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Role of nematicity in controlling spin fluctuations and superconducting Tc in bulk FeSe
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FeSe undergoes a transition from a tetragonal to a slightly orthorhombic phase at 90 K and becomes a
superconductor below 8 K. The orthorhombic phase is sometimes called a nematic phase because quantum
oscillation, neutron, and other measurements detect a significant asymmetry in x and y. How nematicity affects
superconductivity has recently become a matter of intense speculation. Here, we employ an advanced ab initio
Green’s function description of superconductivity and show that bulk tetragonal FeSe would, in principle,
superconduct with almost the same critical temperature Tc as the nematic phase. The mechanism driving the
observed nematicity is not yet understood. Since the present theory underestimates it, we simulate the full
nematic asymmetry by artificially enhancing the orthorhombic distortion. For benchmarking, we compare
theoretical spin susceptibilities against experimentally observed data over all energies and relevant momenta.
When the orthorhombic distortion is adjusted to correlate with observed nematicity in spin susceptibility, the
enhanced nematicity causes spectral weight redistribution in the Fe-3dxz and Fe-dyz orbitals, but it leads to at
most a 10–15% increment in Tc. This is because the dxy orbital always remains the most strongly correlated
and provides most of the source of the superconducting glue. Nematicity suppresses the density of states at the
Fermi level; nevertheless, Tc increases, in contradiction to both BCS theory and the theory of Bose-Einstein
condensation. We show how the increase is connected to the structure of the particle-particle vertex. Our results
suggest that while nematicity may be an intrinsic property of bulk FeSe, it is not the primary force driving the
superconducting pairing.
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I. INTRODUCTION

Bulk FeSe superconducts up to 8 K, deep inside an or-
thorhombic phase that sets in at a much higher temperature,
90 K [1]. The normal bulk tetragonal phase does not super-
conduct unless it is doped [2–6] or forms a monolayer [7,8].
A nonalloy bulk tetragonal superconducting FeSe does not
yet exist. This raises the question as to whether nematic-
ity facilitates superconductivity in the bulk or not [9–11].
Further recent studies have suggested that spin fluctuations
are strongly anisotropic, possibly originating from electronic
nematicity inside the detwinned orthorhombic phase [12].
This enhanced electronic anisotropy shows up in the inelastic
neutron scattering (INS), in resistivity measurements [13], in
angle-resolved photoemission spectroscopic studies [14–16],
and in several other measurements [17]. How such spin fluc-
tuations affect the superconducting instability is a subject of
intensive study.

Here, we take an ab initio Green’s function approach to
compare spin fluctuations and superconductivity in the or-
thorhombic phase with the tetragonal phase of bulk FeSe.
This enables us to directly probe what role nematicity plays
in governing these observed properties. To validate the theory,
we perform rigorous benchmarking against existing suscepti-
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bility data from INS measurements [18]. Using the as-given
orthorhombic structure, we show that spin susceptibilities are
nearly indistinguishable for the two phases. To mimic the true
nematicity, we enhance the small observed orthorhombic dis-
tortion by a factor of 5, to simulate the best possible agreement
against the existing INS data inside the orthorhombic phase.
While this enhanced structural nematicity has a different phys-
ical origin (most likely originating from a k-dependent vertex
in the spin channel, or in the electron-phonon interaction),
it provides a similar contribution to nematicity by adding an
effective potential from a different source. As we show below,
it enhances nematicity and generates a spin susceptibility that
fairly well replicates nematicity observed in neutron measure-
ments. We can then assess its impact on superconductivity,
since spin fluctuations are the primary driving force for super-
conductivity, and we find that enhanced nematicity has only a
very moderate effect.

II. METHODS

We believe that our findings are conclusive because they
are obtained from a high-fidelity, ab initio description of
spin fluctuations and superconductivity that depends only
minimally on model assumptions. Our theory couples the
(quasiparticle) self-consistent Hedin’s GW approximation
(QSGW ) with dynamical mean-field theory (DMFT) [19–22].
Merging these two state-of-the-art methods captures the
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effect of both strong local dynamic spin fluctuations (captured
well in DMFT) and nonlocal dynamic correlation [23,24]
effects captured by QSGW [25]. On top of the DMFT self-
energy, charge and spin susceptibilities are obtained from
vertex functions computed from the two-particle Green’s
function generated in DMFT, via the solutions of the nonlo-
cal Bethe-Salpeter equation (BSE). Additionally, we compute
the particle-particle vertex functions and solve the ladder
particle-particle BSE [21,26,27] to compute the superconduct-
ing susceptibilities and eigenvalues of superconducting gap
instabilities.

