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Fast, semianalytical approach to obtain the stray magnetic field above a magnetic skyrmion

Alexandra R. Stuart,1 Karen L. Livesey ,2 and Kristen S. Buchanan 1,*

1Department of Physics, Colorado State University, Fort Collins 80523, USA
2School of Information and Physical Sciences, University of Newcastle, Callaghan NSW 2308, Australia

(Received 3 December 2021; accepted 15 April 2022; published 25 April 2022)

We present a fast, matrix-based semianalytical method to calculate the stray magnetic field and its derivative
above spin textures with cylindrical symmetry. A magnetostatic Green’s function approach is used to obtain
accurate fields and magnetic forces, which are confirmed using micromagnetic simulations. The developed
method can be used to quickly analyze and fit experimental measurements of the stray magnetic field (measured,
for example, via nitrogen vacancies in diamond) or magnetic forces (measured via magnetic force microscopy)
above a thin film or patterned element. Calculations for magnetic skyrmions show that these techniques have the
potential to distinguish between Bloch and Néel walls for skyrmions in single-layer as well as in multilayer thin
films where the wall structure evolves with depth.
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I. INTRODUCTION

Skyrmion spin textures are topologically protected spin
states that are made up of a central, circular out-of-plane core
with a bounding wall that can be Néel- or Bloch-type depend-
ing on the symmetry of the stabilizing Dzyaloshinskii-Moriya
interactions. Skyrmions have recently attracted a great deal
of attention due to their possible applications in spin-based
electronics, and due to their potential to probe new physics
[1–3]. Skyrmions can be stabilized in single-layer thin films,
and multilayer films provide broader opportunities to modify
the material properties in order to improve the room temper-
ature stability of the skyrmions [4] and counter the skyrmion
Hall effect [5]. Recently, it has been shown that the domain
wall structure for a skyrmion in a multilayered film can be
more complex than it is in a single magnetic layer, where
the wall structure can evolve with depth from one chirality of
Néel wall to the other, with a Bloch wall as an intermediate
state [6]. Understanding the wall structure of skyrmions is
critical for applications, and can also provide a means to probe
the material properties. Moreover, the three-dimensional (3D)
nature of spin textures, particularly how the spin textures
evolve with depth, is, more generally, becoming increasingly
important in magnetism [7].

X-ray-based techniques [8], especially tomography-based
techniques, are leading to incredible advances in imaging
of the internal 3D structure of complex materials [9] and
depth-dependent spin structures, such as seen with magnetic
skyrmions [10]. Lorentz transmission electron microscopy
(LTEM) can also be used to obtain high resolution images
of the magnetization state and to determine the skyrmion
wall type, though the interpretation of measurements on
structures with depth-dependent magnetization is more chal-
lenging [11,12]. Scanning probe techniques based on nitrogen
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vacancy (NV) centers in diamond [13–15] and magnetic force
microscopy [16] are both important techniques for obtaining
images of spin textures, and since these are tabletop tech-
niques they offer the advantage that they are more accessible
than synchrotron-based x-ray techniques or LTEM. Moreover,
scanning probe techniques can be used to study samples that
require specific substrates and that consequently cannot eas-
ily be grown directly on membranes. Modeling is, however,
key to interpreting experimental data collected using these
techniques since NV centers in diamond [17] and quantita-
tive magnetic force microscopy (MFM) [18] both probe the
magnetization state indirectly via measurements made above
the sample surface. Both techniques hence rely on accurate
calculations of the stray magnetic fields.

Much of the modeling work that has been done thus far
to interpret scanning probe images of skyrmions has utilized
full micromagnetic simulations. While micromagnetic sim-
ulations are unquestionably useful for capturing the details
of skyrmions in real-world situations, simplified models are
needed to link measurements done above a magnetic thin film
to the spin texture that are both straightforward to use and
also accurate. Analytical and semianalytical methods methods
for obtaining the stray magnetic field and MFM contrast are
valuable because unlike simulations, they provide a means to
quantitatively fit experimental data to obtain the spin texture
profile and, furthermore, to evaluate the associated uncertain-
ties [19]. Analytical expressions derived using a multipole
expansion have been used as an alternative to full simula-
tions [18] but this approach only works well for pointlike
skyrmions. Here we present an alternate method to obtain the
stray magnetic field and the derivative of the stray magnetic
field that MFM is sensitive to. We use magnetostatic Green’s
functions to derive expressions for the stray field components,
and present a semianalytical matrix-based implementation of
these expressions that can be used to fit experimental data
for an arbitrary skyrmion magnetization profile. In fact, the
stray field can be calculated for any other spin texture that has
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cylindrical symmetry, for example, vortices or more exotic
quasiparticles including skyrmionium textures, and antifer-
romagnetic skyrmions [20] using this method. Our method
is based on our previous work that used Green’s function
methods to evaluate the demagnetizing fields in textures with
cylindrical symmetry [21] and that method is extended here
to find the exact magnetic field produced outside the magnet
with no approximations. Our expression provide a straight-
forward and accurate means to obtain the stray field above
a spin texture with cylindrical symmetry, and the presented
1D matrix calculation method is significantly faster than using
demagnetization kernel from a traditional 2D micromagnetic
solver to find the stray field for a specified profile.

