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We predict that long-range triplet correlations (LRTC) in superconductor/ferromagnet (S/F) hybrids with
extrinsic impurity spin-orbit coupling can be generated and manipulated by supercurrent flowing in the su-
perconducting leads along the S/F interfaces. The LRTC appear via two basic mechanisms. The essence
of the first one is the generation of triplets by the superconducting spin Hall effect. These pairs are long
range in the ferromagnet under the appropriate mutual orientation of the condensate momentum and the
ferromagnet magnetization. The second mechanism is based on the singlet-triplet conversion at the S/F
interface followed by the rotation of the spin of the obtained short-range opposite-spin pairs via the spin
current swapping mechanism. The structure of the supercurrent-induced LRTC is studied both for S/F bilayers
and superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions. We demonstrate that in S/F/S
junctions, where the Josephson coupling is realized via the supercurrent-induced LRTC, the ground state phase
can be switched between 0 and π in a controllable manner. The switching is performed by reversing the
supercurrent in one of the superconducting leads, thus realizing a physical principle of the 0-π shifter.
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I. INTRODUCTION

Josephson junctions (JJs) are the cornerstone elements
of superconducting electronics. One of the actively devel-
oping directions is an intensive search of technologies and
physical principles allowing for the construction of super-
conducting transistors based on the JJs with controllable
switching between superconducting and resistive states [1].
Also implementation of such structures as π -phase shifters
is of particular interest for superconducting and quantum
electronics [2–4], which has already been demonstrated
with superconductor/ferromagnet/superconductor (S/F/S)
Josephson junctions incorporated in superconducting logical
schemes and in the qubit loop. The fundamental phys-
ical phenomenon underlying the π -phase shifters is the
unusual Josephson effect characterized by the inverse current-
phase relation I = Ic sin(ϕ + π ), the so-called π state of a
Josephson junction [5,6], which was observed in different
systems like S/F/S JJs with a ferromagnetic interlayer [7–11],
JJs with unconventional order parameter symmetry [12–16],
S/N/S JJs with nonequilibrium electron distribution in the
normal layer [17,18], JJs with semiconductor quantum dots
[19,20], and JJs with quantum wells as interlayers [21].

The search for novel principles and possibilities of ex-
ternal control of the amplitude and phase of the Josephson
effect, including switching between superconducting and re-
sistive states of the junction and switching between the 0
and π ground states, is very active now. There are dif-
ferent suggestions for externally controlled 0-π transitions

in Josephson junctions. Among them one can notice the
temperature induced 0-π transitions [8], the width induced
0-π transitions [7,9], 0-π transitions induced by electrostatic
gating [19,20], and spin-independent [17,18,22–27] and spin-
dependent [28,29] nonequilibrium quasiparticle distribution.
The external control over the 0-π transition has also been
realized in Josephson junctions containing a spin valve [30]
via the manipulation by the mutual orientation of the fer-
romagnets and it has been proposed theoretically via the
manipulation by the exchange field orientation in S/F/S
JJs with spin-orbit coupling (SOC) [31,32]. 0-π transitions,
which could be generated by the applied magnetic field, by
gating, or by varying the JJ width, were demonstrated in
quantum wells [21]. The main efforts towards realization
of the superconducting transistor, which implies the control
over the supercurrent amplitude, have been focused on the
systems with Josephson currents controlled by electrostatic
gates. This concept has been realized in mesoscopic sys-
tems with metallic [33,34] and semiconducting interlayers
[1,35–38]. S/F/S JJs provide additional possibilities for ex-
ternal switching of the Josephson current amplitude. For
example, one of the suggestions was to exploit S/F/S Joseph-
son junctions under nonequilibrium quasiparticle distribution
in the weak link [39]. The other possibility is to manipulate by
the amplitude of the so-called long-range triplet correlations
(LRTC). In many cases the Josephson current in S/F/S JJs
via strong ferromagnets is only carried by the LRTC because
they can penetrate at large distances into the ferromagnetic
material [31,32,40–69].
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Recently it has been predicted that the superconducting
LRTC in superconductor/ferromagnet (S/F) hybrids with
Rashba-type SOC interfaces can be generated by the con-
densate motion along the S/F interfaces [70,71]. It has been
demonstrated that switching on the LRTC in the S/F/S
Josephson junction by the Meissner currents induced by the
applied magnetic field or by the electromagnetic radiation
allows for a realization of a controllable superconducting
transistor. Here we demonstrate that the effect of the LRTC
generation by the supercurrent is not restricted by the hy-
brids with interface Rashba coupling and exists in a wider
class of systems with external impurity SOC. We inves-
tigate the LRTC generation in S/F bilayers and S/F/S
Josephson junctions. In the last case the phase difference
between the LRTC induced at the opposite S/F interfaces
depends on the directions of the condensate motion in
both superconducting leads. Thus we demonstrate that the
supercurrent-induced LRTC in Josephson junctions provide
a possibility of a supercurrent-controllable 0-π transition in
the junction. Therefore, it appears that the long-range triplet
superconductivity generated by the moving condensate is a
very interesting phenomenon from the point of view of the
superconducting electronics allowing for the total control over
both the amplitude and the ground state phase of the Joseph-
son current.

The paper is organized as follows. In Sec. II we describe
the physical model under consideration and the formalism
we use. In Sec. III the behavior of LRTC in S/F hybrids of
different types is investigated. Section III A is devoted to the
structure and characteristic features of the LRTC in S/F bi-
layers, while Secs. III B and III C present results of the LRTC
study in S/F/S Josephson junctions with highly transparent
and low-transparent interfaces, respectively. Section IV de-
scribes the mechanism of 0-π switching by the supercurrent.
Our conclusions are formulated in Sec. V.