Single-particle calculations [local-density approximation
(LDA), and energy band calculations with the static quasi-
particle QSGW self-energy �0(k)] were performed on a
16 × 16 × 16 k mesh, while the (relatively smooth) dynamical
self-energy �(k) was constructed using an 8 × 8 × 8 k mesh
and �0(k) was extracted from it. The same mesh is used
for DMFT. We use QUESTAAL’s all-electron implementation
for all the calculations here; it was explained in detail in a
recent methods paper [24]. For LDA we use a Barth-Hedin
exchange-correlation functional. (QSGW does not depend on
the LDA, but we nevertheless present LDA results to show
how QSGW incorporates missing correlations from the LDA
and renormalizes the electronic bands further.) The QSGW
approximation, including the all-electron product basis used
to make the polarizability and self-energy, is described in
detail in Ref. [25]. Our one-particle basis set was con-
structed of 110 orbitals, including s, p, d, f , s, p, d orbitals
centered on Fe augmented with local orbitals on the 4d , and
s, p, d, f , s, p, d orbitals centered on Se. The product basis in
the augmentation spheres was expanded to l = 8 and included
520 orbitals; for the Coulomb interaction in the interstices a
plane-wave cutoff of 2.3 Ry was used. The polarizability is
computed with the tetrahedron method; for the self-energy a
smearing of 0.003 Ry was used. For frequency integration,
we used a mesh with 0.01 Ry spacing at low energy, gradually
increasing at higher energy. Six points were used on the imag-
inary axis contribution to the self-energy. The charge density
was made self-consistent though iteration in the QSGW self-
consistency cycle: It was iterated until the root-mean-square
change in �0 reached 10−5 Ry. Thus the calculation was
self-consistent in both �0(k) and the density. At the end
of QSGW cycles, we use the quasiparticle electronic band
structures as the starting point of our DMFT calculations.
The impurity Hamiltonian is solved with the continuous-
time quantum Monte Carlo (CTQMC) solver [28,29]. For
projectors onto the Fe d subspace, we used projectors onto
augmentation spheres, following the method described in
Ref. [30]. DMFT is solved for all five Fe-3d orbitals using
CTQMC on a rotationally invariant Coulomb interaction. The
double counting correlations are implemented using the fully
localized limit approximation. The DMFT for the dynamical
self-energy is iterated and converges in 30 iterations. Calcula-
tions for the single-particle response functions are performed
with 109 quantum Monte Carlo (QMC) steps per core, and
the statistics is averaged over 128 cores. The two-particle
Green’s functions are sampled over a larger number of cores
(40 000–50 000) to improve the statistical error bars. The local
effective interactions for the correlated impurity Hamiltonian
are given by U and J. These are calculated within the con-

strained random-phase approximation (RPA) [31] from the
QSGW Hamiltonian using an approach [21] similar to that of
Ref. [32], but using projectors from Ref. [30]. For bulk FeSe
we find U = 3.5 eV and J = 0.6 eV from our constrained
RPA calculations. J

U = 0.17 suggests that the system is in the
strong Hund’s metallic limit as we have discussed in a prior
work [33].

III. RESULTS

A. Computational details for magnetic susceptibility

We compute the local polarization bubble from the lo-
cal single-particle Green’s function computed from DMFT.
We extract �irr

loc, by solving the local Bethe-Salpeter equa-
tion which connects the local two-particle Green’s function
(χloc) sampled by CTQMC, with both the local polarization
function (χ0

loc) and �irr
loc.

�
irr,m(d )
loc α1 ,α2

α3 ,α4

(iν, iν ′)iω = [(
χ0

loc

)−1

iω − χ
m(d )−1
loc

]
α1 ,α2
α3 ,α4

(iν, iν ′)iω. (1)

� are the local irreducible two-particle vertex functions com-
puted in magnetic (m) and density (d) channels. � is a
function of two fermionic frequencies ν and ν ′ and the bosonic
frequency ω.