Of most interest to experimentalists is the possibility to
take a measurement for the stray field or the MFM signal
and find the underlying magnetization profile from this. Using
micromagnetics, this can be a lengthy process because it typi-
cally involves obtaining relaxed spin distributions with a large
number of cells for a variety of magnetic properties. Here,
we show that it is possible to not only obtain the predicted
stray field profile with the developed expressions and a matrix
approach but also to find the best fit skyrmion parameters and
detailed information about the uncertainties in those parame-
ters in just a few seconds. This proof of principal calculation
is done on synthetic data with a 10% noise added.

Section II outlines analytical expressions for the skyrmion
magnetization profiles that will be used in the calculation
of the stray field. The semianalytical approach is described
in Sec. III, along with the micromagnetic simulations that
were done to validate the matrix-based approach. The results
section, Sec. IV, shows calculations of the stray field profiles
for several representative cases and the close match between
the matrix method approach and micromagnetic simulations.
Approaches to the inverse problem of finding a magnetization
profile from magnetic field measurements are discussed and
demonstrated. A summary is provided in Sec. V.

II. SKYRMION MAGNETIZATION MODELS

The skyrmion magnetization distribution, illustrated in
Fig. 1 for a Néel skyrmion, has radial symmetry and the
magnetization is constant along the film thickness. Hence, the
problem can be reduced to a one-dimensional (1D) distribu-
tion M(r), where r is the radial coordinate in a cylindrical
coordinate system. The magnetization profile is parameterized
in terms of the skyrmion radius Rsk and the skyrmion wall
thickness �, as indicated in Fig. 1(b). The skyrmion magneti-
zation can be described using equation (3) of the supplemental
materials of Ref. [22], a profile that is justified by experiments.
Using ρo = Rsk/�, � = r/�, the magnetization angle with
respect to the out-of-plane z direction is

θ (ρo, �) = 2atan( exp(� − ρo))

+ 2atan( exp(� + ρo)) − (℘+ 1)
π

2
, (1)

where ℘ = ±1 is the skyrmion polarization, i.e., the out-of-
plane direction of the skymrion core. Equation (1) can be used
to describe a skyrmion of Bloch, Néel, or mixed character by
introducing a parameter ψ to describe the in-plane magne-
tization angle. The out-of-plane normalized magnetization is

FIG. 1. (a) Diagram of a skyrmion with cylindrical symmetry
in a single ferromagnetic layer of thickness L. The origin is at the
bottom of the thin film. (b) Magnetization profile of a Néel skyrmion
with ψ = 0, radius Rsk = 145.7 nm, and � = 4.8 nm from Eq. (1).
The out-of-plane component (light blue) and the radial component
(purple) are shown.

mz = Mz/Ms = cos θ , and the in-plane radial and azimuthal
components are mr = mip cos ψ and mφ = mip sin ψ , respec-
tively, where mip(ρo, �) = √

1 − m2
z and all components of

the magnetization are normalized by the saturation magne-
tization Ms. For a Néel wall that points radially outwards
(inwards), ψ = 0 (π ), whereas for a Bloch wall, ψ = ±π/2.
Figure 1(b) shows the magnetization profile of a representa-
tive Néel skyrmion with ψ = 0 and ℘ = 1.

In our calculation of the stray field (Sec. III), the magneti-
zation ansatz given in Eq. (1) is used, with Rsk and � values
found via micromagnetic simulations for a given set of thin
film parameters. For the analysis of experiments, Rsk, � and
ψ would be used as fitting parameters, allowing micromag-
netic simulations to be bypassed. In other words, matching
the measured stray field to that which is calculated using
the semianalytic approach allows one to obtain the skyrmion
parameters. This will be explored more in Sec. IV.

III. APPROACH

Calculating the stray magnetic fields above a skyrmion is
challenging because the stray magnetic fields are long range.
Stray magnetic fields arise from gradients of the magnetiza-
tion that occur due to discontinuities in the magnetization,
e.g., at the edges of a patterned structure, or due to smooth
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gradients in the magnetization, for example at a domain
wall or skyrmion boundary. The stray magnetic fields of a
skyrmion will be strongest near its boundary but they are also
generally non-negligible directly above the skyrmion and for
some distance outside of the skyrmion wall. Here, we use a
matrix-based implementation of a Green’s function approach
to obtain the stray magnetic field above a single skyrmion.

