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Interorbital singlet pairing in Sr2RuO4: A Hund’s superconductor
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We study the superconducting gap function of Sr2RuO4. By solving the linearized Eliashberg equation with
a correlated pairing vertex extracted from a dynamical mean-field calculation we identify the dominant pairing
channels. An analysis of the candidate gap functions in orbital and quasiparticle band basis reveals that an
interorbital singlet pairing of even parity is in agreement with experimental observations. It reconciles in
particular the occurrence of a two-component order parameter with the presence of line nodes of quasiparticles
along the c axis in the superconducting phase. The strong angular dependence of the gap along the Fermi surface
is in stark contrast to its quasilocality when expressed in the orbital basis. We identify local interorbital spin
correlations as the driving force for the pairing and thus reveal the continuation of Hund’s physics into the
superconducting phase.
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I. INTRODUCTION

Since its discovery 27 years ago [1], the superconduct-
ing ground state of Sr2RuO4 remains a major challenge in
strongly correlated electron physics [2,3]. The symmetry of
the order parameter is still a debated question, with recent
experiments challenging established views [4,5] (for recent
reviews and discussion see, e.g., [6–8]).

In the normal state, material-realistic calculations combin-
ing density-functional theory (DFT) and dynamical mean-
field theory (DMFT [9,10]) have been able to explain, on
a microscopic level, many experimental observations. This
includes the emergence of quasiparticles with anisotropic
mass renormalization when cooling down from the incoher-
ent high-temperature phase to the Hund’s metal Fermi-liquid
regime [11] as well as quasiparticle dispersions and the subtle
reshaping of the Fermi surface due to the spin-orbit cou-
pling as probed by photoemission experiments [12]. More
recently, momentum-resolved static magnetic susceptibilities
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computed in DMFT [13–15] have been shown to agree well
with inelastic neutron-scattering experiments [16], when ver-
tex corrections are properly taken into account [13,14]. These
recent works highlight the correlated nature of Sr2RuO4

as a Hund’s metal [17] and the importance of local spin
fluctuations, as in other Hund’s metals like the iron-based
superconductors [18–21].

In contrast with the normal state, the nature of the low-
temperature superconducting state of Sr2RuO4 remains a
matter of intense debate today. Despite a large body of ex-
periments, no consensus has been reached, for example, on
the precise form and symmetry of the superconducting or-
der. The difficulty comes from the multiorbital nature of this
material and the spin-orbit coupling (SOC), which yields a
large number of possible pairing symmetries (see Ref. [22]
for a classification based on group theory). This makes a direct
phenomenological approach difficult, in which one considers
every possible pairing authorized by symmetry and finds the
(hopefully) unique one compatible with every experiment.
Several works have been published in this direction (see, e.g.,
[8,23,24]).

In this work, we instead use microscopic computations at
high temperature, in the normal-state Hund’s metal regime, to
guide us towards the most likely superconducting order candi-
date. We directly solve the linearized Eliashberg equation for
superconductivity from high temperatures, nonperturbatively,
without any assumption on the symmetry of the order
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parameter, for the same realistic model used in the success-
ful studies on the normal state. We identify two dominant
channels in the Eliashberg analysis. Both are two-component
spin-singlet modes. The first one has interorbital character,
even momentum symmetry, and odd orbital symmetry, while
the second has intraorbital character and odd momentum sym-
metry. We will show, however, that the interorbital channel
is the only one compatible with experiments. This kind of
pairing was not identified in similar previous studies that used
a random phase approximation (RPA) like approximation [25]
or a self-consistent GW + DMFT approach [15].

This paper is organized as follows. In Sec. II, we present
our model, based on realistic electronic structure; in Sec. III,
we present our formalism and discuss every approximation
we make in this work at a general level; in Sec. IV, we discuss
our numerical results and the two dominant superconducting
symmetry channels and compare to previous related works
[15,25]; in Sec. V, we present a detailed comparison of these
two pairing states to experiments; finally, we conclude in
Sec. VI.

II. MODEL

The structure of Sr2RuO4 is that of an undistorted layered
perovskite with D4h tetragonal point-group symmetry on the
Ru sites. Due to the strong induced cubic crystal-field split-
ting of the Ru-4d states (10Dq = Eeg − Et2g ) the eg states are
pushed well above the Fermi level. Hence, the three bands
crossing the Fermi level can be represented by a localized
Wannier-orbital basis transforming as the Ru-4d-t2g orbitals
xy, xz, and yz, with a nominal filling of four valence electrons.
While the tetragonal onsite splitting of these orbitals is rather
small, Exy − Exz/yz ≈ 80 meV, the hopping parameters are re-
markably anisotropic showing a two-dimensional (2D) like
dispersion for xy states and one-dimensional (1D) dispersion
for xz and yz bands, respectively. This can also be seen in the
Fermi-surface (FS) topology where the xz and yz states form
nearly one-dimensional Fermi-surface sheets, that hybridize
weakly and give rise to the hole pocket α (centered around X )
and the electron pocket β (centered around �). For resolved
orbital contributions of xz and yz states, see the color-coded
lower panel of Fig. 1. The in-plane xy states, on the other
hand, are dominant in the formation of the electron pocket
γ (concentric with β) [see Fig. 1 (upper panel)].

Aside from D4h hopping and crystal-field potential, spin-
orbit-coupling (SOC) effects are sizable for the Ru-4d valence
electrons and play an important role in Sr2RuO4 [26,27]. For
the three-band t2g low-energy model it has been shown that
the effect of SOC can be captured using a local l · s operator
and that the effective spin-orbit coupling is enhanced by cor-
relations [12,28,29]. Its effects within the t2g subspace have
significant impact in large parts of the Brillouin zone (BZ)
around the Fermi level and, more specifically, the shape and
orbital character of the Fermi surface at the points where the
Fermi-surface sheets α, β, and γ are in close proximity [12],
e.g., along �-X in Fig. 1.

In this study the normal-state electronic structure of
Sr2RuO4 is described using an ab initio derived low-energy
t2g effective model, computed using density-functional theory
(DFT) and a Wannierization of the three Kohn-Sham bands

FIG. 1. Plot of the orbital character of the Fermi surface in the
kx, ky plane at kz = 0, including spin-orbit coupling. The in-plane xy
orbital dominates the γ Fermi-surface sheet (top) while the out-of-
plane orbitals xz and yz dominate the outer α hole pocket and the
inner β electron pocket (bottom).

crossing the Fermi level. The model has been used in several
previous studies [11,12,14]; for details on the model con-
struction using WIEN2K [30] and WANNIER90 [31] we refer
to Ref. [12]. The effective screened Coulomb interaction was
modeled using the rotationally invariant Kanamori form pro-
jected on the t2g subspace, and parametrized by a Hubbard U
and a Hund’s J . The interaction parameters U = 2.3 eV and
J = 0.4 eV are set in accordance with previous studies, which
have correctly reproduced quantum oscillation experiments
[11], angle-resolved photoemission spectroscopy [12], and the
momentum-dependent static spin response function [14].

III. FORMALISM

In order to study the superconducting instability in
Sr2RuO4, we solve the linearized Eliashberg equation in all
possible symmetry channels. We use a DMFT-based approxi-
mation detailed below to approximate the two-body quantities
involved in this equation. A more conventional approach to
study superconductivity in (cluster) DMFT would be to di-
rectly solve the DMFT equations for a single site or a small
cluster in the ordered phase, or to compute the supercon-
ducting susceptibility above Tc from the linear response of
one-body quantities to a small pairing field. This is well
known in, e.g., the study of s-wave or d-wave superconducting
orders in attractive or repulsive Hubbard model (see, e.g.,
[32]). The Eliashberg approach has the advantage of being
able to describe an arbitrary momentum dependence of the su-
perconducting gap function �, a very important question that
can not be addressed with cluster DMFT methods. However,
this flexibility comes at a cost: a limitation to high temper-
atures and the need to rely on approximations for two-body
quantities which are only partially controlled.
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In this section, we first define the generalized propagators
and self-energies in a Nambu basis as well as their symmetry
properties. Then, we present the Eliashberg equation and the
relevant Parquet and Bethe-Salpeter equations for the vertex.
Finally, we discuss in detail our approximation strategy and
the role of spin-orbit coupling for our results.