Spin (χm) and charge (χd ) susceptibilities are computed
by solving the momentum-dependent Bethe-Salpeter equa-
tions in magnetic (spin) and density (charge) channels by
dressing the nonlocal polarization bubble χ0 with local irre-
ducible vertex functions � in their respective channels:

χ
m(d )
α1 ,α2
α3 ,α4

(iν, iν ′)q,iω = [
(χ0)−1

q,iω − �
irr,m(d )
loc

]−1
α1 ,α2
α3 ,α4

(iν, iν ′)q,iω.

(2)
χ0 is computed from single-particle DMFT Green’s func-

tions embedded in a QSGW bath. Susceptibilities χm(d )(q, iω)
are computed by summing over frequencies (iν, iν ′) and or-
bitals (α1,2).

B. Benchmarking of magnetic susceptibilities against
experimental observations

In Fig. 1 we plot the imaginary part of Im χ (q, ω) along the
q = (1, K ) line of the one-atom Brillouin zone. Im χ (q, ω)
is computed in tetragonal and nematic phases and compared
against the inelastic neutron scattering (INS) data received
from Wang et al. [18]. Imχ (q, ω) is plotted for slices ω =
15, 35, 40, and 80 meV. The ratio a/b in the orthorhom-
bic phase (a = 5.3100 Å, b = 5.3344 Å) differs by only
0.4% from unity, and the area is only slightly smaller than
the tetragonal phase (a = 3.779 Å,

√
2a = 5.3443 Å). Con-

sequently, Imχ (q, ω) changes little between tetragonal and
orthorhombic phases. Most remarkably, the entire momen-
tum dependence of Imχ (q, ω) is rather well reproduced for
the tetragonal phase at all energies. This is a testimony to
the fact that the essential elements that are required to pro-
duce the momentum and energy structures for Imχ (q, ω)
are already present in the three-tier QSGW +DMFT+BSE
approximation. Nevertheless, our computed Imχ (q, ω) does
not adequately reflect the effect of nematicity as is apparent
in deviations of our theoretical data (red solid lines) from the
experimental curves.
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FIG. 1. Imaginary part of the dynamic spin susceptibility
Imχ (q, ω) plotted along the line q = (H = 1, K, L = 0) in recip-
rocal lattice units (r.l.u.) of one Fe-atom unit cell. (H, K, L) is
the standard notation used to identify reciprocal lattice directions.
Experimentally, it is well established that the low-energy peak in
Imχ (q, ω) is at q = (1, 0, 0) in the same notation. Different energy
cuts were taken and plotted against the observed Imχ (q, ω) in an
inelastic neutron scattering (INS) experiment by Wang et al. [18].
The experimental data are reproduced with the raw data received
from Wang et al. We plot our computed Imχ (q, ω) at ω = 15, 35,
40, and 80 meV against the INS data. The theoretical data for the
tetragonal (tetra; green solid line) and orthorhombic (ortho; red solid
line) phases are nearly indistinguishable, and both sets of data deviate
from the experimental data [the latter are plotted as orange (tetra)
and blue (ortho) solid circles]. The theoretical data for the enhanced
orthorhombic distortion (purple solid line) remarkably agree with the
experimental INS data for all energy and momentum values.

These calculations show that nematicity probably origi-
nates from a momentum-dependent self-energy which con-
tains a longer-range vertex beyond the single-site approxima-
tion in DMFT. Our DMFT spin vertex is local, and also we do

not have the ability to include the electron-phonon interaction
ab initio, one of which is likely to be responsible for the en-
hancement of the nematicity. We, instead, mimic the effective
potential originating from either of these sources by modi-
fying the crystal-field splitting, enlarging the orthorhombic
splitting by a factor of 5 to (a = 5.3100 Å, b = 5.4344 Å).
In the rest of this paper we use “ortho-enhanced” to identify
this particular structure. We find that the resulting Imχ (q, ω)
is enhanced in intensity and produces very good agreement
with the INS data over all energy and momentum values.