A. Stray field

To obtain the stray magnetic field, we use the magnetostatic
tensorial Green’s function. The tensor components needed
to calculate the internal demagnetization fields for cylindri-
cal spin distributions were derived previously for the radial
[21,23] and out-of-plane [21] directions, and we recently used
these expressions to find the radial modes of a vortex with
DMI [21]. In this section, we will derive the expressions for
magnetic field above or below a magnetic skyrmion in a thin
film of thickness L.

By symmetry, the magnetic field �H inside and outside of
the magnetic film will only have components in the r and z
directions. However, the radial component of the magnetiza-
tion contributes to both r and z components of �H , as does
the z component of the magnetization. The cross terms (Hr

due to mz and Hz due to mr) average to zero for the intralayer
demagnetization field but are nonzero for the case of a stray
field above or below the magnetic thin film. The magnetostatic
tensorial Green’s functions are defined as


̂(r, r′) = −∇∇′G(r, r′) (2)

where G = 1/(4π |r − r′|) is the Coulombic Green’s function,
and a form appropriate for a problem with cylindrical symme-
try is [24]

G(r, r′) = 1

4π

∞∑
m=−∞

∫ ∞

0
dk Jm(rk)Jm(r′k)

× eim(φ−φ′ )e−k|z−z′ |. (3)

The reduced (unitless) magnetic field from a particular mag-
netization profile can be found at any position in space by
integrating the Green’s function tensor multiplied by the mag-
netization sources as follows:

hd(r, z, φ) =
∫ ∞

0
dr′r′

∫ 2π

0
dφ′

∫ ∞

−∞
dz′ 
̂m(r′, z′, φ′) (4)

(in SI units; a prefactor of 4π appears for cgs units). The mag-
netization profile does not depend on the azimuthal coordinate
φ′ and we assume that it is constant through the thickness of
the film. Furthermore, we expect the magnetic field to have
no azimuthal dependence and magnetic material has radius R.
With these assumptions, Eq. (4) simplifies to

hd(r, z) =
(

hd,r

hd,z

)
=

∫ R

0
dr′r′

(
grr′ grz′

gzr′ gzz′

)(
mr′ (r′)
mz′ (r′)

)
, (5)

where the simplified Green’s function tensor components are

gαβ (z, r, r′) = 1

2π

∫ L

0
dz′

∫ 2π

0
dφ

∫ 2π

0
dφ′ 
αβ, (6)

where α, β = r, z.

The first of the four tensor components grr′ is

grr′ = −1

2

∫ ∞

0
dk k2J1(kr)J1(kr′)

∫ L

0
dz′ e−k|z−z′ |

= −1

2

∫ ∞

0
dk kJ1(kr)J1(kr′)(e−k|z−L| − e−k|z|). (7)

The expression above, and those that follow, involve integrals
of the form

I (μ, ν; λ) =
∫ ∞

0
kλJμ(kr)Jν (kr′)e−kαdk, (8)

and these integrals have solutions that can be expressed in
terms of elliptic integrals (see Ref. [25] for details). For grr′ ,
the solutions is

grr′ (z, r, r′) = − 1
2 [v111(|z − L|) − v111(|z|)] (9)

with

v111(α) = 2α

πrr′γ2(1 − p2)

[
−K (p2) + (1 + p2)

(1 − p2)
E (p2)

]
,

(10)

where K and E are elliptic integrals of the first and second
kind, respectively. The definitions of the lengths γ1 and γ2 are

γ1 = 1
2 (

√
(r + r′)2 + α2 −

√
(r − r′)2 + α2), (11)

γ2 = 1
2 (

√
(r + r′)2 + α2 +

√
(r − r′)2 + α2), (12)

and their ratio is

p = γ1/γ2. (13)

In Eq. (10) and the equations that follow, we assume that
the complete elliptic integrals are specified in terms of the
parameter m = p2, instead of the elliptic modulus k = p.

The next tensor component is

gzz′ = −1

2

∫ ∞

0
dk J0(kr)J0(kr′)

∫ L

0
dz′ ∂

∂z

∂

∂z′ e
−k|z−z′ |, (14)

which is, in terms of elliptic integrals,

gzz′ (z, r, r′) = 1
2 [v001(|z − L|) − v001(|z|)], (15)

with

v001(α) = 2α

πγ 3
2 (1 − p2)

[
−K (p2) + 2

(1 − p2)
E (p2)

]
. (16)

Finally, the off diagonal components that are used to capture
the z (r) component of the stray magnetic field generated by
mr (mz) are

grz′ = 1

2

∫ ∞

0
dk kJ1(kr)J0(kr′)

∫ L

0
dz′ ∂

∂z′ e
−k|z−z′ |,

gzr′ = 1

2

∫ ∞

0
dk kJ0(kr)J1(kr′)

∫ L

0
dz′ ∂

∂z
e−k|z−z′ |.

