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Recent advances in vortex imaging allow for tracing the position of individual vortices with high resolution.
Pushing an isolated vortex through a superconducting sample with the help of a controlled dc transport current
and measuring its local ac response, the pinning energy landscape could be reconstructed along the vortex
trajectory [L. Embon et al., Sci. Rep. 5, 7598 (2015)], providing unprecedented access to the mesoscopic,
i.e., sample dependent, properties of a superconducting device. The controlled motion of objects through such
tilted energy landscapes is fundamentally limited to those areas of the landscape developing local minima under
appropriate tilt. We introduce the Hessian stability map and the Hessian character of a pinning landscape as
quantities that help characterizing a pinning landscape, or short, pinscape. We determine the Hessian character,
the area fraction admitting stable vortex positions, for various types of pinning potentials: Assemblies of cut
parabolas, Lorentzian- and Gaussian-shaped traps, as well as a Gaussian random disordered energy landscape,
with the latter providing a universal result of (3 − √

3)/6 ≈ 21% of stable area. Our Hessian analysis sheds light
on various aspects of mesoscopic vortex physics in the single vortex limit and opens interesting avenues in strong
pinning theory.
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I. INTRODUCTION

The recent years have seen an astounding progress in the
ability to image vortices in superconductors [1–5]. The high
accuracy of these local-probe techniques allow to study the
shape of individual vortices [5] and even manipulate them,
e.g., via magnetic forces [6,7] or local mechanical stress [8].
A new quality in precision-imaging has been achieved using
a novel SQUID-on-Tip (SOT) device combined with ac/dc
techniques [9,10]. Changing the current drive in the sample
allows to push and trace individual vortices and thereby ex-
tract the shape of the energy landscape (pinning landscape
or simply pinscape) from measured SOT data. Such infor-
mation is most welcome in optimizing pinscapes, which in
turn is of great technological interest for high-current ap-
plications [11,12]. Furthermore, the experiment opens new
avenues in mesocopic vortex physics: While the engineering
of pinscapes through introduction of antidots [13], magnetic
particles [14,15], or changes in sample geometry [16–18]
allow for a deliberate manipulation of vortex matter, the SOT
imaging in Ref. [9] or the Bitter decoration in Ref. [19] allow
to access the pinscape in naturally grown samples. In analogy
to the well-known ball-in-a-maze dexterity game [20], where
a ball is driven through a maze by controlling the tilt of the
plane, we refer to the experiment in Ref. [9] as a vortex-in-a-
maze.

In the experiment of Ref. [9], a vortex (carrying a
quantum �0 = hc/2e of magnetic flux) is driven across a
two-dimensional superconducting strip made from lead (Pb).
The variations of the vortex energy across the strip defines the

pinning landscape where the vortex can be trapped in local
minima, see Fig. 1. These local minima can be manipulated
by applying a transport current j along the constriction (the
y axis) that tilts the potential landscape in the transverse di-
rection (parallel to the x axis). A small ac current imposed
on top of the dc drive allows for the precise tracking of the
vortex position. The reconstruction of vortex tracks in Ref. [9]
has brought forward interesting observations in the vortex
dynamics that is dominated by the shape of the pinscape: For
one, a very large ac displacement amplitude in the middle
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FIG. 1. Setup for carrying out the vortex-in-a-maze experiment
in Ref. [9]. A superconducting film of thickness ds of order of the co-
herence length (and of the penetration depth) is subject to an external
field H producing vortices in the film. The colored area illustrates the
depth of the pinning energy potential (with deep regions marked in
red) as inferred from the experiment. The current density j‖ŷ drives
the vortex along the x̂ direction. Different entry points along the ŷ
direction allow to probe other parts of the pinscape
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of the trapping well suggests a strong local softening of the
confining potential, while the abrupt departure of the vortex
from the defect—with no significant softening and absence of
a maximum in the pinning force—has inspired the “broken-
spring” effect reported in Ref. [9]. These observations find a
natural explanation in our Hessian analysis of the pinscape.

The present paper addresses the central question, what
regions of the pinscape can be probed at all, i.e., which points
in the plane allow for a local minimum in the (tilted) po-
tential landscape—this question will take us to the Hessian
stability map of the disorder potential, see Fig. 2 below. A
quantitative question then arises about the total area fraction
of the pinning landscape where a vortex can be stabilized,
given the appropriate (linear) force. This question is addressed
by the calculation of the Hessian character. We determine
this quantity for various types of pinning landscapes, a ran-
dom distribution of cut parabolic wells and of Lorentzian-
and Gaussian-shaped pins of given density; such traps are
often used in numerical work [21,22] on vortex pinning and
dynamics. Furthermore, we study the case of a Gaussian
random potential landscape for which we find the universal
result (3−√

3)/6 ≈ 21% of stable area fraction; This type of
potential is typically used in the context of analytical work on
random manifolds [23] and disorder-induced pinning [24–26].
Beyond quantifying the fitness of a landscape to pin vor-
tices, the Hessian characterization is relevant in the context
of strong-pinning theory, thus making it a valuable asset in
the field of (mesoscopic) vortex matter physics.

The Hessian matrix of random landscapes has been studied
in different contexts, ranging from more abstract discussions
of the statistics of critical points (where gradients vanish) of
Gaussian fields in high-dimensional spaces [27,28] or topo-
logical rules for their arrangement in a random phase field
[29], to more specific analyses of the intensity of laser speckle
patterns [30] or the complexity of the free energy function in
a model glass [31], see Ref. [28] for an extended list of ref-
erences. Here, we focus on a planar energy landscape where
we are interested in its stable area, i.e., the collection of all
points that can become minima under appropriate tilt, rather
than studying the (spectral) distribution of individual critical
points (minima, maxima, and saddles).

Before entering our study of the Hessian map and char-
acter, we briefly discuss in Sec. II the pinscape spectroscopy
used in the reconstruction of the pinning landscape [9] and
discuss the “spring-softening” and “broken-spring” effects in
the light of our Hessian pinscape analysis. The definition
of the Hessian stability map in Sec. III then follows quite
naturally and we discuss its various relations to the pinscape
spectroscopy of Ref. [9]. In Sec. IV, we focus on the main
topic of this paper, the determination of the Hessian character
of various types of pinscapes, i.e., a random distribution of
various defect potentials of different shapes as well as the case
of a Gaussian random potential landscape. As a side result
of our analysis, we show in Appendix D how such a Gaus-
sian random landscape can be obtained as the dense limit of
overlapping defects with the correlator given through the con-
volution of two shifted defect potentials. Section V provides a
short summary, including an extension of our Hessian analysis
to natural (alpine and plane) landscapes (Switzerland and The

Netherlands), where we find that their Hessian coefficients are
surprisingly close to those of a Gaussian random landscape.

II. PINSCAPE SPECTROSCOPY

We motivate our study of the Hessian stability map and
the Hessian character of a pinscape with a brief reminder
of the setup and technique discussed in Ref. [9], see Fig. 1,
where the pinning landscape of vortices in a type-II super-
conducting film has been imaged with the help of a SOT
device. In this experiment, an isolated vortex residing in a
superconducting film of thickness ds (comparable to the su-
perconducting coherence length and the London penetration
length) is trapped by a spatially varying potential landscape
U (r), where r = (x, y) is the planar coordinate. Given the
weak field strength of 3 Gauss used in the experiment [9],
only one (Pearl [32]) vortex is present in the sample, justifying
our assumption of the vortex as an isolated object; we will
discuss the effect of interactions at moderate fields later below.
Applying a current j along the ŷ direction of the film, the total
force F acting on the vortex involves the two contributions
F = Fpin + FL, where Fpin = −∇U (r) accounts for the po-
tential landscape and FL = �0 jdsx̂/c is the current-induced
Lorentz force. The Lorentz force effectively tilts the pinscape
U (r) → Utilt (r, FL ) = U (r) − FLx in the x̂ direction.

Besides the excellent resolution of the SOT device, the
precise determination of the vortex position in the vortex-in-
a-maze experiment [9] relies on a shaking technique where
an additional small oscillatory ac current jac exp(−iωt ) is
applied on top of the dc drive. The vortex trajectory u(t ) then
is governed by the dissipative equation of motion

ηu̇ = F(u, t ), (1)

with η the viscosity and F = Fpin + FL + Fac exp(−iωt ) the
total force acting on the vortex. By applying a sequence of
increasing dc tilts FLn, the vortex will move forward through
the pinscape and oscillate around a tilt-dependent minimum
rn(FLn). Near this position, the associated energy profile can
be expanded in the displacement u = r − rn,

Utilt (r, FLn)=Utilt (rn, FLn) + anu2
x + bnu2

y + cnuxuy, (2)

with higher-order corrections becoming relevant near the
edges of the stable regions. The local curvatures an = a(rn),
bn = b(rn), and cn = c(rn) define the Hessian matrix via
Eq. (13), see below.

