that models with a Z, gauge field chosen
as in [[5], Appendix B] may play a role for p-wave super-
conductors. The discussion at the beginning of [54] is in the
same spirit as in [53]. In [54] the bulk-boundary correspon-
dence is discussed in more detail for such models. As pointed
out in [52-54], these so-called I'-matrix models may have
applications for spin liquids, (3 + 1)-dimensional topological
insulators and the B phase of *He.

The organization of the paper is as follows. Details of our
construction are presented in Sec. II. Then in Sec. III we
present examples: relation to Kitaev’s model on hexagonal
lattice, bosonization on a decagonal lattice, and bosonization
of the Hubbard model on a rectangular lattice. Afterward, in
Sec. IV, we discuss boundary effects in the I' model. We de-
scribe the example of square lattice with open boundary con-
ditions and compare edge modes identified there with those
arising on the boundary of some topological phases of matter.

In Sec. V an Euclidean representation of the simplest,
unconstrained I" model on a regular honeycomb lattice is
proposed and briefly studied. The time evolution generated
by spin Hamiltonians considered here is more complicated
than in the standard Ising-like cases. Accordingly, Euclidean
three-dimensional spin systems emerging in this section are
unknown and interesting by themselves. The feasibility of
the standard, intermediate-volume, Monte Carlo studies is
crudely assessed on the basis of the exact small-volume cal-
culations.

II. THE BOSONIZATION METHOD

We consider a lattice system with fermionic degrees of
freedom, whose number may vary from site to site. Real
(Majorana) fermionic operators on the lattice site x will be
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denoted by ¥, (x), with the index o (labeling Majorana
modes) running from 0 to n(x) with n(x) > 0. They are Her-
mitian and satisfy anticommutation relations

Va(OYp(y) + g VPa () = 28; y84,p- (1)
The total number of independent Majorana operators
n=3 () +1) @

X
is assumed to be even, which guarantees that
n(x)

D =i [ vet 3)

x a=0

anticommutes with every fermion. We assume that (—1)"
is an exactly conserved quantity. Otherwise the Hamiltonian
may be arbitrary.

We will be interested in the algebra of even operators [i.e.,
operators commuting with (—1)]. Any even operator may be
expressed as a linear combination of products of bilinears of
the following two types:

S(e) = Yo(x)¥o(y) for anedge e fromx toy, (4a)
T (x) = Yo(x)¥o (x) for  # 0. (4b)

All S and T operators are skew-Hermitian and square to
—1. Furthermore we have that

(1) S(e)S(e') = £S(€¢')S(e), with the minus sign only if e
shares exactly one endpoint with €',

@) S(e)T,(x) = £T,(x)S(e), with the minus sign only if
x is incident to e,

(iii) T, (x)Tp(y) = £Tg(y)1,(x), with the minus sign only
if x =yand o # B.

It can be shown [5] that all relations in the algebra of even
operators are generated by those given above and what will be
called loop relations: If edges ey, ..., e, form a loop (i.e., ¢;
terminates at the initial point of e;;, with the convention that
em+1 = €1), then

S(er)...S(en) = 1. 4)

To bosonize the system, we generalize the approach pro-
posed in [5]. For each lattice site x we construct a Clifford
algebra with generators I'(x, e), one for each edge e incident
to x, and I, (x) with 0 < o < n(x). They are Hermitian ma-
trices satisfying

C(x, e)['(x, )+ T'(x, C(x, e) = 28, ., (6a)
IO, + ThOTL () = 28,5, (6b)
[(x, &)L, (x) + T, (x)C(x,e) = 0. (6¢)

Gamma matrices located on distinct lattice sites are taken
to commute, and the full Hilbert space is the tensor product
of on-site Hilbert spaces. In this sense the new system is
bosonic. Fermionic bilinears are mapped to bosonic operators
according to the local prescription

§(e) =iIl'(x, e)['(y, e) for an edge e fromx toy, (7a)
T,(x) = iT,(x) fora 0, (7b)

where the hat serves as an indicator that we are referring
to the bosonized operators, rather than those in the original

fermionic system. It is straightforward to check that S and
T operators satisfy all relations obeyed by S and T, except
for the loop relations. Instead, for a loop ¢ formed by edges

e, ..., ey one has that the operator
W) =S(er)...Sen) (8)

squares to 1 and commutes with all Sand T. We are forced to
impose the constraint
W (£)|phys) = |phys) for every loop £. ©)
We remark that modifying the constraint to the form
W(0)|phys) = w(£)|phys) 10)

with prescribed w({) = %1 is equivalent [5] to coupling
fermions to a background Z, gauge field for the (—1)" sym-
metry, such that w(£) is the holonomy along ¢.