The solutions are

grz′ (z, r, r′) = 1
2 [v101(|z − L|) − v101(|z|)], (17)

gzr′ (z, r, r′) = − 1
2 [v011(|z − L|) − v011(|z|)] (18)
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with

v011(α) = 2

πr′γ 3
2 (1 − p2)

[(
γ 2

2 − r′2)K (p2)

− (α2 + r2 − r′2)

(1 − p2)
E (p2)

]
, (19)

v101(α) = 2

πrγ 3
2 (1 − p2)

[(
γ 2

2 − r2
)
K (p2)

− (α2 + r′2 − r2)

(1 − p2)
E (p2)

]
. (20)

The expressions above are valid for z > L.
We pause to emphasize that Eqs. (9), (15), (17), and

(18), when substituted into Eq. (5), allows the calculation
of the stray field above a skyrmion or any magnetic texture
with cylindrical symmetry. The matrix components gαβ are
semianalytic since they involve elliptic functions. The stray
field calculation at a given position is reduced from a two-
dimensional integral over a film to a one-dimensional integral
along the radial component. To find the stray field below the
thin film, the sign is the same for grr′ and gzz′ , whereas the
signs flip for grz′ and gzr′ .

The stray field integral [Eq. (5)] must be evaluated nu-
merically, however, this can be set up as a matrix-based
calculation so that the calculations are fast and can be used
to fit experimental data. In fact, we find that the stray field
can be predicted significantly faster this way than through mi-
cromagnetic simulations (see Appendix B for details), where
this time saving is associated with the stray field calculation
step. Micromagnetic simulations also require a longer initial
calculation of the kernel, and if the spin distribution is relaxed
then it can take minutes or hours for a single stray field
calculation. We recently used such a matrix approach for a
magnetic texture with cylindrical symmetry to find dynamical
modes [21]. The continuous magnetization profile [Eq. (1)]
and Green’s function tensor are discretized into steps of size
δ′, where δ′ is chosen to be small compared to the spatial
variation of the magnetization along the radial direction. The
vector stray field is

hd(r, z) = Ĝd m(r′), (21)

where Ĝd is the magnetostatic, tensorial, nonlocal, integral
matrix operator

Ĝd =
[

Ârr′ Ârz′

Âzr′ Âzz′

]
. (22)

The tensor sub components are

Âαβ ′ = ĝαβ ′ · diag(r′) · δ′, (23)

where the nonlocal integral operators ĝαβ ′ are discretized ma-
trices (for more details see Appendix A), and diag(r′) is a
square matrix of dimension (R/δ′), with the discrete distances
r′ ranging from δ′ to R − δ′/2 on its diagonal and all other
elements zero. The radius R can be used to represent a finite-
sized magnetic element, or a safe distance from the edge of
a skyrmion that resides in an extended thin film (i.e., R >

Rsk + 2�), the approach used in the examples that follow. The
initial calculation of the matrix, which only needs to be done

once for a given height z, takes a few seconds or less, and the
subsequent evaluations of Eq. (21) take less than a millisecond
for a typical calculation.

B. MFM signal

The force on an MFM tip is proportional to ∂hd,z/∂z. This
is a point dipole approximation, which is usually sufficient
to compare to experimental data and also serves as the basis
for models that account for the dipole nature of the tip. The
derivatives of the relevant tensor components are

∂gzz′ (r′, z)

∂z
= 1

2
[v002(|z|) − v002(|z − L|)] (24)

and

∂gzr′ (r′, z)

∂z
= −1

2
[v012(|z|) − v012(|z − L|)] (25)

with

v002(α) = 2
(
γ 2

2 (1 − p2)2 − 5α2 − 3α2 p2
)

πγ 5
2 (1 − p2)3

K (p2)

− 4
(
γ 2

2 (1 − p2)2 − 4α2(1 + p2)
)

πγ 5
2 (1 − p2)4 E (p2), (26)

v012(α) = 2α
(
γ 2

2 + 7γ 2
1 − 5r′2 − 3r′2 p2

)
πr′γ 5

2 (1 − p2)3
K (p2)

+ 2α
(
8r′2(1 + p2) − p2γ 2

1 − γ 2
2 − 14γ 2

1

)
πr′γ 5

2 (1 − p2)4 E (p2).

(27)

Expressed as a matrix calculation, the MFM signal is

∂hd,z

∂z
= [

∂Âzr′
∂z .

∂Âzz′
∂z

]
m(r′). (28)

PYTHON code that implements the described methods to
calculate the stray magnetic field and the MFM signal is
included in Ref. [27].