Expressing the vortex displacement through u =
(ux, uy) e−iωt , the equation of motion (1) takes the form

iηωux = 2aux + cuy − Fac, (3)

iηωuy = 2buy + cux. (4)

These equations can be solved and analyzed perturbatively in
the small parameter ηω/U ′′ involving the viscous term ηω and
the curvatures U ′′ ∼ a, b, c ; indeed, simple estimates (see
Appendix A) show that this ratio is small for the material and
setup in Ref. [9]. Solving Eqs. (3) and (4) and expanding the
result to lowest (0th) order in ηω/U ′′, we find that

ux = Fac

2a(1 − c2/4ab)
and uy = (−c/2b)ux. (5)
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The motion is in phase with the external driving force and
follows the local potential minimum. Hence, although the ac
force is applied along x̂, the vortex oscillates at a finite angle
φ = arctan(uy/ux ) = − arctan(c/2b) away from the x̂ axis in
the direction of its trajectory.

Given the displacement amplitudes ux and uy, one easily
reconstructs the potential along the vortex trajectory. For the
specific choice of linear increments FLn = nFac [9], the equi-
librium position rn at the drive FLn relates to the position rn−1

via

rn = rn−1 + (ux,n−1, uy,n−1), (6)

where ux,n, uy,n are the ac displacement amplitudes (5) mea-
sured at the drive FLn. This trivial iterative relation leads to the
trajectory rn = ∑n−1

m=0(ux,m, uy,m). Combining the definition
of the tilted potential Utilt at FLn = nFac with the quadratic
approximation (2), we obtain

U n
tilt (x, y) = U (x, y) − nFacx

≈ U n
tilt (xn, yn) + an(x − xn)2 + bn(y − yn)2

+ cn(x − xn)(y − yn). (7)

Solving for U (xn−1, yn−1) and U (xn, yn) and combining the
results with Eqs. (5) and (6), one finds the change in the
pinning potential between neighboring points [we choose the
arbitrary offset U (r0) = 0],

U (xn, yn) ≈ U (xn−1, yn−1) + (n − 1/2) ux,n−1Fac (8)

and its iteration provides us with potential

U (rn) ≈ Fac

n−1∑
m=0

(m + 1/2) ux,m. (9)

The reconstruction of the pinscape along a trajectory in 2D
only involves a 1D integral along x̂, a consequence of the
unidirectional tilt. Indeed, the implicit stability criterion along
ŷ, ∂U/∂y = 0, reduces the integration in the xy plane to the
simple 1D form of Eq. (8).

Given the unidirectional nature of the Lorentz force FL ‖ x̂,
the ensuing one dimensionality of the trajectory is compli-
cating the task of mapping out the two-dimensional potential
landscape. One possible way out is to induce a local motion
along ŷ with the help of a high-frequency ac drive and mea-
suring the out-of-phase response signal; this technique allows
to expand the probing region in the ŷ direction but may be
quite demanding, depending on the material and experimental
parameters. In fact, the solution and subsequent expansion
of Eqs. (3) and (4) to linear order in ηω/U ′′ provides an
out-of-phase correction δux, δuy ∝ i(ηω/U ′′)/U ′′ that could
be measured independently, at least in principle. The four
displacements ux, uy, δux, and δuy then allow for the deter-
mination of all local curvatures

a = Fac

2ux

[
1 + u2

y/u2

(δuy/uy)(ux/δux ) − 1

]
, (10)

b = Fac

2ux

u2
x/u2

(δuy/uy)(ux/δux ) − 1
, (11)

c = Fac

2ux

−2uxuy/u2

(δuy/uy)(ux/δux ) − 1
, (12)

FIG. 2. A view on the pinning landscape through the Hessian
stability map. Shown is the example of the pinscape derived from
measurements in Ref. [9], see Fig. 5(a) therein. All of the black
area is unstable, i.e., the Hessian matrix Eq. (13) has at least one
negative eigenvalue; vortices cannot be trapped at any point within
this region and the potential landscape cannot be probed. A position
within the white area is stable and turns into a local minimum
for a specific tilt along x̂ and ŷ. Contour lines show equi-Hessians
where det H = 0.3k (meV/nm2)2 for integer k. For a unidirectional
tilt along x̂, only one specific trajectory (red) is accessible within
the stable regions. Close to the border of the stable regions, the
Hessian becomes small and the ac response of the vortex increases.
The divergence of the ac displacement at the Hessian boundary is
preempted by the thermal activation out of the well and subsequent
runaway of the vortex across the unstable region. At the center of the
double defect (yellow arrow) the vortex goes though a flat region with
a small Hessian, implying a large ac response (“spring softening”) as
observed in Fig. 2(e) of Ref. [9].

where u = (u2
x + u2

y )1/2 is the total displacement amplitude.
This provides access to the local reconstruction of the poten-
tial U (x, y) within a strip around the trajectory; more details
of this extension of pinscape spectroscopy are presented in
Appendix B.

III. HESSIAN STABILITY MAP

Given the possibility to map out the pinning potential of a
film through pinscape spectroscopy, the question poses itself
which part of the plane can actually be analyzed in this manner
and what happens at the boundaries of these areas; the answer
to these questions is given by the Hessian stability map.

In the absence of an ac current, the vortex resides in a
minimum of the tilted potential Utilt (r, FL ). Such a stable point
is characterized by a vanishing first derivative along both x̂
and ŷ (no net force) and a positive curvature. The second
condition is satisfied, if the Hessian matrix

H (x, y) =
(

∂2U
∂x2

∂2U
∂x∂y

∂2U
∂y∂x

∂2U
∂y2

)
=

(
2a(x, y) c(x, y)

c(x, y) 2b(x, y)

)
(13)
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is positive definite, i.e., it has a positive determinant

det H (x, y) = 4a(x, y)b(x, y) − c2(x, y) > 0 (14)

and a positive trace

trH (x, y) = 2[a(x, y) + b(x, y)] > 0. (15)

Here, the coefficients a(r), b(r), and c(r) coincide with the lo-
cal expansion coefficients in Eq. (2). While Eq. (14) excludes
indefinite matrices (saddle-point solutions), the positive trace
(15) additionally discards negative-definite Hessian matrices
(potential maxima). Note that the Hessian does not depend
on the (linear) drive, hence it characterizes the pinscape
U (x, y) itself, rather than the forced pinscape Utilt . As such,
the Hessian matrix with its determinant and trace provides
information on the potential’s capability of stabilizing a vortex
at a specific point r of the plane upon application of the
appropriate tilt.

The traditional way of studying the potential landscape
is via equipotential (or elevation) maps. They depend on
the current-induced tilt and their minima tell about possible
(meta)stable positions for the vortex. Adopting a global view,
the Hessian matrix helps separating stable points from unsta-
ble points. This way, the two-dimensional pinning landscape
can now be divided into stable areas characterized by the set
of conditions det H (x, y) > 0 and trH (x, y) > 0, and unsta-
ble ones where at least one condition is violated. We thus
introduce the Hessian stability map, i.e., the graphical repre-
sentation of the pinscape regions associated with stable points,
as a tool to characterize a potential landscape, with a “good”
pinscape described by a large percentage of stable area. In
Fig. 2, we show, for illustration, the stability region, together
with equi-Hessian contour lines, for the potential landscape
mapped out in Ref. [9] [see Fig. 5(a) therein] and also shown
in the setup in Fig. 1. Within the black regions, at least one
eigenvalue is negative, implying that this position cannot be
made a stable vortex position for any tilt (in either x̂ or ŷ
direction). In the following, we briefly discuss the role played
by the Hessian map in the context of pinscape spectroscopy
via ac and dc forces. In Sec. IV, we assume an extended
view on the problem and determine the Hessian character,
i.e., the area fraction of stable regions, for different potential
landscapes often used in numerical or analytical studies of
vortex pinning and dynamics. These are a finite density of cut
parabolas, of Gaussian- and Lorentzian-shaped potentials, as
well as a Gaussian random potential.