II. MODEL

We consider two types of structures: a S/F bilayer and
a S/F/S Josephson junction. The S/F bilayer is shown in
Fig. 1(a), which consists of an infinite s-wave superconducting
layer x � 0 and a ferromagnetic layer 0 < x � dF with the
exchange field h = (0, 0, h). The S/F/S junction shown in
Fig. 1(b) consists of two infinite superconducting leads sep-
arated by the ferromagnetic interlayer at 0 < x < dF with the
same exchange field. It is assumed that there is an extrinsic
(impurity-induced) SOC in the superconductors. This type of
SOC can be realized in different superconducting materials
like Nb [72], NbN [73], V [74], and others. Also it is known
that a doping of nonmagnetic materials with heavy atoms like
Ir or Pt may induce the nonzero impurity SOC [75,76], so
it is possible that such doping may help in creation of new
superconductors with the impurity SOC.

To take into account the effect of the extrinsic SOC a qua-
siclassical theory of superconductivity in the diffusive limit,
formulated in terms of the Usadel equation for the Green’s
functions, has been developed in Refs. [77–80] and has been
used for prediction of a number of SOC-related effects in
superconducting structures [77,78]. In the framework of this
theory the extrinsic SOC enters the Usadel equation via the

FIG. 1. Sketches of the systems under consideration. (a) S/F
geometry. (b) S/F/S geometry.

spin Hall angle θ , the spin current swapping coefficient κ ,
and the spin-orbit scattering time τSO. Here we consider the
effect of the LRTC generated by the moving condensate in
the framework of this theory. The interfaces between the su-
perconducting layers and the ferromagnetic layer are treated
in both transparent and tunnel limits. The systems are placed
into an external magnetic field with the vector potential A =
(0, Ay(x), Az(x)), div A = 0, and B = rot A = −êy∂xAz(x) +
êz∂xAy(x).

In order to describe our systems we use the modified Us-
adel equation from Ref. [80]:

[ωnτ̌3 − i	̌ + i(h · σ̂ )τ̌3, ǧ] + ∇̃k J̌k

= − 1

8τSO
[σ̂aǧσ̂a, ǧ] + Ť . (1)

ωn = πT (2n + 1), n = 0,±1, . . . are the fermionic
Matsubara frequencies at a temperature T . The check
notation, e.g., 	̌, is used for matrices in the particle-hole
space; the hat notation, e.g., 	̂, is used for matrices in the spin
space. τ̌0 = 1̌, τ̌1, τ̌3, τ̌3 and σ̂0 = 1̂, σ̂x, σ̂y, σ̂z are the Pauli
matrices in the particle-hole and the spin spaces, respectively.

The matrix Green’s function ǧ in the particle-hole and the
spin spaces can be parametrized as follows:

ǧ =
(

ĝ, f̂
− f̂ c, −ĝc

)
, (2)

with the normalization condition ǧ2 = τ̌0. The object ǧ con-
tains some constrictions between its components. They could
be implemented via the ˜ conjugation [65], which reads in
the basis we use q̃(R, iωn) = −q�(R, iωn). If we define ĝ =
gs + gt · σ̂, f̂ = fs + ft · σ̂, then we end up with ĝc = −g̃s +
g̃t · σ̂, f̂ c = f̃s − f̃t · σ̂. fs and f t account for the singlet and
triplet superconducting correlations, respectively. gs and gt de-
scribe spin-independent and spin-dependent normal Green’s
functions.
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In our basis the superconducting order parameter takes the
form

	̌ =
(

0, 	

−	�, 0

)
. (3)

Further we will neglect variations of the order parameter due
to the inverse proximity effect, assuming 	(x) = const in the
superconducting leads.

The generalized matrix current J̌k and the torque Ť entering
Eq. (1) take the form [80]

J̌k = −Dǧ∇̃kǧ + Dεk ja

4
[θ{∇̃ j ǧ, σ̂a}ǧ + iκ[ǧ∇̃ j ǧ, σ̂a]ǧ, ǧ],

Ť = −Dθ

4
εk ja[ǧ∇̃kǧ∇̃ j ǧ, σ̂a] + iDκ

4
εk ja[∇̃kǧ∇̃ j ǧ, σ̂a]. (4)

εk ja is the Levi-Civita tensor. D is the diffusion coefficient in
an appropriate material.

Vector potential A(x) enters Eqs. (1) and (4) in a gauge
invariant manner via the gauge-covariant derivative

∇̃kM̌ = ∇kM̌ + i
[ps

2
τ̌3, M̌

]
. (5)

Here we have already recast a nonconstant phase of the
superconducting order parameter ϕ(x) and the vector poten-
tial A(x) to the condensate momentum ǧ → exp (imϕτ̌3/2)
ǧexp (−imϕτ̌3/2), ps = m∇ϕ − 2e

c A.
The spin Hall angle θ , the spin current swapping coefficient

κ , and the spin-orbit scattering time τSO are nonzero constants
only in the superconductors. We will use an approximation
τSO � 1/Tc in final answers, unless otherwise specified. The
exchange field h exists only in the ferromagnetic layer 0 <

x < dF . The London penetration depth is supposed to be the
largest scale in the system λL � (ξ(S,F ), dF ) with the super-

conducting coherence lengths ξS =
√

DS
2πTc

, ξF =
√

DF
h .

One should supplement Eq. (1) by the boundary condi-
tions. If we assume that the interfaces are fully transparent, we
imply continuity of the Green’s function ǧ(x) and the matrix
current J̌x at the S/F interfaces [79]:

ǧS = ǧF , J̌xS = J̌xF . (6)

In this case it is convenient to set for simplicity DS = DF =
D, ν0S = ν0F = ν0, where ν0(S,F ) are the densities of states at
the Fermi level in the superconductor and the ferromagnet,
respectively.