A. Generalized propagators and self-energies

First, we define the anomalous Green’s functions at imagi-
nary time τ and momentum k by

F σσ ′
ab (k, τ ) ≡ 〈Tτ caσ (k, τ )cbσ ′ (−k, 0)〉, (1)

F
σσ ′

ab (k, τ ) ≡ 〈Tτ c†
aσ (k, τ )c†

bσ ′ (−k, 0)〉, (2)

where Tτ is the time-ordering operator and caσ (k, τ )
[c†

aσ (k, τ )] are fermionic annihilation (creation) operators in
the Heisenberg representation with orbital (a, b) and spin
(σ, σ ′ ∈ {↑,↓}) indices. In a Nambu basis spanned by the
spinors

�a(k, τ ) ≡ (ca↑(k, τ ), ca↓(k, τ ), c†
a↑(−k, τ ), c†

a↓(−k, τ )),

(3)

the anomalous propagators are the block-off-diagonal entries
of the generalized single-particle propagator

Ĝab(k, τ ) ≡ −〈Tτ�a(k, τ )�†
b(k, 0)〉

=
(

Gab(k, τ ) −Fab(k, τ )

−Fab(k, τ ) Gab(k, τ )

)
. (4)

In this equation, G and F are 2 × 2 matrices in spin space. The
diagonal entries are the normal single-particle (single-hole)
propagators Gab(k, τ ) [Gab(k, τ )]. After Fourier transforming
from imaginary time to Matsubara frequency, the generaliza-
tion of the corresponding Dyson equation reads as

Ĝ(k, iνn) = Ĝ0(k, iνn) + Ĝ0(k, iνn)�(k, iνn)Ĝ(k, iνn),

(5)

where

Ĝ0
ab(k, iνn) =

(
G0

ab(k, iνn) 0

0 G
0
ab(k, iνn)

)
(6)

is the noninteracting generalized propagator and

�ab(k, iνn) =
(

�norm
ab (k, iνn) �ab(k, iνn)

�ab(k, iνn) �
norm
ab (k, iνn)

)
(7)

defines the generalized self-energy. As for the Green’s func-
tion Ĝ, the diagonal blocks in the self-energy, �norm and
�

norm
, are the single-particle and single-hole self-energies

and the off-diagonal pairing term � is called the supercon-
ducting gap function. While � in principle only is finite in
the symmetry-broken superconducting state, it is possible to
determine the superconducting instability in terms of � di-
rectly from the normal phase using the linearized Eliashberg
formalism.

B. Eliashberg and Parquet equations

The linearized Eliashberg equation for the superconducting
gap function � reads as [25,33–35]

λ�
s/t
ab (K ) = − 1

2Nkβ

∑
K ′

�
s/t
cadb(Q = 0, K ′, K )

× Gc f (−K ′)Gde(K ′)�s/t
e f (K ′), (8)

where �s/t is the irreducible vertex function in the
singlet/triplet channel, G is the spin-independent (interacting)
single-particle lattice Green function, Q (K ) is the bosonic
(fermionic) four-vector consisting of Matsubara frequency
(ωn/νn) and momentum (q/k), Nk is the number of momenta,
and β is the inverse temperature. Here all latin indices are
orbital indices and the Einstein summation convention is used.

The Eliashberg equation [Eq. (8)] is an eigenvalue problem
with eigenvectors � and eigenvalues λ. When lowering the
temperature, the superconducting instability occurs at the crit-
ical temperature Tc, at which the eigenvalue λ of the dominant
eigenvector gap function � reaches unity. In practice, because
our numerical solution is limited to high and intermediate
temperatures, we are not able to reach Tc, but we will rather
compare the evolution of the 10 largest eigenvalues λ and the
corresponding eigenvector gap functions � as a function of
temperature.

In this paper, we neglect the spin-orbit contributions to the
pairing vertex, which allows us to solve Eq. (8) separately
for singlet (s) and triplet (t) channels in the spin-diagonalized
form [36,37], i.e.,

�s
ab = �

↑↓
ab − �

↓↑
ab , �s

abcd = �
↑↑↓↓
abcd − �

↑↓↓↑
abcd , (9)

and

�t
ab = �

↑↓
ab + �

↓↑
ab = �

↑↑
ab = �

↓↓
ab ,

�t
abcd = �

↑↑↓↓
abcd + �

↑↓↓↑
abcd = �

↑↑↑↑
abcd = �

↓↓↓↓
abcd . (10)

The irreducible vertex �s/t can be computed from the fully
irreducible vertex � and the reducible vertex d/m through
the Parquet equation [36–38]. The irreducible singlet vertex
�s is given by

�s
abcd (Q, K, K ′) = −�s

abcd (Q, K, K ′)

+ [
3
2m

abcd− 1
2d

abcd

]
(Q−K−K ′, K, K ′)

+ [
3
2m

cbad− 1
2d

cbad

]
(K−K ′, Q−K, K ′),

(11)

and the irreducible triplet vertex �t by

�t
abcd (Q, K, K ′) = �t

abcd (Q, K, K ′)

+ [
1
2m

abcd+ 1
2d

abcd

]
(Q−K−K ′, K, K ′)

− [
1
2m

cbad+ 1
2d

cbad

]
(K−K ′, Q−K, K ′),

(12)

where the superscript d/m indicates the density/magnetic
channel [38] 

d/m
abcd = 

↑↑↑↑
abcd ± 

↑↑↓↓
abcd .

The reducible vertex function d/m is related to �d/m

the irreducible vertex function in the density/magnetic
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channel by


d/m
abcd (Q, K, K ′) = 1

(Nkβ )2

∑
P1,P2

�
d/m
abe f (Q, K, P1)

× χ
d/m
f egh(Q, P1, P2)�d/m

hgcd (Q, P2, K ′). (13)

Here, χd/m is the generalized susceptibility, obtained by solv-
ing the Bethe-Salpeter equation

χ
d/m
abcd (Q, K, K ′)

= χ
0,d/m
abcd (Q, K, K ′) + 1

(Nkβ )2

∑
P1P2

χ
0,d/m
abe f (Q, K, P1)

× �
d/m
f egh(Q, P1, P2)χd/m

hgcd (Q, P2, K ′), (14)

where χ0,d/m is the bare lattice “bubble”:

χ
0,d/m
abcd (Q, K, K ′) ≡ −NkβGda(K )Gbc(K + Q)δK,K ′ . (15)

C. Approximation strategy

The Eliashberg and Parquet equations written above are
exact, but untractable. Hence, we develop an approxima-
tion based on the DMFT solution of this material. Let us
first emphasize the central role played in these equations by
the magnetic susceptibility χm, as we see in Eq. (13). In
Ref. [14], χm has been studied for this material in great
details within the DMFT approximation, including vertex
corrections. An excellent agreement with experiments was
obtained, but only if vertex corrections were included through
the Bethe-Salpeter equation [Eq. (14)]. Our approximation
strategy consists therefore in using the full DMFT generalized
susceptibility χ

d/m
abcd in Eq. (13) (with vertex corrections) and

approximate the other vertices � and � with simple static
(effective) approximations.

More precisely, we first approximate the fully irreducible
vertex � by its bare value �̃

� ≈ �̃ (16)

whose exact form is given in Appendix G as a function of U
and J .

Second, we approximate �d/m by a static effective inter-
action. Conceptually, we could use here the DMFT impurity
vertex �

d/m
DMFT, but as explained in details in Appendix H, we

replace it by an effective static approximation which repro-
duces well the low-energy behavior of �s. This is necessary
in practice because of the stochastic noise in � and � in
the hybridization expansion quantum Monte Carlo (CT-HYB)
[39–42] solver we use here to solve the DMFT self-consistent
impurity model.