The precise nature of the boson that is a Cooper pair in
FeSe is debated, though generally the primary mechanism is
believed to be magnetic fluctuations. This is supported by the
observation of a negligible isotope effect in bulk FeSe [34].
Since the normal phase just above critical temperature Tc =
8 K is orthorhombic, there has been much speculation that
nematicity can be the mechanism driving superconductivity,
though heavily debated. This is the question that we consider
within the QSGW +DMFT theory. While it is conceivable
that our fictitious inducement of nematicity does not yield the
proper modification of superconductivity, the true mechanism
would have to occur via some unknown process that does not
involve the spin susceptibility (which we adequately repro-
duce, as we have shown). Thus we believe that modifying the
effective potential via enhancing the orthorhombic distortion
is a sufficient proxy to reliably pursue this question.

C. Effect of the nematic distortion of density of states

First, we study the effects of nematicity on the local density
of states (DOS). The primary effect of nonlocal charge cor-
relations included within QSGW is to reduce the bandwidth
[see Figs. 2(a) and 2(b)] of FeSe compared with the LDA.
We show results only for the orthorhombic phase of FeSe,
but it is true irrespective of the structural phase considered.
The effect of nematicity on dyz and the effect of nematicity
on dxz are mirror images of each other [Figs. 2(d) and 2(e)];
this includes the change in DOS at EF , ρ(EF ). However, the
enhanced orthorhombic distortion only weakly reduces the dxy

kinetic energy [Fig. 2(c)] and does not alter the xy contribution
to ρ(EF ). The Se-p states remain negligibly small within an
energy range of ±1 eV around EF in all cases. In Fig. 2(b) the
Se-p DOS is shown scaled by a factor of 10 to make it visible.
The effect of such distortions is negligible on the Se-p states
as well, and these states remain irrelevant for the low-energy
physics of FeSe.

Figure 2(f) plots the QSGW +DMFT DOS for the three
systems: tetragonal, orthorhombic, and ortho-enhanced. Note
that the QSGW Green’s functions are renormalized in the
presence of the self-consistent single-site DMFT self-energy.
For all phases there is a significant drop in ρ(E ) at ω = 0,
and it is also seen that enhanced nematicity modestly sup-
presses ρ(EF ) (i.e., ω = 0). This observation suggests that
photoemission spectroscopy should be able to see this drop
in the local DOS at low energies in systems where nematicity
plays a major role, for example, in the detwinned sample
of FeSe [12,15,35]. It suggests that if the superconductivity
is modified by enhanced nematicity, it does not result from
a purely Fermi surface nesting driven mechanism. Within
a purely BCS picture such a dip in ρ(EF ) would produce
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FIG. 2. (a) The QSGW total local density of states (DOS) for FeSe is narrower compared with the LDA. DMFT narrows the bands
compared with QSGW . (b) Both Fe-3d states and Se-p states get narrowed within QSGW , although the Se-p states are negligibly small around
EF . (c)–(f) The artificially enhanced nematic distortion reduces the Fe-dxy bandwidth weakly compared with the original nematic phase (c);
however, its effects on dyz (d) and dxz (e) orbitals are opposite: In one case, the DOS at EF drops, and in the other case it is enhanced. (f) The
total QSGW +DMFT local density of states (DOS) for FeSe in the tetragonal, orthorhombic, and orthorhombic phase with enhanced distortion
is shown.

exponentially weak suppression of superconducting Tc. Even
while nematicity reduces ρ(EF ), it has the opposite effect on
Tc. As we will show in the following discussion, Tc increases
as a consequence of the change in the two-particle vertex
which promotes the superconducting pairing glue.

D. Orbitally resolved magnetic susceptibilities

Before moving on to the discussion of superconductiv-
ity, we analyze our computed spin susceptibilities χ (q, ω),
particularly in an attempt to understand its orbital structure.
We show in Fig. 3(a) that the irreducible vertex computed
using CTQMC+DMFT is strongly orbital dependent. It is
crucially important that CTQMC+DMFT is site-local but not
point-local. One of the primary successes of DMFT is its
ability to pick up orbital-dependent structures in self-energy
and higher-order vertex functions. This becomes even more
crucial in Hund’s metals since Hund’s J generates strong
orbital differentiation. The local irreducible vertex computed
in the magnetic channel depends on three frequencies (two
Matsubara fermionic frequency indices ω1,2 and one Matsub-
ara bosonic frequency index 	). We show that for all energies
(Matsubara fermionic frequencies) the magnetic vertex �

remains larger in the dxy channel compared with the dxz,yz

channels, suggesting that magnetic scatterings are largest
there.