If we assume that the S/F interfaces are tunnel, we use
the modified Kupriyanov-Lukichev boundary conditions pro-
posed in Ref. [77]:

n · J̌ = DF

2RbσF
[ǧS , ǧF ],

σS

DS
J̌xS = σF

DF
J̌xF . (7)

n = (±1, 0, 0) is a vector perpendicular to the interface, J̌ =
(J̌x, J̌y, J̌z ). Rb is the barrier resistance per unit cross section of
the junction, and σS and σF are the conductivities of the su-
perconducting and ferromagnetic regions respectively. At the
external surface of the S/F bilayer x = dF we imply J̌xF = 0.

III. SUPERCURRENT-INDUCED GENERATION OF
LONG-RANGE TRIPLET SUPERCONDUCTIVITY

IN S/F HYBRIDS

First of all, we are going to discuss qualitative physics of
the LRTC generation by supercurrent in S/F hybrids with
impurity-induced SOC. The key parameters here are the spin
Hall angle θ and the spin current swapping coefficient κ . In the
presence of nonzero condensate momentum ps each of them
generates the LRTC according to its own physical mechanism,
which are physically different.

The spin Hall angle accounts for an analog of the well-
known spin Hall effect [81] in superconducting systems.
Namely, it has been demonstrated [77] that in the presence of
θ �= 0 the finite momentum of the condensate induces triplet
components of the condensate at the edges of the finite-width
superconducting electrode. The vector structure of the triplet
pair wave function is constructed via the edge normal n and
the condensate momentum ps as f t ∝ ps × n. For the case
under consideration the role of the edges is played by the
S/F interface. Upon entering the ferromagnetic region the
triplet pairs feel the ferromagnet exchange field h. Let us
choose the spin quantization axis along h. Then if h is aligned
with ps × n the vector wave function of the triplet correla-
tions f t = ft ez has the only nonzero z component. That is,
the triplet correlations consist of opposite-spin triplet pairs,
which decay in the ferromagnet at the distance of the mag-
netic coherence length ξF [6]. It is a very short distance of
the order of a few nanometers in conventional ferromagnets
like Fe or permalloy. At the same time, if h has a nonzero
component perpendicular to ps × n (which means that only
the psz component of the condensate momentum matters),
the vector of triplet correlations f t is no longer along the
z axis and has a perpendicular component, which corresponds
to equal-spin pairs. It is long range in ferromagnets [44] and
decays at the length scale of the normal state coherence length
∝ √

DF /2πTc, which is of the order of tens to hundreds of
nanometers depending on the material. Therefore, a proper
choice of the condensate momentum direction allows us to
make the triplet pairs, which are generated via the supercon-
ducting spin Hall effect, long range.

The second mechanism of the LRTC generation is realized
via the spin current swapping coefficient κ . It is completely
different. In contrast to the previous mechanism the triplet
pairs are not generated in the system in the absence of the
exchange field via this mechanism, at least, in the framework
of the quasiclassical formalism used here. This statement is
supported further by direct calculations. Now the two stages
of the LRTC generation are the following. At first the short-
range opposite-spin triplet pairs are generated at the S/F
interface via the conventional singlet-triplet conversion [6].
Then the spin of these triplet pairs, which have nonzero
total momentum due to the condensate motion along the
interface, is partially rotated via the spin current swapping
mechanism [82]. In order to create long-range triplet pairs via
this mechanism, that is, in order to generate f t components
perpendicular to h = hez, the condensate momentum again
should have a nonzero component along the z direction.

Further we consider several specific examples of S/F hy-
brids, where the LRTC are generated according to these
general mechanisms.
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A. S/F bilayer with absolutely transparent interfaces

In this section we consider the S/F bilayer shown in
Fig. 1(a). We perform a linearization of Eq. (1) with re-
spect to the anomalous Green’s function in the regime T →
Tc, 	 → 0. Then the Green’s function takes the form ǧ =
τ̌3 sgn ωn + f̌ . One can see that the torque Ť in Eq. (4) is of
the second order with respect to f̂ and f̂ c, therefore it does not
enter the linearized Usadel equation. The terms εk ja∇̃kǧ∇̃ j ǧ ∝
εk ja∇̃k f̌ ∇̃ j f̌ in ∇̃k J̌k are also of the second order with respect
to the anomalous Green’s function and are neglected. The
term Dεk ja∇̃k∇̃ j ǧ ∝ De| rot A|/c ∝ h(ξF ps)(ξF /λL ) � h in
the ferromagnet or ∝ Tc(ξS ps)(ξS/λL ) � Tc in the supercon-
ductor. Therefore, it is also neglected. In the superconducting
region the resulting linearized equation for f̂ = fs + ft · σ̂

takes the form

|ωn| fs + i	 − D

2

(
f ′′
s − p2

s fs
) = 0,

|ωn|ft − D

2

(
f ′′
t − p2

s ft
) = − 1

2τSO
ft . (8)

Here p2
s = p2

sy + p2
sz. The condensate momentum changes on

a scale, which is determined by the London penetration depth
λL. This depth is assumed to be the largest scale in the
system. Therefore, the condensate momentum can be treated
locally as a constant quantity in the superconducting leads.
However, its spatial dependence can be essential in the ferro-
magnetic region, for example, in the Josephson junction setup
[see Eq. (C5) in the Appendix]. However, here we assume
psξS � 1, which allows for treating only linear terms in ps and
neglecting all the orbital depairing effects. At x � 0 solution
of Eq. (8) takes the form

fs(x) = − i	

|ωn| +
( i	

|ωn| + fs0

)
eλSsx,

f t (x) = f t0eλSt x, (9)

where fs0 ≡ fs(x = 0) and f t0 = ( fx0, fy0, fz0)T ≡ f t (x = 0)
are the values of the singlet and triplet anomalous Green’s

function at the S/F interface, λSs =
√

2|ωn|
D + p2

s ≈
√

2|ωn|
D ,

and λSt =
√

2|ωn|
D + p2

s + 1
DτSO

≈
√

2|ωn|
D + 1

DτSO
.