Let us first interpret the Hessian stability map and extract
some physical insights into the pinscape. Focusing on the
boundaries in the stability map, we note that the vortex dis-
placement u ∝ (1 − c2/4ab)−1 diverges, as c2 →4ab when
the minimum in rn approaches the boundary, see Eq. (5). Upon
approaching the singular point c2 = 4ab, the expression for
the trajectory’s angle φ simplifies to φ = arctan[(a/b)1/2] and
thus provides access to the ratio of the potential curvatures
along the directions x̂ and ŷ. Interesting features show up
when multiple defects combine into a more complex pinning
landscape [9]. For example the vortex can approach the depin-
ning point of one defect and transit to another without entering
the unstable region of the pinscape. The pinscape then de-
velops a flat region with a small Hessian determinant in the
middle of the well. As a result, the ac displacement amplitude

rises steeply as observed in Ref. [9], what corresponds to a
spring softening as highlighted in Fig. 2, arrow. Analyzing
the vortex trajectory in the central defect more carefully, one
notes that the vortex traverses (from left to right) a region
going from det H ∼ 1 (meV/nm2)2 near the first minimum,
to a small value below 0.3 (meV/nm2)2 near the “saddle”, to
a large value ∼2 (meV/nm2)2 in the second minimum. One
thus expects an enhancement of the ac amplitude by a factor of
3–4 starting at the left of the spring softening and a factor 7–8
relative to the value at the right side, in qualitative agreement
with the experiment.

Another aspect of interest is the escape of the vortex
from the stable regime. The proper understanding of this
phenomenon requires to include higher-order terms in the
local expansion of the potential U (x, y) and involves thermal
escape over barriers and possibly anharmonic effects, see
Appendix C for details. Our semiquantitative analysis of the
setup in Ref. [9] confirms that thermal fluctuations are strong
and trigger the escape of the vortex from the stable region
at a quite large distance away from the stability boundary, in
agreement with the discussion of the “broken-spring” effect in
the experiment. Specifically, thermal fluctuations and vortex
escape do cut off the expected divergence in the displacement
u ∝ (1 − c2/4ab)−1 and the reconstructed pinning force does
not go through a maximum at the point of escape.

So far, we have motivated the origin and practical useful-
ness of our Hessian analysis in the single vortex limit and
with emphasis on the mesoscopic aspect of vortex physics.
Going beyond this single vortex limit, one may include the
effect of other vortices in the sample with the help of the so-
called cage potential Ucage(r) ≈ πε0(r/a0)2 that is generated
by the neighboring vortices in the lattice [33,34]; here, ε0 =
(�0/4πλ2) denotes the vortex line energy and λ is the mag-
netic penetration depth. This approximation has been widely
used in the context of vortex physics, see, e.g., Refs. [35–38];
it applies to situations, where vortex displacements, for in-
stance due to a pinning defect or thermal fluctuations, remain
small on the intervortex distance. In the limit where the other
vortices, and hence the cage, remain fixed, the addition of
Ucage(r) to Utilt (r) then contributes the (constant) curvature
πε0/a2

0 to the Hessian. However, in general one may expect
that the other vortices move as well when our test vortex
observed in the experiment is moving, e.g., the depinning of
the test vortex may induce avalanches in the surrounding vor-
tex system. While this opens interesting questions deserving
further studies, this setting is quite far away from our original
question and we do not further pursue it here.

IV. HESSIAN CHARACTER OF PINSCAPES

We now turn to the main part of this paper, the calculation
of the Hessian character Cpos of a pinscape. This number
quantifies the fraction (less than unity) of the plane’s area
that admits a stable vortex position (i.e., a positive definite
Hessian matrix) under an appropriate tilt force. The Hessian
has been used in the characterization of various functions
in a multitude of fields, including optics [29,30], statistical
physics of random systems [27,28,31], or cosmology [39], see
Ref. [28] for a more detailed list of references. Those studies
typically focus on a set of specific critical points in a given
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area (corresponding to extremal points at a given fixed tilt
in the present context), while we aim at characterizing every
point in space as potentially giving rise to a minimum under
an appropriate tilt. As a result, here, we determine the area
fractions with specific curvature properties.

A point r∈� in the two-dimensional landscape of area
� is called stable if the local potential landscape features a
positive-definite Hessian matrix; the collection of such stable
positions defines the stability regions of the pinscape where
the pinscape can be mapped through the spectroscopic method
described in Sec. II.

A. Single defect

As a warmup, consider the pinscape of a single defect.
Here, we focus on isotropic defects with a potential V (r) =
V (r), assuming a minimum −V0 at the origin r = 0, and a
monotonic radial dependence V ′(r) > 0, where the prime ′
denotes the radial derivative V ′(r) = ∂rV (r). We demand the
potential to be integrable,

∫
d2r |V (r)| < ∞, implying its

asymptotic decay V (r →∞) = 0; a notable exception is the
long-range Lorentzian potential discussed below. The Hessian
matrix of such an isolated defect possesses the eigenvalues
V ′′(r) and V ′(r)/r; they describe longitudinal (along r) and
transverse (to r) curvatures. While the latter is positive ev-
erywhere, the longitudinal curvature assumes a positive value
only in the vicinity of the defect’s center. Defining the stabil-
ity radius ξ0 through the condition V ′′(r = ξ0) = 0, we find
the stable area �0 = πξ 2

0 ; at distances larger than ξ0, the
landscape is indefinite. Maxima appear in the pinscape only
through the interference of (at least two) defects.

For the specific cases of a Gaussian-shaped

VG(r) = −V0 exp(−r2/ξ 2) + V̄G (16)

and Lorentzian-shaped

VL(r) = −V0/(1 + r2/ξ 2) + V̄L (17)

defect potential, we find the stability radii ξ0 =ξ/
√

2 and ξ0 =
ξ/

√
3, respectively. The constant shifts V̄G =V0πξ 2/� and

V̄L =V0(πξ 2/�) ln[1 + (�/πξ 2)] assure a vanishing potential
average, i.e.,

∫
�

d2r V (r)=0. Below, we will also consider the
case of a cut parabola

VP(r) = −V0(1 − r2/ξ 2)
(r − ξ ) + V̄P, (18)

with ξ0 =ξ and V̄P =V0πξ 2/2�; this type of potential has
often been used in numerical simulations of vortex pinning
[21,22].

Next, we consider a pinscape originating from a small
density np = N/� of defects, where N denotes the number
of defects in the area �. For a very low density of defects,
np�0 � 1, the probability ∼(npξ

2)2 for defects to overlap is
parametrically small; as a result the stability region to leading
order in npξ

2 assumes the value

Cpos ≈ np�0. (19)

This generic result tells, that only a minute areal fraction in
the immediate vicinity of defects is capable of being probed
within the vortex-in-a-maze scheme.

B. Gaussian limit of dense defects

The nontrivial and hence interesting structure of a pinscape
develops when defect potentials start to overlap. Below, we
study pinning landscapes of the type

U (r) =
N∑

j=1

V (r − r j ). (20)

We assume
∫
�

d2r V (r) = 0 such that the potential U averages
to zero as well. Given a random distribution of defect positions
r j , the pinscape turns into a random energy surface. Our task
now consists in determining the (mean) character Cpos for
specific types of random landscapes. The latter is defined
through the probability density p(D,T) of finding a position
with given Hessian determinant det H =D and trace trH =T,
both of which have to be positive D > 0 and T > 0,

Cpos =
∫ ∞

0

∫ ∞

0
dD dT p(D,T). (21)

Characterizing the random pinscape potential U (r) through its
functional probability measure P[U (r)], we find the probabil-
ity density p(D,T) via functional integration,

p(D,T) =
∫
D[U (r)]P[U (r)] δ[det H − D] δ[trH − T],

(22)

where the Hessian matrix H can be evaluated at any spatial
point r due to the translation invariance of the result; without
loss of generality, we choose r = 0. For a homogeneous dis-
tribution of N defects in an area �, see Eq. (20), the measure
in (22) is given by

D[U (r)]P[U (r)] =
N∏

j=1

[
d2r j

�

]
. (23)

A second generic result [besides the trivial dilute limit
(19)] can then be obtained in the high density limit np�0 
 1
when many defects overlap. As shown in Appendix D, the
pinscape of many overlapping defects approaches a Gaussian
distribution with vanishing mean 〈U (r)〉 = 0 [since 〈V (r)〉 =
0] and a two-point correlator

G(r−r′)=〈U (r)U (r′)〉=np

∫
d2sV (r−s)V (r′−s) (24)

deriving from the convolution of two shifted potentials V (r).
It follows from the central limit theorem that the distribution
function P[U (0)] for the potential in a fixed point, e.g., at
the origin, is of Gaussian form. The fact that the functional
distribution function P[U (r)] becomes Gaussian as well,

P[U (r)] = PG[U (r)] = e−S/Z, (25)

with Z = ∫
D[U (r)] e−S and the quadratic action

S = 1

2

∫
d2r

�

∫
d2r′

�
U (r) G−1(r − r′)U (r′), (26)

is less trivial and can be checked by confirming the validity of
Wick’s theorem for the 2k-point correlators (up to corrections
in the small parameter 1/np�0) or via a direct calculation of
P[U (r)], see Appendix D.