The site-local vertex has a pronounced effect on the both
the magnitude and momentum dependence of the nonlocal χ

[compare RPA with BSE in Fig. 3(b)], and it is the vertex
that ensures that the antiferromagnetic instability suppresses
magnetic instabilities at other q. χRPA must be scaled by 8
or so to put on the same scale as χBSE, which gives a rough
measure of the Stoner enhancement. However, it is important
to stress once again that the orbital and frequency dependence
of the vertex is crucial, and it cannot be adequately modeled
by a constant.

We resolve the computed static spin susceptibilities χ (q)
in different intraorbital channels. Enhanced nematicity causes
χ (q) to increase in all intraorbital channels; however, it re-
mains smaller in the dxz and dyz channels than in the dxy

channel [see Figs. 3(c)–3(f)]. Orthorhombic distortion lifts
the degeneracy between the dxz and dyz orbitals that is ob-
served in neutron measurements. In any case, the dxy channel
remains the dominant spin fluctuation channel, while the dxz

and dyz channels each contribute nearly 40% of the dxy spin
fluctuations. This is crucial. Although this desired “nematic”
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FIG. 3. (a) The magnetic vertex and its orbital structure. For all energies, �xy > �xz,yz. (b) The BSE approximation is shown to strongly
modify the random-phase approximation (RPA) in the magnetic channel, in a momentum-dependent way (note that χRPA is scaled by a factor
of 8). (c)–(f) Orbitally resolved static spin susceptibility, Reχ (q), is plotted along q = (H, K, L = 0). The enhanced orthorhombic distortion
increases the intensity of Reχ (q) in all intraorbital channels; however, the dxy states remain dominant in all cases. χxz and χyz are scaled by a
factor of 2 to improve visibility.

distortion, which produces the agreement with experimentally
observed χ (q, ω), leads to moderate spectral weight redis-
tribution between the dxz and dyz one-particle channels, dxy

still remains the most correlated orbital that hosts the largest
fraction of the magnetic collective fluctuations in the system.

E. Computational details of superconducting instabilities

How particular orbitals govern spin fluctuations and thus
control Tc is key to understanding the superconducting mech-
anism in such a complex multiband manifold. We probe
the effect of such enhanced nematicity on the supercon-
ductivity. The superconducting pairing susceptibility χp-p is
computed by dressing the nonlocal pairing polarization bubble
χ0,p-p(k, iν) with the pairing vertex �irr,p-p using the Bethe-
Salpeter equation in the particle-particle (p-p) channel.

χp-p = χ0,p-p · [1 + �irr,p-p · χ0,p-p]−1. (3)

The particle-particle vertex in the singlet channel has odd
symmetry under the exchange of two external spins,

�p-p,s = 1
2

[
�

p-p
↑↓
↓↑

− �
p-p
↓↑
↓↑

]
. (4)

The irreducible particle-particle vertex function channel
�p-p,irr , which provides the pairing glue to form Cooper pairs,
consists of the fully irreducible vertex function � f ,irr and the
reducible vertex functions computed in the particle-hole (p-h)
channels

�̃p-h = �full,p-h − �irr,p-h, (5)

where

�full = �irr − �irrχ�irr. (6)

This results in

�̃p-h = �irrχ�irr. (7)

This is one of the most crucial points of our implementa-
tion. Note that the � f ,irr is local within the single-site DMFT
approximation and hence cannot contribute to superconduc-
tivity. Nevertheless, the reducible magnetic or charge vertex
�̃irr,p-h, obtained from dressing �irr with the full nonlocal and
dynamic magnetic or charge susceptibilities, can have both
momentum dependence and dynamics desired for supercon-
ductivity. The parquetlike equations that are solved to achieve
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this are as follows:

�̃
p-h,m/d
α2 ,α4
α1 ,α3

(iν ′, iν)q,iω =
∑

iν1,iν2

∑
α′

2 ,α′
4

α′
3 ,α′

1

�
irr,p-h,m/d
loc α2 ,α′

2
α1 ,α′

1

(iν, iν1)iω

·χp-h,m/d
q α′

2 ,α′
4

α′
1 ,α′

3

(iν1, iν2)iω

·�irr,p-h,m/d
loc α′

4 ,α4
α3 ,′α3

(iν2, iν ′)iω. (8)

The irreducible particle-particle vertex function �irr,p-p is
finally written in terms of the reducible magnetic or charge
vertex �̃m/d functions.