In the ferromagnetic layer we obtain

|ωn| fs + i sgn ωn(h · ft ) − D

2
f ′′
s = 0,

|ωn|ft + i sgn ωnh fs − D

2
f ′′
t = 0. (10)

At x < 0 � dF the solution of Eq. (10) takes the form

(
fs

fz

)
=

( fs0+ fz0

2
fs0+ fz0

2

)
cosh [λF+(x − dF )]

cosh [λF+dF ]

+
( fs0− fz0

2
− fs0− fz0

2

)
cosh [λF−(x − dF )]

cosh [λF−dF ]
,

(
fx

fy

)
=

(
fx0

fy0

)
cosh [λFL(x − dF )]

cosh [λFLdF ]
. (11)

Here λFL =
√

2|ωn|
D and λF± =

√
2(|ωn|±ih sgn ωn )

D ≈ (1 ±
i sgn ωn)

√
h
D as ξF =

√
D
h � ξS . The boundary conditions

ǧ(x = −0) = ǧ(x = +0) and J̌x(x = dF ) = 0 have already
been implemented.

Implementing the second boundary condition in Eq. (6)
(see details of the calculation in the Appendix) we obtain
the values of the singlet and triplet anomalous Green’s func-
tions at the S/F interface. The general expressions are rather
cumbersome and we do not write them down here. How-
ever, a simplified analytical treatment is possible under the
reasonable assumption τSO � 1/Tc. In that case λSs = λSt =
λFL = λs. We also assume dF � (ξF , ξS ), which results in
tanh λ(F±, FL)dF ≈ 1. Up to the first order in θ and κ and up
to the first order in Tc/h we obtain

(
fs0

fz0

)
=

(
fs0

fz0

)(0)

+
(

fs0

fz0

)(1)

,

(
fs0

fz0

)(0)

= − 	

|ωn|
iλsξF

Z

(
1 + λsξF

−i sgn ωn

)
,

(
fs0

fz0

)(1)

= θ psyξF

Z
K̂

(
fs0

fz0

)(0)

, (12)

where Z = 1 + (1 + λsξF )2 and K̂ = diag{2, − λsξF (2 +
λsξF )}. Superscripts (0) and (1) denote zeroth- and first-order
terms with respect to θ psξS and κ psξS , respectively. fx0 and
fy0 are of the first order with respect to these parameters and
take the form(

fx0

fy0

)
= 	

|ωn|
i sgn ωn pszξF

2Z

(
κ

iθ (1 + λsξF )

)
. (13)

From Eq. (13) we see that fx and fy are produced by the
condensate motion. Moreover, only the psz component of the
condensate momentum plays a role in the LRTC generation,
as it is qualitatively discussed above. According to Eq. (11)
these correlations decay on the characteristic scale λ−1

s , which
is large in comparison with the decay scale [Re λF±]−1 of the
short-range correlations (SRC).

The behavior of the LRTC at arbitrary h values is shown in
Fig. 2. Equation (13) corresponds to the limit h/Tc � 1 in this
figure. Data presented in Fig. 2 support the physical picture of
the LRTC generation, described above. Indeed, at θ �= 0, κ =
0 the triplet correlations survive at h → 0. It can be directly
checked that at h = 0

f t0 = sgn ωn	θ

4|ωn|λs
[n × ps]. (14)

These condensate-induced triplet correlations in the absence
of the exchange field have already been reported in the
literature [77] and are understood as a superconducting mani-
festation of the spin Hall effect. The fy ∝ psz component of
triplet correlations Eq. (14) is long range in the ferromag-
net. In the case θ = 0, κ �= 0 fx,y vanishes at h → 0 thus
supporting our qualitative statement that the mechanism of
LRTC generation via κ requires preformed short-range triplets
produced by the triplet-singlet conversion at the S/F interface.
It is also seen from Fig. 2 that θ does not influence the fx

component of the LRTC and κ does not contribute to fy in the
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(a)

(b)

FIG. 2. LRTC | fx (h)| (a) and | fy(h)| (b) as functions of the
exchange field. In both panels dashed black and solid orange lines co-
incide. The parameters are DS = DF , ωn = πTc, psyξS = 0, pszξS =
0.3.

whole range of h, not only in the limit of h/Tc � 1, as it is
suggested by Eq. (13).

Beyond the linear approximation with respect to psξS there
is an optimal condensate momentum corresponding to the
maximal amplitude of the long-range triplet correlations be-
cause the amplitude of the LRTC is bounded from above by
the depairing effects ∝ p2

s , which have been neglected in the
framework of our linear approximation.

B. S/F/S Josephson junction with absolutely
transparent interfaces

In this section we consider the S/F/S Josephson junction
shown in Fig. 1(b), which is composed of s-wave supercon-
ducting leads x � 0 and x � dF with the extrinsic spin-orbit
coupling and the ferromagnetic interlayer 0 < x < dF with
the exchange field h = (0, 0, h). It is assumed that dF � ξF .
The parameters of the leads θ , κ , |	|, and τSO are the same
as in the previous section. We also assume the phase differ-
ence ϕ between the leads, that is, 	(x � 0) = |	|eiϕ/2 and
	(x � dF ) = |	|e−iϕ/2. The S/F interfaces are fully trans-
parent, and the boundary conditions at the right S/F interface
now read J̌x(x = dF − 0) = J̌x(x = dF + 0) and ǧ(x = dF −
0) = ǧ(x = dF + 0) instead of J̌x(x = dF ) = 0. The external
magnetic field is again in the zy plane A = (0, Ay(x), Az(x)),
B = rot A = −êy∂xAz(x) + êz∂xAy(x) as in the previous
section.

