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One of the signatures of the face-centered cubic (fcc) antiferromagnet as a typical example of a geometrically
frustrated system is the large ground state degeneracy of the classical nearest-neighbor and next-nearest-neighbor
Heisenberg (isotropic) model on this lattice. In particular, collinear states are degenerate with noncollinear and
noncoplanar ones: this degeneracy is accidental and is expected to be lifted by anisotropic exchange interactions.
In this work, we derive the most general nearest and next-nearest-neighbor exchange model allowed by the space-
group symmetry of the noncentrosymmetric half-Heusler compounds, which includes three anisotropic terms:
the so-called Kitaev, Gamma, and Dzyaloshinskii-Moriya interactions—most notably, the latter is allowed by the
breaking of inversion symmetry in these materials and has not been previously been studied in the context of the
fcc lattice. We compute the resulting phase diagram, show how the different terms lift the ground state degeneracy
of the isotropic model, and lay emphasis on finding regimes where multi-q (noncollinear/noncoplanar) states are
selected by anisotropy. We then discuss the role of quantum fluctuations and the coupling to a magnetic field in
the ground state selection and show that these effects can stabilize noncoplanar (triple-q) states. These results
suggest that some half-Heusler antiferromagnets might host rare noncollinear/noncoplanar orders, which may,
in turn, explain the unusual transport properties detected in these semimetals.

DOI: 10.1103/PhysRevB.105.144431

I. INTRODUCTION

True to the denomination of the face-centered cubic (fcc)
lattice as a prototypical three-dimensional geometrically frus-
trated system, a variety of magnetic orders and behaviors
arise in model systems with this structure. For example,
the phase diagram of the classical nearest- and next-nearest-
neighbor Heisenberg (isotropic) model on this lattice was
established long ago and displays several antiferromagnetic
ground states [1–6]. Among them, the commensurate states,
dubbed types I, II, and III, all feature an accidental degener-
acy between single-q and multi-q ground states [1] (multi-q
states are magnetic configurations with a superposition of
symmetry-related ordering wave vectors). The addition of a
magnetic field [7,8] and quantum fluctuations [9,10] lead to
competition between these ground states and interesting exci-
tation spectra. More recently, theoretical studies motivated by
double perovskites showed that the incorporation of nearest-
neighbor anisotropic terms (including the bond-dependent
Kitaev interaction [11–13]) in the classical model leads to yet
new magnetic phases, including incommensurate spiral states
[14–17].
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Experimentally, many fcc-based compounds, such as
MnS2/MnTe2 [18], MnO [19], double perovskites [20], and
Heuslers/half-Heuslers [21] were discovered to exhibit anti-
ferromagnetic order. In this work we will be more particularly
interested in the half-Heusler antiferromagnets, with chemi-
cal formula ABC and a crystal structure composed of three
interpenetrating fcc sublattices, see Fig. 1. Typically, one of
the fcc sublattices is occupied by rare-earth ions which carry
magnetic moments of localized 4 f electrons. In turn, the half-
Heusler family provides many candidate materials to study
anisotropic exchange and the resulting novel behaviors. More-
over, unlike the other aforementioned materials, the magnetic
sublattice of rare-earth ions is embedded in an environment
with lower symmetry than that of the isolated fcc lattice: most
notably, it breaks inversion symmetry. As we show in this
manuscript, this allows for the existence of Dzyaloshinskii-
Moriya interactions which have, to the best of our knowledge,
not been previously discussed in the literature for the fcc
lattice.

Neutron diffraction has shown that type-I and type-
II antiferromagnetic orders appear experimentally in some
half-Heuslers of the subfamilies RPtBi [22–28] and RPdBi
[29–31], where R denotes the rare-earth (lanthanide) element.
The trend appears to be the following: type-I order for lighter
R (Nd, Ce) and type-II order for heavier R (Sm to Lu),
see Table I. However such experiments cannot unequivocally
differentiate single-q and multi-q arrangements of a given
ordering type (I or II). For example, it is unclear how to
identify, with the Bragg spectrum alone, the difference be-
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FIG. 1. [(a) and (b)] Two enantiomer crystal structures of the
half-Heusler compound ABC. They differ by the location of the
C sites which break the inversion symmetry. The nearest-neighbor
bonds are shown in green, blue, and red according to their γ axes: x,
y, and z, respectively. [(c) and (d)] Dzyaloshinskii-Moriya vectors Di j

for the bonds of an elementary tetrahedron. The four sites are labeled
by i, j ∈ {0, 1, 2, 3} and the bonds are oriented as i → j with the
convention i < j. The two inequivalent configurations of DM vectors
[(c) and (d)] are related by Di j → −Di j and can be associated with
the two enantiomers [(a) and (b)].

tween large-scale multi-q order, and the existence of multiple
domains of single-q states, i.e., macroscopic configurations
where the symmetry-related ordering wave vectors appear
in multiple real-space domains. Moreover, since these mea-
surements are typically made in the presence of an external
magnetic field, the observed orders need not a priori cor-
respond to the zero-field ground states. This motivates an
extensive theoretical investigation of the allowed magnetic
states in the half-Heuslers, and in particular whether multi-q
states can be realized and stabilized in these compounds.

TABLE I. Zero-field magnetic orders and their Néel temperature
TN in half-Heusler antiferromagnets reported in the experimental
literature.

Compound Magnetic order TN (K) Reference

CePtBi type I 1.15 [22]
NdPtBi type I 2.18 [24]
GdPtBi type II 9.2 [23,25,27]
GdPdBi type II 12.8 [29,31]
SmPdBi type II 3.2 [29]
TbPtBi type II 3.4 [26]
TbPdBi type II 5.1 [29,31]
DyPtBi type II 3.5 [28]
DyPdBi type II 3.5 [29,31]
HoPdBi type II 1.9 [29–31]
ErPdBi type II 1.1 [29,31]

The purpose of this study is therefore multifold: (i) derive
the spin bilinear symmetry-allowed exchange Hamiltonian
up to second neighbor interactions including anisotropic
terms (and including a Dzyaloshinskii-Moriya interaction),
(ii) determine the classical phase diagram of the resulting
multi-parameter model, which includes many spiral states,
and (iii) identify the dominant mechanisms which stabilize
multi-q states over the single-q ones, namely anisotropy, mag-
netic field, or quantum fluctuations. We indeed lay particular
emphasis on the search for parameter regimes where non-
collinear and noncoplanar antiferromagnetic orders, such as
multi-q states, are stable. Multi-q states are notoriously rare
in classically frustrated systems. Indeed, not only are they
often forbidden by the fixed-norm constraint of the spin,
|S| = const, but even when they are allowed, fluctuations
(thermal and quantum) in isotropic models are expected to
lift the degeneracy in favor of (collinear) single-q states via
the so-called “order-by-disorder” mechanism [32–36]. Here,
however, as mentioned earlier, the fcc lattice the classical
Heisenberg model does allow for an accidental degeneracy
between single-q and multi-q ground states [1], and our model
is highly anisotropic.

Moreover, beyond the scarcity of such orders in the
context of magnetism, the role of noncollinear antiferro-
magnetism in inducing an anomalous Hall effect (AHE)
may be important in the half-Heusler compounds, most of
which are itinerant systems. Indeed, it has been suggested
that the intrinsic AHE observed in some spin-orbit cou-
pled noncollinear antiferromagnets, such as the tetragonal
compounds Mn3Sn [37] and Mn3Ge [38], can be inter-
preted as resulting from real-space Berry phases acquired
by itinerant electrons coupled to a background of non-
collinear magnetic moments [39,40]. The recent discovery of
a large intrinsic AHE in several half-Heusler antiferromagnets
such as GdPtBi [25,41,42], TbPtBi [26], DyPtBi [28], and
DyPdBi [43] thus raises the question of the favored mag-
netic orders in this class of materials and begs for further
understanding of the link between noncollinear magnetism
and anomalous transport. While the half-Heuslers have mostly
attracted attention because of other low-temperature prop-
erties such as (unconventional) superconductivity [29,44],
topological phases [41,45,46], noncollinear magnetism, and
a noncollinear-induced anomalous Hall effect would provide
yet further exciting physics in this large family of compounds.

The remainder of this manuscript goes as follows. We first
derive the most general quadratic exchange Hamiltonian al-
lowed by the symmetries of the half-Heusler crystal structure.
We find that, in addition to the nearest-neighbor Heisen-
berg interaction J1, and the two nearest-neighbor anisotropic
terms discussed previously in the literature, namely the bond-
dependent Ising-type K and the symmetric off-diagonal �

interactions (in the literature often referred to as Kitaev and
“Gamma” couplings, respectively), a Dzyaloshinskii-Moriya
interaction D is also allowed in a noncentrosymmetric envi-
ronment, as is present in the half-Heuslers (Sec. II). At the
next-nearest-neighbor level, only Heisenberg J2 and Kitaev
interactions are allowed.