�
irr,p-p
α2↑,α4↓
α1↑,α3↓

(k, iν, k′, iν ′) = �
f ,irr
α2↑,α4↓
α1↑,α3↓

(iν, iν ′) − 1
2 [�̃p-h,(d )

− �̃p-h,(m)] α2 ,α3
α1 ,α4

(k′ − k, iν ′ − iν)

+ �̃
p-h,(m)
α4 ,α3
α1 ,α2

(−k′ − k,−iν ′ − iν), (9)

�
irr,p-p
α2↓,α4↑
α1↑,α3↓

(k, iν, k′, iν ′) = �
f ,irr
α2↓,α4↑
α1↓,α3↑

(iν, iν ′) − 1
2 [�̃p-h,(d )

− �̃p-h,(m)] α4 ,α3
α1 ,α2

(−k′ − k,−iν ′ − iν)

− �̃
p-h,(m)
α2 ,α3
α1 ,α4

(k′ − k, iν ′ − iν). (10)

Finally, exploiting Eqs. (6) and (7) and Eqs. (9) and (10),
we obtain the �irr,p-p in the singlet channel from the magnetic
and density particle-hole reducible vertices,

�
irr,p-p,s
α2 ,α4
α1 ,α3

(k, iν, k′, iν ′) = �
f ,irr
α2 ,α4
α1 ,α3

(iν, iν ′) + 1
2

[
3
2 �̃p-h,(m)

− 1
2 �̃p-h,(d )]

α2 ,α3
α1 ,α4

(iν,−iν ′)k′−k,iν ′−iν

+ 1
2

[
3
2 �̃p-h,(m)

− 1
2 �̃p-h,(d )]

α4 ,α3
α1 ,α2

(iν, iν ′)−k′−k,−iν ′−iν .

(11)

With �irr,p-p in hand we can solve the p-p BSE to compute
the p-p susceptibility χp-p.

χp-p = χ0,p-p · [1 + �irr,p-p · χ0,p-p]−1. (12)

The critical temperature Tc is determined by the tempera-
ture where χp-p diverges. For such divergence the sufficient
condition is that at least one eigenvalue of the pairing matrix
−�irr,p-p · χ0,p-p approaches unity. The corresponding eigen-
function represents the momentum structure of χp-p. Hence Tc,
eigenvalues λ, and eigenfunctions φλ associated with different
superconducting gap symmetries (in the singlet channel) can
all be computed by solving the eigenvalue equation,

T

Nk

∑
k′,iν ′

∑
α2α4
α5 ,α6

�
irr,p-p,s
α2 ,α4
α1 ,α3

(k, iν, k′, iν ′) · χ
0,p-p
α5 ,α6
α2 ,α4

(k, iν ′)φλ
α5α6

= λ · φλ
α5α6

. (13)

The gap function can be written in a symmetric and Her-
mitian form by

T

Nk

∑
k′,iν ′

∑
α2α4α5
α6α7α8

(
χ

0,p-p
α2 ,α4
α1 ,α3

(k, iν)
)1/2

× �
irr,p-p,s
α5 ,α7
α2 ,α4

(k, iν, k′, iν ′) ·
(
χ

0,p-p
α6 ,α8
α5 ,α7

(k′, iν ′)
)1/2

× φλ
α6α8

(k′, iν ′)

= λ · φλ
α1α3

(k, iν). (14)

It can be explicitly shown that the eigenvalues of the non-
Hermitian gap equation are the same as eigenvalues of the
Hermitian gap equation.

Finally, χp-p can be represented in terms of eigenvalues
λ and eigenfunctions φλ of the Hermitian particle-particle
pairing matrix.