D. Role of spin-orbit coupling

As has been pointed out in previous works (e.g., [26,27])
and as mentioned in Sec. II, spin-orbit coupling affects the
shape and orbital character of the Fermi surface significantly.
In its presence, spin ceases to be a good quantum number
for the quasiparticles around εF , the anomalous propagators
of the superconducting phase equations (1) and (2) are not
diagonal in the spin eigenbasis, and Cooper pairs cannot be

classified as either singlet or triplet. Moreover, the strong
momentum dependence of the SOC entanglement prohibits
any transform to a local pseudospin for recovery of singlet
and triplet notion (different, e.g., from the local J2, Jz basis in
Ce-based heavy-fermion superconductors).

While there have been weak coupling studies that include
spin-orbit coupling [43–45] on the level of the pairing ver-
tex, including SOC in our nonperturbative approach on the
level of the Parquet equations (11) and (12) is currently not
feasible in practice. We therefore employ an approximation
strategy, which has previously been successfully applied for
the calculation of the magnetic response [14] and neglect SOC
on the level of the two-particle vertices. This means that our
anomalous self-energy � [Eq. (7)] can be classified as singlet
or triplet in nature. For the anomalous propagator F, however,
the SOC entanglement enters via the normal-state propagator
G0 [Eq. (6)].

IV. RESULTS

A. Solutions of the Eliashberg equation

A finite superconducting gap is indicated by an eigenvalue
λi � 1 in the linearized Eliashberg equation (8). For the con-
sidered temperatures, all solutions of our scheme yield λi < 1,
which is expected. Nonetheless, the λi eigenvalues above Tc

serve as indicators for potentially dominating gap symmetries
at lower temperatures and at Tc. Hence, we sort the gap func-
tions in descending order for the calculated temperatures. We
further classify them by their (anti)symmetry upon permuting
spin, parity, orbital, and time indices:

Ŝ�σσ ′
ab (iν, k) = �σ ′σ

ab (iν, k), (17a)

P̂�σσ ′
ab (iν, k) = �σσ ′

ab (iν,−k), (17b)

Ô�σσ ′
ab (iν, k) = �σσ ′

ba (iν, k), (17c)

T̂ �σσ ′
ab (iν, k) = �σσ ′

ab (−iν, k), (17d)

where a, b are orbital and σ, σ ′ are spin indices. The overall
antisymmetry of the gap function which is dictated by the
Pauli principle is usually formalized as the “SPOT ” condition
[25,46–48]

ŜP̂ÔT̂ �σσ ′
ab (iν, k) = −�σσ ′

ab (iν, k) (18)

and, by construction, fulfilled by our gap functions. In Table I
(which contains the gaps resolved SPOT symmetry) we sum-
marize our results for the 10 gap functions with the highest λ

eigenvalues.1

In Fig. 2 the temperature dependence is highlighted which
motivates our identification of prime candidates for the gap
function in Sr2RuO4. At the lowest calculated temperatures,
we find the largest λ eigenvalue for a doubly degenerate in-
terorbital (xy-xz, xy-yz) singlet. As it is the highest singlet
with the second highest temperature gradient (red points in
in Fig. 2) we will consider this interorbital gap function (from

1This choice is motivated by the fact that the dx2−y2 singlet
gap function, which is leading in weak-coupling theory (see Ap-
pendix K), dropped down to position 10 in our nonperturbative
scheme.
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TABLE I. The 10 leading gap functions in descending order at T ≈ 290 K (cf. Fig. 2). Our considered prime candidates �i.o. and � f are
highlighted in gray. Gaps with the same SPOT symmetry share the same color. As many of our gap functions have not only a single finite
matrix element in the orbital space the column “Orbital character” indicates the dominant orbital matrix element (see also Fig. 3).

Symmetries

Pairing Spin Parity Orbital Time Orbital character

Interorbital singlet �i.o. − + − − degenerate

{
inter xy-yz
interxy-xz

Interorbital triplet + + − + degenerate

{
inter xy-yz
inter xy-xz

xz-yz interorbital triplet + + − + inter xz-yz
xy triplet + + + − intra xy
xz-yz interorbital singlet − + − − inter xz-yz
xy triplet 2 + + + − intra xy
dx2−y2 triplet + + + − intra xz/yz

f -wave singlet � f − − + − degenerate

{
intra xz
intra yz

Extended s-wave singlet − + + + intra xz/yz
dx2−y2 singlet − + + + intra xz/yz

now on referred to as �i.o.) as our first principal candidate. As
a second candidate we identify a doubly degenerate intraor-
bital (xz and yz) f -wave singlet (� f ) which shows the overall
strongest temperature gradient (green line in Fig. 2). In Fig. 3
we plot both components of �i.o. (a) and � f (b) as a matrix of
their orbital indices. Each matrix element of the plot shows, as
a color map, the momentum dependence of the corresponding
gap function with respect to kx and ky in the kz = 0 plane.
From these plots we understand directly the twofold degener-
acy of both gap functions as their components are transformed
into one another upon the tetragonal symmetry π/2 rotation
around the kz axis. The orbital and momentum dependence of
�i.o. and � f is, however, completely different.

�i.o. is odd under permutation of orbital indices but has
even parity. Most remarkable, however, is its very weak k
dependence of the dominant matrix elements (i.e., Re[�i.o.

xy−xz]
and Re[�i.o.

xy−yz]) which displays a variation of less than 10%
around its mean value in the BZ. To quantify this, we plot in
Fig. 4(a) the k dependence of the dominant matrix elements
of real and imaginary parts of the gap function along a high-
symmetry path in the BZ for the three temperatures of our

464.2386.8290.1

Temperature (K)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

inter-orbital singlet

xz-yz inter-orb singletg et

inter-orbital triplet

xz-yz inter-orbital triplet

f -wave singlet

xy triplet

d
x2−y2 triplet

xy triplet 2p 2

extended s-wave singlet
d

x2−y2 singlet

FIG. 2. Plot of the temperature-dependent Eliashberg λ eigenval-
ues for the 10 gap functions closest to λ = 1. We highlight the two
selected prime candidates, an interorbital singlet (red) and an f -wave
singlet (green), for our further analysis.

calculation. (Due to symmetry relations, we only need one
plot for each real and imaginary part.) The remarkably weak
k dependence of �i.o. in the orbital basis suggests a rather
local pairing mechanism. If there is not a dramatic increase
of k dependence at lower T , this is a promising outlook for
DMFT studies. Computing the superconducting susceptibility
by application of an interorbital pairing field would allow for
an extrapolation to the lowest temperatures and eventually an
estimate of Tc.

We now turn to � f which is orbitally practically diagonal.
It is even with respect to orbital index permutations but, as
the name suggests, odd in parity. It shows several horizontal
nodal lines in the BZ. Its strong k dependence can be seen in
detail in Fig. 4(b) and suggests a much more nonlocal pairing
in real space. Because of this strong momentum dependence,
the direct study of this pairing state in the superconducting
state with cluster DMFT methods would require impractically
large cluster sizes. We stress here that the plots in Fig. 3 are
shown in the orbital basis and must not be superimposed with
the Fermi surfaces which are strongly mixed in their orbital
character (see Fig. 1).