We then establish the classical ground state phase diagram
of the anisotropic model. To this end, we first compute phase
diagrams via the Luttinger-Tisza method (Sec. III), which
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gives access to the stability regions of the different ordering
wave vectors in the J1-J2-K-�-D parameter space. There, we
find that the type-I, type-II, and type-III orders identified in the
isotropic model extend to large regions of the phase diagram
when anisotropy is included, and that a flurry of incommensu-
rate phases appear as well. Since the Luttinger-Tisza approach
only considers the single-wave-vector configurations, this
method alone cannot establish whether the superposition of
symmetry-related wave vectors in the form of a multi-q
state is energetically favorable or not compared with the
single-q configuration, and we thus resort to a complemen-
tary analysis to unambiguously determine the ground states.
Therefore, in Sec. IV, we investigate whether anisotropic in-
teractions lift the degeneracies between single-q and multi-q
states in the type-I, II, III phases by explicitly comparing the
anisotropy energy in these states. In particular we show that,
although the Kitaev and Gamma couplings alone preserve
some of the accidental degeneracies of the J1-J2 Heisenberg
model, the combination of anisotropy and an external mag-
netic field select noncollinear and noncoplanar states (Sec. V)
for some directions of the magnetic field. The Dzyaloshinskii-
Moriya interaction itself drives the system to a single-q, but
noncollinear state.

In regions of parameter space where an accidental degener-
acy remains at the classical level, the ground state is likely to
be selected by the effect of fluctuations. In Sec. VI, we show
how quantum fluctuations lift these degeneracies, selecting
single-q states in the limit of small anisotropy, but driving
the system towards multi-q states in some stronger anisotropy
regimes. In some of the noncollinear states, one may expect
an induced anomalous Hall effect in systems which contain
itinerant electrons as well.

II. EXCHANGE HAMILTONIAN

A. Derivation from crystal symmetries

We first derive and consider the most general form of near-
est and next-nearest-neighbor exchange interactions on an fcc
sublattice embedded in the noncentrosymmetric space group
F 4̄3m (No. 216, with tetrahedral point group Td ), associated
with the crystal structure of the half-Heusler compounds de-
picted in Figs. 1(a) and 1(b) [46] whose generic chemical
formula is ABC. The A sites (typically rare-earth ions which
carry a magnetic moment) and the B sites occupy two fcc
sublattices and form a rocksalt-type structure while the C sites
sit on an fcc lattice which breaks the inversion symmetry
of the structure and give rise to a Dzyaloshinskii-Moriya
interaction as we discuss below. Two locations are possible
for the C sites: the centers of the up-tetrahedra or those of
the down-tetrahedra formed by four nearest-neighbor A sites.
This gives two twin crystals, shown in Figs. 1(a) and 1(b).

We consider a bilinear exchange Hamiltonian

H = H1 + H2 (1)

for the magnetic moments on the A sites, which includes
interactions between nearest (H1) and next-nearest (H2) neigh-
bors, and find that the most general symmetry-allowed forms

are

H1 = J1

∑
〈i, j〉

Si · S j + K
∑
〈i, j〉γ

Sγ
i Sγ

j + �
∑
〈i, j〉γ

ξi j
(
Sα

i Sβ
j + Sβ

i Sα
j

)

+
∑
〈i, j〉

Di j · (Si × S j ) (2)

and

H2 = J2

∑
〈〈i, j〉〉

Si · S j + K2

∑
〈〈i, j〉〉γ

Sγ

i Sγ

j . (3)

In the rest of the manuscript, we consider only the isotropic
Heisenberg interaction for second neighbors, i.e., we take

H2 → J2

∑
〈〈i, j〉〉

Si · S j . (4)

For nearest neighbors, besides the Heisenberg interaction
with strength J1, three anisotropic couplings are allowed.

(i) The Kitaev interaction (with strength K) couples the
components of the spins along the bond-dependent Ising-like
axes γ ∈ {x, y, z}, where the γ index labels the cubic plane
in which the bonds lie. Note that there are six inequivalent
nearest-neighbor bonds, which come in pairs of 90◦-rotated
ones, both carrying a γ index. Both types of inequivalent γ

bonds lie in the plane perpendicular to the γ axis, as depicted
in Fig. 1. Each 0123 tetrahedron contains exactly one copy
of each inequivalent bond, as shown Fig. 1. In the case of
next-nearest neighbors, the Kitaev axes correspond to the axes
x, y, and z along which the bonds are oriented.

(ii) A symmetric off-diagonal term, with strength � which
involves the bond-dependent axes α and β which are orthog-
onal to the Kitaev axis γ of the bond. Inequivalent bonds
of the same γ type, carry a sign ξi j = +1 for the bonds
〈0, 1〉, 〈0, 2〉, and 〈0, 3〉, and ξi j = −1 for their 90◦-rotated
counterparts 〈2, 3〉, 〈1, 3〉, and 〈1, 2〉. As an example, for the
bond 〈0, 3〉 which lies in the xy plane, the symmetric part of
the exchange interaction is of the form J1S0 · S3 + KSz

0Sz
3 +

�(Sx
0Sy

3 + Sy
0Sx

3 ).
(iii) An antisymmetric, i.e., Dzyaloshinskii-Moriya (DM)

coupling, which is allowed because, in the half-Heusler struc-
ture, the bond centers are not inversion centers, in contrast to
the case of the isolated fcc lattice. The DM vector D ji = −Di j

with norm D associated with a bond 〈i, j〉 is orthogonal to the
bond direction r̂i j = (r j − ri )/|r j − ri| and to the unit vector
êγ ∈ {êx, êy, êz} corresponding to the Kitaev axis of the bond,
i.e.,

Di j = Dξi j r̂i j × êγ . (5)

This configuration of DM vectors is plotted in Fig. 1(c).
Note that, in Eq. (5), a global sign inversion D → −D gives
another configuration of DM vectors which respects the lat-
tice symmetries, as shown in Fig. 1(d). These two allowed
configurations can be associated with the two choices for the
location of the C sites which break the inversion symmetry of
the structure Figs. 1(a) and 1(b). Note that the DM configu-
rations are similar on the tetrahedra of the pyrochlore lattice
[47,48].

It is noteworthy that the Kitaev and Gamma anisotropies
are directly allowed by the symmetries of the pure fcc lattice,
and thus may be expected in most fcc magnets with strong
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spin-orbit coupling, such as rare-earth half- and full-Heusler
compounds, and double perovskites [15–17,49]. In contrast,
the DM term is only allowed in half-Heusler or zinc blende-
like structures where inversion symmetry is broken by the C
sublattice. The Gamma and DM anisotropies are forbidden for
next-nearest neighbors, because of the C2-rotation symmetry
around the three axes x, y, and z. One can expect that the heav-
ier the rare-earth element, the larger the spin-orbit coupling
and thus the larger the anisotropic exchange terms. Given the
numerous possible of element substitutions, we expect that
many values of the K/J1, �/J1, and D/J1 ratios can be realized
in the half-Heusler family.

In the next section, we briefly summarize the known results
for the isotropic J1-J2 Heisenberg model, with Appendix A
providing a more detailed review. Afterwards, we discuss the
effects of the anisotropic terms K , �, and D on the phase
diagram of the multiparameter model, Eqs. (1)–(4).

B. Review of the J1-J2 isotropic model

The phase diagram of the isotropic J1-J2 model con-
tains three commensurate antiferromagnetic orders for J1 > 0:
type-I order (with ordering wave vector q = (π, 0, 0), anti-
ferromagnetic modulation between neighboring [100] planes,
stable when J2/J1 < 0), type-II order [q = (π, π, π )/2, anti-
ferromagnetic modulation between neighboring [111] planes,
favored when 0 < J2/J1 < 1/2] and type-III order (q =
(π, π/2, 0), stable when J2/J1 > 1/2). All q vectors are
expressed in units of 2/a, where a is the cubic unit cell
parameter. For J2 = 0, all spiral states with wave vectors of
the form q = (π, Q, 0), with Q ∈ R, are ground states: in
particular, type-I order (Q = 0) is degenerate with type-III
order (Q = π/2). In the literature, these orders are sometimes
labeled by the position of the corresponding wave vector in
the fcc Brillouin zone, namely, X , L, and W for types I, II,
and III, respectively.

For each of these orders, the spins can be parametrized in
the following form:

Si = 1

2

∑
�

[u�eiq�·ri + u∗
�e−iq�·ri ], (6)

where the q� are the ordering wave vectors related by cubic
symmetry—for example, q1 = (π, 0, 0), q2 = (0, π, 0), and
q3 = (0, 0, π ) for type-I order—and the u� are vectors chosen
such that |Si| = 1 [1]. We call a single-q state a configuration
where only one of the u� vectors is nonzero, a double-q state
a configuration with two nonzero vectors, etc. It is sometimes
useful to also consider a subset of the manifold Eq. (6) made
of equal-weight states, where the nonzero u� vectors have
equal magnitude (that is, |u�| = 1, 1/

√
2, 1/

√
3, respectively,

for the single-q, double-q, and triple-q states). As mentioned,
the ground state manifold of the J1-J2 model gives an acci-
dental degeneracy between the collinear single-q states and
multi-q states [1] throughout the phase diagram, which can
be built to be noncollinear and even noncoplanar. Namely, (1)
type I: collinear single-q, noncollinear double-q, noncoplanar
triple-q; (2) type II: collinear single-q, noncollinear double-
q, noncoplanar triple-q, collinear/noncollinear/noncoplanar
quadruple-q; and (3) type III: collinear/noncollinear single-q,
noncollinear/noncoplanar double-q, noncoplanar triple-q.