C. Micromagnetic simulations

Micromagnetic simulations were performed using MU-
MAX3 [26] to obtain stray field and MFM signal profiles to
compare with the 1D matrix-based calculations. The simu-
lations were conducted by relaxing a Néel skyrmion in zero
magnetic field in a single magnetic layer of thickness L = 1
nm. Parameters similar to those of a Pt/Co/Ir trilayer film
were used: Ms = 1.1 × 106 A/m, Aex = 1.0 × 10−11 J/m2, a
perpendicular magnetocrystalline anisotropy of Ku = 1.15 ×
106 J/m3, and an interfacial DMI of −2.1 mJ/m2. This
leads to a relaxed Néel skyrmion that is stable at remanence.
The magnetization profile [essentially identical to Fig. 1(b)],
stray field, and MFM profiles were calculated and all exhibit
cylindrical symmetry. The skyrmion radius was found to be
Rsk = 145.7 nm, which relaxed slightly to 136.8 nm for the
simulations conducted to calculate the MFM profile, with a
domain wall width of � = 4.8 nm in both cases. These values
were used in the semianalytic matrix method to predict the
stray field above the skyrmion.
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FIG. 2. Comparison of 1D (a) stray field and (b) MFM signal
profiles extracted from fits to micromagnetic simulations, and from
matrix-based calculations done using the two skyrmion fit parame-
ters, Rsk and �, and the analytical magnetization profile [Eq. (1)].
The matrix calculations in (a) are at h = 3.5 nm and the simula-
tions are averaged across a 1-nm-thick cell, centered at the same h
value. For (a) and (b), Rsk = 145.7 and 136.8 nm, respectively, and
� = 4.8 nm and ℘ = +1 for both.

IV. RESULTS

Firstly, we will compare the results of the semianalytical
calculations to the MuMax results to validate the matrix ap-
proach. Secondly, we will explore the stray magnetic fields
and expected MFM signals for two different scenarios: (i)
Néel skyrmions of both chiralities and a Bloch skyrmion in
a single layer and (ii) a multilayer skyrmion (in three layers)
where the wall type evolves with depth. As shown in Ref. [6],
the character of a skyrmion wall can evolve from Néel to
Bloch types as a function of depth in multilayered films such
that a vortex-type configuration is realized in a cross-sectional
slice through the skyrmion wall. This reduces the net demag-
netization energy of the skyrmion spin texture and can hence
be energetically favorable if the exchange coupling between
the magnetic layers is relatively weak.

Figure 2(a) shows 1D profiles of the stray field for z =
4.5 nm (that is at a height h = z − L = 3.5 nm above the
film) obtained from MUMAX and calculated using the matrix
method and the skyrmion magnetization profile shown in
Fig. 1(b). Figure 1(b) shows the magnetization profiles gener-
ated using Eq. (1), which is almost indistinguishable from the

magnetization extracted from the relaxed skyrmion from the
MUMAX simulations, with Rsk and � values given in the fig-
ure caption. Figure 2(b) shows the MFM signal at h = 30
and 50 nm. These results were calculated separately and
the skyrmion relaxed slightly to a smaller radius of Rsk =
136.8 nm, which was used to calculate the MFM profiles. In
Fig. 2, the matrix-based calculations agree very well with the
MUMAX results. We note that the MUMAX MFM signal was
scaled by a factor of 1/2, which reflects a difference in the
definition of the MFM signal [the results shown in Fig. 2(b)
match numerical calculations of ∂hd,z/∂z]. There is a slight
discrepancy in the peak Hd,r values, which is likely because
the MUMAX stray field is averaged across a 1-nm-thick cell
centered at height h, whereas the matrix method yields hd at a
specific h.

The matrix-based approach was used to examine several
scenarios to illustrate the variation in the field and the MFM
signals expected for problems of interests. First, a magnetic
skyrmion in a Co thin film with L = 1 nm is considered. Here
we have focused on larger bubble-type skyrmions so that the
fields in the skyrmion center and above the skyrmion wall
can be distinguished, but the method works equally well for
smaller pointlike skyrmions. The stray magnetic fields above
and below a skyrmion with Rsk = 145.7 nm and � = 4.8 nm
are shown in Fig. 3. The individual contributions Hd,rr and
Hd,rz shown in panel (a) are the contributions to Hd,r due to
the r and z components of the magnetization, respectively, and
Hd,zr and Hd,zz are similarly the contributions to Hd,z due to mr

and mz, respectively. The contributions due to mz dominate,
but for a Néel wall, the contributions from mr are also sizable.