144504-5



WILLA, GESHKENBEIN, AND BLATTER PHYSICAL REVIEW B 105, 144504 (2022)

For such a Gaussian random potential, symmetry imposes
that regions of positive- and negative-definite Hessians (i.e.,
with D>0 and sign(T)=±1 respectively) are equally proba-
ble and hence Eq. (21) reduces to the evaluation of the simpler
expression

Cpos = 1

2

∫ ∞

0
dD p(D), (27)

where p(D) denotes the probability distribution of the Hessian
determinant det H taking the value D.

The task of finding the probability density p(D) can be
broken up into a sequence of problems: In a first step, we
can determine the probability π (a, b, c) for a Hessian matrix
to assume diagonal entries 2a, 2b and off-diagonal entries c,
thereby reducing the problem of evaluating Eq. (27) to an
algebraic integral,

p(D) =
∫

da db dc π (a, b, c) δ[4ab − c2 − D]. (28)

We find the probability function π (a, b, c) via the functional
integration

π (a, b, c) =
∫
D[U (r)]PG[U (r)] 4 δ[Uxx(0) − 2a]

× δ[Uyy(0) − 2b] δ[Uxy(0) − c]. (29)

The numerical factor 4 appears from applying the iden-
tity δ[Uxx(0)/2 − a] = 2 δ[Uxx(0) − 2a] and equally for
δ[Uyy(0)/2 − b]. The difficulty with the functional integration
over all realizations U (r) is now moved to the evaluation of
π (a, b, c) in Eq. (29).

Substituting Eq. (26) into Eq. (29) and expressing the δ

distributions in Fourier space, we have to the evaluate

π (a, b, c) = 1

Z

∫
D[U (r)]e− 1

2

∫
d2r
�

∫
d2r′
�

U (r)G−1(r−r′ )U (r′ )

×
∫

dk dl dm

(2π )3
4ei(2ka+2lb+mc)

× e−i
∫

d2r[kUxx (r)+lUyy (r)+mUxy (r)]δ(r). (30)

Two integrations by parts in the exponent of the last fac-
tor yield

∫
d2r U (r)[kδxx(r)+lδyy(r)+mδxy(r)], with δκμ(r)≡

∂2δ(r)/∂xκ∂xμ. The remaining functional integration can now
be performed through Gaussian integration [40,41] (i.e., com-
pleting the square),

π (a, b, c) =
∫

dk dl dm

(2π )3
4ei(2ka+2lb+mc)

× e− 1
2 [k2Gxxxx

0 +l2Gyyyy
0 +(m2+2kl )Gxxyy

0 ], (31)

where Gκμνσ
0 ≡∂4G(r)/∂xκ∂xμ∂xν∂xσ |r=0 >0 denotes the

fourth derivative of the Green’s function. For an isotropic
problem, symmetry tells that G(4)

0 ≡ Gxxyy
0 = Gxxxx

0 /3 =
Gyyyy

0 /3 and hence

π (a, b, c) =
∫

dk dl dm

(2π )3
4ei(2ka+2lb+mc)

× e− 1
2 [3k2G(4)

0 +3l2G(4)
0 +(m2+2kl )G(4)

0 ]. (32)

FIG. 3. Sketches of the contours in the complex plane for evalu-
ating integral in Eq. (35). For D>0, the (magenta) contour encloses
the upper half-plane except for the cut along the imaginary axis
starting from i/4. For D<0, the (blue) contour encloses the lower
half-plane with a pole at −i/2.

The remaining Gaussian integrations over k, l , and m then
yield the result

π (a, b, c) = 4e−(3a2−2ab+3b2+2c2 )/4G(4)
0(

4πG(4)
0

)3/2 (33)

and we find that the probability distribution of Hessian ma-
trix elements is Gaussian, as one might have expected for a
Gaussian distributed random potential.

Making use of the result (33) in Eq. (28), we find the
distribution

p(D) = 4[
4πG(4)

0

]3/2

∫
dQ

2π

∫
da db dc eiQD

× e−iQ(4ab−c2 )e−(3a2−2ab+3b2+2c2 )/4G(4)
0 , (34)

which after another series of Gaussian integrations gives

p(D) =
∞∫

−∞

dQ̃

2πG(4)

0

eiQ̃D/G(4)
0√

(1 − 2iQ̃)2(1 + 4iQ̃)
, (35)

with Q̃=QG(4)

0 . The integrand has a pole of order one in the
negative complex plane at Q̃=−i/2 and a line cut along the
positive imaginary axis, terminating at Q̃= i/4, see Fig. 3.
The above integral can be solved for D>0 using a closed
contour in the upper complex plane avoiding the line cut
along the imaginary axis. We then find with the substitution
ζ = arccot[(4q/3)1/2]

p(D>0) = 2e−D/4G(4)
0

G(4)
0

∫ ∞

0

dq

2π

e−qD/G(4)
0

(3 + 4q)
√

q
(36)

= 2eD/2G(4)
0√

3G(4)
0

∫ π/2

0

dζ

2π
e−

(
3D/4G(4)

0

)
(sin ζ )−2

. (37)

The integral in the last line is Craig’s formula [42] for the
complementary error function erfc[z] ≡ 1 − erf[z] for non-
negative z= (3D/4G(4)

0 )1/2, with the error function defined as
erf (z)= (4/π )1/2

∫ z
0 dt e−t2

. For D < 0 the contour is closed
in the lower half-plane, encircling the pole at Q̃ = −i/2. The
residue theorem then yields p(D<0)=eD/2G(4)

0 /(2
√

3G(4)

0 ).
The probability distribution p(D) for the Hessian determinant
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FIG. 4. Probability distribution function p(D) of the Hessian
det H for a Gaussian distributed random potential, see Eq. (38). The
horizontal axis measures the determinant D in units of G(4)

0 . The
shaded probability indicates the area-fraction of points with positive-
or negative-definite curvature.

then takes the compact global form (see Fig. 4 for an illustra-
tion)

p(D) = eD/2G(4)
0

2
√

3G(4)

0

[
1 − erf

(√
3

4

D

G(4)

0

)



(
D/G(4)

0

)]
, (38)

where we have expressed the result through the Heaviside
function 
(z)=1 for z>0 (and zero otherwise). The result
behaves as p(D)≈ p(0)[1 − (3D/πG(4)

0 )1/2] at small posi-
tive arguments 0<D/G(4)

0 �1 and decays exponentially with
p(D) ≈ p(0)(4G(4)

0 /3πD)1/2 exp(−D/4G(4)

0 ) for large values
D/G(4)

0 
 1.
With the full expression for p(D) at hand, the stable area

fraction Cpos of the two-dimensional (Gaussian-distributed)
potential landscape can be determined: It is convenient to use
the expression (36) and integrate over D first; the subsequent
integral over q then yields the universal result

Cpos = (3 −
√

3)/6 ≈ 0.21, (39)

independent of G(4)

0 and thus of the shape of the correlator.
We find that for a Gaussian random potential the stable area
involves about one-fifth of the total landscape; in physical
terms it means that only a small fraction the landscape can
be explored by pinscape spectroscopy, while a large portion
(nearly 80%) of the plane are either unstable or indefinite
areas.

C. Intermediate defect densities

At intermediate densities, we have to resort to numerical
studies; these will provide us—besides the desired informa-
tion on the stable fraction Cpos—with some additional insights
on the fraction of unstable (Cneg) and indefinite regions (Cind)
of such random landscapes.

We have explored this regime for the three different types
of defect potentials, cut parabolas VP(r), Lorentzian-shaped
VL(r) with algebraic tails, and short-range Gaussian-shaped
VG(r), and computed the area fractions Cpos, Cneg, and Cind for
stable, negative-definite and indefinite regions, respectively.
This numerical analysis reveals several interesting facts, see

FIG. 5. Fraction of stable (Cpos, squares), unstable (Cneg, circles),
and indefinite (Cind, crosses) areas of a potential landscape charac-
terized by a finite density np of Lorentzian [VL(r), red] or Gaussian
[VG(r), blue] shaped defects potentials, respectively. The log-linear
scale (top) highlights the behavior at large densities, while the scaling
at low densities is more prominent in the log-log representation
(bottom). At small densities the fraction of stable points follows
the universal law Cpos = np�0, see bottom figure. At large densities
the Hessian character approaches that of a random potential with
Gaussian correlator (black dashed line in top panel). The stable
area fraction of the cut parabolic trap VL(r) is shown as a black
line in the top panel. At low defect densities np�0 →0, see bot-
tom panel, the unstable fraction Cneg reaches a constant value for
the Lorentzian-shaped potential (red circles) and decays as Cneg ∼
np�0 ln[(np�0)−1] for the Gaussian-shaped potential (blue circles).
This is owed to the different scaling of unstable regions defined by
distant defects in the dilute limit, as shown in the two thumbnails on
the bottom right with yellow (stable), blue (unstable/maxima), and
black (unstable/saddle points) areas.