In Appendix A, we give a detailed description of the three
commensurate AFM phases and plot the corresponding spin
arrangements. Note that an extensive study of the fcc Heisen-
berg (isotropic) model up to third neighbor exchange J3,
including the parametrization of the spin vectors in the AFM
states can be found in Ref. [6]. In what follows, we explore
how the anisotropic K , �, and D couplings, Eq. (2), fully or
partly lift the degeneracy between single-q and multi-q states.

III. LUTTINGER-TISZA PHASE DIAGRAMS

To determine the favored orders in the multiparameter clas-
sical model Eq. (1), we first use the Luttinger-Tisza approach.
This method determines the values of q that minimize the
Fourier transform of the exchange interaction [50]. Physically,
this provides the ground states of the system if they can be
described by a single ordering wave vector q. In Sec. IV,
we will explicitly compare in our full model the energies
of the thereby determined single-q states, with those of the
multi-q states that are degenerate in the isotropic case. In the
Luttinger-Tisza approach, we start by writing the Hamiltonian
in Fourier space as

H = 1

2

∑
i, j

SiAi jS j = 1

2

∑
q

S−qA(q)Sq,

Sq = 1√
N

∑
i

Sie
−iq·ri , (7)

A(q) =
∑

j

Ai je
iq·(r j−ri ),

and we define the Luttinger-Tisza wave vectors as those which
minimize the lowest eigenvalue of the Hermitian matrix A(q).
In Fig. 2, we show three cuts in the phase diagram of H ,
assuming J1 > 0, obtained by varying the ratio J2/J1 and one
of the three anisotropic couplings, while setting the other two
to zero. The diagrams show that the type-I, -II, and -III AFM
phases discussed above are the only stable commensurate
orders and that a variety of incommensurate spiral states also
exist (the green regions in Fig. 2). In these incommensurate
phases, the wavelength of the modulation varies continuously
with the coupling parameters and does not coincide with
an integer number of lattice spacings, except for fine-tuned
parameters. More precisely, the wave vectors describing the
incommensurate spiral phases vary along the high-symmetry
lines of the fcc Brillouin zone. In the rest of this work,
we will focus on the commensurate AFM orders, I, II,
and III.

In Fig. 3, we plot the Luttinger-Tisza phase diagrams of the
model along several cuts in the five-dimensional parameter
space. In particular, in the first row of Fig. 3. we inves-
tigate how the (K, �) phase diagram with J2 (obtained in
earlier works [15,17] with the Luttinger-Tisza method and
confirmed by Monte Carlo simulations) is modified when
we add the Dzyaloshinskii-Moriya coupling D. We see that
a region appears near the center of this diagram, where the
ground state has a type-III order. Similarly, in the bottom two
rows we plot the cuts in the (K, D) and (�, D) planes, for
several values of J2. These diagrams display the richness of
the multiparameter model, which hosts many transitions be-
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FIG. 2. Luttinger-Tisza phase diagrams for the anisotropic model with J1 > 0. We consider the J1-J2 Heisenberg interactions and we vary
separately the relative strength of (a) the Kitaev coupling, at �, D = 0, (b) the Gamma coupling, at K, D = 0, and (c) the Dzyaloshinskii-Moriya
coupling, at K, � = 0. In some regions of the diagrams, anisotropy lifts the degeneracy between single-q and multi-q states (as described in
Sec. IV). In this case, we indicate the corresponding ground state configuration (1q, 2q,...). (d) Luttinger-Tisza wave vectors associated with
the different phases: the commensurate AFM orders I, II, III, and the incommensurate spiral phases (labeled i1,..., i5). Here q and p are fixed
and unique (up to lattice symmetries) but vary continuously within the incommensurate phases with the parameters of the model. All wave
vectors are expressed in units of 2/a, where a is the cubic unit cell parameter.

tween commensurate (types I, II, and III) and incommensurate
spiral orders.

IV. SINGLE-q VERSUS MULTI-q STATES:
ANISOTROPY ENERGY COMPARISON

The Luttinger-Tisza analysis presented in the previous sec-
tion gives us an overview of the phases stabilized by the
different parameters of the classical model, and the transition
points between these phases. However, because this method
only gives access to the ordering wave vector without en-
forcing the length constraints |Si| = 1 explicitly, it does not
allow us to unambiguously determine the favored spin ar-
rangement in each region of the diagram when there exist
multiple degenerate wave vectors, i.e., in particular whether
the favored state is single-q or multi-q. We therefore now sup-
plement the Luttinger-Tisza analysis, by minimizing explicitly
the anisotropy energy with the length constraints. In this
section, we compute the expectation value of the anisotropic
interaction terms in the three phases I, II, and III. This method
allows us to compare the energy of our single-q, double-q, and
triple-q variational Ansätze, which are all ground states of the
isotropic model. In Fig. 4, we summarize the results of the
following sections.

A. Degeneracy in the type-I phase

In this section, we consider parameters of the model
where the type-I states are energetically favored in the
Luttinger-Tisza approach. Type-I order is defined by the
symmetry-related ordering wave vectors q1 = (π, 0, 0), q2 =
(0, π, 0) and q3 = (0, 0, π ), so that in these phases the spins
take the form:

Si = u1eiq1·ri + u2eiq2·ri + u3eiq3·ri , (8)

where the vectors u� must satisfy

u2
1 + u2

2 + u2
3 = 1,

(9)
ui · u j = 0 (i 	= j),

so that |Si| = 1 for all spins. We note that for the wave vectors
q� describing type-I order (and also type-II order, as we will
see in the next section), eiq�·ri = ±1 for all sites ri of the
fcc lattice. Plugging the ansatz Eq. (8) into the Hamiltonian
Eq. (2) to compute the expectation value of the anisotropic
terms, we find that only the Kitaev term contributes to the
classical energy per site:

	EI = K
( − 1 + 2

((
ux

1

)2 + (
uy

2

)2 + (
uz

3

)2))
. (10)

By minimizing 	EI with respect to u1, u2 and u3

with the constraint |Si| = 1, it is clear from Eq. (10) that
one can find single-q, double-q, and triple-q solutions,
which all minimize min 	EI = −|K|. Therefore the acciden-
tal degeneracy of the ground state is not fully lifted: the
anisotropic model has a continuous degenerate ground state
manifold of type-I states, for which the u� are shown in
Table II.

The degeneracy must therefore be broken by other mecha-
nisms. In the absence of lattice distortions, order-by-disorder,
either thermal or quantum, is usually thought to stabilize
collinear states [33], so that we expect that the single-q states
will be selected and multi-q states will be unstable. We return
to this in Sec. VI, where we show that small anisotropy indeed
selects single-q states, but that the situation is more complex
when anisotropy is significant.

B. Degeneracy in the type-II phase

We now consider a region of parameter space with type-II
ground state order. The spins can be parametrized as

Si = u0eiq0·ri + u1eiq1·ri + u2eiq2·ri + u3eiq3·ri , (11)

with ordering wave vectors q0 = (π, π, π )/2, q1 =
(−π, π, π )/2, q2 = (π,−π, π )/2 and q3 = (π, π,−π )/2.
The u� vectors must in this case satisfy:

u2
0 + u2

1 + u2
2 + u2

3 = 1,

u0 · u1 + u2 · u3 = 0,
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FIG. 3. Selection of cuts of the Luttinger-Tisza phase diagram in the five-dimensional parameter space: (K, �) plane (upper row), (K, D)
plane (middle row), and in the (�, D) plane (bottom row). For the (K, �) plane, several values of the DM coupling D were considered. For the
(K, D) and (�, D) planes, three different values of J2 were chosen, namely ferromagnetic (left), vanishing (middle), antiferromagnetic (right).
The phases are labeled like in Fig. 2.

u0 · u2 + u3 · u1 = 0,

u0 · u3 + u1 · u1 = 0. (12)

Like in the type-I case, only one of the anisotropic terms, here
the Gamma term, contributes to the anisotropy energy:

	EII = −2�
(
ux

0uy
0 + uy

0uz
0 + uz

0ux
0 − ux

1uy
1 + uy

1uz
1 − uz

1ux
1

− ux
2uy

2 − uy
2uz

2 + uz
2ux

2 + ux
3uy

3 − uy
3uz

3 − uz
3ux

3

)
. (13)

It is here nontrivial to analytically minimize 	EII with
respect to u� with the |Si| = 1 constraint and we there-
fore resort to a numerical calculation (explicit minimization

with constraints). For � > 0, we find that the degeneracy
is lifted in favor of either a single-q state or a quadruple-
q state, both with min 	EII = −2�, with a minimum
reachable energy of −2� × 0.96 for the (equal-weight)
double-q manifold and −2� × 0.89 for the (equal-weight)
triple-q manifold. Through the same argument as above, we
again expect fluctuations to select the single-q, collinear, state
over the quadruple-q one. In this case, this would, for exam-
ple, be the q0 state, which is composed of ferromagnetic layers
of spins stacked antiferromagnetically in the [111] direction,
and in which the spins are aligned with the ordering wave
vector (u0 = ±(1, 1, 1)/

√
3). In the � < 0 case, there exist

144431-6



ANISOTROPIC EXCHANGE AND NONCOLLINEAR … PHYSICAL REVIEW B 105, 144431 (2022)

FIG. 4. Schematic representation of the ground states and degen-
eracies of the model, in the presence of anisotropy. In each case,
the 1q, 2q, 3q, and 4q levels represents only the lowest-energy state
of the equal-weight single-q, double-q, triple-q, and quadruple-q
manifold, respectively.

single-, double-, triple-, and quadruple-q states which mini-
mize the energy, with min 	EII = �. Again, this accidental
degeneracy is expected to be lifted via order-by-disorder in
favor of the single-q state, in which the spins are collinear.
More precisely, in this case, the spins are perpendicular to
their ordering wave vectors, and there is a remaining U(1)
degeneracy associated with a global rotation within the [111]
planes.