Under the condition dF � ξF the Josephson current is only
carried by the LRTC. The SRC fs and ftz, generated at the
both S/F interfaces, do not overlap and, therefore, coincide
with the ones calculated in the previous section with the
substitution of the appropriate 	(x). We also should take into
account that the condensate momentum, generated by the
superconductors in response to the external magnetic field,
has opposite directions in the leads, as it is demonstrated in the
Appendix. Then we find the following answer for the LRTC in
the F interlayer (see details of the derivation in the Appendix):(

fx

fy

)
= i|	|pszξF e−λsdF /2

ωnZ

× cos

[
ϕ

2
+ iλs

(
x − dF

2

)](
κ

iθ (1 + λsξF )

)
. (15)

Now we are ready to calculate the Josephson current. It
reads as

jx(ϕ) = i
σπTc

e

∑
ω>0

[ f̃x∂x fx + f̃y∂x fy − c. c .]

= −4σ

e

|	|2
πTc

κ2 + θ2
(
1 + ξF

ξS

)2

[
1 + (

1 + ξF

ξS

)2
]2

(ξF psz )2

4ξS
e−dF /ξS sin ϕ.

(16)

Here σ = 2e2ν0D is the Drude conductivity of the ferromag-
netic region. In the bottom line of Eq. (16) only the lowest
Matsubara frequency is taken into account. In the limit h

Tc
� 1

we have

jx(ϕ) = −σ

e

|	|2
πTc

e−dF /ξS (κ2 + θ2)
(pszξF )2

4ξS
sin ϕ

= − jc0

16
(κ2 + θ2)(pszξS )2 ξ 2

F

ξ 2
S

sin ϕ = − jc sin ϕ. (17)

Here jc0 = 4σ
e

|	|2
πTc

e−dF /ξS 1
ξS

is the critical current density of a
corresponding S/N/S junction [83]. For estimates of the cri-
tical current amplitude we take typical parameters of the
S/F/S JJs [46]: the junction area is S ≈ 50 × 50 μm, the
conductivity is σ ≈ (50 μ� cm)−1, the width of the ferro-
magnetic layer is dF ∼ 5ξF , the diffusion coefficient is D ≈
10 cm2/s, the exchange field is h ≈ 500 K and so ξF ≈ 3 nm,
the typical order parameter is |	| ≈ 1 K (T → Tc regime),
the critical temperature is Tc ≈ 10 K and so ξS ≈ 30 nm, the
spin Hall angle is θ ≈ 0.1–0.001 [72–74,84], and the swap-
ping coefficient is κ ≈ 0.1–0.001 [82]. With these data we
obtain Ic

Ic0
≈ 10−10–10−6, for pszξS ≈ 0.3 and Ic = jcS. For

Ic0 ≈ 100 A we end up with Ic ≈ 10−10–10−6 A, which is
accessible in modern experiments. If we take the transparency
of real junctions into account, we get the estimates of the
same order of magnitude. This generalization is discussed in
the next section. It is worth noting that these critical currents
are smaller than the ones obtained in a S/F/S structure with
the LRTC produced by the Rashba SOC, the exchange field,
and the condensate motion [70,71] because the typical Rashba
constants αR ≈ 0.1–1 [85–87] are larger than θ and κ .

In our case the junction is in the π state independent of its
width dF � ξF . The similar π shift in the ground state of JJs,
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FIG. 3. Dependence of the critical current |Ic| on B0, when B ⊥
h. The parameters are θ = κ = 0.1, h = 50Tc, dF = 5ξF , L = 10ξS ,
λL = 10ξS .

where the Josephson coupling is realized via the LRTC, has
already been reported in Ref. [46]. The estimated amplitude
of the critical current is also of the same order of magnitude
as in S/F/S junctions with LRTC generated by the magnetic
inhomogeneity [46].

In order to demonstrate the dependence of the critical
current (16) on the external magnetic field B we have cal-
culated the superconducting momentum ps as a function of
B. The calculation is provided in the Appendix. Under the
condition λL � ξS , we neglect the spatial variation of the
condensate momentum in the leads, which imposes psz =
2eλL

c B0y. We introduce the angle α between the êz axis and
the magnetic field, which means B = êyB0 sin α + êzB0 cos α,
psz = 2eλL

c B0 sin α, and ps = 2eλL
c B0. It is seen from Eq. (16)

that Ic ∼ p2
sz reaches its maximal value at α = π/2. The de-

pendence of the critical current |Ic|
Ic0

(α = π/2) on the absolute
value of the external field B0 is shown in Fig. 3. The usual
phase variation along the junction sin φ/φ, φ = 2π�/�0,
� = (2λL + dF )LB0, �0 = πc

e is taken into account here,
which leads to the interference pattern. At small fields the
current increases ∝ B2. At larger fields the oscillating critical
current has a linear in magnetic field envelope. This trend is
bounded from above by the orbital depairing effect and by
the vortex penetration into the junction. The latter happens
when the condensate momentum reaches the critical value
psξS ≈ 1 at the interfaces [70], which gives Bc1

Hc2
∼ ξ 2

S

λ2
L

≈ 0.01
for λL = 10ξS .