Finally, we remark upon the odd-frequency symmetry
shown by both of our candidate gap functions. Odd-ω su-
perconductivity has indeed been the focus of previous works.
Early works focused on controversies regarding the thermody-
namic stability [49,50] as well as the nature of the Meissner
effect (i.e., diamagnetic or paramagnetic) [51] of such a phase.
Today we know that odd-ω superconductivity can exist as it
was realized experimentally in superconductor-ferromagnet
junctions [52] or [53]. In contrast to the single-band case
there is no generic issue with the thermodynamic stability of
multiorbital systems with ω-odd components in the anoma-
lous propagator F (ω), as explicitly shown on a mean-field
level in Ref. [54] with a static anomalous self-energy �.
Proposed material candidates for bulk multiorbital odd-ω su-
perconductivity include the heavy-fermion compound UPt3,
buckled-honeycomb materials, and Sr2RuO4 [55,56]. How-
ever, in multiorbital systems the notion of odd-frequency
superconductivity needs to be defined more precisely. The
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(a) The two degenerate inter-orbital singlets Δi.o.
xy−xz , Δi.o.

xy−yz in
the orbital basis

(b) The two degenerate f -wave singlets Δf
xz , Δf

yz in the orbital
basis

FIG. 3. Momentum dependence of the gap functions �ab(kx, ky, kz = 0, iν0) in the t2g orbital basis, a, b ∈ {xz, yz, xy} at the first Matsubara
frequency iν0. Each entry of the matrices displays the momentum dependence as a function of (kx, ky ) in the Brillouin zone. The real and
imaginary components are shown separately for (a) the degenerate interorbital singlet gaps �i.o.

xy−xz and �i.o.
xy−yz with only orbital off-diagonal

contributions, and (b) the degenerate intraorbital f -wave singlet gaps �i.o.
zx and �i.o.

yz . (Small orbital components are scaled with the scaling
factors shown in the respective orbital component panel.)

generalized Dyson equation (5) is a matrix equation in the
orbital indices and can give rise to an anomalous propa-
gator F (ω) with both ω-even and ω-odd components in
multiple ways. More specifically, ω-odd components in F (ω)
occur in systems with interorbital hybridization, interor-
bital anomalous self-energy, or ω-odd components in the
anomalous self-energy �(ω), as well as any combination
thereof. In particular, the interorbital singlet pairing calcu-

lated here for Sr2RuO4 has a combination of all of the
above.

At the end of this section, as there have been previous
theoretical studies of pairing in Sr2RuO4 using the Eliashberg
approach, we put our results into context of these previous
works. Some of the gaps listed as solutions in Table I have
been discussed as potential candidates for Sr2RuO4 in the con-
text of an RPA like approximation [25] (which we reproduce

(a) The xy−xz component of the inter-orbital singlet gap function. (b) The xz − xz component of the f -wave singlet gap function.

FIG. 4. High-symmetry k-space paths for the dominating orbital components in the two candidate gap functions for three temperatures.
The k-space plane cuts are for the intermediate temperature and equivalent to Fig. 3.
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FIG. 5. Dependence of the Eliashberg λ eigenvalues at T ≈ 386 K on the scaling factor α tuning different fluctuation channels in the
pairing vertex.

in Appendix K). The overall discrepancy between our results
and such a weak-coupling approach is expected, however, as
vertex corrections strongly affect the pairing mechanism (see
next section). Indeed, it has been shown [14] that including
the full vertex when calculating the momentum-dependent
magnetic response function yields a much better agreement
with neutron-scattering experiments [16] and corrects some
of the significant discrepancies found at the RPA level. The
closest study to our approach is a self-consistent GW +
DMFT [15] study with which we have, despite differences in
the approximations, an overall good agreement. The dominant
pairing states that we find in this work were, however, not
identified or addressed in Ref. [15], which we attribute to the
symmetry constraints imposed in that study.

We stress that our results are obtained above Tc and should
be understood as a proposal for possible gap symmetry and
pairing mechanism in Sr2RuO4 and not as an “ab initio
prediction.” Indeed, we cannot judge with certainty how the
eigenvalues will change at lower temperatures and if, e.g.,
the f -wave singlet will surpass the interorbital singlet. As we
will show later, however, comparison to the large amount of
experimental evidence lets us conclude that the interorbital
singlet gap can be (i) reconciled with all experiments and (ii)
could even help to explain an unsolved puzzle in quasiparticle
interference (QPI) experiments [57].

B. Channel analysis

In order to shed further light on the pairing mechanism of
the gap functions reported in Table I we perform a “channel
analysis” to determine which two-particle correlators drive
the pairing for each of the gap functions. To do this, we
downscale selected components of the lattice susceptibility
which enters the equation for the pairing vertices (11) and
(12). Specifically, we distinguish between magnetic, density,
interorbital and intraorbital, and local fluctuations. For details,
see Appendix J. Keeping the original gap functions fixed,
we compute new λ values with the modified pairing vertices
�s/t . The results for T ≈ 386 K are shown in Fig. 5. Con-
centrating on our prime candidates �i.o. and � f , we note
that both are mainly driven by spin fluctuations. Especially,
�i.o. seems to be strongly driven by magnetic fluctuations
and, more specifically, by local magnetic interorbital and in-
traorbital correlations. Given that these correlations dominate
also the Hund’s metallic normal state, it seems plausible that

a superconducting gap function driven by such correlations
turns out to have a large Eliashberg eigenvalue. We note that
superconductivity due to local spin fluctuations in the context
of Hund’s metals has been studied in a different context, e.g.,
in Ref. [58] in relation to spin-triplet pairing and in Ref. [59]
in relation to the non-Fermi-liquid spin dynamics of Hund’s
metals (which, however, does not apply to Sr2RuO4 in the
Fermi-liquid regime). The relevance of Hund’s driven orbital
entanglement has recently also been emphasized for the super-
conducting state of twisted bilayer graphene and a “harmonic
fingerprint” analysis proposed to analyze the orbital composi-
tion of the pairing state [60].

V. COMPARISON TO EXPERIMENTS

The pairing mechanism and symmetry of the supercon-
ducting order parameter of Sr2RuO4 are still outstanding open
questions, despite 27 years of intense experimental and the-
oretical investigations [7]. New perspectives have recently
entirely transformed this field, with the discovery by Pusto-
gow et al. [4] (see also [5]) that the Knight shift actually
sharply drops upon crossing Tc, hence challenging the triplet-
pairing (odd-parity) interpretation. For recent discussions and
reviews see, e.g., Refs. [6,8,57,61,62].

In this section, we critically examine whether our the-
oretical findings are consistent with available experimental
evidence, focusing on the two main challengers: the interor-
bital singlet and the f -wave singlet (see Table I). As shown
below, we conclude that the interorbital singlet gap is in agree-
ment with basically all experiments, in contrast to the f -wave
singlet which is ruled out by the momentum distribution of
Bogoliubov QPI measurements.

A. Spin character and two-component gap

Our two candidate gap functions are both singlets. This is
in agreement with the recent NMR finding that the Knight
shift drops upon crossing Tc [4,5], which rules out triplet gaps
with an out-of-plane d vector.

They also both correspond to a two-component order
parameter, i.e., transforming under a two-dimensional rep-
resentation with E symmetry. This is in agreement with
recent ultrasound measurements which revealed a jump in
the c66 elastic constant, a finding which is only consistent
with a two-dimensional representation [63,64] (see, however,
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[8] for an alternative proposal involving two near-degenerate
components rather than a symmetry-imposed degeneracy).
Muon spin-resonance (μSR) experiments also point at a
two-component order parameter [62], and the most recent
μSR experiments under hydrostatic pressure further suggest
a symmetry-imposed degeneracy [65].

B. Time-reversal symmetry

From our two-component gap functions (�i.o.
xy−xz,�

i.o.
xy−yz )

and (� f
xz,�

f
yz ), we can form the linear combination �TRSI =

�1 + �2 (or equivalently �1 − �2) which preserves time-
reversal symmetry invariance (TRSI). It transforms into itself
under time reversal, up to a global sign (Table I). In contrast,
�TRSB = �1 + i�2 transforms into its complex conjugate and
hence breaks time-reversal symmetry (TRSB). This is also the
case of any linear combination �1 + eiϕ�2 with ϕ 
= 0, π .

The current experimental situation about time-reversal
symmetry is not entirely clear. Kerr effect measurements [66],
as well as μSR [62,65,67,68], suggest TRSB. In contrast, the
expected spontaneous magnetization of a TRSB state could
not be observed by scanning superconducting quantum inter-
ference device microscopy [69,70] or scanning Hall probes
[71]. Additionally, recent Josephson tunneling measurements
under an applied magnetic field suggest that time-reversal
symmetry is preserved (TRSI) [72]. We therefore consider
both possibilities in the following, corresponding to the two
linear combinations above.