The type-II single-q state reproduces the spin arrangement
which may have been observed in the half-Heusler compound
GdPtBi [23,24,51]. Recent work has argued that instead of the
Gamma coupling, an easy-plane single-ion anisotropy, forcing
the spins to stay in the [111] planes, could also favor this
arrangement [27]. However, the easy-plane anisotropy was not
considered here as it breaks the cubic symmetry, i.e., it is not
allowed in a nondistorted crystal, and is therefore artificial.

TABLE II. Configurations of the u� vectors in type-I ground
states selected by Kitaev anisotropy, separately for cases K > 0 and
K < 0. α is an arbitrary angle and ξ� = ±1. For example, in the
single-q ground state with wave vector q1, the spins alternate antifer-
romagnetically in the [100] direction with which they are collinear
(respectively, orthogonal) for K < 0 (respectively, K > 0).

Sign of K K < 0 K > 0

min 	EI +K −K

single-q u1 = ξ1(1, 0, 0)

u2 = u3 = 0

u1 = (0, cos α, sin α)

u2 = u3 = 0

double-q u1 = ξ1(u1, 0, 0)

u2 = ξ2(0, u2, 0)

u3 = 0(
u2

1 + u2
2 = 1

)

u1 = ξ1(0, u1, 0)

u2 = u2(cos α, 0, sin α)

u3 = 0(
u2

1 + u2
2 = 1

)
triple-q u1 = ξ1(u1, 0, 0)

u2 = ξ2(0, u2, 0)

u3 = ξ3(0, 0, u3)(
u2

1 + u2
2 + u2

3 = 1
)

u1 = ξ1(0, u1, 0)

u2 = ξ2(0, 0, u2)

u3 = ξ3(u3, 0, 0)(
u2

1 + u2
2 + u2

3 = 1
)

TABLE III. Lifting the degeneracy of the type-III states with
the DM interaction (D > 0, K = 0). The selected ground state is
a single-q state in which the v and w vectors are orthogonal. α is
an arbitrary angle, R is an arbitrary 3 × 3 orthogonal matrix and
ξ�, χ� = ±1.

Equal-weight manifold min 	EIII Parametrization

single-q

−4D

v3 = (cos α, sin α, 0)

w3 = (− sin α, cos α, 0)

v1 = w1 = v2 = w2 = 0

double-q v3 = (cos α, sin α, 0)/
√

2

w3 = (− sin α, cos α, 0)/
√

2

−2D v1 = ξ1(0, 0, 1)/
√

2

w1 = χ1(0, 0, 1)/
√

2

v2 = w2 = 0

triple-q

0

v1 = ξ1R · (1, 0, 0)/
√

3

v1 = χ1R · (1, 0, 0)/
√

3

v2 = ξ2R · (0, 1, 0)/
√

3

v2 = χ2R · (0, 1, 0)/
√

3

v3 = ξ3R · (0, 0, 1)/
√

3

v3 = χ3R · (0, 0, 1)/
√

3

C. Lifted degeneracy in the type-III phase

We now turn to type-III order, defined by q1 = (π/2, π, 0),
q2 = (0, π/2, π ), and q3 = (π, 0, π/2) and their opposites.
Using Eq. (6) with u� = v� − iw�, the spins can be expressed
as:

Si =
3∑

�=1

v� cos(q� · ri ) + w� sin(q� · ri ), (14)

and the conditions |Si| = 1 become the following geometrical
constraints:

v� · vk = w� · wk = v� · wk = 0 if � 	= k,

v2
� = w2

� and
3∑

�=1

v2
� =

3∑
�=1

w2
� = 1. (15)

The anisotropy energy per site reads

	EIII = −4D((v1 × w1)x + (v2 × w2)y + (v3 × w3)z )

− K
((

vx
1

)2 + (
v

y
2

)2 + (
vz

3

)2 + (
wx

1

)2 + (
w

y
2

)2

+ (
wz

3

)2)
. (16)

We first focus on the case K = 0 and study the effect of
the DM coupling. We find that the accidental degeneracy is
lifted in favor of a single-q, but noncollinear ground state, with
min 	EIII(K = 0) = −4D (Table III). The expression of the
spins in a single-q state with wave vector q3 = (π, 0, π/2)
is

Si = v3 cos(q3 · ri ) + w3 sin(q3 · ri ), (17)
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FIG. 5. Transition from a single-q type-I state to a noncollinear single-q type-III state upon increasing the strength of the DM interactions
D (with fixed J2 < 0). (a) Path (dotted line) followed in the phase diagram upon showing the states in (b). In the intermediate state i2, the
spiral wave vector is q = (π, 0, Q) with Q = arcsin(D/J2). (b) The I-III phase transition can be seen as a continuous rotation of the spins in
the ground state, z layer by z layer. Q is the angle between neighboring layers.

with the constraint |v3| = |w3| = 1. The DM energy in this
configuration is 	EIII = −4D(v3 × w3)z, which reaches its
minimum −4D when v3 and w3 are orthogonal and lie
in the xy plane, for example, v3 = êx, w3 = êy. This state
is made of antiferromagnetic [001] layers of spins which
lie in the xy plane (all spins in each layer are collinear),
which are stacked orthogonally in the [001] direction. Be-
sides the threefold degeneracy due to cubic symmetry, this
ground state has a U(1) degeneracy because a global ro-
tation around the z axis leaves the cross product (v3 ×
w3)z invariant. Note that, even in this minimum-energy
configuration, the DM interaction is not fully minimized
(it is “frustrated”).

From our Luttinger-Tisza analysis, we learned that starting
from J2 < 0 and increasing D from zero to a finite value
[dotted line in the diagram Fig. 5(a)], the system transi-
tions between phases I and III, via an incommensurate spiral
phase. This incommensurate spiral phase is parametrized
by ordering wave vectors of the form q = (π, 0, Q) where
Q = arcsin(D/J2). In particular, the type-III state is reached
when D = −J2 such that Q = π/2. We can now formulate
a scenario for this evolution: starting from a single-q type-I
state, the DM interactions allows one to lower the energy by
a continuous rotation of the spins, layer by layer, until the
arrangement reaches the single-q noncollinear type-III state
[Fig. 5(b)].

One can also show that the Kitaev interaction alone (D =
0, K 	= 0) does not lift the degeneracy between single-q and
multi-q states, similar to the case of the type-I AFM. In
Table IV we parametrize the single-q, the double-q and the
triple-q ground state manifolds of type-III order with finite K .

While the accidental degeneracy of type-III ground states
seems to be robust to Kitaev interactions, the DM interaction
has a competing effect and tends to lift this degeneracy. In
order to investigate the competition between these two effects,
we minimized 	EIII in the presence of both finite K and finite
D (Fig. 6). The results show that for K > 0, the degeneracy is
lifted only for D > K/2. For K < 0 however, the degeneracy
is lifted for any finite D.

V. FIELD-INDUCED GROUND STATE AND SELECTION
OF NONCOLLINEAR STATES

Having shown in the previous section that an accidental
degeneracy persists in multiple regions of the phase diagram

TABLE IV. Configurations of the v�, w� vectors in type-III
ground states selected by Kitaev anisotropy (D = 0, K 	= 0). α, β

are arbitrary angles, and ξ�, χ� = ±1. Note that applying a cubic
symmetry transformation to the states described in the table also give
a ground state.