For a Bloch wall, mr = 0 so the magnitudes of Hd,r and
Hd,z are the same above and below a Bloch skyrmion [see
yellow dotted and blue dashed lines in Figs. 3(b) and 3(c)]
and are independent of the skyrmion chirality, whereas for a
Néel wall the fields above and below the skyrmion differ in
magnitude by more than a factor of three (solid pink line and
dot-dashed green line). The magnetic field at the center of the
skyrmion is in the z direction and has the same magnitude
independent of the wall type (Bloch or Néel) for this large,
bubble-type skyrmion. For smaller Rsk values, the wall contri-
butions will overlap with the skyrmion center and this leads
to differences in the magnitude of hd,z for the two skyrmion
types. As illustrated in Figs. 3(b) and 3(c), measurements of
the stray field above and below a skyrmion would provide a
means to unambiguously identify the wall type.

Experiments are typically set up so that it is possible to
obtain the stray field above but not below the spin texture.
Further to this point, we compare stray field profiles above
Néel walls of both chiralities and Bloch walls in Fig. 4. Fig-
ure 4 shows Hd,r , Hd,z signals for Bloch and Néel walls of
both chiralities in parts (a) and (b). Some of these lines repre-
sent the same data as presented in Fig. 3, however here, one
explicitly sees the difference between Néel walls of clockwise
versus counterclockwise chirality, and how they may possibly
be discerned from one another using stray field analysis or the
MFM signal (Fig. 4). In all three cases, the signal magnitude
above the skyrmion wall differs substantially depending on
the wall type. The shapes of the MFM profiles are very similar,
independent of wall type, however, so if it is only possible to
scan above the film, identification of the wall type/chirality
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FIG. 3. (a) Matrix calculations of the stray field contributions at
h = 10 nm above a Néel skyrmion with Rsk = 145.7 nm and � =
4.8 nm. (b) Hd,r and (c) Hd,z are shown a distance of h = 10 nm above
and below the surface of the magnetic layer, for a Néel (ψ = 0) and
a Bloch (ψ = π/2) skyrmion.

requires the ability to quantitatively measure the magnitude
of the stray field above the skyrmion wall. As shown in the
insets of Fig. 4, there are differences in how the magnitude
of Hd,r decreases as a function of h, in the full-width at half
maximum (FWHM) of the Hd,r profile (namely, the Néel+
wall has a wider stray field profile compared to the others for
the same �), and in the peak/dip ratios of the Hd,z signals that
can also be used to identify the domain wall type.

Obtaining the stray magnetic field from the magnetization
is a linear problem [Eq. (21)], which suggests that linear
inversion techniques may provide a means to obtain the mag-
netization profile directly from stray field measurements made
at one or more heights. Indeed an inversion of the form
m = Ĝ−1

d hd perfectly recovers the original magnetization pro-
file from a calculated stray field profile, as expected. In order
to determine if this approach will work on experimental data,
we constructed synthetic datasets hdat by adding 10% noise

FIG. 4. (a) r and (b) z components of the stray magnetic fields
above a magnetic skyrmion at h = 10 nm and (c) the corresponding
MFM signal at h = 50 nm. Calculated profiles are shown for Néel
skyrmions of both chiralities (dashed and dash-dot lines) where the
sign in the legend indicates the sign of mr within the domain wall,
and for a Bloch skyrmion (solid lines). The top inset of (a) shows
Hd,r at the maximum field value, marked in the main plot by the pink
dotted line, vs h where the Hd,r values are normalized to the value
at h = 5 nm for the corresponding wall type. The bottom inset of
(a) shows the FWHM of Hd,r . In (b), the top inset shows the ratio of
Hd,z magnitudes at the peak and dip—shown by the black arrows in
the main figure—and the bottom inset shows the ratio of Hd,z at the
positive peak to Hd,z at r = 0 nm.

to stray field profiles. A single-height dataset, calculated for
h = 10 nm, and a four-height dataset (h = 5, 10, 15,
and 20 nm) were considered, where the first two heights
of the four-height dataset for a Néel+ skyrmion are
shown in Fig. 5(a). The magnetization profiles obtained by
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FIG. 5. (a) The first two heights (h = 5 and 10 nm) of a synthetic
dataset hdat constructed using calculated Hd,r and Hd,z profiles at
h = 5, 10, 15, and 20 nm for a Néel+ wall (ψ = 0) with Rsk =
145.7 nm and � = 4.8 nm with 10% white noise added. Best fits
(solid lines) as well as high and low modeled profiles (dot-dashed
and dashed) are also plotted. The high and low profiles correspond to
two edge points of the dark best-fit parameter region in (b), namely,
(ψ, �) of (0 rad, 6.35 nm) and (0 rad, 3.55 nm). The residual
F − Fmin as a function of � and ψ for (b) a Néel+ skyrmion, (c) a
Bloch skyrmion with ψ = π/2, and (d) a Néel- skyrmion are shown
for the best fit Rsk values (all within 0.5 nm of the actual value,
145.7 nm). In all cases, the synthetic datasets were generated using
� = 4.8 nm with 10% white noise added. (e) Shaded-in contours for
the four-height fits from (b)–(d) are displayed in dark blue, and the
contours for corresponding single-height fits are shown in a lighter
shade. The symbols (* and triangles) show the minima of F for the
four-height and single-height fits (h = 10 nm), respectively.