C. Gap zeros and lines of gapless quasiparticles

There is strong experimental evidence that Sr2RuO4 hosts
gapless excitations, as indicated in particular by measure-
ments of the specific heat [73–77], ultrasound attenuation
[78], penetration depth [79], directional thermal conductivity
[80], or Bogoliubov QPI [57]. Furthermore, thermal conduc-
tivity and QPI indicate that the gapless quasiparticles reside
on lines in momentum space which run along the c axis,
often referred to as “vertical line nodes.” It is, however,
often emphasized in this context that the indications for a
two-component order parameter appear to be at odds with
“vertical line nodes.” Indeed, the most commonly discussed
two-component order parameter has dxz ∝ kxkz, dyz ∝ kykz so
that the modulus of the order parameter vanishes along “hori-
zontal line nodes” (lying in planes perpendicular to the c axis).
As shown below, we find, remarkably, that the interorbital
singlet state reconciles a two-component order parameter with
lines of gapless quasiparticles running along the c axis.

1. Momentum dependence of the gap

We first consider the momentum dependence of the gap
function. In the previous sections, the gap function was ex-
pressed in the orbital basis as �ab(k). Here, we instead
consider it in the band basis ν ∈ {α, β, γ }, performing a basis
change:

�μν (k) =
∑

ab

〈ψkμ|ϕa〉�ab(k)〈ϕb|ψkν〉, (19)

where 〈ψkμ|ϕa〉 are the overlap matrix elements between
the local orbital states |ϕa〉 with a ∈ {xy, xz, yz} and the

quasiparticle Bloch states |ψkμ〉. The interplay of hopping and
SOC leads to a strongly mixed k-dependent orbital character
of |ψkμ〉 as can also be seen in Fig. 1, where the color code
of the Fermi-surface sheet corresponds directly to the squared
matrix elements 〈ψkμ|ϕa〉2. It is important to note that a strong
k dependence (angular dependence) can be inherited from the
matrix elements entering Eq. (19), even when �ab(k) ≈ �ab

is approximately k independent in the orbital basis. This is
indeed what happens in the case of the interorbital pairing.

We plot the normalized absolute value of the resulting gap
function in Fig. 6 for TRSB and TRSI combinations of our
two-component interorbital singlet [Figs. 6(a) and 6(b)] and
the f -wave singlet [Figs. 6(c) and 6(d)] gaps. We combine
color-map overlays on the normal-state Fermi surface together
with line plots �(φ) along the four Fermi-surface sheets found
in the upper half plane of the first BZ for kz = 0. The data in
Fig. 6 show that generally linear combinations of the two gap
components (i) break the C4 symmetry along the z axis of the
tetragonal normal-state model (due to this we distinguish in
our plots between the α′ and α sheets) and (ii) in the TRSB
case break the Kramers degeneracy of the Cooper pair. For the
TRSI gaps (orange), we have only one Kramers degenerate
line while for the TRSB combinations (light and dark blue)
we show the two split values of the gap (distinguished with
superscripts �K1/K2).

For the interorbital singlet gap function [see Figs. 6(a)
and 6(b)] the first observation is its overall strong k
dependence which originates almost entirely from the ma-
trix elements 〈ψkμ|ϕa〉. The interorbital TRSI combination
�i.o.

TRSI = �i.o.
xy−xz + �i.o.

xy−yz (orange) is finite on all Fermi-
surface sheets. This is due to the SOC driven mixing of orbital
character on the sheets. Indeed, the lowest absolute value
of �i.o.

TRSI is found on the α′ and α sheets (and specifically
their intersection with the BZ diagonal) where the admix-
ture of xy character is minimal (see Fig. 1).2 Moreover, we
observe a pronounced broken C4 symmetry of �i.o.

TRSI. For
the specific TRSB combination �i.o.

TRSB = �i.o.
xy−xz + i�i.o.

xy−yz
(light/dark blue) on the other hand, the C4 symmetry is re-
stored while Kramers degeneracy is broken �i.o K1

TRSB 
= �i.o K2
TRSB.

We find an even more pronounced k dependence than for
the TRSI case and, most remarkably, observe deep minima
for �i.o.

TRSB particularly at the intersection of the α and β

sheets with the BZ diagonal (marked by dashed black circles).
Moreover, we note that there is a slight kz dependence of the
gap which originates from the change in orbital composition
of the FS sheets [see dashed lines in Fig. 6(b)]. As can be seen
from the plot, however, the deepest gap minima always remain
on the α and β sheets parallel to the kz axis which leads to one-
dimensional lines of quasiparticle excitations perpendicular to
the kx/ky plane (“vertical line nodes”).

We now turn to the f -wave singlet for which we show
data in Figs. 6(c) and 6(d). Here the pronounced k depen-
dence of the gap in the orbital basis is entangled with that
of the projection matrix elements. Also here we find the

2The finite value of xy character at the α sheets intersection orig-
inates from nonlocal hybridization of xz and yz orbitals. If this
hybridization would be neglected, the xy character and indeed the
value of the interorbital singlet gap would be zero at that point.
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FIG. 6. Superconducting gap function in the eigenbasis of the quasiparticle bands at ω = 0. (a) Color-map overlays on the normal-state
Fermi surface of the interorbital gap function �i.o., in the TRSI (left) and the Kramers-split TRSB (center and right) combinations. (b) Angular
plots of �i.o. along the four shown Fermi-surface sheets as a function of the angle . (c) Same as (a) for � f ; (d) same as (b) for � f . In (a) and
(c) the dashed circles/ellipses indicate the location of the gap minima (�/�max < 0.1).

TRSI combination �
f
TRSI = �

f
xz + �

f
yz (orange) to break the

C4 symmetry and the specific TRSB combination �
f
TRSB =

�
f
xz + i� f

yz (light/dark blue) to restore it. Different from the
interorbital singlet, however, the deepest minima for the f -
wave singlet occur (i) for the TRSI combination and (ii)
most pronounced on the γ sheet where it cuts the kx and ky

axes where the xy character is the strongest (which is not
surprising given that this orbitally diagonal gap is weakest
for the xy channel). Also, for the f -wave singlet gap the kz

dependence is not too strong [see dashed lines in Fig. 6(d)],
so that also here one-dimensional quasiparticle lines along kz

occur.

2. Gapless quasiparticles and momentum-resolved
single-particle spectra

In order to verify that the deep minima of the gap discussed
in the previous section lead to quasiparticle excitations in the
superconducting phase, we now compute the single-particle
spectral function for a finite anomalous self-energy. As our
results for the anomalous self-energy were performed above
Tc, we estimate its overall amplitude to match experimental
data for the specific heat. To this end, we computed the single-
particle spectral function from the retarded normal propagator

of the generalized Green’s function (4):

A(ω, k) = − lim
δ→0

1

π
Im[Tr(G(iνn → (ω + iδ), k))]. (20)

Using the k-integrated spectral function A(ω) we then
computed the specific heat via [81]

Ce(T ) =
∫ ∞

0
dω A(ω)

ω2

kBT 2

1

4 cosh2 (ω/2kBT )
, (21)

and found by comparison to experimental data [74] am-
plitudes of �max = 0.2/0.35 meV for the interorbital and
f -wave gap (see Appendix E). For this procedure we assumed
(i) a temperature-independent anomalous self-energy and (ii)
fitted its dependence on the fermionic Matsubara frequen-
cies with an analytic model that allowed us to perform the
analytic continuation as in Eq. (20). Details are reported in
Appendix D.

Computation of A(ω, k) for small energies also allows
us to plot the momentum-resolved residual spectral weight
at ω = 0 in the superconducting phase. The resulting plots
for the TRSB combination of the interorbital pairing and
the TRSB and TRSI combinations of the f -wave pairing are
shown (at kz = 0) in Fig. 7. In the plots (for which we have
chosen a broadening factor in energy of δ = 10 meV) we
overlay the spectral weight (red color) on a gray background
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(a)

(c) (d)

(b)

FIG. 7. Spectral weight at ω = 0 calculated as Eq. (20) including normal and finite anomalous self-energies (i.e., gap functions). (a) kz = 0
plane for finite interorbital singlet �i.o.