Fig. 5: First, the Hessian character Cpos grows linearly from
zero (at low densities). For the regular potentials VL(r) and
VG(r), the stable fraction saturates rapidly (i.e., for np�0 � 4)
to the value obtained for a Gaussian random pinscape, with the
precise functional dependence on the density parameter np�0

differing numerically. The (irregular) cut parabolas VP(r),
however, behave differently, with the entire area becoming
stable at large densities np, Cpos → 1, see below for more
details.

A qualitative difference is observed between VL and VG

for the negative-definite area-fraction Cneg (the latter vanishes
identically for VP). This quantity assumes a macroscopic value
∼30% for the long-range Lorentzian traps, while vanishing
at low densities for the Gaussian-shaped pins, see Fig. 5
(bottom). The difference is attributed to the long-range, i.e.,
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FIG. 6. Hessian map of a potential landscape for a moderate
density of cut parabolic (top), Lorentzian (middle), and Gaussian
(bottom) traps. To allow for direct comparison, the defect position
is the same in all panels (we chose a density parameter npξ

2
G =0.125

and the view area 100 ξG ×50 ξG) and the length ξ (defining the defect
shape) assumes the values (1/2)1/2ξG, (3/2)1/2ξG, and ξG respectively.
This implies an elementary area fraction of np�0 ≈ 0.2 for all three
cases. Yellow/blue denote stable/unstable regions where the Hessian
matrix is positive/negative definite. Indefinite points are colored in
black. Here, the difference in the area fraction Cneg of unstable points
for the Lorentzian (∼28%) and Gaussian (∼22%) traps is apparent,
see Fig. 5.

power-law, nature of the potential and can be understood by
considering a pair of defects: For a single (rotationally sym-
metric) defect, the transverse curvature (along the azimuth)
is always positive, while the longitudinal curvature (along
the radius) changes from positive near the center to negative
further out. Hence, a single defect generates either minima
or saddles and a pair of defects is required to produce a
maximum through proper superposition of the two negative
longitudinal curvatures.

For a pair of defects with long-ranged potential (e.g.,
Lorentzian) at a distance d , the decay of the tails [V (r) ∼
r−α , α>1] has no intrinsic length scale, and the area of re-
gions with negative curvature scales as d2. This area becomes
anisotropic [width × height≈ (d/

√
α)×(

√
αd ), see thumb-

nail in Fig. 5] as α increases. At low defect density, the height√
αd gets cut off by the typical inter-defect distance d =n−1/2

p ,
resulting in a concave area ∝ d2/

√
α. The area fraction Cneg ∝

(np�0)0/
√

α with negative curvature is nonvanishing in the

FIG. 7. Hessian map of a potential landscape for a high density
of cut parabolas (top), Lorentzian (middle), and Gaussian (bottom)
traps. The defect position is equal in all panels (we chose a density
parameter npξ

2
G =2.5 and a view area 100 ξG ×50 ξG). The length pa-

rameter ξ (defining the defect shape) assumes the values (1/2)1/2ξG,
(3/2)1/2ξG, and ξG respectively. The elementary area fraction is
np�0 ≈ 4. Yellow/blue denotes stable/unstable regions where the
Hessian matrix is positive/negative definite. Indefinite points are
black. Dense defect clusters (black points in yellow domains) de-
fine stable pinning regions, low density areas (white defects in blue
regions) are unstable.

limit np →0. For short-ranged defects, i.e., where a length-
scale ξ dictates the decay away from the defect, the result is
not universal as it depends on the negatively curved overlap
produced by two distant defects. Specifically, for two defects
separated by d , the negative overlap is limited to a slim area
concentrated near the normal (line) to the midpoint between
the defects (Wigner-Seitz or Voronoi decomposition), see
thumbnails in Fig. 5. For Gaussian-shaped defect potentials,
the area fraction can be evaluated to (ξ/d )2 ln(d/ξ ), yielding
Cneg ∝ np�0 ln[(np�0)−1].

The special case of cut parabolas VP(r) can be treated
analytically, since curvatures are non-negative integer multi-
ples of 2V0/ξ

2. More specifically, within a defect’s range of
action r < ξ , the Hessian matrix H = (2V0/ξ

2)I is position
independent, diagonal, and positive definite, while it vanishes
outside. As a result, nonoverlapping traps act as isolated
ones, while the total Hessian determinant of ν overlapping
traps is ν2(2V0/ξ

2)2 � 0. We thus conclude that the only
nonstable (and hence indefinite) regions are those where no
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defect is active, i.e., where ν = 0. This probability is given by
the zeroth term of the Poisson distribution Poiss(ν, np�0) =
(np�0)ν exp(−np�0)/ν! (see Appendix E for a detailed dis-
cussion) and hence the complement defines the stable area,

Cpos = 1 − Poiss(0, np�0). (40)

This area fraction approaches unity at large defect densi-
ties np, see black line in Fig. 5 and top panel in Fig. 7,
quite different from the other two examples of Gaussian and
Lorentzian shaped potentials that approach the Gaussian limit
Cpos ≈ 21%. This is due to the singular property of the cut
parabola that does not provide any region with a negative def-
inite Hessian; when the parabolas are cut rather than smoothly
connected to zero, only convex and flat regions appear in the
pinning potential landscape. This implies that results of vortex
simulations carried out with cut parabolas (e.g., in Ref. [21])
have to be considered with some care, particularly at large
defect densities.

Figures 6 and 7 illustrate our findings for the two cases
of low, np�0 = 1/5, and high density parameters np�0 = 4,
respectively. In Fig. 6, we show the Hessian map for a mod-
erate density of cut parabolic (top), Lorentzian (middle), and
Gaussian (bottom) defects. For the cut parabolas, the Hessian
determinant assumes only discrete values that follow from the
number of overlapping defects. While the shape of stable re-
gions (yellow) are trivial for the cut parabolas, this is no longer
the case for the Lorentzian/Gaussian potentials. In Fig. 7, we
show the Hessian map for a large density of cut parabolic
(top), Lorentzian (middle), and Gaussian (bottom) defects.
For the cut parabolas, the Hessian determinant guarantees
stability in almost every point on the map. For the smooth
Lorentzian and Gaussian potentials, different pins mutually
neutralize one another and the stable regions are more scarce.
Only when defects cluster, they reinforce one another to pro-
duce stable regions, see black dots in yellow regions. On the
contrary, dilute regions with fewer defects than average (white
dots in blue domains) produce unstable regions.

V. SUMMARY AND CONCLUSION

Inspired by the recent advances in vortex imaging and
the development of pinscape spectroscopy, we have analyzed
the properties of 2D pinning landscapes with the help of a
new characteristics, the Hessian matrix H (r), its determinant
det H , and its trace trH . We have introduced the Hessian
stability map as a bicolored map that separates stable from
unstable regions of the pinscape; while stable regions can be
mapped via pinscape spectroscopy using appropriate (linear)
driving forces, unstable regions cannot, i.e., these regions do
not provide equilibrated vortex positions for any applied (lin-
ear) force. We have drawn attention to several peculiarities of
pinscape spectroscopy (the so-called “spring-softening” and
“broken-spring” effects in Ref. [9]) related to the stability
boundaries of the Hessian map where the determinant det H
vanishes, e.g., an enhanced response involving potential non-
linearities as well as the thermal activation over barriers into
the unstable regions. Furthermore, we have indicated how pin-
scape spectroscopy can be enhanced to cover extended regions
around the vortex trajectories by probing the out-of-phase
response of vortices at high frequencies.

Second, we have introduced the Hessian character Cpos of
a pinning landscape U (r) as the area fraction of the plane
that covers the stable regions of the Hessian map. We have
investigated two types of generic pinscapes, those arising
from a random distribution of defects with individual pinning
potentials V (r) and the case of a Gaussian random potential
characterized through its correlator G(r). Different individ-
ual defect potentials V (r) have been studied, cut parabolas
with a discrete Hessian map and an exceptionally large sta-
ble fraction Cpos → 1 at large defect densities np�0 
 1,
Lorentzian-shaped trapping potentials that induce correlations
through their long-range tails and produce a finite unstable
fraction Cneg in the limit of small defect density np�0 � 1,
and Gaussian shaped potentials with a short range that behave
most regularly at all densities—we infer that this type of
pinning potential is suited best for numerical simulations of
pinned vortex matter. The Hessian character of both, Gaussian
and Lorentzian potentials, approaches the character of the ran-
dom Gaussian potential for large defect densities np�0 
 1,
with the latter assuming a universal value of Cpos ≈ 21 % in-
dependent of the correlator G(r). Hence, we find that pinscape
spectroscopy of regular pinning potentials can probe at most
a fraction of about one-fifth of the plane.