Now let deg(x) be the number of neighbors of a site x and
put N(x) = deg(x) + n(x). We consider the operator

yo =i []re e []riw. (11)

a#0

Its phase is chosen so that ¥ (x)*> = 1. If N(x) is odd, y(x)
commutes with all gamma matrices, so one may impose a
relation y(x) =1 or y(x) = —1. This amounts to choosing
one of two irreducible representation of the Clifford algebra
on x. If N(x) is even, y(x) anticommutes with all gamma
matrices, so it defines an additional gamma matrix: y(x) =
F;(X)H(x). In this case, Eqgs. (7) provide a bosonization of a
system featuring one more Majorana fermion on the site x than
we have had originally. Therefore formally we bosonize only
systems with all N(x) odd, but the case in which this condition
is not satisfied may be handled by choosing for the spurious
fermions a trivially gapped Hamiltonian, not interacting with
the original fermions.

Bosonic system with constraints imposed is equivalent to
the sector of the fermionic system (possibly including the
spurious fermions) characterized by one of the two possible
values of (—1)F, defined including the spurious fermions.
Which possibility is realized depends on the lattice geometry
and the choice of values of y operators. In the remainder of
this section we sketch the proof of this fact, while details have
been given in [5] in a slightly less general context.

First, on the space of solutions of the constraintsAall relg—
tions satisfied by S and T operators are obeyed by S and 7.
Therefore this space is a representation of the algebra of even
operators. Every representation of this algebra is a direct sum
of irreducible representations, which are the two halves of the
Fock space described by two values of (—1)F. We will argue
that only one of the two irreducible representations actually
occurs in the decomposition and that the multiplicity is equal
to one.

For the first part of the claim, it is sufficient to observe
that the product of all S and T operators is proportional to
the fermionic parity operator, while the product of all § and
T is proportional to the product of all gamma matrices. The
latter is proportional to 1, because for every lattice site we
have y(x) =1 or y(x) = —1. Combining these two results
we conclude that (—1)7 is represented by a scalar operator
in the bosonic model. It is possible to determine whether it is
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(a) (b)

FIG. 1. (a) Honeycomb and (b) brick wall lattices are geometri-
cally different, but topologically equivalent.

equal to 4+1 or —1 by tracking phases carefully in the above
argument. Details depend on the lattice geometry.

For the second part of the claim it suffices to calculate
the dimension of the space of solutions of constraints. This is
facilitated by considering also modified forms of constraints.
Those are in one-to-one correspondence with gauge orbits of
background Z, gauge fields. Thus there are 2V —+! of them,
where N, is the number of lattice sites and N, is the number of
edges. One can show that spaces of solutions of modified con-
straints all have the same dimension by explicitly constructing
unitary operators, which map between them. Therefore the
dimension of the space of solutions of constraints (9) is equal
to the dimension of the whole Hilbert space in the bosonic
model divided by 2M~M+1 Using the well-known values of
dimensions of irreducible representations of Clifford algebras
we find that there are 22! linearly independent solutions of
constraints. This number is equal to the dimension of one half
of the Fock space.

III. EXAMPLES

We will now show how the general construction presented
in the previous section works in specific examples. We begin
with a model defined on the honeycomb lattice and discuss
its relation with the Kitaev’s model [34]. Then we discuss its
three-dimensional deformation, the decagonal lattice. Discus-
sion of boundary effects is postponed to Sec. IV.

We stress that this choice of lattices has been made mostly
in order to simplify the presentation. Bosonization prescrip-
tion from Sec. II is valid also on lattices of more complicated
geometry: coordination numbers may vary from site to site
and the translation symmetry is not necessary. We remark
that our bosonization reduces in (1 + 1)-dimensions to the
standard Jordan-Wigner transformation and as such can be
thought of as its higher dimensional generalization.

A. Honeycomb lattice and Kitaev’s model

In this subsection we present an example involving a hon-
eycomb lattice. It is arguably the simplest two dimensional
lattice with vertices of odd degree. Since our construction is
sensitive only to the topology rather than geometry of the lat-
tice, honeycomb lattice is equivalent to the brick wall lattice,
see Fig. 1.

We will bosonize a system featuring one Majorana fermion
Y per lattice site. This requires three gamma matrices. They
can be represented by Pauli matrices oy, oy, oz, which are
assigned to edges of the lattice as illustrated in Fig. 2. Thus

FIG. 2. The assignment of Pauli matrices.

for a lattice site x and an edge e labeled by I € {X, Y, Z} we
have I'(x, e) = o7(x).