C. S/F/S Josephson junction with low-transparent interfaces

In this section we consider the opposite case of low-
transparent S/F interfaces. The finite transparency of the
interfaces is taken into account via the modified Kupriyanov-
Lukichev boundary conditions [77]:

σS

DS
J̌SL = σF

DF
J̌FL,

σS

DS
J̌SR = σF

DF
J̌FR, (18)

J̌FL = DF

2RbσF
[ǧSL, ǧFL],

J̌FR = − DF

2RbσF
[ǧSR, ǧFR]. (19)

Rb is the barrier resistance per unit area of the junction and
σF is the conductivity of the ferromagnetic region. The co-
efficients in Eq. (18) result from the continuity of charge and
spin currents. We imply σS � σF , where σS is the conductivity
of the superconducting leads. Under this assumption one can
neglect the inverse proximity effect in the superconducting
leads. The boundary condition Eq. (18) is reduced to J̌SL,R =
0, which corresponds to the approximation of an impenetrable
superconducting surface. Substituting the anomalous Green’s
function in the superconductor (9) into the linearized version
of this equation, we obtain that the anomalous Green’s func-
tion in the left superconducting lead up to the first order with
respect to θ and κ takes the form

fSL =

⎛
⎜⎝

fSLs

fSLx

fSLy

fSLz

⎞
⎟⎠ =

⎛
⎜⎜⎝

− i|	|eiϕ/2

|ωn|
0
0
0

⎞
⎟⎟⎠

+ |	|eiϕ/2

|ωn|
θ sgn ωn

λSs

⎛
⎜⎝

0
0

−psz

psy

⎞
⎟⎠eλSsx, for x � 0. (20)

Here it is assumed that τSO � 1/Tc, which imposes λSt = λSs.
For the right lead the calculations are similar. Noting that
psL(z,y) = −psR(z,y) we obtain

fSR =

⎛
⎜⎝

fSRs

fSRx

fSRy

fSRz

⎞
⎟⎠ =

⎛
⎜⎜⎝

− i|	|e−iϕ/2

|ωn|
0
0
0

⎞
⎟⎟⎠

+ |	|e−iϕ/2

|ωn|
θ sgn ωn

λSs

⎛
⎜⎝

0
0

−psz

psy

⎞
⎟⎠e−λSs (x−dF ), for x � dF .

(21)

Equations (20) and (21) are instructive. They do not contain
κ . It illustrates once again that κ does not produce triplets on
its own, at least in the framework of the considered approx-
imation. The triplets are produced by θ . We are interested in
the LRTC, which is presented only by fy in the case under
consideration, when h = hez. Making use of Eq. (10) in the
interlayer and linearized version of boundary conditions (19),
where the Green’s functions of the superconducting leads are
substituted from Eqs. (20) and (21), we obtain

fy = C × [( fSRy + fSLyeλFLdF )e−λFLx

+ ( fSLy + fSRyeλFLdF )eλFL (x−dF )]. (22)

Equation (22) is obtained up to the first order in the pa-
rameter γ ξFL, where γ = [RbσF ]−1 accounts for the S/F
interface transparency, which is assumed to be low, and ξFL =√

DF /(2πTc). C = γ /(2λFL sinh λFLdF ).
Now we are ready to calculate the Josephson current:

jx(ϕ) = i
σF πTc

e

∑
ω>0

[ f̃y∂x fy − c. c.]

= −4σF

e

|	|2
πTc

1

2 sinh dF
ξFL

ξFL(γ θ pszξS )2 sin ϕ. (23)
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Again, only the lowest Matsubara frequency is taken into
account in the bottom line of Eq. (23). For a short junction
λFLdF � 1 Eq. (23) takes the form

jx(ϕ) = −
{

4σF

e

|	|2
πTc

1

dF

}
(γ ξFL )2(θ pszξS )2

2
sin ϕ

= − jc sin ϕ. (24)

Taking data used in the previous section and additionally
assuming ξFL ≈ ξS ≈ 30 nm and γ ξFL ≈ 0.2 [46,70] we find
Ic = jcS ≈ 10−10–10−6 A. We have met an unusual situation,
when the critical currents for the junction with ideal interfaces
and in the tunnel limit are of the same order of magnitude.
The reason can be explained as follows. The main source of
the LRTC is the singlet correlations near the interfaces. For the
system with transparent interfaces the inverse proximity effect
in the superconducting leads is essential. As a consequence
the singlet correlations near the interfaces are suppressed,
which results in the factor ξF /ξS in the LRTC (13) for the
system with transparent interfaces. However, in the tunnel
limit the singlet correlations near the interfaces practically
do not feel the ferromagnetic layer. Therefore, they have the
maximal possible value and the intensity of conversion of the
singlet correlations into the LRTC is determined only by
the transparency resulting in the factor (γ ξFL ) in (22). So, the
mismatch between the ideal case and the tunnel one results
from these two factors, which can be of the same order of
magnitude in real setups.

IV. CONTROLLABLE BY SUPERCURRENT 0-π
TRANSITIONS IN THE S/F/S JOSEPHSON JUNCTION

As it has been already mentioned, if the LRTC are gen-
erated by the external magnetic field, the corresponding
JJ is in the π ground state. This fact is based on the relation
pszL = −pszR between condensate momentum directions in
the leads. However, the supercurrent along the S/F interfaces
is not necessarily caused by the magnetic field. It can be
applied directly by a current source (see Fig. 4). In this case
the absolute value and the direction of ps in each of the leads is
determined by the applied current. In particular, it is possible
to switch between the situations pszL = pszR and −pszR by
reversing the direction of the applied current in one of the
leads. The switching results in the 0-π transition of
the ground state phase of the JJ. Indeed, it can be shown that
the generalization of Eq. (16) to the case of arbitrary psL(R),
which do not obey condition pszL = −pszR, takes the form

jx(ϕ) = 4σ

e

|	|2
πTc

{
κ2 + θ2

(
1 + ξF

ξS

)2
}

[
1 + (

1 + ξF

ξS

)2
]2

ξ 2
F

4ξS
e−dF /ξS

× [(nh · psR)((nh · psL )] sin ϕ. (25)

Here nh = h/h, while for the case of low-transparent inter-
faces the corresponding generalization of Eq. (23) reads as
follows:

jx(ϕ) = 4σF

e

|	|2
πTc

1

2 sinh dF
ξFL

ξFL(γ θξS )2

× [(nh · psR)(nh · psL )] sin ϕ. (26)

FIG. 4. Principle of 0-π switching due to control of the conden-
sate motion. The condensate motion is produced by the supercurrent,
applied in the leads along the S/F interfaces. The direction of the
condensate momentum in each of the leads can be reversed by
reversing the current.