Sign of K K < 0 K > 0

min 	EIII 0 −2K

single-q v1 = ξ1(0, cos α, sin α)

w1 = χ1(0, cos β, sin β )

v2 = w2 = 0

v2 = w3 = 0

v1 = ξ1(1, 0, 0)

w1 = χ1(1, 0, 0)

v2 = w2 = 0

v3 = w3 = 0

double-q v1 = ξ1u1(0, cos α, sin α)

w1 = χ1u1(0, cos β, sin β )

v2 = ξ2(u2, 0, 0)

w2 = χ2(u2, 0, 0)

v3 = w3 = 0(
u2

1 + u2
2 = 1

)

v1 = ξ1(u1, 0, 0)

w1 = χ1(u1, 0, 0)

v2 = ξ2(0, u2, 0)

w2 = ξ2(0, u2, 0)

v3 = w3 = 0(
u2

1 + u2
2 = 1

)
triple-q v1 = ξ1(0, u1, 0)

w1 = χ1(0, u1, 0)

v2 = ξ2(0, 0, u2)

w2 = χ2(0, 0, u2)

v3 = ξ3(u3, 0, 0)

w3 = χ3(u3, 0, 0)(
u2

1 + u2
2 + u2

3 = 1
)

v1 = ξ1(u1, 0, 0)

w1 = χ1(u1, 0, 0)

v2 = ξ2(0, u2, 0)

w2 = χ2(0, u2, 0)

v3 = ξ3(0, 0, u3)

w3 = χ3(0, 0, u3)(
u2

1 + u2
2 + u2

3 = 1
)
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FIG. 6. Minimal energy of the type-III single-q, double-q, and
triple-q equal-weight manifolds for D 	= 0, K 	= 0.

even in presence of anisotropic interactions, we expect that
this residual degeneracy will be lifted in presence of an
external magnetic field h. In this section, we now address the
question of the ground state selection by an additional Zeeman
energy term Hh = −h · ∑

i Si, specifically in phases I and II.
In particular, we will show that the magnetic field interplays
with anisotropic exchange, allowing for the selection of dif-
ferent ground states depending on the direction of the applied
field, including noncollinear and noncoplanar states.

For a small magnetic field h, one expects that the spins
will uniformly cant in the direction of the field. The spins in
the canted state can be written as

Si = m + si, (18)

where m = χh is the magnetization per site (χ is the magnetic
susceptibility) and si is the pure antiferromagnetic modulation
(
∑

i si = 0), which can be expressed as

si = 1

2

∑
�

[u�eiq�·ri + u∗
�e−iq�·ri ], (19)

where the q� are the Luttinger-Tisza ordering wave vectors
obtained in the zero-field Luttinger-Tisza approach, and the
associated vectors u� are our variational parameters.

We assume that the g tensor is site-independent (so that
the effective magnetic field h is everywhere the product of
the scalar g factor and the physical magnetic field). Moreover,
we compare the energies of the states with the same m rather
than h: In other words, m is chosen to be the control parameter
rather than the field.

A. Canted type I

We first study the case of canted type-I antiferromag-
netism, i.e., we consider model parameters deep inside the
stability region of the type-I phase. In particular, as shown in
the previous section, the type-I single-q and multi-q states are
degenerate even in the presence of all anisotropic interactions.
In the presence of a net magnetization m the unit-length con-
ditions |Si| = 1 impose the following geometrical constraints
on the variational vectors u�:

m2 + u2
1 + u2

2 + u2
3 = 1,

m · u1 + u2 · u3 = 0, (20)

m · u2 + u3 · u1 = 0,

m · u3 + u1 · u2 = 0.

For a given magnetization m, one can compare the energies of
the canted single-q, double-q, and triple-q Ansätze:

H[Si] = 1

2

∑
i, j

SiAi jS j − h ·
∑

i

Si

= 1

2

∑
i, j

siAi js j + 1

2

∑
i, j

mAi jm − Nh · m

= 1

2

∑
i, j

siAi js j + (6J1 + 3J2 + 2K − χ−1)Nm2,

(21)

where we used χh = m in the last line, and N is the number
of sites. The terms linear in m vanish because the AFM part
of the spins satisfies

∑
j s j = 0:∑

i, j

mAi js j = 2(6J1 + 3J2 + 2K ) m ·
∑

j

s j = 0. (22)

Since the m2 term in Eq. (21) does not depend on the u�,
the ground state is determined the choice of the vectors u�

which minimizes the quantity 1
2

∑
i, j siAi js j , i.e., the exchange

energy of the AFM modulation. Moreover, since these states
are degenerate in the J1-J2 model, only the anisotropic contri-
bution will distinguish the different Ansätze: In other words,
this problem amounts to minimizing 	EI with respect to the
u�, given the new constraints imposed by the presence of a
magnetization.

We choose to focus on the more symmetric case mx = my,
i.e., we let m vary in the plane which contains the high-
symmetry directions [001], [110] and [111] of the crystal (it
is then parametrized by its magnitude m and its angle θ with
respect to the [001] axis) and assume that there is no extra
spontaneous symmetry breaking. We first focus on the case
K < 0.

Let us first present the selected ground states in the
situations when the field is aligned along the different high-
symmetry directions: We show them in Fig. 7(a) in cases m →
0 and m = 0.4. When the field is along [001] the minimization
shows that there is a continuous degeneracy between a canted
single-q and a canted double-q ground state:

u1 = w1

√
1 − m2(1, 0, 0),

u2 = w2

√
1 − m2(0, 1, 0),

u3 = 0, (23)(
w2

1 + w2
2 = 1

)
.

When the field is along [110], the ground state is a canted
single-q state:

u3 =
√

1 − m2(0, 0, 1),

u1 = u2 = 0. (24)

Finally, when the field is along [111], the ground state is a
canted triple-q state with equal weights:

u1 =
√

(1 − m2)/3(
√

1 − 2b2,−b,−b),
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FIG. 7. Properties of the type-I ground state in the presence
of a magnetization and Kitaev coupling K < 0, as a function of
the strength m and the direction of the magnetization m. (a) Spin
configurations in the canted double-q, triple-q, and single-q states,
stabilized when the magnetization is along [001], [111], and [110],
respectively. Top row: m = 0. Bottom row: m = 0.4. (b) Polar plot of
the chirality κ [whose square is defined in Eq. (26)] per site. (a) Polar
plot of the indicator η [defined in Eq. (29)].

u2 =
√

(1 − m2)/3(−b,
√

1 − 2b2,−b), (25)

u3 =
√

(1 − m2)/3(−b,−b,
√

1 − 2b2),

where b > 0 is such that the constraints Eq. (20) are satis-
fied. In the limit m → 0 we have b = 0. This result can be
interpreted by using symmetry arguments: For this direction
of the field, the system is invariant under C3 symmetry around
the [111] axis. The superposition of q1, q2 and q3 modes with
equal weights is a good candidate for the ground state because
it is invariant under C3, unlike any single-q or double-q states.

We also carried out the minimization for a generic angle θ

of the magnetization. After finding the optimal parameters u�

for each value of m, one can characterize the ground state by
a spin chirality κ , defined by

κ2 = κ2
[111] + κ2

[1̄11] + κ2
[11̄1] + κ2

[111̄], (26)

where κα is a chirality around each tetrahedral axis α, com-
puted as the sum of the scalar chiralities on triangles lying in
the α planes

κα =
∑

⊥α

∑
i jk∈


Si · (S j × Sk ), (27)

with the three sites i, j, k of the triangle labeled clockwise
around the axis α. In the case of canted type-I order, the
chirality κ measures the volume spanned by the three vectors

u1, u2, u3:

κ ∝ |u1 · (u2 × u3)|. (28)

As shown in the polar plot Fig. 7(b), the chirality κ is maximal
when m is directed along [111] and in the limit of vanish-
ing m. When m becomes large, the spins are aligned, and κ

vanishes since it only captures the “noncoplanarity” of the
arrangement.

While the chirality is a useful quantity to detect a noncopla-
nar state (triple-q), it fails to detect a coplanar, noncollinear
state (double-q) in which the mixed products Si · (S j × Sk )
are all zero. We therefore define a quantity η:

η = (u1 + u2 + u3)2

u2
1 + u2

2 + u2
3

, (29)

where u� = |u�|, which is a continuous quantity measuring
the number of ordering wave vectors involved in the AFM
ground state, weighted by their amplitude u�. It is rescaled
by the total weight u2

1 + u2
2 + u2

3 = 1 − m2. To illustrate the
meaning of η, we note that η = 1 for a single-q state (u1 = 1,
u2 = u3 = 0), η = 2 for an equal-weight double-q state (u1 =
u2 = 1√

2
, u3 = 0) and η = 3 for an equal-weight triple-q state

(u1 = u2 = u3 = 1√
3
). [In a state with nonequal weights, η

is not an integer.] As shown in the polar plot Fig. 7(c), η

increases gradually from the [001] axis (η = 2) to the [111]
axis (η = 3), indicating a (smooth) transition from a double-q
to a triple-q state. Between [111] and [110] one goes from
triple-q (η = 3) to single-q (η = 1) rapidly.

For a positive Kitaev coupling (K > 0) the situation is
different: The ground state is, for a generic m, a canted
single-q state. To show this, we first note that 	EI � −K ,
and the lower boundary is reached when ux

1 = uy
2 = uz

3 = 0.
In the presence of finite m, one can always find a single-q
state with this property. Indeed, the two conditions u1 · m = 0
and ux

1 = 0 define two planes, whose intersection fixes the
direction of u1. In contrast, it is not always possible to build
a double-q state with ux

1 = uy
2 = 0 = m · u1 = m · u2, except

for m along the high-symmetry directions [001] or [110], and
similarly for the triple-q case. In these two cases we find a
degeneracy between single-q, double-q, and triple-q ground
states. For any other direction, the selected state is single-q.

B. Canted type II

In the case of canted type-II order, the geometrical con-
straints |Si| = 1 lead to

m · u� = 0 (∀� = 0, 1, 2, 3),

m2 +
3∑

�=0

u2
� = 1,

u0 · u1 + u2 · u3 = 0, (30)

u0 · u2 + u1 · u3 = 0,

u0 · u3 + u2 · u1 = 0.