For a plaquette P depicted in Fig. 3, the corresponding
constraint takes the form Wp|phys) = —|phys), where

Wp = ox (x1)oy (x2)07(x3)0x (x4)oy (X5)07(X6). (12)

Those are the Kitaev’s plaquette operators [34].
As a specific example, let us consider the Hamiltonian

H=i E § Sy ()Y (y), (13)
Ie{X,Y,Z}t)élpeI
edges

where x, y are the endpoints of the given edge, and Jx, Jy, and
Jz are parameters of the model. According to the prescription
given in Eq. (7), it corresponds to the spin Hamiltonian

H=- Y > JLo®a), (14)
1e{X,Y,Z} type I
edges

subject to the constraint Wp = —1 for every plaquette P. This
Hamiltonian has been proposed in [34], where its study was
reduced to diagonalization of quadratic fermionic Hamiltoni-
ans. Our approach provides an alternative derivation of this
result. Subspaces defined by different values of Wp correspond
to the Hamiltonian H modified by including a background Z,
gauge field.

B. Decagonal lattice

An example of a three-dimensional trivalent lattice is pro-
vided by the decagonal geometry. A convenient representation
is shown in Fig. 4, where one layer of such lattice is presented,
together with edges connecting it with the adjacent layers. It
can be thought of as a deformation of the brick wall lattice.

FIG. 3. A plaquette P of the honeycomb lattice.

155105-4



BOSONIZATION OF MAJORANA MODES AND EDGE ...

PHYSICAL REVIEW B 105, 155105 (2022)

FIG. 4. One layer of the decagonal lattice.

In the brick wall geometry, each red site was connected with
a green one to its north, while in the decagonal geometry
it is instead connected with a green site lying in the layer
underneath.

By the similarity with the brick wall geometry, one can
easily generalize the results from Sec. III A. Using the identi-
fication of edges between honeycomb and brick wall lattices
we attach Pauli matrices to pairs (x, e) of the decagonal lattice,
see Fig. 5.

As an example, constraint associated to the plaquette from
Fig. 6 takes the form Wp|phys) = —|phys), where

Wp = ox(x1)oy(x2)07(x3)07(x4)07(x5)

x 0y (X6)oy (X7)07(x8)07(x9)07(xX10). (15)

There exist also plaquettes not contained within one layer, but
for the sake of brevity we will not write down the explicit
formulas.

As in the honeycomb lattice case, every edge is labeled
by I € {X,Y,Z} and there is a correspondence between the
Hamiltonians in Eqgs. (13) and (14).

C. Hubbard model

In the preceding examples only one kind of fermionic
variables was involved. Here we discuss the simplest model
with an additional quantum number involved—the Hubbard
model [56] on the square lattice.

~
\\ O-B \\
> N
R oc N
~ \
~o 0p,
‘N____/
(a)
TA BN l
I ~
\ =/ 7 S {
\\ OB RN

(b)

FIG. 5. The assignment of Pauli matrices for (a) the brick wall
lattice and (b) the decagonal lattice.

T2 X I3/Y Ty X

Y Te
/ T5
Z Z
T10 xg
T Y | X T Y / X 77

FIG. 6. Plaquette P within a single layer of the decagonal lattice.

The Hamiltonian of the Hubbard model consists of two
terms, H = Hy + V, where

Hy=—tY Y (c)(X)eco(y) +cf (3o (x)),  (16a)
(xy) o=1,1

V=UY nn k), (16b)
where the edge connecting sites x and y is denoted by (xy).
Here ¢ (x) creates a fermion with spin o at position x,
ne(x) = cj; (x)cy(x),and t, U € R. These fermionic operators
may be decomposed into Majoranas as

cr(x) =27 (Yo (x) + i (x)), (17a)
L) =27 (Yo (x) — iy (x)), (17b)
ey (x) =27 (Yo (x) + iY3(x)), (17¢)
() =27 (W (x) — i3 (x). (17d)

This choice is by no means unique and we are free to (con-
sistently) use any other relabelling of indices. After modifying
accordingly the bosonization prescription, different choices
will lead to equivalent bosonic models.

To perform bosonization we need seven I matrices per
site, six of which are independent: the seventh may be taken
to be the product of the first six and the imaginary unit. The
bosonized Hamiltonian takes the form:

flo==5 3 T ol e, e - T
e=(xy)

—iT5(0)T5(y) + T35 (),

U
=7 > (=T + M5 @)Tx).  (18b)

(18a)

<)

To write down the constraints, it is convenient to denote
I'(x,e) as T';(x) for edge i pointing from x in the ith di-
rection, i € {£1, £2} (see Fig. 7). Now consider a plaquette
P as in Fig. 8. The corresponding constraint takes the form
Wp|phys) = —|phys), where

Wp =T o)l —102)T o1 2(3)l 2 1(xs).  (19)

Here we abbreviated I'; j(x) := I';(x)I"j(x). We note that this
constraint does not at all involve primed gamma matrices,
which we had to introduce in order to implement multiple
fermions per site. It is characteristic for the square lattice
geometry.