Up to now, the vortex-in-a-maze experiment is limited to
a single tunable drive parameter. This is owed to the experi-
mental setup measuring the vortex motion in the region of a
current-driven strip. An expanded view on the pinscape within
this setup can be gained by injecting the vortex at different
positions along the transverse (ŷ) direction. However, other
geometries allowing for different drive directions may open
the possibility to probe the full stable region of a pinscape,
thus coming closer to the original ball-in-a-maze setup also
for the vortex.

The usefulness of the Hessian stability analysis for un-
derstanding vortex pinning cannot be overestimated: In the
present paper, our focus has been mainly on mesoscopic vor-
tex physics, where we provide a better understanding of the
pinning landscape and its dependence on defect densities and
potential shapes. As we have shown, these insights are of
much help in analyzing data on vortex imaging [9]. With a
view on numerical simulations, our study separates the “ir-
regular” cut-parabolic [with a nonstandard high-density limit
Cpos(np�0 
 1) → 1] and Lorentzian potential shapes [with
a nonstandard low-density limit Cneg(np�0 → 0) → const.]
from the “bread and butter” Gaussian shape that is regular
at all densities and thus potentially better suitable for vortex
simulations in a disordered environment.

Furthermore, the Hessian analysis is relevant in macro-
scopic vortex physics, e.g., transport in the context of strong
pinning theory [43–45]. Indeed, the tilted random potential
Utilt (r, FL ) serving as the starting point of our analysis can be
directly mapped to the strong pinning problem in the single-
vortex–single-pin setup: Within the strong pinning paradigm,
the many-body problem of vortex lattice pinning is reduced
to the minimization of the two-dimensional total pinning en-
ergy epin(r) = C̄(r − x)2/2 + V (r) including both an elastic
energy (with C̄ an effective elastic constant) and the pinning
potential V (r) of an individual defect. Under strong pinning
conditions with V (r) dominating the elastic term, the position
r of the pinned vortex undergoes pinning and depinning jumps
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FIG. 8. Hessian map of two natural landscapes: For Switzerland (left) and the Netherlands (right) stable, unstable, and indefinite areas are
colored in yellow, blue, and black respectively. From an elevation map on a square lattice with longitude and latitude angular resolution of
15 arcseconds (data from Wolfram Mathematica’s geographic data package), the Hessian matrix is evaluated by fitting a quadratic polynomial
through each 3×3 plaquette. Despite the two countries having very different topography, their Hessian characters—tabled above—are close to
the Gaussian result Cpos = Cneg ≈ 21.1%, see Eq. (39).

as the lattice moves smoothly along x̂, similar to our vortex-
in-a-maze that gets trapped and detrapped by stable regions
of the pinscape. Indeed, expanding the total pinning energy
epin(r) = C̄ x2/2 − C̄ r · x + Veff (r) with the renormalized ef-
fective potential Veff (r) = V (r) + C̄ r2/2 (the term C̄ x2/2 is
an irrelevant shift), we reduce the strong pinning problem
to the vortex-in-a-maze problem with the elastic term C̄ r · x
replacing the external drive FL · r due to the current-induced
Lorentz force (incidentally, the lattice coordinate x in the
strong-pinning setup is driven by the applied current density
j as well). This equivalence opens up interesting avenues in
the strong pinning problem [46], see also Refs. [47,48]. In
particular, one can show [49] that the pinning force density
at the onset of strong pinning gets modified when generalizing
the theory from isotropic to anisotropic defects; this is due to
the Hessian stability map developing very different geometric
structures in this case.

Besides this relation to strong pinning, one might think of
completely different applications of Hessian maps and char-
acters, a quite obvious one that comes to mind being natural
(topographic) landscapes. Indeed, analyzing the elevation map
of different topographic landscapes—we chose Switzerland
and the Netherlands as examples, see Fig. 8—one finds in
both cases the characters Cpos ≈21 %, Cneg ≈19 %, and Cind ≈
60 %, close to the value for the Gaussian random landscape.
We checked the stability of these Hessian characters under
changes in the map’s resolution and different data smoothing
procedures. Our results raise interesting questions about pos-
sible universality and Gaussianity of natural landscapes, that
require further investigations, though.
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APPENDIX A: PARAMETER ηω/U ′′

We derive an estimate for the parameter ηω/U ′′ governing
the response u. Typical values for this ratio are obtained from
the estimate Epin ∼ (H2

c /4π ) ξ 2ds of the vortex core energy in
a film of thickness ds; here, Hc = �0/2

√
2πλξ denotes the

thermodynamic critical field and λ and ξ are the penetration
depth and the coherence length, respectively. The coherence
length provides an estimate for the typical spatial variation in
the pinscape and hence U ′′ ∼ Epin/ξ

2. The viscosity η follows
from the Bardeen-Stephen [50] formula η = �2

0ds/2πξ 2ρnc2,
with the flux quantum �0 = hc/2e = 2.07 × 10−7 G cm2. In-
serting the Drude expression ρn = m/ne2τ for the normal
state resistivity, where n is the electronic density and τ the
electron relaxation (scattering) time, we find the ratio

ηω/U ′′ ∼ (n/ns)ωτ (A1)

with ns the superfluid density. Assuming a value n/ns of order
unity, we find the parameter ηω/U ′′ to be small in general.
For example, in the experiment on Pb-films of Ref. [9], the
parameters ξ = 46 nm, λ ≈ 90 nm, and ds = 75 nm provide
an estimate Epin/ξ

2 ≈ 7.5 × 10−5 N/m. Assuming a normal
state resistivity ρn ≈ 0.01 μ� cm for lead [51], we find that
η ≈ 2.4 × 10−13 Ns/m and combining this estimate with the
ac frequency ω = 13.3 kHz of the experiment, we arrive at
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ηω ≈ 3.2 × 10−9 N/m, a value that is 3–4 orders of magni-
tude lower than typical curvatures U ′′.

APPENDIX B: 2D LOCAL RECONSTRUCTION
OF PINSCAPE

The solution of the equation of motion (1) provides us with
the expressions

ux

Fac
= 4b2 + η2ω2

2b(4ab−c2) + 2aη2ω2 + iηω[4b2+c2+η2ω2]
, (B1)

uy

Fac
= −c(2b − iηω)

2b(4ab−c2) + 2aη2ω2 + iηω[4b2+c2+η2ω2]
(B2)

for the displacements ux and uy. This result can be an-
alyzed perturbatively in the small parameter ηω/U ′′ and
leads us to the simple expression Eq. (5) to lowest (0th)
order. The expansion of Eqs. (B1) and (B2) to linear or-
der in ηω/U ′′ contributes the out-of-phase displacements
δux, δuy ∝ i(ηω/U ′′)(Fac/U ′′) that allow for the full local
construction of the pinscape U (x, y) in the vicinity of the
vortex trajectory. Specifically, this out-of-phase response as-
sumes the form

δux

Fac
= −iηω

4b2 + c2

(4ab − c2)2
,

δuy

Fac
= iηω

2(a + b)c

(4ab − c2)2
(B3)

and can be measured independently from the in-phase dis-
placements in Eq. (5). For a fixed drive amplitude Fac, the
independent measurement of the four quantities ux, uy, δux,
and δuy then allows to extract all the local curvatures a, b,
and c from the experiment, see Eqs. (10)–(12), with u = (u2

x +
u2

y )1/2. The additional independent relation ηω = Fac |δux|/u2

with a constant left-hand side ηω serves as a check. The
results (10)–(12) can be used to reconstruct the potential
in the vicinity of the trajectory. We define the vector η⊥ ≡
(1,−ux/uy) = (1, 2bn/cn) perpendicular to the vortex trajec-
tory and parametrize the positions rn,ε = rn + εη⊥ transverse
to the equilibrium trajectory at rn. Combining Eqs. (10)–(12)
and (7), we find the potential shift

U (rn,ε )−U (rn) = εFLn + ε2
[
an + 2bn + 4b3

n/c2
n

]
= εFLn + ε2 Fac

2ux

[
1+ u2/u2

y

(δuy/uy)(ux/δux )−1

]
.

(B4)

While the linear term ∝ ε in the bare potential is “tilted away”
by the force FLn = nFac, the quadratic term ∝ ε2 provides
the parabolic confinement transverse to the vortex trajectory.
Unfortunately, the corrections Eq. (B3) are small in the pa-
rameter ηω/U ′′, requiring a high measurement sensitivity and
ac frequencies in the MHz range.

The solutions Eqs. (5) and (B3) for the in-phase and out-
of-phase motion apply when δux/ux, δuy/uy � 1, i.e., when

ηω � 2b(4ab − c2)

4b2 + c2
and ηω � 4ab − c2

2(a + b)
. (B5)

These criteria are violated in the vicinity of the Hessian
boundary where the condition 4ab − c2 = 0 is separating a
stable from an unstable region. Near this boundary, the singu-
larities in Eq. (5) are cut off by the dissipative term ηω and the

appropriate solutions to linear order in Fac/ηω take the form

ux

Fac
= −i

ηω

1

1+(c/2b)2
,

uy

Fac
= i

ηω

c/2b

1+(c/2b)2
. (B6)

These displacements are phase lagged with respect to the
external drive, while the motion is still at the same angle φ

away from the x axis.