It is seen that the sign of the critical current is controlled by
the product [(nh · psR)(nh · psL )]. Therefore, it is possible to
switch the ground state of the JJ between 0 and π by reversing
the direction of the supercurrent in the leads. In the proposed
geometry the width of the S/F interface along the supercurrent
direction is assumed to be small enough in order to neglect the
superconducting phase variation along the interface.

It is interesting that the effect of the controllable 0-π phase
transition is rather general and can be realized not only for
JJs with extrinsic SOC in the leads, but also for JJs with
Rashba-type SOC at the interfaces. The interface Rashba SOC
can be either of intrinsic nature or due to the additional, for
example, Pt layers at the S/F interfaces. For interfaces with
Rashba SOC the effective boundary condition was introduced
in Ref. [70]:

(n · ∇ ) f̌s = γ F̌BCS,

(n · ∇ )f̌ = 4i(αdSO)τ̌3 f̌ × [ps × n]. (27)

Here f̌s = fsτ̌+ − f c
s τ̌− with τ̌± = (τ̌1 ± iτ̌2)/2 and f̌ =

ft τ̌+ − fc
t τ̌−. F̌BCS = −i	̌/|ωn|, α is the Rashba SOC con-

stant, dSO is the width of the Rashba SOC layer, and n =
(±1, 0, 0) is a vector perpendicular to the interface.

The Green’s function in the ferromagnetic layer is de-
termined by the Usadel equation (10) supplemented by the
boundary conditions (27). Further calculations are performed
up to the first order with respect to α̃ = αdSO � 1. Up to
the zeroth order with respect to this parameter there are only
short-range triplet correlations in the system and at the S/F in-
terfaces the corresponding anomalous Green’s functions take
the form

fz(0) = γ ξF

2

|	|eiϕ/2

ωn
, fz(dF ) = γ ξF

2

|	|e−iϕ/2

ωn
, (28)

where we have taken into account that dF � ξF .
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The LRTC are generated by the short-range triplets fz and
the only nonzero component of the LRTC is fx, which takes
the form

fx(x) = − 2iα̃γ ξF

λFL sinh λFLdF

|	|
ωn

× {−pszLeiϕ/2 cosh λFL(dF − x)

+pszRe−iϕ/2 cosh λFLx
}
. (29)

Then the Josephson current through the system reads

jx(ϕ) = i
σF πTc

e

∑
ω>0

[
f̃x∂x fx − c.c.

]

= 4σF

e

|	|2
πTc

2(α̃γ ξF )2ξFL

sinh dF
ξFL

[(nh · psR)(nh · psL )] sin ϕ.

(30)

Here we have incorporated the fact that psz(L,R) = (nh ·
ps(L,R) ). It is seen that the current is again proportional to
the product [(nh · psR)(nh · psL )], which demonstrates that the
system is also suitable for the controllable 0-π switching.

V. CONCLUSIONS

It is predicted that the impurity SOC together with
the condensate motion along the superconducting leads
induces long-range spin-triplet superconductivity in
superconductor/ferromagnet heterostructures. This effect
has two microscopic mechanisms. The first one is the
generation of the triplet pairs in the superconductor via the
superconducting spin Hall effect. Under the appropriate
choice of the condensate momentum direction in the plane of
the S/F interfaces the pairs are long range in the ferromagnet.
The second mechanism is associated with the singlet-triplet
conversion at the S/F interface with subsequent rotation of
spin of the resulting short-range triplet pairs via the spin
current swapping effect. The corresponding long-range triplet
anomalous Green’s functions in S/F and S/F/S hybrids have
been calculated. They result in the long-range Josephson
effect in S/F/S JJs and the corresponding current-phase
relations have been obtained for JJs with both high- and
low-transparent interfaces. Our finding expands the range
of systems, where the effect of the LRTC generation by the
supercurrent is possible. We believe that the effect opens an
avenue in superconducting electronics because it allows for
a total low-dissipative control of the amplitude and ground
state phase of the S/F/S JJs. Namely, the Josephson critical
current can be switched on/off by the supercurrent motion
along the interfaces and the ground state phase of the junction
can be switched between 0 and π states by reversing the
direction of the supercurrent in one of the leads.
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APPENDIX A: DETAILS OF J̌k AND Ť CALCULATIONS

It can be checked by a straightforward calculation that

∇̃k (ǍB̌) = (∇̃kǍ)B̌ + Ǎ(∇̃kB̌), (A1)

where Ǎ and B̌ are matrices in spin and Nambu spaces.
Exploiting this fact we see that J̌k and Ť contain terms ∝
εk ja∇̃k∇̃ j ǧ. This combination can be simplified making use
of antisymmetric properties of the Levi-Civita tensor εk ja:

εk ja∇̃k∇̃ j ǧ = εk ja[i(∇k ps j )τ̌3, ǧ] ∝ e

c
(rot A)a[τ̌3, ǧ]. (A2)

This means that the corresponding terms can be neglected be-
cause De| rot A|/c ∝ h(ξF ps)(ξF /λL ) � h in the ferromagnet
or ∝ Tc(ξS ps)(ξS/λL ) � Tc in the superconductor.