inverting hdat directly unfortunately bear little resemblance to
the original m. Two other linear inversion approaches, singu-
lar value decomposition and the conjugate gradient method,
were tested and the latter provides a reasonable match to the
magnetization profile, but the recovered mr is noisy and it
is difficult to unambiguously identify the wall type from the
inverted profiles.

Another approach that can be reliably used to obtain the
wall type and width is illustrated in Fig. 5. Model magnetiza-
tion profiles mmodel, parameterized in terms of Rsk, �, and ψ ,
are constructed using Eq. (1) and a goodness of fit parameter
is then calculated using

F = (hdat − Ĝd mmodel )
T (hdat − Ĝd mmodel ). (29)

The minimization of F with respect to the three parameters
can be done using any suitable optimization routine. Here
we use a grid search technique. Figures 5(b)–5(d) show F
(colored contours) as a function of � and ψ for synthetic

datasets constructed using three different wall types, in all
cases with Rsk = 145.7 nm and � = 4.8 nm, and Fig. 5(e)
summarizes the contours that correspond to a reasonable fit
for all three wall types. As shown in Fig. 5(e) the wall types
are distinguishable when a single height is used (lighter con-
tour), and additional heights can reduce the uncertainty in
the recovered parameters (darkest shading). The best fit Rsk

values are within <0.5 nm of the value used to construct the
model datasets; based on a comparison of the modeled stray
field profile and the synthetic dataset, the skyrmion radius is
resolved to within 1–1.5 nm for a dataset with a 10% noise
level.

The three-dimensional structure of spin textures is of
increasing interest in magnetism, especially since recent mea-
surements show that the wall type can evolve with depth
in a multilayer film [6]. Figure 6 shows calculations of the
stray magnetic field at h = 10 nm [panels (a) and (b)] and
the MFM signal at h = 50 nm [panel (c)] above a skyrmion
that penetrates through a three-layer magnetic thin film. Three
layers with L = 1 nm are considered with 1-nm of space
between each magnetic layer. The magnitude of the stray field
and its gradient are larger for a skyrmion that has one Néel
wall of each chirality and one Bloch wall (green and blue
lines) as compared to a skyrmion that has Néel walls (ψ = 0,
dashed purple lines) of the same chirality in all layers. There
is also a difference in the magnitude of the stray magnetic
field depending on whether the ψ = 0 Néel wall is on the
top or the bottom, but this difference is small compared to
the difference that arises based on whether or not there is a
change in the wall type within the structure. As shown in the
insets of Fig. 6, there are differences in how both components
of the stray field magnitudes and the full-width at half max-
imum (FWHM) of the Hd,r profile vary with h that can be
used to distinguish between the three considered spin distri-
butions (N+/N+/N+, N+/B/N−, and N−/B/N+). These
calculations indicate that MFM and nitrogen-vacancy (NV)
magnetometry measurements, especially NV measurements
made at several heights, may be used to discern the internal—
and not just the surface—magnetic structures of multilayered
skyrmions.

We discuss here the plausibility of using MFM and NV
magnetometry to probe skyrmions in the context of our
calculations. NV center magnetometry is an advanced and
noninvasive technique that can be used to detect stray mag-
netic fields with a magnetic field sensitivity of a few nanotesla
[28]. It should be possible to determine not only the number
of layers of a particular type in a multilayer film but also
the ordering of the wall types within the layers with this
technique. MFM is also a highly sensitive technique and has
been used to measure the magnetic moment of individual
magnetic nanoparticles with diameters of 4.8 nm and with net
moments as low as around 1.85 × 10−20 A m2 using an AC
field-modulated approach [29]. It has also been used to image
synthetic antiferromagnetic skyrmions that have a small net
magnetic moment [30]. Tip-sample interactions can compli-
cate the imaging of spin textures by MFM but with a careful
analysis this can provide a means to quantify lateral interac-
tion forces [18]. Based on the data shown in these papers, it
should be possible to determine the number of layers of a par-
ticular type using MFM, but while determining the ordering
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FIG. 6. (a) r and (b) z components of the stray magnetic fields
at h = 10 nm and (c) the corresponding MFM signal at h = 50 nm
for a set of skyrmions with in three magnetic layers of thickness
L = 1 nm separated by 1 nm. The stray fields and MFM signals
are shown for three cases: three Néel skyrmions with mr > 0, and
depth-dependent evolution of the wall type from top to bottom of
Néel+/Block/Néel−, and Néel−/Bloch/Néel+. As in Fig. 4, the
insets of (a) show Hd,r at the maximum field value normalized to the
value at h = 5 nm for the corresponding wall type and the FWHM of
Hd,r vs h, and the insets of (b) show the ratio of Hd,z magnitudes at
the peak and dip and the ratio of Hd,z at the positive peak to Hd,z at
r = 0 nm vs h.