APPENDIX C: ESCAPE

Here, we comment on the escape of the vortex from the
stable region when approaching the Hessian boundary. The
quadratic approximation (2) then is insufficient to describe
the escape dynamics over the depinning barrier. The latter is
obtained by including cubic terms in the expansion; limiting
ourselves to the most relevant term d u3

x , we obtain the expan-
sion around the position r0 near the boundary

Utilt (r, FL ) = Utilt (r0, FL ) + au2
x + bu2

y + cuxuy + du3
x

with d < 0 describing the escape for positive tilt. This poten-
tial features a saddle point at

r = r0 − 2ã

3d
(1,−c/2b) (C1)

and defines a barrier

Ub = 4ã3/27d2 (C2)

that prevents the escape of the vortex to the unstable re-
gion; here, we have introduced the renormalized curvature
ã = a(1 − c2/4ab), which scales linearly with the Hessian
determinant and vanishes upon approaching the stability edge.
Note that the curvature parameters in the above expressions
depend on r0 and hence on the closeness of this point to the
Hessian stability boundary.

At finite temperature, the vortex escapes the defect by ther-
mal activation when the criterion Ub ≈ kBT ln(ω0τ ) is met,
with ω0 the attempt frequency for escaping the well and τ

the relevant time scale of the experiment [52,53]. In order to
better understand the situation in the experiment of Ref. [9],
we can use these relations to find the distance δr = |r − r0|
away from the boundary where the vortex leaves the pin via
thermal activation. Using the estimates [9] ω0 ∼ 1011 Hz and
τ ∼ 300 s, we find that Ub ≈ 30 kBT ≈ 130 K at the tempera-
ture T = 4.2 K of the experiment. Combining the expressions
for the saddle point position (C1), for the barrier (C2) and for
the displacement ux = Fac/2ã, see (5), we obtain

δr ≈ [
u2

x + u2
y (6Ub/Facux )

]1/2
. (C3)

For the escape out of the well at x≈20 nm (right edge of the
central well in Fig. 2), where (ux, uy)≈ (0.15,−0.05) nm and
with Fac ≈10−14 N, one arrives at a typical energy change
per step in FL of Facux ≈0.1 K. This results in an estimate
δr ≈14 nm, an appreciable distance away from the Hessian
stability boundary. Hence, one has to conclude that ther-
mal fluctuations cut off the measured trajectory long before
reaching the Hessian stability boundary, in agreement with
the discussion in the experiment [9]. As a consequence, the
displacements ux and uy, although proportional to the inverse
Hessian (4ab − c2)−1, do not show a divergence when ap-
proaching the Hessian stability boundary, as the latter is never
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closely approached. In the same vain, the vortex leaves the pin
much before the force saturates at the Hessian boundary.

In principle, anharmonic effects may influence the vortex
escape from the stable regions– - this is the case at small
temperatures [when Ub 
 kBT ln(ω0τ )] or at large ac ampli-
tudes u. Including such anharmonicities and solving for the
displacement ux, we find the periodic dynamics

ux = −2b

c
uy = ã

3d

[√
1 + 3d

ã2
Face−iωt − 1

]
eiωt , (C4)

as long as the ac amplitude Fac is below the threshold

Fthr ≡ ã2

3|d| . (C5)

As the ratio Fac/Fthr approaches unity, anharmonic effects
manifest; in particular, the barrier decreases periodically in
time to a value

U anh
b = 4ã3

27d2

(
1 − Fac

Fthr

)3/2

, (C6)

thus allowing for a faster escape of the vortex due to the
combined effect of thermal activation and anharmonicity in
the ac response. For even larger ac forces, Fac > Fthr, the
vortex is pushed over the barrier and leaves the defect for
good. Expressing the ratio again through known quantities,
we find that Fac/Fthr ≈ √

Facux/Ub, which, when inserting the
experimental numbers [9], provides us with the value 1/20,
telling us that anharmonic effects are small for the experiment
in Ref. [9].

APPENDIX D: GAUSSIAN PROBABILITY DISTRIBUTION

In the limit of strongly overlapping defects, the functional
distribution function P[U (r)] assumes a Gaussian form, see
Eqs. (25) and (26). We verify (and sharpen) this statement
by studying correlators and via direct calculation of P[U (r)]
from Eq. (23).

1. Correlators

Given a set of defect (or pin) locations {ri}N
i=1, we define

the associated density

ρ(r) =
∑N

i=1
δ(r − ri ). (D1)

When distributed homogeneously over the area �, the average
density at the position r is

〈ρ(r)〉 =
∫ [

N∏
i=1

d2ri

�

]
ρ(r) = N/� = np (D2)

and the two-point correlator reads

〈ρ(r)ρ(s)〉 = N (N −1)/�2 + (N/�) δ(r − s). (D3)

Going over to reduced densities ρ̄(r) = ρ(r) − np, the first
four correlators read (in the thermodynamic limit N,�→∞,
with N/� = np)

〈ρ̄(r)〉 = 0, (D4a)

〈ρ̄(r)ρ̄(s)〉 = np δ(r − s), (D4b)

〈ρ̄(r)ρ̄(s)ρ̄(t )〉 = np δ(r − s)δ(r − t ), (D4c)

〈ρ̄(r)ρ̄(s)ρ̄(t )ρ̄(x)〉 = np δ(r − s)δ(r − t )δ(r − x)

+ n2
p [δ(r − s)δ(t − x)

+ δ(r−t )δ(s−x)+δ(r−x)δ(s−t )].

(D4d)

These results translate into correlators for the potential

U (r) =
∑

i
V (r − ri ) =

∫
d2x V (r − x)ρ(x) (D5)

via simple integration: 〈U (r)〉 = 0 [as
∫

d2rV (r)=0] and

〈U (r)U (s)〉 = np

∫
d2xd2yV (r − x)V (s − y)〈ρ(x)ρ(y)〉

= G(r − s) (D6)

with the two-point potential correlator

G(r − s) = npξ
2
∫

d2x

ξ 2
V (r − x)V (s − x). (D7)

Here, npξ
2 takes the role of the large density parameter, with

the integral remaining of order V 2
0 . One easily shows that the

even-order (2k)-point correlators are dominated by the Wick
term ∝ (npξ

2)k ,

〈U (r1) · · ·U (r2k )〉

=
∑

pairings
{p1,...,pk}

[
k∏

�=1

G(rp�,1 −rp�,2 )

]
+ O[(npξ

2)k−1], (D8)

with the set of pairings {p1, . . . , pk} including all sites ri (i ∈
{1, . . . 2k}). The odd-order (2k + 1)-point correlators start
with a subleading term ∝ (npξ

2)k . Note that all subleading
terms involve higher-order potential overlaps, e.g., the three-
defect overlap of the form

G3(r, s, t ) = npξ
2
∫

d2x

ξ 2
V (r − x)V (s − x)V (t − x). (D9)

For large densities the Wick term dominates and the distribu-
tion for U (r) becomes Gaussian as npξ

2 →∞.

2. Probability distribution P[U (r)]

In order to calculate the functional probability distribution
P[U (r)], we discretize the problem and evaluate P[{Uα}] on
the discrete set of lattice sites {rα}M

1 on a mesh with unit vol-
ume v = a2, Mv = �. Note that positions r with Latin/Greek
indices denote coordinates of defects/mesh-points. The dis-
cretized probability function then derives from the measure
Eq. (23),

P[{Uα}] =
∫ [

N∏
i=1

d2ri

�

]{∏
β

δ[Uβ − U (rβ )]

}
. (D10)
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We rewrite the Dirac δ distributions in Fourier space and
obtain the expression

P[{Uα}] =
∫ [∏

α

dKα

2π/v

][
N∏
i

d2ri

�

]
eiv

∑
βKβ [Uβ−U (rβ )]

=
∫ [∏

α

dKα

2π/v

]
eiv

∑
β KβUβ

×
[ ∫

d2r

�
e−iv

∑
β KβV (rβ−r)

]N

, (D11)

where we have made use of Eq. (D5). Adding and subtracting
unity in the last square bracket, and taking the thermodynamic
limit N,�→∞ with np = N/�, we can rewrite the above
equation as

P[{Uα}] =
∫ [∏

α

dKα

2π/v

]
eψ[{Kα,Uα};V (r)] (D12)

with

ψ[{Kα,Uα};V (r)] = iv
∑

β

KβUβ

+ npv
∑

α

[e−iv
∑

βKβV (rβ−rα ) − 1].