TRSB; (b) kz dependence of the spectral weight for �i.o.
TRSB; (c) kz = 0 plane for finite f -wave singlet �

f
TRSB;

(d) kz = 0 plane for finite f -wave singlet �
f
TRSI; as it is fully gapped, the TRSI combination of the interorbital singlet is omitted.

of the normal-state Fermi surface. Close inspection shows that
the results are in agreement with our expectations from the
plots of � in the band basis. As in the previous section, we
start our discussion with the interorbital singlet pairing. The
TRSI combination (�i.o.

xy−xz + �i.o.
xy−yz ) (not shown on Fig. 7)

leads to a fully gapped spectrum showing no residual spectral
weight at the chosen energy resolution. The TRSB combina-
tion (�i.o.

xy−xz + i�i.o.
xy−yz ), on the other hand, produces sizable

weight in the regions of the gap minima on the α and β sheets
(highlighted by dashed circles) located along the |kx| = |ky|
diagonals. Further, we point out an interesting effect for the
interorbital pairing: the quasiparticle poles in the interorbital
superconducting phase are not precisely found at the same
momenta as the normal-state Fermi surface. Indeed, such
momentum shifts of quasiparticles are generally expected for
interorbital anomalous self-energies and were pointed out be-
fore [22]. In Appendix B we demonstrate this for a simple
two-band model. We now turn to the f -wave singlet pair-
ing. Also here we find the anticipated distribution of spectral
weight. While there is some weight on the α and β sheets
along the zone diagonal, most of the spectrum is found in the
vicinity of the broad gap minima at the intersection of the γ

pocket with the kx = 0 and ky = 0 lines.
The results we show in Fig. 7 can be directly compared

to the symmetry analysis of Bogoliubov QPI experiments
in [57]. This comparison likely rules out the f -wave singlet
pairing as the experimentalists conclude for nodes and minima
of the gap function in close vicinity of the normal state α

and the β pockets along the diagonals. The only candidate
which is in satisfactory agreement with this conclusion is the
interorbital TRSB pairing (�i.o.

xy−xz + i�i.o.
xy−yz ). We also point

out that the Bogoliubov QPI experiments suggest an approxi-
mately fulfilled C4 symmetry of the QPI pattern. It should be
noted, though, that the slight deviations from full C4 symmetry
in favor of lower C2 axes in the “unsymmetrized” raw data
provided in the Supplemental Material of [57] could also be
explained by a slight deviation from the perfect relative π/2
phase of the �i.o. components in the TRSB combination.

VI. CONCLUSION

We have solved the linearized Eliashberg equation for
Sr2RuO4 with a DMFT-based approximation at intermediate
temperatures, and compared the leading symmetry channels
of the superconducting order parameters to a large set of
experiments. Our main candidate for the superconducting or-
der is a two-component interorbital spin singlet with even
spatial parity, and orbital antisymmetry. The time-reversal
symmetry-breaking combination (TRSB) gap function has
a strong angular dependence with deep minima along the
Fermi-surface sheets and is compatible with the experiments,
including one-dimensional lines of quasiparticles parallel to
the c axis, located on the α and β sheets of the normal-state
Fermi surface, on the zone diagonal. The driving force behind
the interorbital singlet pairing appears to be local interorbital
spin correlations. This indicates that Hund’s coupling, which
already dominates response functions in the normal state,
remains key also for the superconducting pairing in Sr2RuO4.
Finally, the interorbital order parameter is remarkably local
when considered in the orbital basis. Therefore, it should be
possible to obtain it directly within a multiorbital single-site
DMFT study at low-temperature inside the superconducting
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phase, which is certainly an interesting direction for future
work.

ACKNOWLEDGMENTS

We acknowledge discussions with X. Cao, O. Gingras, and
H. Menke. We acknowledge financial support by the Deutsche

Forschungsgemeinschaft Project No. HA7277/3-1. The Flat-
iron Institute is a division of the Simons Foundation.

APPENDIX A: GENERALIZED PROPAGATORS

In the basis of the multiorbital Nambu spinor (3) the inter-
acting generalized propagator reads as

Ĝab(k, τ ) = −〈Tτ�a(k, τ )�b(k, 0)†〉

= −

&

Tτ

⎛⎜⎜⎜⎜⎜⎝
ca↑(k, τ )c†

b↑(k, 0) ca↑(k, τ )c†
b↓(k, 0) ca↑(k, τ )cb↑(−k, 0) ca↑(k, τ )cb↓(−k, 0)

ca↓(k, τ )c†
b↑(k, 0) ca↓(k, τ )c†

b↓(k, 0) ca↓(k, τ )cb↑(−k, 0) ca↓(k, τ )cb↓(−k, 0)

c†
a↑(−k, τ )c†

b↑(k, 0) c†
a↑(−k, τ )c†

b↓(k, 0) c†
a↑(−k, τ )cb↑(−k, 0) c†

a↑(−k, τ )cb↓(−k, 0)

c†
a↓(−k, τ )c†

b↑(k, 0) c†
a↓(−k, τ )c†

b↓(k, 0) c†
a↓(−k, τ )cb↑(−k, 0) c†

a↓(−k, τ )cb↓(−k, 0)

⎞⎟⎟⎟⎟⎟⎠

'

,

(A1)

with orbital indices a, b and time-ordering operator Tτ .

APPENDIX B: INTERORBITAL GAP FUNCTIONS

In order to illustrate how interorbital gap functions can shift spectral weight in momentum space at and around the Fermi
energy εF , we consider this effect in the simplest possible model of two nonhybridized orbitals. We assume an interorbital singlet
anomalous self-energy

�σσ ′
ab = δ(σ − σ ′)δ(1 − |a − b|)�, (B1)

where a, b ∈ {1, 2} are orbital indices and σ, σ ′ ∈ {↑,↓} are spin indices.
The generalized Green’s function on the Nambu spinor basis (3) reads as

Ĝ(k, iωn)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iωn−ε
↑
1 (k) 0 0 0 0 0 0 �

0 iωn−ε
↑
2 (k) 0 0 0 0 −� 0

0 0 iωn−ε
↓
1 (k) 0 0 � 0 0

0 0 0 iωn−ε
↓
2 (k) −� 0 0 0

0 0 0 �∗ iωn + ε
↑
1 (k) 0 0 0

0 0 −�∗ 0 0 iωn + ε
↑
2 (k) 0 0

0 �∗ 0 0 0 0 iωn + ε
↓
1 (k) 0

−�∗ 0 0 0 0 0 0 iωn + ε
↓
2 (k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

,

(B2)

where εσ
a (k) is the single-particle dispersion of orbital a with

spin σ . We can solve Eq. (B2) and extract the spectral function
(for finite �) as the trace of the imaginary part of the normal
retarded Green’s function

A(ω, k) = − lim
δ→0

1

π
Im[Tr(G(iνn → (ω + iδ), k))]. (B3)

Assuming ε↑
a (k) = ε↓

a (k) = εa(k), we find at ω = 0 the ex-
pression

A(ω = 0, k) = 2δ[2�2 + ε1(k)2 + ε2(k)2)

(�2 + ε1(k)ε2(k)]2

∣∣∣∣
δ→0

(B4)

which has poles along the contour

�2 = −ε1(k)ε2(k). (B5)

This is in stark contrast to an orbital diagonal gap which would
be fully gapped:

A(ω = 0, k) = δ

(
2

�2
diag. + ε1(k)2

+ 2

�2
diag. + ε2(k)2

)∣∣∣∣
δ→0

.