One annoying feature of the presented construction is that
spin up and spin down states are not treated completely
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FQ (l’)

F,Q(ib)

FIG. 7. The assignment of gamma matrices.

symmetrically. Nevertheless, symmetries of the Hubbard
model are implemented also in the bosonized model. First,
we have conservation of the total particle number. Particle
number on a single lattice site x is bosonized in the following
way:

. 1, i
D cher e 1= 3T+ %rgrg. (20)

For spin [SU(2) generators] operators we have:

e e i 21
cpep —cycy <> ST — 7Tl (21a)
i
ey «— 2= TH(@3+il%), (21b)

cley «— _2(1 FT(T, —iT).  (2lo)

It noteworthy that all on-site symmetries of the original
fermionic model are also on-site after bosonization. Further-
more, the corresponding charges are expressed entirely in
terms of primed gamma matrices. This is a general property
of our construction.

IV. BOUNDARY EFFECTS

A. Rectangular lattice with a boundary

We will now discuss bosonization of a system on an
L, x L, rectangular lattice, with two Majorana fermions v,
Yy per lattice site. Every site x in the bulk has four neighbors,
corresponding to four gamma matrices I'1;(x), i = 1, 2, as in
our discussion of the Hubbard model. According to the pre-
scription given in Sec. II, we need also an additional gamma
matrix I'{(x). It can be eliminated by imposing relations
discussed below equation (11). We choose the convention
[(x) =T 1(x)T1(x)I'_2(x)[2(x). Therefore in the end we
need only unprimed gamma matrices. Constraints are iden-
tical as in the discussion of the Hubbard model.

T4 I3

X1 T2

FIG. 8. A plaquette p of the rectangular lattice.

O

I {L"Q {L’-g Tq

FIG. 9. The southern boundary of the rectangular lattice.

More explicitly, our bosonization prescription reads

1) i1 (y) <— Yo(x)Po(y) if y is the eastern
neighbor of x,

i) T2 _2(y) «<— Yo(x)Yo(y) if y is the northern
neighbor of x,

@1i1) L )T )T (0T (x) «— Yo ()P (x).

Now, we look closely at the situation on the boundary.
First, sites on the southern edge (see Fig. 9) have no neighbors
in the direction —2. We may reinterpret the ['_, matrix as an
additional '/, corresponding to a spurious Majorana fermion
on the boundary. More precisely, for every site x; on the
southern edge we introduce an additional Majorana operator
Xxs(x;). Bosonization prescription for xg fermions takes the
form

i () <— Yolx)xs(x). (22)

Similarly for the northern, eastern and western edges we in-
troduce Majorana fermions xn, xg, and xw-

At each of the four corners (which are geometrically of
codimension two) there are two x fermions. For example the
south-east corner xsg hosts four Majorana operators o (xsg),
Y1 (xsg), xs(xse), and xg (xsg).

We now determine the identity resulting from existence
of the boundary. First, notice that for every lattice site x =
(a,b) e{l,..., L} x{1,...,L,} we have

L.—1

[ ] vota. byoa+ 1. b) = yola, by (L, b).  (23)

a=1

Consequently, our bosonization prescription yields

wo(ls b)wO(L/W b)

Lx

<—>iLxlr_l(l,b)<]—[r_,,l(a,b))rl(Lx,b) (24)
a=1

and
Yola, 1)yo(a, Ly)

L

« 7 s (a, 1)(]_[ I_5,(a, b))F](a, L), (25)
b=1

for every 1 <b< L, and 1 < a < L,, respectively. By a
straightforward computation one can check that it results in
the following correspondence

l'(L.t_L}‘)2+2(L)+L_v) 1_[ T_2n_11(a, b)
a,b
<> Xas Xow Xow X » (26)

where we have introduced the abbreviated notation xy, =
]_[S;1 xs(a, 1), and so on. Since I'_5 > _;,;(x) corresponds to
—iYo(x)Yr (x), which is the parity operator (—1)f® for v
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fermions at site x, we end up with the following constraint
(=)™ = ke xag Xow Xow X @n

where k = i~(1—L+2L+L) s 3 geometrical phase factor. In
particular, for lattices with L, = L, (mod 2) we have x = 1.
Summarizing, we started from the system of ¢ fermions,
but our bosonization gave us a bosonic system equivalent
to ¢ fermions together with x fermions on the boundary.
Since operators corresponding on the spin side to spurious
x modes have been identified, this is not a problem. Indeed,
bosonizing suitable Hamiltonian for y fermions using formula
(22) and its analogues for other components of the boundary
we may make x arbitrarily heavy, e.g., dimerized with large
dissociation energy. This provides a physical interpretation
for additional constraints on the boundary introduced in [[5],
Appendix B]. After imposing them, one obtains a spin system
corresponding to ¥ fermions on a lattice with boundary.