(D13)

For consistency, we have discretized the average over
defect positions

∫
d2r → v

∑
α . The saddle-point equa-

tion ∂ψ/∂Kβ = 0 for a given Kβ reads

Uβ = npv
∑

α
V (rβ − rα )e−iv

∑
γ Kγ V (rγ −rα ). (D14)

We expand the exponential function above assuming its ar-
gument to be small, an assumption that will be validated a
posteriori below, and find

Uβ ≈ npv
∑

α

V (rβ −rα )

−inpv
2
∑
α,γ

KγV (rβ −rα )V (rγ −rα )

−npv
3
∑
α,γ ,δ

Kγ KδV (rβ −rα )V (rγ −rα )V (rδ−rα ).

(D15)

The first term on the right-hand side is the potential’s mean
value, which we have assumed to vanish. For the second term
in the expression above, we introduce

Gβ,γ = npv
∑

α
V (rβ − rα )V (rγ − rα ), (D16)

the discrete version of the two-point correlator (D7). With
Gβ,γ of the scale (npξ

2)V 2
0 and decaying on a length |rβ −

rγ | ∼ ξ , we arrive at the estimate

K̄β ≡ v
∑

γ ,|rβ−rγ |<ξ

Kγ ∼ Uβ

(npξ 2)V 2
0

. (D17)

Substituting this estimate in the third term of Eq. (D15), we
find that it is small when

V0K̄β � 1. (D18)

The width of the distribution function for the expectation
value of the potential grows only with (npξ

2)1/2V0, what tells
us that in the limit npξ

2 → ∞, the above condition is satis-
fies almost everywhere [except for far-distant tails: For U ∼
V0npξ

2, see (D17) and (D18), the probability has dropped to
exp(−U 2/G) ∼ exp(−const. npξ

2)]. This reasoning justifies
the truncation of (D15) to include only terms up to linear order
in K . At the same time, it validates the assumption used after
Eq. (D14) and allows to expand the exponential in (D13) to
quadratic order in K . We thus arrive at the simple expression

P[{Uα}]≈
∫ [∏

α

dKα

2π/v

]
eiv

∑
βKβUβ e− 1

2 v2 ∑
β,γ KβGβ,γ Kγ (D19)

for the discretized probability distribution, a result that be-
comes exact for npξ

2 →∞. Computing the Gaussian integrals
over K , we find that

P[{Uα}] ∝ e− 1
2

∑
β,γ Uβ (G−1 )β,γ Uγ , (D20)

where we have used the discrete version of the inversion
identity

∫
d2x G(r − x) G−1(r′ − x) = δ(r − r′), i.e.,

v
∑

β
Gα,β (G−1)β,γ = δα,γ /v. (D21)

Returning back to the continuum notation, we arrive at the
final result

P[U (r)] → PG[U (r)] ≡ 1

Z e− 1
2

∫
d2r
�

d2r′
�

U (r)G−1(r−r′ )U (r′ ),

(D22)

where Z accounts for the correct normalization. Note that
more terms in the expansion of (D13) need to be retained
if one is interested in properties away from the body of the
probability distribution, at least in principle.

APPENDIX E: PARABOLIC TRAPS

The determination of the probability distribution p(D,T)
of the Hessian determinant and trace for a landscape made
from cut parabolas makes use of Eqs. (29) and (23), from
which follows that

π (a, b, c) =
∫ [

N∏
j=1

d2r j

�

]
δ[Uxx(0) − 2a]

× δ[Uyy(0) − 2b] δ[Uxy(0) − c]. (E1)

Rewriting the delta distributions in Fourier space, and express-
ing the potential U (r) through the sum of individual defect
potentials V (r − ri ), we obtain the expression

π (a, b, c) =
∫

dk dl dm

(2π )3
ei(2ka+2lb+mc)

×
[∫

d2r

�
e−i[kVxx (r)+lVyy (r)+mVxy (r)]

]N

.

(E2)

In the thermodynamic limit, N,�→∞ at fixed defect density
np =N/�, the last factor can be rewritten as[

1 + np

N
ε(k, l, m)

]N
= enpε(k,l,m) (E3)
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with ε(k, l, m) involving only the potential shape V (r) of an
individual defect,

ε(k, l, m) =
∫

d2r
[
e−i[kVxx (r)+lVyy (r)+mVxy (r)]−1

]
. (E4)

As a result, we arrive at the compact form

π (a, b, c) =
∫

dk dl dm

(2π )3
ei(2ka+2lb+mc)enpε(k,l,m). (E5)

While the above procedure applies for all defect types, we
explicitly evaluate the above expressions for the cut parabolic
defect. Since all second derivatives of V (r) are either 2V0/ξ

2

or zero, Eq. (E4) reads

ε(k, l, m) = �0
[
e−i2V0 (k+l )/ξ 2 − 1

]
. (E6)

Inserting this result into Eq. (E5), expanding the last factor in
a power series, and using the binomial theorem, we find that

π (a, b, c) =
∫

dk dl dm

(2π )3
ei(2ka+2lb+mc)

×
∞∑

ν=0

∞∑
μ=ν

(np�0)μ

ν!(μ − ν)!
e−i2V0ν(k+l )/ξ 2

(−1)μ−ν .

(E7)

The integrations over k, l, m provide δ distributions and rear-
ranging terms in the sum, we obtain

π (a, b, c) =
∞∑

ν=0

δ[ν(2V0/ξ
2) − 2a] δ[ν(2V0/ξ

2) − 2b]

× δ(c) Poiss(ν, np�0). (E8)

As expected, the Hessian matrix can only take on discrete
values (2νV0/ξ

2) I and, correspondingly, the probability dis-
tribution is a sum of δ distributions.

Next, we make use of the result for π (a, b, c), Eq. (E8), in
the determination of the probability distribution p(D,T) for
a Hessian H with det H = D and trH = T, see Eq. (22). The
expression (28) for p(D) generalizes to

p(D,T)=
∫ ∞

−∞
da

∫ ∞

−∞
db

∫ ∞

−∞
dc π (a, b, c) f (a, b, c;D,T)

(E9)

with

f (a, b, c;D,T) = δ[4ab−c2−D] δ[2a+2b−T]. (E10)

and inserting the result Eq. (E8) for π (a, b, c), we find

p(D,T) =
∞∑

ν=0

Poiss(ν, np�0)δ[ν2(2V0/ξ
2)2 − D]

× δ[ν(2V0/ξ
2) − T]. (E11)

The final integration over strictly positive D and T results
in the stable area fraction of the Hessian map, Cpos = 1 −
Poiss(0, np�0).

[1] A. Tonomura, H. Kasai, O. Kamimura, T. Matsuda, K. Harada,
Y. Nakayama, J. Shimoyama, K. Kishio, T. Hanaguri, K.
Kitazawa et al., Observation of individual vortices trapped
along columnar defects in high-temperature superconductors,
Nature (London) 412, 620 (2001).

[2] S. J. Bending, Local magnetic probes of superconductors, Adv.
Phys. 48, 449 (1999).

[3] J. R. Kirtley, Fundamental studies of superconductors using
scanning magnetic imaging, Rep. Prog. Phys. 73, 126501
(2010).

[4] H. Suderow, I. Guillamón, J. G. Rodrigo, and S. Vieira, Imag-
ing superconducting vortex cores and lattices with a scanning
tunneling microscope, Supercond. Sci. Technol. 27, 063001
(2014).

[5] L. Thiel, D. Rohner, M. Ganzhorn, P. Appel, E. Neu, B. Müller,
R. Kleiner, D. Koelle, and P. Maletinsky, Quantitative nanoscale
vortex imaging using a cryogenic quantum magnetometer, Nat.
Nanotechnol. 11, 677 (2016).

[6] E. W. J. Straver, J. E. Hoffman, O. M. Auslaender, D. Rugar,
and K. A. Moler, Controlled manipulation of individual vortices
in a superconductor, Appl. Phys. Lett. 93, 172514 (2008).

[7] O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman,
N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy,
and K. A. Moler, Mechanics of individual isolated vortices in a
cuprate superconductor, Nat. Phys. 5, 35 (2009).

[8] A. Kremen, S. Wissberg, N. Haham, E. Persky, Y. Frenkel, and
B. Kalisky, Mechanical control of individual superconducting
vortices, Nano Lett. 16, 1626 (2016).

[9] L. Embon, Y. Anahory, A. Suhov, D. Halbertal, J. Cuppens,
A. Yakovenko, A. Uri, Y. Myasoedov, M. L. Rappaport, M. E.
Huber et al., Probing dynamics and pinning of single vortices in
superconductors at nanometer scales, Sci. Rep. 5, 7598 (2015).

[10] L. Embon, Y. Anahory, Ž. L. Jelić, E. O. Lachman, Y.
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