These equations do not have a triple-q solution in the presence
of a finite m, i.e., the triple-q states will not cant (with uniform
m) when a magnetic field is added. In contrast, the single-q,
double-q, and quadruple-q states can lower their energies if
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the spins cant towards the field. We find that for all values of
m, the canted single-q state has a lower energy than the canted
double-q and the canted quadruple-q states. In conclusion, in
the regions of parameter space where type-II order is stable,
the field-induced ground state is a canted single-q state.

VI. QUANTUM FLUCTUATIONS
AND ORDER-BY-DISORDER

We now address small quantum fluctuations around the
classical ground states. Indeed, as we discussed above,
nearest-neighbor anisotropic terms do not fully lift the degen-
eracies of the AFM states throughout the phase diagram. If no
other, larger-scale, interactions exist, then fluctations, thermal
or quantum, will lift the degeneracy through the order-by-
disorder mechanism [32–36]. At low-enough temperatures,
quantum fluctuations will dominate over thermal ones.

In order to compute the quantum correction to the classi-
cal energy, i.e., the zero-point energy around the degenerate
classical ground states discussed in the previous sections,
we proceed within a real space perturbation theory. This ap-
proach consists in treating the contribution of the elementary
excitations, the magnons, in the quantum Hamiltonian as a
perturbative term. This yields a zero-point energy expressed
in terms of the classical spins from the classical ground states.
In particular, as we show in the following section, to second
order in perturbation theory the zero-point energy acts as
an effective biquadratic interaction between classical spins
[52–54]. Given the very large magnetic unit cells we address
in this work, this real-space perturbative approach is better
suited here than the “conventional” linear spin wave theory
(used for the fcc lattice for example in Refs. [4] and [3] for the
Heisenberg AFM with type-I and type-II orders, respectively,
and in Ref. [16] for collinear order in the anisotropic model),
which would require the diagonalization of large matrices and
numerical integration over the 3d Brillouin zone.

A. General framework and perturbation theory

In this section, we outline the methodology of the pertur-
bative method used in the calcuation of the zero-point energy.
We give more details in Appendix B. We start by defining
(real) local orthonormal bases (êx

i , êy
i , êz

i ) at each site i of the
magnetic unit cell, such that each spin points along its local
z axis, êz

i in the classical ground state. We write the spin
operators as

Ŝi = Ŝz
i ê

z
i + Ŝx

i êx
i + Ŝy

i êy
i . (31)

This defines the components of the spin operators in the local
bases Ŝμ

i (note that we use hats in the notation of the spin
operators Ŝi to distinguish them from the classical moments
Si). The classical ground state is saturated (ferromagnetic)
in the local basis, and we have 〈Ŝi〉 = Si = Sêz

i , i.e., 〈Ŝx
i 〉 =

〈Ŝy
i 〉 = 0, and 〈Ŝz

i 〉 = S. We write the quantum Hamiltonian
as the sum of a mean-field contribution Ĥ0 plus that of the
quantum contribution of magnons δĤ, i.e.,

Ĥ = 1

2

∑
i, j

ŜiAi j Ŝ j = Ĥ0 + δĤ, (32)

where

Ĥ0 = −
∑

i

hi

(
Sz

i − 1

2
S

)
, (33)

δĤ = 1

2

∑
i, j

(δŜ⊥
i + δŜ‖

i )Ai j (δŜ⊥
j + δŜ‖

j ). (34)

Ĥ0 is expressed in terms of the (classical) local field hi =
hiêz

i = −∑
j Ai jS j experienced by the spin at site i in the

classical ground state. In the classical states that we consider
in this manuscript, the local field has the same magnitude at
each site, we denote it h0 in the following. We have split δĤ
into longitudinal fluctuations δŜ‖ = (Ŝz

i − S)êz
i and transverse

ones δŜ⊥ = Ŝx
i êx

i + Ŝy
i êy

i .
Assuming that the quantum system experiences small

quantum mechanical fluctuations around the ground state, we
treat δĤ as a perturbation to Ĥ0, in the spirit of large-S where
δĤ contains an extra multiplicative 1/S factor compared to
the classical energy. The first nonzero term in the perturbation
theory appears at second order, with expectation value:

δH (2) = 〈0|δĤQ(E0 − Ĥ0)−1δĤ|0〉, (35)

where Q is the projector onto the excited states, i.e., Q = 1 −
|0〉〈0|, where |0〉 is the classical ground state |0〉 = ⊗i|Sêz

i 〉,
and E0 = − 1

2 S
∑

i hi = 1
2

∑
i, j SiAi jS j is the energy of the

classical ground state |0〉. In the following, we assume that
the local field has the same magnitude h0 on each site, so that
we obtain the following zero-point energy:

δH (2) = C + 1

2

∑
i, j

SiδAi jS j − 1

4h0S2

∑
i, j

(SiAi jS j )
2. (36)

In Eq. (36), C is a constant term, i.e. it is independent of
the ground state, and δAi j is a correction to the interaction
matrix Ai j , which renormalizes the coupling constants (J1,2,
K , �, D) by a term of order 1/S. Although these corrections
will slightly shift the phase boundaries in the classical phase
diagrams, they do not discriminate between different classical
ground states away from the boundaries, and we drop them in
what follows. Hence, the ground state selection is determined
by minimizing the following term:

δH (2)
biq = − 1

4h0S2

∑
i, j

(SiAi jS j )
2. (37)

δH (2)
biq takes the form of an effective biquadratic interaction

between pairs of spins, here the square of the classical interac-
tion term with a negative prefactor. In the following sections,
given a specific region of parameter space for which we know
the ground state manifold (minima of H), we identify the
classical ground state which minimizes δH (2)

biq .

B. Application to the isotropic model

Let us first apply the above result to the Heisenberg model
with J1 and J2 couplings. In this case, the biquadratic zero-
point energy takes the form:

δH (2)
biq = − J2

1

2h0S2

∑
〈i, j〉

(Si · S j )
2 − J2

2

2h0S2

∑
〈〈i, j〉〉

(Si · S j )
2. (38)
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It becomes clear that this biquadratic interaction term is mini-
mized when the spins are all collinear.

For concreteness, let us consider the region of parameter
space J1 > 0, J2 < 0 where type-I order is favored, the zero-
point energy per site in a generic type-I state reads

δH (2)
biq,I = −J2

1 S2

h0

[
4
(
u4

1 + u4
2 + u4

3

) − 1
] − 3J2

2 S2

2h0
. (39)

In the equal-weight Ansätze, we have

δH (2)
biq,I(1q) = −S2

h0

(
3J2

1 + 3

2
J2

2

)
,

δH (2)
biq,I(2q) = −S2

h0

(
J2

1 + 3

2
J2

2

)
, (40)

δH (2)
biq,I(3q) = −S2

h0

(
1

3
J2

1 + 3

2
J2

2

)
,

with local field h0 = S(4J1 − 6J2). (The J2 contribution does
not depend on the choice of the ground state because all
spins are parallel with their next-nearest neighbors in a type-I
state.) Hence, the zero-point fluctuations will select the single-
q configurations, since δH (2)

biq,I(1q) is smaller than H (2)
biq,I(2q)

and H (2)
biq,I(3q). While this effect is likely to persist if small

anisotropy is included, for larger anisotropy, however, other
ground states may be favored. We explore this in the following
section.

C. Application to the anisotropic model

We now take into account the anisotropic couplings in
the zero-point energy. According to Eqs. (8) and (36), the
biquadratic part of the zero-point energy reads

δH (2)
biq = − 1

2h0S2

∑
〈i, j〉γ

(
J1Si · S j + KSγ

i Sγ

j

+ �ξi j
(
Sα

i Sβ
j + Sβ

i Sα
j

) + Di j · (Si × S j )
)2

− J2
2

2h0S2

∑
〈〈i, j〉〉

(Si · S j )
2. (41)

For simplicity, we now illustrate the consequences of this
equation on the type-I states, for which we can explicitly
parametrize the spins in the ground state manifold. In the
regions of the phase diagram where type-I order is stable, as
discussed in Sec. IV A, the single-q and multi-q states are
classically degenerate even in the presence of any and all
anisotropic couplings. In presence of quantum fluctuations, as
we show below, the situation is different. In the following, we
consider the case J2 = 0: As shown in the previous section,
the J2 contribution to the zero-point energy is uniform in the
type-I ground state manifold and thus does not contribute
to ground state selection. In this case, the presence of finite
anisotropic couplings modifies the norm of the molecular field
according to

h0 = 4S|J1 − |K||. (42)

We first focus on the region K < 0. Using the expression
of the u� for the classical ground state manifold obtained in

this case (Table II ), we find the following zero-point energy
per site:

δH (2)
biq,I = −S2

h0

[((
2J1 + K

)2 − 2D2
)(

u4
1 + u4

2 + u4
3

)
+ 4�2

(
u2

2u2
3 + u2

1u2
3 + u2

1u2
2

) − J1(J1 + 2K ) + 2D2
]
.