(B6)

From Eqs. (B4) and (B5) we see directly that even an
interorbital k-independent anomalous self-energy leads to a
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FIG. 8. Using more than one bosonic frequency for the DMFT
vertex does not change the relative dominance for our gaps signifi-
cantly and even makes the interorbital singlet more dominant.

k-dependent gap in the single-particle spectrum. Even more
important is the realization that the quasiparticle poles that
form the Bogoliubov Fermi surface in k space no longer
coincide with the Fermi surfaces of the normal state (see also
[82]). Different from an orbital diagonal pairing it is therefore
impossible to extract the Bogoliubov Fermi surface by finding
the intersections of the normal-state Fermi surface and the
zeros of �.

Therefore, in order to address the topic of one-dimensional
gapless nodal quasiparticles along “line nodes” (which are
found roughly along kz in Sr2RuO4) we always need to ex-
plicitly calculate the poles of the single-particle propagator. In
our two-orbital toy model the contour (B5) still leads to two-
dimensional Fermi-surface sheets in the three-dimensional
BZ. In the three-orbital model, however, the interplay of spin-
orbit coupling and interorbital � can lead to one-dimensional
quasiparticle lines [22] as is the case for the interorbital prime
candidate in Sr2RuO4 .

APPENDIX C: DEPENDENCE ON THE NUMBER OF
BOSONIC MATSUBARA FREQUENCIES

To investigate if our results for the sampled two-particle
Green’s function G(2) are robust with respect to the number
of considered bosonic Matsubara frequencies we calculate
explicitly the dependencies of the Eliashberg eigenvalues λ

from 1 up to 11 bosonic frequencies at T ≈ 386 K and then
extrapolate to an infinite number of frequencies (see Fig. 8).
The data show that (i) the λ values of our prime candi-
date gaps �i.o. and � f are well converged at the considered
numbers of frequencies and (ii) that no other gap function
trends strongly towards higher values. If these trends do not
change to strongly with temperature, our conclusions should
be insensitive to increasing the number of bosonic Matsubara
frequencies further.

APPENDIX D: DEPENDENCE OF THE GAPS ON
FERMIONIC MATSUBARA FREQUENCIES

From the calculation with 11 bosonic frequencies (Ap-
pendix C) we also get insight in the fermionic frequency
dependence of our gap candidates (see Fig. 9). For a calcu-
lation with one bosonic frequency the gaps �(iνn) are only
nonzero at iνn=−1,0; however, by increasing the number of
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FIG. 9. The interorbital singlet and f -wave singlet show a fre-
quency dependence which is in a reasonable agreement with the
analytic dependence ∝arctanh(0.01/iνn) behavior. These gaps stem
from a calculation with a particle-particle vertex of 11 bosonic Mat-
subara frequencies.

bosonic frequencies they become nonzero at higher iνn. By
using 11 bosonic frequencies they show a converging behavior
in reasonable agreement with the analytic frequency depen-
dence ∝arctanh(0.01/iνn).

To motivate this analytic frequency dependence we assume
that �(iνn) is analytical and converges for |iνn| → ∞, which
allows us to use the spectral representation

�(iνn) =
∫ ∞

−∞
dω

A�(ω)

iνn − ω
. (D1)

We consider an imaginary even box-shaped spectral function

A�(ω) = i[�(ω + a) − �(ω − a)], (D2)

where 2a is the box size. This yields

�(iνn) =
∫ a

−a
dω

i

iνn − ω
= 2i arctanh

(
a

iνn

)
, (D3)

which is odd in iνn and purely real. Using Eq. (D3) with a =
0.01 shows a reasonable agreement with the numerical data
(see Fig. 9) supporting the chosen spectral function.

Note that by analytical continuing iνn → ω + iδ
[Eq. (D3)], as we do in Sec. V C 2, we get real frequency
gaps �(ω), which have a finite constant real part and a
linear imaginary part. Therefore, these gaps do not vanish at
ω = 0 eV and gap the Fermi surface. This is different to other
odd Matsubara frequency gaps, e.g., a linear behavior ∝iνn,
which leaves the Fermi surface ungapped [46,48].

APPENDIX E: FITTING GAP SIZE TO SPECIFIC HEAT

In order to estimate realistic overall prefactors of our gap
function for the computation of spectral functions, we com-
puted the low-temperature specific heat (21) and compared to
experimental data [74].

For comparison, which is shown in Fig. 10, the spectral
function was calculated for a 300 × 300 × 300 k mesh and for
200 ω points from 0 to 1 meV. The integral (21) was solved
numerically with SCIPY [83].

We calculated the electronic specific heat for multiple gap
sizes �max of the analytic models to find the best fit to
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FIG. 10. Comparison of experimental data [74] and calculated
temperature dependence of the specific heat for the interorbital sin-
glet and f -wave gap (shown here in TRSB combination). The inset
shows the k-integrated spectral function up to 0.3 meV.

the experimental data [74]. The best overall agreement was
found for �max = 0.2 meV for the interorbital and �max =
0.35 meV for the f -wave singlet.

APPENDIX F: TWO-PARTICLE GREEN’S
FUNCTION SAMPLING

We sample both the single-particle Gab and two-particle
G(2)

abcd Green’s functions using CT-HYB and hybridization
function removal [42]. The tetragonal symmetry of Sr2RuO4

causes the single-particle Green’s function to be diagonal
in the t2g Wannier orbital space Gab = δabGaa. This sym-
metry is due to the DMFT self-consistency shared with the
impurity hybridization function �̃ab = δab�̃aa. Hence, all
nonzero components of Gab can be sampled by removal of
hybridization insertions in the expansion of the partition func-
tion. This is, unfortunately, not the case for the two-particle
Green’s function G(2)

abcd . The spin-flip and pair-hopping terms
in the local Kanamori interaction generate nonzero orbital
combinations abcd that can not be sampled when the hy-
bridization function is diagonal in orbital space. Hence, in
order to measure all components of G(2)

abcd , we perform a
single-particle basis transform of the impurity model to a basis
were all ab components of �̃ab are nonzero. However, an
off-diagonal �̃ generates a Monte Carlo sign problem, making
low-temperature calculations unfeasible [14]. For this study
we had to restrict ourselves to temperatures T � 290 K.

APPENDIX G: STATIC APPROXIMATION OF THE FULLY
IRREDUCIBLE VERTEX FUNCTION

In our calculations we approximate the fully irreducible
vertex �s/t with the static first-order term �̃s/t , neglecting
fourth-order corrections �s/t ≈ �̃s/t . The first order fully ir-
reducible vertex �̃s/t is given by

�̃s ≡ − 1
2U d − 3

2U m, (G1)

�̃t ≡ − 1
2U d + 1

2U m, (G2)

where U d/m are the static interaction tensors of the rotationally
invariant Kanamori interaction

U d
abcd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U, if a = b = c = d
−U ′ + 2J, if a = d 
= b = c
2U ′ − J, if a = b 
= c = d
J, if a = c 
= b = d
0, else

(G3)

U m
abcd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U, if a = b = c = d
U ′, if a = d 
= b = c
J, if a = b 
= c = d
J, if a = c 
= b = d
0, else

(G4)

with U ′ = U − 2J , and use the same values for the Hubbard
interaction U and the Hund’s J as in our self-consistent DMFT
calculations U = 2.3 eV, J = 0.4 eV.