χp-p(k, iν, k′, iν ′) =
∑

λ

1

1 − λ
· (

√
χ0,p-p(k, iν) · φλ(k, iν))

× (
√

χ0,p-p(k′, iν ′) · φλ(k′, iν ′)). (15)

To solve this eigenvalue equation, the most important ap-
proximation we make is to take the static limit of �irr,p-p in the
bosonic frequency iω = 0 (real frequency axis). The explicit
dependence on the fermion frequencies is kept, as are all the
orbital and momentum indices.

As is apparent from Eq. (11), at what wave vector spin
and charge fluctuations are strong is of central importance to
the kind of superconducting pairing symmetry they can form.
The entire momentum, orbital, and frequency dependences
of the vertex functions are computed explicitly, and the BSE
equations are solved with them. Since the vertex structure has
no predefined form factor, the emergent superconducting gap
symmetry is calculated in an unbiased manner. This provides
an unbiased insight into the superconducting gap symmetries
and the strength of the leading eigenvalues in different sys-
tems and, most importantly, allows for a fair comparison of the
relative strength of the leading superconducting instabilities
in bulk tetragonal, orthorhombic, and ortho-enhanced FeSe.
Thus our ability to predict these properties is limited mostly
by the fidelity of the Green’s functions that determine the ver-
tices and χ . Furthermore, the fact that the charge component
to the superconducting vertex is finite, within our formulation,
ensures that the magnetic (in this case, antiferromagnetic)
instability cannot drive an order and suppress superconduc-
tivity, as naturally happens with density functional and other
mean-field approaches. We show in Fig. 4(a) that the antiferro-
magnetic instability remains the subleading instability in FeSe
making way for superconductivity to take place.

There is a practical limitation, however, since we compute
the vertex functions from CTQMC, which limits the temper-
atures down to which the vertex can be computed. We have
observed in different materials that the leading eigenvalue λ

does not have a simple, analytic dependence on temperature
[36], and hence λ cannot be reliably extrapolated to very
low temperatures. For that reason, we avoid estimating Tc

(the temperature at which λ reaches 1) for different systems
from our method; rather, we compare the strength of λ for a
given temperature in different materials (Fig. 4), which is free
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FIG. 4. (a) The leading instability in the superconducting channel is shown to dominate over the magnetic instability for all temperatures.
In (b)–(d) the momentum structure of the particle-particle vertex is shown. The particle-particle instability remains at least twice larger in the
dxy channel in all phases of FeSe compared with the dyz and dxz channels.

from any ambiguities. We have explored the fidelity of this
implementation in predicting the gap symmetries and leading
instabilities in several previous works [33,36,37].

F. Leading and subleading superconducting instabilities

We observe that the leading eigenvalue λ (Fig. 4) of the
superconducting gap equation corresponds to an extended s-
wave gap structure [38], with a form factor �1 ∼ cos(kx ) +
cos(ky) (see Fig. 5) in all the phases. The lagging instability
�2 has a cos(kx ) − cos(ky) structure. Moreover, this dominant
instability exists in the dxy orbital channel (Fig. 4) consistent
with our observations of dominant spin fluctuations in the
same channel. To see what controls the instability, it is sim-
plest to consider what increases �p-p · χ0; see Eq. (12). We
find that the orthorhombic distortion weakly affects both χ0

[seen from the change in DOS; Fig. 2(f)] and �p-p (Fig. 4)
relative to the tetragonal phase, and hence �p-p · χ0 hardly
changes. However, in the ortho-enhanced case, �p-p increases
while χ0 drops. The increment in �p-p overcompensates the
reduction in χ0, so that �p-p · χ0 is enhanced relative to the
tetragonal phase. We stress that the modest enhancement to
Tc occurs for reasons completely different from approaches to
superconductivity that rely on the BCS approximation or its

extension. Within BCS any changes to the superconducting
Tc are primarily discussed with arguments based on density
of states. This is natural since the replacement of the density
ρ by ρ(EF ) in BCS gap integrals is strictly possible only
within the BCS approximation EF � h̄ωD � �0 (where ωD