(43)

It is interesting to note that Eq. (43) shows that the Gamma
and DM couplings can lift the degeneracy among type-I
states through quantum fluctuations, i.e., quantum order-by-
disorder, although they do not appear in the energy of type-I
states at the classical level.

We now look for the fluctuation-induced ground state: To
this end, we minimize Eq. (43) with respect to the variational
parameters u1, u2, and u3 such that u2

1 + u2
2 + u2

3 = 1. We find
that the following equality between coupling constants:

(2J1 + K )2 − 2D2 = 2�2 (44)

defines a hypersurface in parameter space along which the
single-q, double-q, and triple-q states have the same zero-
point energy. In particular, in the case � = D = 0 (J1-K
model), this corresponds to a degenerate point K = −2J1,
and in the case D = 0 (J1-K-�) model this corresponds to
a conelike region in the (K/J1, �/J1) plane. In Fig. 8, we
overlay plots of the selected type-I ground state in the (K, �)
plane, and of the Luttinger-Tisza phase diagrams which indi-
cate where type-I order is classically stable for three values of
D. The hypersurface defined by Eq. (44) separates two regions
of parameter space where the degeneracy is lifted by quantum
fluctuations. In the region where (2J1 + K )2 − 2D2 > 2�2

(which includes the small-anisotropy limit |K|, |�|, D � J1),
the zero-point energy is minimized by a single-q state (e.g.,
u1 = 1, u2 = u3 = 0), like in the isotropic model. In the region
(2J1 + K )2 − 2D2 < 2�2 however, the zero-point energy is
minimized by an equal-weight triple-q state (u1 = u2 = u3 =
1/

√
3). This fluctuation-induced triple-q state is that which

we found to arise in the presence of a magnetic field along the
[111] axis, in the previous section. For the K > 0 ground state
manifold, the zero-point energy is minimized by a single-q
state, for any value of the anisotropic couplings.

We note that in Ref. [15], the authors find, through
finite-temperature Monte-Carlo simulations, that thermal fluc-
tuations select collinear states in the type-I phase even in the
presence of K , � anisotropies. This is at odds with our results
for quantum fluctuations, and points to an unusual example
where, at nonzero temperature, quantum and thermal fluctu-
ations will compete in the ground state selection. This effect
was recently studied in Ref. [36] in the case of the nearest-
neighbor Heisenberg model on the fcc lattice. (Recall that this
model hosts a degenerate line of spiral ground states—phase
i2 in our notations.) The authors show that fluctuations will lift
the line degeneracy in favor of commensurate orders in differ-
ent ways: Quantum flucturations select a (collinear single-q)
type-III state, while thermal fluctuations will instead select a
(single-q) type-I state.
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FIG. 8. Luttinger-Tisza phase diagram of the model in the (K, �) plane (with J2 = 0 and D taking three different values), in which the
quantum fluctuations were taken into account for the type-I phase. The stability regions of the fluctuation-driven triple-q type-I state are
indicated by white stripes in the phase diagram.

VII. CONCLUSION

In this work, we studied the classical spin configurations
of an anisotropic nearest- and next-nearest-neighbor fcc anti-
ferromagnet, including symmetry-allowed anisotropic terms,
namely the Kitaev, Gamma, and Dzyaloshinskii-Moriya in-
teractions. The latter is allowed by the lack of inversion
symmetry in the half-Heusler compounds, and was not studied
previously in the literature. We found the following.

(1) The type-I, II and III commensurate antiferromagnetic
orders from the isotropic J1-J2 model survive the addition of
anisotropy.

(2) The accidental single-q/multi-q degeneracy within
each of these orders is robust to the Kitaev and Gamma
anisotropic coupling terms. In these cases, the anisotropic
model (J1-J2-K-� model) hosts a ground-state manifold,
which includes collinear, noncollinear, and noncoplanar con-
figurations.

(3) In contrast, the Dzyaloshinskii-Moriya coupling lifts
the degeneracy in favor of a noncollinear type-III state.

In the regions of parameter space where the degeneracy is
not lifted by anisotropic exchange at the classical level (and
in particular for type-I order, in which only the Kitaev term
contributes classically), we explored further the role of a mag-
netic field and quantum fluctuations and in particular in which
regimes they favored noncollinear magnetic arrangements.

(1) The coupling to a small magnetic field, by explicitly
breaking lattice symmetries, will lift the degeneracy. In the
case of type-I order and in the regime K < 0, collinear (single-
q), noncollinear (double-q) and noncoplanar (triple-q) states
can be selected, depending on the direction of the field. For
K > 0 a collinear state is selected.

(2) Quantum fluctuations will also lift the degener-
acy, through the ‘order-by-disorder’ mechanism. For small
anisotropy, collinear states are favored. In contrast, in some
regimes where anisotropy is significant, a noncoplanar (triple-
q) type-I state is selected by minimizing the zero-point energy.

The stabilization of multi-q magnetic arrangements may
have strong implications on the transport properties of half-
Heusler compounds. Most notably, charge carriers can acquire
nontrivial Berry phases when coupling to noncoplanar spin
textures, leading to an anomalous Hall effect. This Berry

phase distribution is enhanced with strong spin-orbit coupling,
and may exist even in the case of collinear and coplanar
arrangements of spins. From a different viewpoint, non-
collinear ordering can lead to Weyl crossings in the electronic
band structure, which may provide a different origin from
that discussed previously to the unusual transport properties
(anomalous Hall effect, negative magnetoresistance) observed
in some half-Heusler compounds.
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APPENDIX A: GROUND STATES OF THE HEISENBERG
MODEL

In this section, we review the ground states of the Heisen-
berg model with J1 and J2 couplings, described by the
Hamiltonian:

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j . (A1)

Let us first consider the case J1 > 0, J2 = 0. In q space, all
ordering wave vectors of the form (π, q, 0), with arbitrary
pitch q, are ground states. Now, if we additionally consider
finite J2 the degeneracy of the AFM states can be split into
multiple phases presented in the diagram Fig. 9. Besides the
ferromagnetic order, which minimizes the energy for J1 < 0
and J2 < |J1|, the diagram features three antiferromagnetic
phases labeled type-I, type-II and type-III orders, which differ
by their ordering vectors q. In the following three sections,
we present these orders in detail and give a parametrization of
the spins. In Fig. 10, we plot examples of single-q and multi-q
states, for the three AFM orders I, II, and III.

144431-13



DIOP, JACKELI, AND SAVARY PHYSICAL REVIEW B 105, 144431 (2022)

FIG. 9. Phase diagram of the Heisenberg J1-J2 model on the fcc
lattice. It contains a ferromagnetic phase (FM), three commensurate
antiferromagnetic (AFM) phases labeled type-I, type-II, and type-III
orders, as well as an incommensurate (inc) phase with wave vector
(π, q, 0) (q is arbitrary) on the semi-infinite line J2 = 0, J1 > 0.
Adapted from Ref. [1].

1. Type-I AFM

Type-I order is defined by the symmetry-related order-
ing wave vectors q1 = (π, 0, 0), q2 = (0, π, 0), and q3 =
(0, 0, 2π ). For a single-q state described by q = (π, 0, 0),
the spin arrangement is made of ferromagnetic planes stacked
antiferromagnetically in the [100] direction. The most general
expression of a type-I ground state is

Si = u1eiq1·ri + u2eiq2·ri + u3eiq3·ri . (A2)

In the most general case (i.e., all u� 	= 0) the spin config-
uration is made of four ferromagnetic cubic sublattices. By
requiring that the length of the spins is |Si| = 1 for the four
sublattices, one gets the following geometrical conditions for
the u� vectors:

u2
1 + u2

2 + u2
3 = 1,

u1 · u2 = 0, (A3)

u2 · u3 = 0,

u3 · u1 = 0.

Single-q type-I order has been in observed in rare-earth half-
Heusler compounds CePtBi [22] and NdPtBi [24].

2. Type-II AFM

Type-II order is defined by the following symmetry-
related ordering wave vectors: q0 = (π, π, π )/2, q1 =
(−π, π, π )/2, q2 = (π,−π, π )/2, and q3 = (π, π,−π )/2.
For a single-q state with q0 = (π, π, π )/2, the arrangement
is made of ferromagnetic planes of spins stacked antifer-
romagnetically along the [111] direction. The most general
expression of the spins is

Si = u0eiq0·ri + u1eiq1·ri + u2eiq2·ri + u3eiq3·ri . (A4)

In this general case, the structure is made of four cubic Néel
antiferromagnetic sublattices. The conditions |Si| = 1 give the
following equations:

u2
0 + u2

1 + u2
2 + u2

3 = 1,

u0 · u1 + u2 · u3 = 0, (A5)

u0 · u2 + u3 · u1 = 0,

u0 · u3 + u1 · u1 = 0.

Single-q type-II order has been measured in compounds
GdPtBi [25] and TbPtBi [26].

3. Type-III AFM

Type-III order is defined by q1 = (π/2, π, 0), q2 =
(0, π/2, π ), and q3 = (π, 0, π/2) and their opposites. For a
single-q state with wave vector ±(π, 0, π/2), each spin in any
given [100] plane is antiparallel to its nearest neighbor, and
the spins on next-nearest [001] planes are antiparallel to one
another.