B. Comment about topological phases

One of the remarkable features of many topologically non-
trivial phases of matter is their interesting (robust) behavior
on the boundaries, which are of dimension d — 1. This is the
case in particular for free fermion systems, for which one has a
well-established bulk-boundary correspondence: Topological
invariants in the bulk signal existence of modes localized near
the boundary, responsible for closing the gap in finite volume.

Robustness of the boundary modes in often interpreted as
manifestation of an anomaly of the boundary theory. Pres-
ence of the anomaly implies existence of some degrees of
freedom “saturating” the anomaly. On the other hand, it is
also expected that the anomalous (d — 1)-dimensional system
is inconsistent on its own: it may be realized only on the
boundary of a d-dimensional system. As an example, chiral
fermions cannot be realized on the lattice (this is the Nielsen-
Ninomiya theorem, see [57,58]), but they may exist on the
boundary or domain wall (more generally, a defect) in a higher
dimensional system. This is at the heart of the bulk boundary
correspondence.

On the other hand, boundary modes found in our
bosonization prescription correspond to a standalone (hence
“nonanomalous”) system on the boundary. Now suppose that
we bosonize a free fermion system with a nonzero topologi-
cal invariant, say on a half-space. Then on the boundary we
will have boundary modes predicted by the bulk-boundary
correspondence and x fermions described in the previous sub-
section. We can gap out the latter fermions by including in the
Hamiltonian a suitable term localized in the boundary. This is
believed not to be true for the former. In the case of invariants,
which remain robust in presence of interactions [49] it is
natural to expect that even after including a coupling between
x fermions and ¥ fermions, boundary modes originating from
a topological invariant will persist.

Of course the full picture of topological invariants and
boundary modes has to involve the choice of a Hamiltonian, or
at least some class of Hamiltonians. On the other hand, the dis-
cussion presented here is mostly concerned with properties of
algebras of observables. It would be interesting to understand
better the relation between bosonization and bulk-boundary

correspondence. Such questions are relevant, for example, for
the problem of discretization of chiral fermions.

V. EUCLIDEAN REPRESENTATION OF UNCONSTRAINED
“MAJORANA SPINS”

The next goal is to construct an Euclidean Ising-like action,
with two different couplings, §; and B, which in the continu-
ous time limit

B —>o0, e=eP >0 PB=erx—0 (28

is described by the Hamiltonian (14) with parameters Jxy =
Jy =1, Jz = A (we will not impose constraints at this point).
Following [59,60], this is done by demanding that the transfer
matrix elements defined by the Boltzmann weight

(s'T|s) = e (29)
coincide with these of the Euclidean evolution operator
(s'IT1s) = (s'le”M|s) = (s'[1 — eH]s) (30)

up to terms of order €. Here € is the elementary time step
and s and s’ denote configurations of spins at subsequent time
instants.

The time evolution generated by (14) consists of ele-
mentary double-spin flips, in contrast to the Ising system in
which the dynamics is driven by single spin flips. In order to
gain some orientation in this problem, we start by deriving
an Euclidean action for a simpler, one-dimensional quantum
Hamiltonian

Hyg =— ZUX(xk)UX(Xk+1) —X ZUZ(xk)UZ(Xk+1)~ (31)
k k

A. Basic idea and the (1 + 1)-dimensional example

In the Ising model, the basic trick relating Hamiltonian
and functional formulations is to classify all variations of a
multiple-spin state into classes with fixed number of single
spin flips.

On the Euclidean side, the number of single flips between
two time slices is counted by the two-row action

1
Li(s',s) = 5 D0 = sisy). (32)
k

It corresponds to the Hamiltonian

— Y ox(xp). (33)
k

In the present case (31), we are seeking to single out
the double spin flips out of all possible changes of a row
of spins. Therefore we begin with the Euclidean eight-spin
action, which counts isolated double flips

1 : /
L = o D+ secasi ) = siesy)
k

X (1 = spp18p )DL+ Se425040), (34)

Simpler functions can be also used, hence we shall omit the
“(8)” superscript if not necessary.