of the wall types within the layers may be possible it would
likely be challenging. For both experimental techniques, the
rapid calculations presented here will be useful for extracting
information from measured data, with Rsk, �, and angle ψ the
only fit parameters to be adjusted.

V. CONCLUSIONS

In conclusion, we have demonstrated a matrix-based semi-
analytical method that can be used to obtain exact magnetic

fields and field gradients above spin textures with cylindri-
cal symmetry. For magnetic skyrmions, both the r and the z
components of Hd differ considerably, by more than a factor
of three in magnitude, depending on the skyrmion wall type
and chirality, and the stray magnetic field also changes mea-
surably when the wall type evolves with depth. Hence, this
method can aid in unraveling the spin texture structure not
just in single-layer structures but in more complex material
stacks with 3D spin textures that vary through the thickness.
We show how an approach that minimizes a goodness of fit
parameter with respect to the three skyrmion parameters, Rsk,
�, and ψ , a calculation that benefits from the rapid matrix-
based method, provides a means to unambiguously identify
the skyrmion wall type and obtain the uncertainty in the
skyrmion parameters from fields measured above the sample.
The presented approach is considerably faster than micromag-
netic simulations, hence we anticipate that this method will be
useful for analyzing and fitting data obtained using nitrogen
vacancies in diamond and magnetic force microscopy, where
for the latter it can easily be extended to incorporate the shape
of the magnetic tip if needed. PYTHON code is provided to
facilitate the use of this method in Ref. [27].
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APPENDIX A: DEFINITIONS OF MATRIX OPERATORS

The integral Green’s function matrix operators Âαβ in
Eq. (22) are N × N matrices with r entries as rows, and r′
entries as columns, where each is discretized with a cell size
of δ = δ′. The magnetization m(r′) is a column vector of
length 2N with the radial components (N values) followed by
the out-of-plane component (another N values). The matrix
operator Ârr′ elements are

Arr′,i j = grr′ (ri, r′
j ) r′

j δ
′, (A1)

where the distances are ri = (i − 1/2)δ and r′
j = ( j − 1/2)δ′.

Similar expressions are used for gzz′ , gzr′ , and grz′ . Because grr′

changes rapidly near r = r′, the diagonal and near-diagonal
terms of the demagnetization kernels were numerically inte-
grated over each cell to obtain the average value within the
cell

Ārr′,i j = 1

r′
jδ

′

∫ r′
j+δ′/2

r′
j−δ′/2

grr′ (ri, r′
j ) r′ dr′. (A2)

Note that the matrices Âαβ are not entirely symmetric because
the integrated elements differ for r < r′ and r > r′. The cells
with r′

j = r′
N are integrated out to ∞ to approximate the ef-

fects of an extended thin film with a uniform magnetization,
or out to the structure boundary for a finite cylindrical disk.

APPENDIX B: SCALING OF THE MATRIX CALCULATION

The operation count to multiply a matrix with dimensions
m × p by a vector of length p is 2mp. If n is the length of each
of the 1D mr and mz vectors, the length of m(r′) is 2n and the
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1D calculation will scale as 2(2n)(2n) = 8n2, assuming one
magnetic layer and a single height. The demagnetization field
calculation step in a 2D MuMax-type simulation can be set
up as a matrix multiplication of the same form as Eq. (21),
for example, by arranging the magnetization for a skyrmion
in a film with a similar area and the same cell sizes as the 1D
calculation as a vector of the form [mx,1, my,1, mz,1, mx,2, . . . ]
of length 3n2. The stray field operator matrix Ĝd is then a
3n2 × 3n2 matrix, and the operation count to obtain the 2D
stray field at a single height is 18n4. Hence for the same n,

the 2D calculation will take 2.25n2 times longer than a 1D
calculation that covers a comparable area. This is significant,
representing a factor of roughly 2 × 105, for the example
shown in Fig. 5, which uses n = 300. Fast Fourier transform
algorithms are often used in micromagnetics, in which case
the 2D algorithm scales as N log2(N ) rather than N2, where
N = 3n2 is the total number of cells. The time savings are
then more modest but still significant especially for situa-
tions where multiple layers and/or measurement heights are
considered.
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