Si = u1eiq1·ri + u2eiq2·ri + u3eiq3·ri + c.c. (A6)

In contrast with phases I and II, here the u� vectors are al-
lowed to have an imaginary part because q� and −q� are not
equivalent on the fcc lattice. It is convenient to introduce real
vectors v� and w� such that u� = (v� − iw�). In terms of these
vectors, the spins are as parametrized as

Si =
3∑

�=1

v� cos(q� · ri ) + w� sin(q� · ri ). (A7)

The conditions |Si| = 1 are reduced to the following geomet-
rical constraints:

v� · vk = w� · wk = v� · wk = 0 if � 	= k,

v2
� = w2

� and
3∑

�=1

v2
� =

3∑
�=1

w2
� = 1. (A8)

APPENDIX B: DETAILS OF REAL SPACE PERTURBATION
THEORY

In this Appendix, we consider the quantized version of
the Hamiltonian H . We show how the contribution of the
magnons (excitations around the classical ground state) can
be treated as a perturbation in the ground state energy, and
we detail the calculation of the energy correction given in
Eq. (36).

For a given ordered ground state, we define a local basis
(êx

i , êy
i , êz

i ) such that Si = Sêz
i is the classical spin at site i.

The unit vector êz
i defines a local quantization axis for the

spin. In this local basis, we decompose the spin operator into
longitudinal and transverse fluctuations around the classical
spin:

Ŝi = Si + δŜ‖
i︸ ︷︷ ︸

Ŝ‖
i

+δŜ⊥
i . (B1)

In the above equation, we used hats in the notation of the spin
operator to distinguish it from the classical spin vector Si =
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FIG. 10. Examples of spin arrangements for the fcc antiferromagnetic orders I, II and III stabilized in the J1-J2 phase diagram. The multi-q
states shows here are ‘equal-weight’ states. Below each spin configuration, the corresponding ordering wave vectors are written in units of
2/a, where a is the cubic unit cell parameter, as well as the number of sites in the magnetic unit cell, Nu.c..

〈Ŝi〉. More explicitly, we have

Ŝ‖
i = Ŝz

i ê
z
i ,

δŜ‖
i = (

Ŝz
i − S

)
êz

i , (B2)

δŜ⊥
i = 1√

2
(Ŝ−

i ê+
i + Ŝ+

i ê−
i ).

In the above expressions, we have used the following no-
tations: Ŝ±

i = Ŝx
i ± iŜy

i and ê±
i = 1√

2
(êx

i ± iêy
i ). The Ŝ−

i and

Ŝ+
i operators lower/raise the projection of the spin at site i,

creating/destroying a magnon. This process is accompanied

by a reduction of the longitudinal component Ŝz
i of the spin.

The classical ground state |0〉 is a saturated state in the lo-
cal basis characterised by Ŝ+

i |0〉 = 0 and Ŝz
i |0〉 = S|0〉. The

quantum-mechanical Hamiltonian can be expanded as

Ĥ = 1

2

∑
i, j

ŜiAi j Ŝ j

= 1

2

∑
i, j

(Si + 2δŜ‖
i )Ai jS j

︸ ︷︷ ︸
=Ĥ0
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+ 1

2

∑
i, j

(δŜ⊥
i + δŜ‖

i )Ai j (δŜ⊥
j + δŜ‖

j )

︸ ︷︷ ︸
=δĤ

+
∑
i, j

δŜ⊥
i Ai jS j

︸ ︷︷ ︸
=0

. (B3)

The first term is the mean-field Hamiltonian (easily diagonal-
ized):

Ĥ0 = −
∑

i

hi

(
Ŝz

i − 1

2
S

)
, (B4)

where we have introduced the norm hi = |hi| of the molecular
field, defined as

hi = −
∑
j 	=i

Ai jS j = −∂Ĥ
∂Ŝi

∣∣∣∣
Ŝ j=S j

. (B5)

Note that in the classical ground state, the spin at site i is
aligned with its local field, hence hi = hiêz

i . The energy of the
classical ground state reads

E0 = 〈0|Ĥ|0〉 = −1

2

∑
i

hiS = 1

2

∑
i, j

SiAi jS j, (B6)

which is the classical Hamiltonian H that we have studied so
far. The second term is quadratic in the magnon operators:

δĤ = 1

2

∑
i, j

(δŜ⊥
i + δŜ‖

i )Ai j (δŜ⊥
j + δŜ‖

j ). (B7)

Note that the third term vanishes:∑
i, j

Si · δŜ⊥
j = −

∑
j

h j · δŜ⊥
j = 0 (B8)

because the molecular field is longitudinal (along the local z
axis) while the transverse fluctuations are along x and y.

Assuming that the quantum-mechanical ground state is
close to the classical ground state, we assume that the con-
tribution of magnons δĤ is small, which suggests to treat
this term perturbatively. The first-order term reads 〈0|δĤ|0〉 =
0, because the operators Ŝ+

j and (Ŝz
i − S) annihilate the

saturated (ground) state. The second-order term of the per-
turbation theory reads

δH (2) = 〈0|δĤQ(E0 − Ĥ0)−1δĤ|0〉, (B9)

where Q = 1 − |0〉〈0| is the projector operator on excited
states. The state δĤ|0〉 = 1

4

∑
i, j (ê

+
i Ai j ê+

j )Ŝ−
i Ŝ−

j |0〉 contains
pairs of magnons located on two different sites i and j of the
lattice, and each of these pairs has a weight given by the matrix
element ê+

i Ai j ê+
j and an excitation energy hi + h j above E0.

We obtain

δH (2) = − 1

16

∑
i, j

|ê+
i Ai j ê+

j |2
hi + h j

〈0|Ŝ+
i Ŝ+

j Ŝ−
i Ŝ−

j |0〉

= −S2

2

∑
i, j

|ê+
i Ai j ê+

j |2
hi + h j

, (B10)

where we used the commutation relation [Ŝ+
i , Ŝ−

i ] = 2Ŝz
i . We

first see that the quantum fluctuations around the classical
state are energetically favorable (δH (2) < 0). In the following,
we assume that the local field hi has the same norm h0 on each
site.

We now need to reexpress δH (2) in terms of the classical
spins Si. To this end, we recall that (êx

i , êy
i , êz

i ) is an direct
orthonormal basis which implies the following equations:

(êx
i )μ

(
êx

i

)ν + (
êy

i

)μ(
êy

i

)ν + (
êz

i

)μ(
êz

i

)ν = δμν,(
êx

i

)μ(
êy

i

)ν − (
êy

i

)μ(
êx

i

)ν = εμνλ

(
êz

i

)λ
, (B11)

from which we obtain

2(ê+
i )μ

(
ê−

i

)ρ = δμρ − (
êz

i

)μ(
êz

i

)ρ − iεμρλ

(
êz

i

)λ
. (B12)

This leads to the following rewriting of the i, j term in δE :

|ê+
i Ai j ê+

j |2 = 1

S4
(SiAi jS j )

2 − 1

S2
εμρλενσκAμν

i j Aρσ
i j Sλ

i Sκ
j

− 1

S2
(S jA jiAi jS j ) − 1

S2
(SiAi jA jiSi )

+ Tr(AjiAi j ). (B13)

The first term is the square of the i, j term in the classical
energy. The second term contributes a correction δAi j to the
bilinear interaction term Ai j . The third and fourth terms are
single-site quadratic terms of the form SiBiSi: In Appendix C,
we show that single-site anisotropies are forbidden by sym-
metry, and therefore SiBiSi ∝ Si · Si = S2 is a global energy
shift, independent of the chosen ground state. The fifth term
is also a global energy shift.

Hence,

δH (2) = C + 1

2

∑
i, j

SiδAi jS j − 1

4h0S2

∑
i, j

(SiAi jS j )
2, (B14)

where C is a constant, and

δAi j = 1

2h0
εμρλενσκAμν

i j Aρσ
i j . (B15)

We therefore obtain the following corrections to the coupling
constants, due to quantum fluctuations:

δJ1 = 1

h0

(
J2

1 + J1K + D2
)
,

δJ2 = 1

h0
J2

2 ,

δK = − 1

h0
(J1K + �2 + D2), (B16)

δ� = − 1

h0
(D2 + J1K + J1�),

δD = − 1

h0
D(J1 − �).

These corrections are of order 1/S with respect to the bare
coupling constants: Indeed, denoting loosely J the order of
magnitude of these coupling constants, we have h0 ∼ JS such
that δJ/J ∼ J/h0 ∼ 1/S.
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APPENDIX C: ABSENCE OF SYMMETRY-ALLOWED
SINGLE-ION ANISOTROPY

In this section, we study single-ion quadratic terms in the
Hamiltonian of the following form:

Ha =
∑

i

SiBiSi, (C1)

where Bi is a 3 × 3 matrix. Similarly to our analysis of the
nearest-neighbor quadratic interaction terms, we ask what

matrix Bi is allowed by symmetry. To this end, we recall that
a point group symmetry transformation can be represented as
a 3 × 3 orthogonal matrix R, and that Bi transforms under R
as

Ai → RTBiR. (C2)

Symmetry of Ha under the whole point group im-
plies Bi ∝ 13 and thus, no single-ion anisotropy term is
allowed.
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