We need to arrange the final, Euclidean action such that
in the continuous time limit it gives weight € to double flips
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while all other, single and multiple, flips are of higher order in
€ = ¢~P . This is achieved by the combination

Liin(s', 5) = Bi(p(Ly — 2Ly) + Ly), (35)

where p > 2 is a free parameter.
It is easy to check that L(S) may also be replaced in (35) by
the simpler function

1 /
L = < DA+ s DA = s = seqasiyy). (36)
k

This definition prescribes different weights to nonleading
transitions, but results in the same double flip kinetic part of
(31). This is an illustration of the well known fact that many
different Euclidean discretizations have the same continuous
time limit, hence also the same Hamiltonian.

Action for a single transition has to be supplemented by a
potential term:

L(s", 5) = Liin(s', ) + Lot (57, ), (37a)

Bs /
Lo (s, 5) = == Xk: (skSks1 + 5485,,.0). (37b)
Complete Euclidean action for the L, x L, spins is ob-
tained by composing elementary transfer matrices, which

amounts to adding the corresponding actions:

S(s(Ly), S(l))—ZL(S(tJrl)S(t)) (38)

t=1 |

= Bi(2(S1 —282) + S2) + B:SP* +

Lpn(s’, ) > 23

B. (2 + 1)-dimensional system

As a (2 + 1)-dimensional example we consider here the
honeycomb lattice discussed in Sec. IIIA. As remarked
therein, it is convenient to represent it in a brick wall form,
cf. Fig. 1.

Our Hamiltonian is of the form (14) with parameters Jy =
Jy = 1 and Jz = X, and can be written as a sum of two terms

H= Hkin + )\'Hpoh (43)

where the kinetic term contains sums over all edges of type
X and Y, while the potential one is a sum over edges of type
Z. The labeling of the edges of the brick wall lattice is shown
explicitly in Fig. 10 and is consistent with the one in Fig. 2.

Derivation of an Euclidean action of a three-dimensional
(x, y,t), periodic in all directions, system is very similar to
the previous (1 + 1)-dimensional example.

The two kinetic (i.e., oxoy and oyoy) terms in (43) are
represented by the same six- or eight-spin couplings between
the adjacent time slices plus the appropriate phase, which
naturally generalizes the (1 4 1)-dimensional phase in the last
term of (42) to three Euclidean dimensions.

On the other hand diagonal, in the Hamiltonian form,
potential terms are represented by the standard Ising-like,
ferromagnetic couplings along the y direction. They are
located on the shorter edges of bricks at each time slice.

This concludes our construction of the two-dimensional,
Euclidean system, which in the continuum time limit is de-
scribed by the Hamiltonian (31).

The second example deals with the phase generating ki-
netic terms

H1p; == Z ox (X )ox (Xk+1) — Z oy (xp)oy (Xg+1)

k even k odd

— 1Y 07(x)0z(xis1) (39)
k

still in one space dimension.
Begin with an evolution of a two spin system:

s ={s1, 5} = 5 ={s], 55} (40)

As far as the change of spin states is considered, the action
of oyoy is the same as that of oxoy. The only difference is a
phase factor:

oy oy ()lst, s)=exp (551 +52)ox (ox(@)lsi, 52).
(41

Generalization to a whole row of L spins is straightforward.
The kinetic term of the Hamiltonian (39) will be reproduced
by the action (35) supplemented by a phase (41) for each odd
edge. This gives for the new action of the two complete rows
(and with the unchanged diagonal potential term)

D et s+ 518 A = 581 = sqashy,). (42)
x—odd

(
Hence, they are staggered in accord with the (#-independent)

— y parity, £y, = (—1)*", of a site originating given Z edge
in the potential term. The final action reads

S =5 Y09, +8 Y 0%+ > D Ol (44

X, ).t ERAS RS
ny:l (.ry:_l

with the phase operator o)

.y, being the direct generalization

of above 0)(67,) to three dimensions and similarly for other

FIG. 10. The brick wall lattice with the assignment of Pauli
matrices.
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couplings:
1

7

0)(()); - ?(Sx,y,t + Sx+1,y,t)(1 + Sx—l,y,tsx—l,y,l-&-l )(1 - sx,y,ts.x,y,l+l )(1 - sx+1,y,tsx+l,y,t+l )v (453)
(6) 1-2p p

OX,y,t - 8 (1 + Sx—l,y,tsx—l,y,t-i-l)(l - Sx,y,tsx,y,t-i-l)(l - Sx+l,y,tsx+l,y,t+l) + E(l - Sx,_v,tsx,y,t+1)7 (45b)

08), = —sy 48 (45
Xyt X,),19x,y+1,¢+ C)

The action (44) describes then a three-dimensional Ising-
like system. Together with the corresponding constraints (still
to be implemented) it would provide an equivalent, Euclidean
representation of a single, quantum Majorana spin on a two-
dimensional spatial lattice.