APPENDIX H: STATIC APPROXIMATION OF � IN THE
EQUATION FOR THE VERTEX LADDER

Conceptually, the ladder vertex d/m [Eq. (13)] can be
approximated using the DMFT impurity vertex �

d/m
DMFT and the

DMFT generalized lattice susceptibility χ
d/m
DMFT obtained from

the Bethe-Salpeter equation [see Eq. (14)]

d/m[�d/m, χd/m] ≈ d/m
[
�

d/m
DMFT, χ

d/m
DMFT

] ≡ 
d/m
DMFT. (H1)

However, 
d/m
DMFT can not be used in the Parquet equation,

due to stochastic quantum Monte Carlo noise at higher fre-
quencies, introduced through �

d/m
DMFT. Therefore, we resort to

the renormalized static approximation �
d/m
DMFT ≈ U

d/m
, which

leads to

d/m[�d/m, χd/m] ≈ d/m
[
U

d/m
, χ

d/m
DMFT

]
= U

d/m
χ

d/m
DMFT(iωn, q)U

d/m

≡ ̃d/m(iωn, q), (H2)

where U
d/m

are static renormalized interaction tensors.
Finally, we obtain an approximation for the exact particle-

particle vertex �s/t [Eqs. (12) and (11)] by combining the
two static approximations � ≈ �̃ [Eq. (G1)] and  ≈ ̃

[Eq. (H2)]:

�s/t [�s/t ,d/m] ≈ �s/t [�̃s/t , ̃d/m] ≡ �̃s/t . (H3)

The (orbital-dependent) renormalized interaction tensors

U
d/m

were obtained by minimizing

min
U

d/m

∑
q

∣∣�s/t
[
�̃s/t ,

d/m
DMFT

] − �̃s/t
∣∣2

(H4)

in the low-frequency limit, i.e., for the zeroth bosonic
Matsubara frequency ω0 = 0 and first fermionic Matsub-
ara frequencies ν0 = ν ′

0 = π/β. In Fig. 11 we show the
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FIG. 11. The singlet vertex at the zeroth bosonic Matsubara fre-
quency ω0 = 0 and first fermionic Matsubara frequencies ν0 = ν ′

0 =
π/β (top left) is well matched by our static interaction approximation
(top right), while the triplet vertices differ visibly (bottom).

comparison for U xy = 1.2 eV and U xz/yz = 1.1 eV. The exact

structure of U
d/m

is given by

U
d
abcd =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U xy, if a = b = c = d = xy
U xz/yz, if a = b = c = d = xz/yz
−U

′ + 2J, if a = d 
= b = c
2U

′ − J, if a = b 
= c = d
J, if a = c 
= b = d
0, else

(H5)

U
m
abcd =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U xy, if a = b = c = d = xy
U xz/yz, if a = b = c = d = xz/yz
U

′
, if a = d 
= b = c

J, if a = b 
= c = d
J, if a = c 
= b = d
0, else.

(H6)

Here U xy and U xz/yz are the free parameters, while the oth-
ers are constrained by J/U avg = 0.4/2.3 and U

′ = U avg − 2J
with U avg = 1

3 (U xy + 2U xz/yz ).

APPENDIX I: NUMERICAL DETAILS

We sample the one- and two-particle Green’s function with
the CT-HYB solver implemented in the TRIQS project [84,85].
We use a 32 × 32 × 32 k mesh and do 109 (2.1 × 108) Monte
Carlo cycles for the one- (two-) particle Green’s function.
For sampling the two-particle Green’s function G(2) we em-
ploy the particle-hole notation using a 40 × 40 fermionic
frequency grid and only one bosonic frequency. To investigate
if the restriction of using only one bosonic frequency is critical
for our results, we additionally sample G(2) for 11 bosonic
frequencies at T ≈ 386 K (cf. Appendix C).

We solve the impurity and lattice Bethe-Salpeter equa-
tions to obtain �d/m/χd/m [14] with the two-particle response
function toolbox (TPRF) of the TRIQS library [86]. Both the
impurity and lattice Bethe-Salpeter equations are matrix equa-
tions in (fermionic) Matsubara space, which we solve using
three finite-frequency cutoffs nν = 20, 30, 40 from which we
then extrapolated χd/m to infinite frequencies.

The linearized Eliashberg equation (8) is technically a large
eigenvalue problem in a vector space spanned by the orbital,
frequency, and momentum indices. To find (generally com-
plex) eigenvectors � and their corresponding eigenvalues λ

we employ TPRF [86]. In TPRF the implicit matrix-vector prod-
uct (�GG) · � is implemented using fast Fourier transforms,
and the highest eigenvalues λ and eigenvectors � are deter-
mined using the implicitly restarted Arnoldi method from the
ARPACK library [87] through the SCIPY package [83]. The Pauli
principle [i.e., the SPOT condition (18)] is exploited to con-
strain the solutions to all possible allowed symmetries, further
reducing the computational effort. No other restrictions are
imposed on �.

APPENDIX J: SCALING χd/m FOR CHANNEL ANALYSIS

We distinguish between magnetic, density, interorbital and
intraorbital, and local fluctuations in our channel analysis
by scaling selected components of χd/m before they en-
ter the equation for the pairing vertices (11) and (12) via
the reducible vertex function (13). To study the effect of
magnetic (density) fluctuations we scale the complete χm

(χd ) tensor. For the intraorbital fluctuations we solely scale
the components of the density and magnetic susceptibility
where all indices are equal, i.e., only the χd/m

aaaa components.
Complementary, for the interorbital fluctuations we scale all

TABLE II. The first five leading gaps in descending order in RPA at T ≈ 290 K, U = 0.575 eV, and J = 0.1 eV (cf. Fig. 12). Gaps with
the same SPOT symmetry share the same color. As many of our gap functions have not only a single finite matrix element in the orbital space
the column “Orbital character” indicates the dominant orbital matrix element.

Symmetries

Pairing Spin Parity Orbital Time Orbital character

dx2−y2 singlet − + + + intra xy

Interorbital triplet + + − + degenerate

{
inter xy-yz
interxy-xz

xy triplet + + + − intra xy
xz-yz interorbital triplet + + − + inter xz-yz

Interorbital singlet − + − − degenerate

{
inter xy-yz
interxy-xz
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components except for the χd/m
aaaa components. For studying

local fluctuations we first calculate the local susceptibilities
via

χ
d/m
loc = 1

Nk

∑
BZ

χd/m(k), (J1)

which allows us to express the susceptibilities as a sum of
χ

d/m
loc and a dispersive part, i.e.,

χd/m(k) = χ
d/m
local + χ

d/m
dispersive(k). (J2)

We then only scale χ
d/m
loc for the channel analysis.

APPENDIX K: RANDOM PHASE APPROXIMATION

As a benchmark we solve the linearized Eliashberg equa-
tion in the random phase approximation (RPA). In RPA the
interaction is only treated on the level of the two-particle
Green’s function, hence, we use the spin-independent nonin-
teracting Green’s function

G0
ab(νn, k) = [(iνn + μ)1 − εk]−1

ab , (K1)

where μ is the chemical potential and εk the dispersion
relation, instead of G inside Eq. (8). To construct the particle-
particle vertices in RPA we use the equations introduced in
Appendixes G and H, but use the RPA density and magnetic
susceptibilities given by

χ
d/m,RPA
abcd (Q) = χ0,d/m(Q)

1 ± U d/mχ0,d/m(Q)
, (K2)

with the bare susceptibility

χ
0,d/m
abcd (Q) = − 1

Nkβ

∑
K

G0
bc(K )G0

da(K + Q), (K3)
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FIG. 12. The dx2−y2 singlet gap takes the lead for lower temper-
atures in RPA. The doubly degenerate interorbital singlet, which is
the dominant one in DMFT, remains low tier.

and the local vertex U d/m given in Eq. (G4). We use
the renormalized interaction parameters U = 0.575 eV and
J = 0.1 eV, which have the same U/J ratio as the DMFT
parameters but are smaller, because otherwise the RPA sus-
ceptibilities diverge.

We identify the following leading superconducting gap
functions: a dx2−y2 singlet, a doubly degenerate interorbital
triplet that couples xy with xz/yz, an odd-frequency triplet,
an interorbital triplet that couples xz with yz, and the doubly
degenerate interorbital singlet that couples xy with xz/yz (see
Table II). Their eigenvalues over temperature are pictured in
Fig. 12.

While the doubly degenerate interorbital triplet leads for
the higher temperatures, the dx2−y2 singlet rapidly increases
for lower temperatures where it becomes dominant. This re-
sult is in agreement with other RPA studies [43,44], but also
with RPA like schemes that try to capture correlation effects
by dressing the noninteracting Green’s function [25]. The
doubly degenerate interorbital singlet, which is dominant in
our DMFT calculation, is also present among the leading gaps,
but remains low tier.
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