is the phonon frequency and �0 is the superconducting gap at
T = 0). Based on BCS theory [39], a small suppression in
ρ(EF ) would cause an exponentially small reduction in Tc.
Furthermore, in the limit of strong electron-electron interac-
tion (attraction) for dilute mobile charges, Tc is given by the
Bose-Einstein condensation (BEC) temperature [40–42], and
not by the BCS limit. In BEC, Tc has a power-law dependence
on ρ in contrast to the exponential dependence in BCS. The
famous Uemura plot [43], as was established in the early days
of cuprates, showed how unconventional superconductivity in
cuprates was more akin to the BEC limit, instead of the BCS
limit. Nevertheless, in FeSe the BEC formula would again
lead to weak suppression of Tc due to nematicity. In stark
contrast, within our implementation of this finite-temperature
instability approach to superconductivity, no such approxima-
tions are made; moreover, we keep the full energy dynamics
of the one-particle Green’s functions and full energy dy-
namics (dependence on two Matsubara fermionic frequency
indices and one Matsubara bosonic frequency index) of the
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FIG. 5. The superconducting instabilities inside the orthorhom-
bic phase are shown: Instabilities correspond to the leading (�1)
and and lagging (�2) eigenvalues of the solutions to the BCS gap
equation. The evolution of the leading eigenvalue as a function
of temperature is shown for tetragonal, orthorhombic, and ortho-
enhanced phases in the bottom panel.

two-particle vertex functions �p-p. The approximation we do
make, namely, setting the bosonic frequency to zero while
diagonalizing the gap equation, is a sensible one that assumes
that superconductivity is a low-energy phenomenon. As noted,
the full theory also predicts that nematicity slightly enhances
Tc, because of changes to the vertex.

As we showed in our recent work [36], it is extremely
challenging to perform the calculations at a low enough
temperature where λ can reach unity, owing to several tech-
nicalities primarily related to the stochastic nature of the
CTQMC solver. The lowest temperature at which we could
perform our calculations in these systems is 116 K, where
λ remains less than unity. However, following the trend, it
appears that the ortho-enhanced phase can at most realize a
10–15% enhancement in Tc in comparison to the bulk or-
thorhombic phase. Our calculations suggest that the tetragonal
phase could also superconduct with a Tc not much different
from the ortho-enhanced phase. This is consistent with the
experimental observation that the FeSe1−xSx alloy realizes a
superconducting Tc not significantly different from the bulk
orthorhombic FeSe, even when sulfur doping suppresses the
nematic phase completely [44–46]. The primary origin of this,
as we show, is that in bulk FeSe, in all the phases, the Fe-

3dxy orbital remains the most correlated orbital that sources
the largest fraction of collective magnetic fluctuations and
thus acts as the primary glue for the Cooper pair formation.
However, as we explicitly show in Figs. 4(b)–4(d), it is not
only the magnetic susceptibilities but also the particle-particle
vertex �p-p, which is a complicated combination of both mag-
netic and charge vertex functions [see Eq. (11)], that remain
most dominant in the dxy channel in all phases of bulk FeSe.
While nematic distortions drive spectral weight redistribution
mediated by degeneracy lifting of dxz and dyz orbitals, they act
as subleading channels for magnetism and superconductivity.

IV. CONCLUSIONS

To summarize, we perform ab initio calculations for bulk
tetragonal and orthorhombic phases of FeSe and compute
single- and two-particle spectra and superconducting eigen-
values. We find that spin fluctuations are dominant in the
Fe-3dxy channel in all cases and can potentially drive su-
perconductivity in the bulk tetragonal FeSe. Nevertheless, a
rigorous comparison against the observed spin susceptibilities
in inelastic neutron scattering experiments in the orthorhom-
bic phase reveals that our computed susceptibilities have
the correct momentum structure at all energies, but not the
intensity. We show that an artificially enhanced structural or-
thorhombic distortion simulates the missing spin fluctuation
intensity and acts as the proxy for the desired nematicity,
missing from our theory but present in the real world. This
enhanced nematicity, even while suppressing the one-particle
density of states at the Fermi energy, nevertheless leads to
enhanced correlations from the particle-particle supercon-
ducting correlations, leading to an increment in Tc on the order
of 10–15%.
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