Even without the constraints the system is still interesting
per se. Its thermodynamics, the phase diagram, order param-
eters are unknown at the moment and could be studied with
standard methods of statistical physics. Such studies would
also provide, among other things, some information about the
constraints themselves.

The Boltzmann factor associated with (44) is not positive.
However the origin of its phases is now conceptually simple.
Below we look how severe is the sign problem in these uncon-
strained Euclidean models.

C. The sign problem

The standard (and practically only) method to deal with
nonpositive weights is the reweighting [61,62]. Instead of
potentially negative Boltzmann factor p = exp (—S), one uses
as a Monte Carlo (MC) weight its absolute value ps = |p|,
correcting at the same time all observables for this bias.

Whether such an approach is practical can be readily
judged from the average value of a sign of the exact Boltz-
mann factor

o [r\ _Z
(sign) :<;0_A>A =z (46)

averaged over the modulus p,. If this average is close to 0, the
method fails. If the contrary is true, say for some intermediate
volumes, one may expect to obtain meaningful estimates.

We have calculated analytically above average for both
(14 1)- and (2 + 1)-dimensional models by employing the
transfer matrix technique for a range of small volumes. It is
seen below that the sign problem is not very severe in this
case. Consequently, MC studies remain a viable approach to
explore these systems in detail.

1. (1 4+ 1)-dimensions

Partition functions Z and Z4 were calculated exactly by
summing Boltzmann factors exp (—S,p) and | exp (—S2p)|, as
defined in Eqgs. (42). In Fig. 11 the average sign is shown for
arange of two dimensional volumes and various couplings S;
and f;. The results are displayed as a function of a time step,
€ = exp (—p,), and parameterized by different couplings A =
% in the Hamiltonian (39). Second column displays analogous
results for larger penalty parameter p.

The sign problem seems manageable for a sizable part of
the parameter space. It vanishes entirely for ¢ — 0.

Increasing the penalty parameter p also helps, since then
some undesired transitions vanish faster with €.

Both of these features show up also in our three-
dimensional system. They can be readily understood and used
for our advantage, as discussed below.

2. (2 4+ 1)-dimensions

For the three-dimensional Euclidean system (44) of vol-
ume V = L,L,L; a brute-force summation of all 2V terms
becomes already a challenge. Still it was possible to obtain
the value of (sign) for V. =4 x 4 x 3, as shown in Fig. 12. It
was done by constructing two subsequent transfer matrices in
the y direction.

Again, as in the (1 4 1)-dimensions, the phase is harmless
for small €. This feature improves dramatically with increas-
ing the penalty parameter.

In addition, for L, = 2 no phase was observed in all cases.
That is (sign) = 1 for all values of parameters and for all
studied dimensions.

3. The sign problem—summary

All the regularities observed above can be readily under-
stood and generalized for arbitrary sizes of lattices, providing
at the same time some guidelines for other, similar systems.

Consider first the case L, = 2. The partition function

Z0 = Zeil‘(s's/)efl‘(xl’x) 47)

s,8'

is the sum over two-composite states of spins at the two time
slices. The nonzero phase can occur only if s and s differ
by a double flip. However in this case the phases of e~-¢)
and e~-0"9 cancel and the result is positive for each pair of
configurations, as found above.

On the other hand, already for L; = 3 there are three states
in the game

Z(S) — Z e—L(s,s”)—L(s”,s’)—L(s’,s)‘ (48)

5,8 ,8"

Hence a single double-flip, e.g., in s — §’, can be balanced by
two subsequent single-flips in 5" — s” and s” — s transitions.
Since a phase may occur only in the double flip transition s —
s’, this particular contribution may be negative and would give
(sign) < 1.

Consequently, the single flip transitions provide an unde-
sired background, which indirectly causes negative signs of
Boltzmann factors, hence the sign problem.

However such transitions vanish for ¢ — 0 having a weight
of the higher order in € by construction. This is clearly con-
firmed by our calculations, cf. Figs. 11 and 12, and explains
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FIG. 11. Exact results for the average sign (sign) for a range of two dimensional volumes V and for the penalty parameter p = 2 (left
column) or p = 8§ (right column). Plots are presented for A values (from bottom to top) 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2.

why sign problem vanishes at small €. These figures were
obtained by using Mathematica [63].

Moreover, by increasing the penalty parameter p we can
force the “bad transitions” to vanish faster. Indeed this is also
confirmed by our results for p = 8 in both dimensions. This
suggests that the sign problem could be significantly reduced
by setting p = oo, which amounts to introducing a constraint
in the Euclidean system [64].