APPENDIX B: DETAILS OF LRTC CALCULATIONS
IN S/F HYBRIDS

1. Calculation of the anomalous Green’s function at the
absolutely transparent S/F interface

Here we provide details of the calculation of the sin-
glet and triplet anomalous Green’s functions fs0 and f t0 =
( fx0, fy0, fz0)T at the absolutely transparent S/F interface. The
second boundary condition in Eq. (6) reads as

− D f̂ ′ + iDθ sgn ωn

2
[psy{ f̂ , σ̂z} − psz{ f̂ , σ̂y}]

− Dκ

2
[psy[ f̂ , σ̂z] − psz[ f̂ , σ̂y]]|x=−0 = −D f̂ ′|x=+0. (B1)

In components Eq. (B1) takes the form

− f ′
sL + iθ sgn ωn[psy fz0 − psz fy0] = − f ′

sR,

− f ′
xL − iκ[psy fy0 + psz fz0] = − f ′

xR,

− f ′
yL − iθ sgn ωn psz fs0 + iκ psy fx0 = − f ′

yR,

− f ′
zL + iθ sgn ωn psy fs0 + iκ psz fx0 = − f ′

zR. (B2)

Here f ′
i(L,R) = dfi (x=∓0)

dx , i = (s, x, y, z). The interface Green’s
function components fs0, fx0, fy0, and fz0 are fully determined
by the system of linear equations (B2) with the solutions (9)
and (11).

2. Calculation of the LRTC in S/F/S Josephson junctions
with absolutely transparent interfaces

Under the condition dF � ξF the Josephson current in the
S/F/S Josephson junction is only carried by the LRTC. Here
we provide details of the calculation of LRTC in the S/F/S
junction. The continuity of the matrix current J̌x at each of the
S/F interfaces results in the following system of equations:

− f ′
xSL − iκ[psy fyL + psz fzL] = − f ′

xFL,

− f ′
ySL − iθ sgn ωn psz fs0L + iκ psy fxL = − f ′

yFL,

− f ′
xFR = − f ′

xSR + iκ[psy fyR + psz fzR],

− f ′
yFR = − f ′

ySR + iθ sgn ωn psz fsR − iκ psy fxR. (B3)

Here indices L and R mean left (x = 0) and right (x = dF )
interfaces. We put ps(z,y)L = ps(z,y) = −ps(z,y)R. We again as-
sume τSO � 1/Tc and DS = DF = D for simplicity. The SRC
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fs and fz, generated at the both S/F interfaces, do not overlap
and, therefore, coincide with the ones calculated at the sepa-
rate S/F interface with substitution of the appropriate 	(x).
From Eq. (12) it can be obtained that

fs(L,R) = − iλsξF (1 + λsξF )|	|e±iϕ/2

Z|ωn| ,

fz(L,R) = −λsξF |	|e±iϕ/2

ωn
. (B4)

The solutions of the Usadel equations in the S layers take
the form (

fx

fy

)
=

(
fxL

fyL

)
eλsx for x � 0, and

(
fx

fy

)
=

(
fxR

fyR

)
e−λs (x−dF ) for x � dF . (B5)

In the ferromagnetic layer 0 < x < dF we get(
fx

fy

)
= 1

2 sinh λsdF

(
fxLeλsdF − fxR

fyLeλsdF − fyR

)
e−λsx

+ 1

2 sinh λsdF

(
fxReλsdF − fxL

fyReλsdF − fyL

)
eλs (x−dF ). (B6)

The continuity of the Green’s functions at the interfaces has
already been implemented in Eqs. (B5) and (B6). Combin-
ing (B3), (B5), and (B6) we build a linear system for four
variables fxL, fyL and fxR, fyR. Solving this system and substi-
tuting the quantities into Eq. (B6) one obtains Eq. (15) for
the LRTC in the ferromagnetic interlayer of the Josephson
junction.

APPENDIX C: CONDENSATE MOMENTUM
DISTRIBUTION IN S/F AND S/F/S STRUCTURES

In this section we calculate the distribution of the con-
densate momentum induced by the external field in the
superconducting parts of S/F and S/F/S structures. Our con-
sideration follows Ref. [70]. In the S/F bilayer we have

B(x) =
{

(0, B0yex/λL , B0zex/λL )T for x � 0,

(0, B0y, 4πMz + B0z )T for 0 < x < dF .
(C1)

Here T denotes transpose operation, λL is the London pen-
etration depth, and Mz is the appropriate component of the

magnetization. By integration we come to the vector potential

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 0

λLB0z(ex/λL − 1)
−λLB0y(ex/λL − 1)

⎞
⎠ for x � 0

⎛
⎝ 0

4πMzx + B0zx
−B0yx

⎞
⎠ for 0 < x < dF .

(C2)

The continuity of the vector potential at the interface has
already been implemented. As at x → −∞ A(x) does not
tend to zero, the phase gradient ∇ϕ = 2e

mc (0,−λLB0z, λLB0y)
has to exist to compensate the condensate motion in the bulk.
Therefore, the condensate momentum takes the form

ps = m

[
∇ϕ − 2e

mc
A(x)

]

= 2e

c

⎛
⎝ 0

−λLB0zex/λL

λLB0yex/λL

⎞
⎠ for x � 0. (C3)

Analogously, for the S/F/S structure we have

B(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 0

B0yex/λL

B0zex/λL

⎞
⎠ for x � 0

⎛
⎝ 0

B0y

4πMz + B0z

⎞
⎠ for 0 < x < dF ,

⎛
⎝ 0

B0ye−(x−dF )/λL

B0ze−(x−dF )/λL

⎞
⎠ for x � dF ,

(C4)

which results in

ps = m

[
∇ϕ − 2e

mc
A(x)

]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2e
c

⎛
⎝ 0

−λLB0zex/λL

λLB0yex/λL

⎞
⎠ for x � 0,

2e
c

⎛
⎝ 0

λLB0ze−(x−dF )/λL

−λLB0ye−(x−dF )/λL

⎞
⎠ for x � dF .

(C5)
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