We remark that even under this constraint there exist
“Euclidean histories” with negative sign. As they involve a
number of spin flips growing with the system size, one may
hope that they do not lead to significant difficulties.

Obviously all these scenarios should be further studied
quantitatively.

VI. CONCLUSIONS AND OUTLOOK

We have presented a bosonization method generalizing the
idea from [4], valid for lattices of arbitrary coordination num-

ber and with arbitrary number of Majorana modes per lattice
site. In the previous studies only systems with even coordina-
tion numbers and one pair of fermionic creation/annihilation
operators per lattice site were considered. The approach in
this paper extends the construction in several ways. First, for
lattices with vertices of even degree we may include multiple
fermionic states per site. We illustrate this by bosonizing the
Hubbard model. Second, we allow for lattices with odd coor-
dination numbers. Then there is an odd number of Majorana
fermions per site. We stress that the Majorana variables we
are talking about here are not necessary resulting from any
representation of complex (Dirac) fermions, but they are the
elementary objects per se. In particular systems with one
Majorana per site may be bosonized. Since the presented
bosonization procedure is clearly invertible (as it is based
on an algebraic isomorphism), this leads to an intriguing
possibility of analyzing other spin liquids by applying the
inverse of it. We have illustrated this general phenomena on
the simplest example, the Kitaev’s honeycomb lattice, but
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FIG. 12. Average sign as a function of the ¢ parameter in the
three-dimensional case with volume V =4 x 4 x 3 for the penalty
parameter (a) p =2 and (b) p = 8. The range of A parameter is
explicitly given for both cases.

one can apply this procedure to other models of this type.
Similar constructions based on Clifford algebras formalism
have been previously, as discussed in Sec. I, considered in
[52-54] in order to fermionize higher spin models. More
recently the gamma-matrix versions of Kitaev’s models were
used to study spin—% Kitaev Shastry-Sutherland model [65]
as well as to describe spin-orbital models and they relations
to Kugel-Khomskii-type models and compass interactions
[66]. In the latter case the authors constructed models, on ei-
ther rectangular or honeycomb lattices, realizing the Kitaev’s
sixteenfold way of anyons [34]. Our bosonization method
provides a rigorous mathematical technique that, in princi-
ple, could be use to generalize such construction in other

geometries. Three-dimensional Kitaev’s spin liquids were also
studied recently in [67]. Several examples of possible use
of I'-Kitaev models to study higher spin models as well as
spin-orbital models were also reported in [68], and used in
[54,69] to demonstrate the existence of emergent topological
insulators on a three-dimensional diamond lattice. Since our
bosonization provides tools for a rigorous construction (out of
almost arbitrary fermionic theories) of bosonic (higher spin)
models in terms of gamma matrices, it can be also used to
generate new examples of (higher) spin models. We postpone
this intriguing possibility for a future research.

It is possible to treat also systems for which the coordi-
nation number is not congruent modulo two to the number
of Majoranas per site. Strictly speaking in this case we
do not bosonize the original fermionic system but rather
one augmented by some spurious fermionic degrees of free-
dom. Nevertheless, operators corresponding on the bosonic
side to these modes may be clearly identified and decou-
pled. Even in the case of very regular lattices such trick is
needed in presence of a boundary. We emphasize that this
is a feature of our bosonization method, not of fermionic
systems per se.

If these two numbers are not congruent modulo two, it
involves spurious fermionic states, which nevertheless can be
identified and eliminated. Another potential source of inter-
est in this construction is that it provides new analytically
tractable examples of spin systems featuring edge modes.

One question, which remains unanswered is whether our
construction may be dualized to some higher gauge theory.
For systems with one fermion (and hence two Majoranas) per
lattice site such picture of bosonization has been obtained in
[2,3].

Concerning the Euclidean formulation, our main conclu-
sion is that in spite of somewhat unusual time evolution,
generated by simultaneous double-flips, a local Euclidean ac-
tion for an unconstrained system was derived. It contains at
least six-spin interactions and is highly asymmetric between
space and time, in contrast to the standard Ising model. To our
knowledge, this system has not been studied. Now, it can be
readily explored with standard statistical methods.

Our generic action is complex. It was found that the result-
ing sign problem is manageable on small lattices where our
fully analytical approach is available.

The next logical step now is to study the problem for
larger, although intermediate, sizes and see whether the pop-
ular reweighting methods allow meaningful measurements of
observables, extrapolation to larger volumes and extraction of
scaling limits. Moreover, it is conceivable that introduced here
methods could be extended to implement the spin constraints
avoiding the standard nonpositive Legendre transformation.
We intend to further study some of these questions with the
aid of quantitative Monte Carlo approach.
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