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Theory for the spin caloritronic nano-oscillator
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Auto-oscillations of the magnetization in ferromagnetic hybrid nanostructures driven by spin currents pro-
duced by a variety of processes have attracted attention for their challenging physics and possible applications,
such as microwave assisted magnetic recording, neuromorphic computing, and chip to chip wireless communi-
cations. Of particular interest are applications in which the spin current is produced by a thermal gradient in the
configuration of the spin Seebeck effect, because it makes it possible to harvest the thermal energy generated in
nanodevices. A few years ago, it was demonstrated experimentally that in a simple bilayer made of a thin film of
the insulating ferrimagnet yttrium iron garnet in contact with a platinum layer, the application of a temperature
difference across the bilayer produced a coherent microwave auto-oscillation. This device was called a spin
caloritronic nano-oscillator. Here we show that these experiments are explained quantitatively by a theory based
on a mechanism in which one magnon in the spin current splits into two magnons, one of them being the magnon
mode resonating at the nanostructure. The theoretical value of the critical temperature gradient necessary to
overcome the magnetic damping to produce auto-oscillations is in good agreement with the one employed in the
experiments.
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I. INTRODUCTION

The continuing discoveries of unusual phenomena in-
volving the interplay of charge, spin, and heat currents,
keep opening new frontiers in spintronics offering good op-
portunities for basic research and potential technological
applications. The two most studied spintronic phenomena in
hybrid structures made of a magnetic insulator (MI) and a
normal metal (NM) are the spin-pumping [1–3] and the spin
Seebeck effects [4,5]. The spin-pumping effect (SPE) consists
of the generation of spin currents by precessing spins in a
ferromagnetic layer into an adjacent metal layer with strong
spin-orbit scattering [6,7], while the spin Seebeck effect (SSE)
refers to the generation of spin currents by thermal gradients
in a MI layer [4,5,8–13]. The two most usual manifestations
of the SPE are the conversion of the spin current into a charge
current in the NM by the inverse spin Hall effect (ISHE)
[14–20] and the additional damping of the magnetization in
the MI layer due to the angular momentum carried by the spin
current through the interface [6,7]. Similarly, the spin current
generated in the SSE can be detected either by the charge
current created by means of the ISHE along an adjacent NM
layer [4,5,8–13] or by the change in the magnetization damp-
ing of the MI layer [21–27]. In one remarkable experiment,
Safranski and co-workers were able to obtain full compensa-
tion of the damping by injecting a thermally generated spin
current into the MI layer so as to achieve a spin caloritronic
nano-oscillator [27].
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The increased damping of a MI layer due to an outflow-
ing spin current produced by microwave-driven SPE has an
important reciprocal effect; namely, an inflowing spin current
can decrease and even cancel the net damping so as to generate
oscillations in the magnetization. The control of the magne-
tization damping produced by a spin current created by the
conversion from a charge current in a NM layer through the
spin Hall effect has been observed in many systems [28–38].
In this case, the experimental results are accounted for quan-
titatively by a model in which the effect of the spin current
enters into the Landau-Lifshitz-Gilbert equation in the form
of an antidamping spin-transfer torque [34,39,40]. In the case
of spin currents generated by a thermal gradient in the SSE
flowing out or into a MI, several mechanisms have been
proposed for the increase or decrease of the damping. The
first mechanism considers that the change originates in the
magnon spin current created in the bulk of the MI film by
the SSE, which, depending on the sign of the gradient, adds
to or subtracts from the spin-pumping current through the
interface [41]. The second mechanism is based on the direct
action on the magnetization of the antidamping spin-transfer
torque created by the spin current generated in the SSE [24].
Another mechanism considers that the magnons are driven
by the phonon heat current created by the thermal gradient
[42]. Finally, Ref. [43] proposes a mechanism in which the
magnon modes of interest are excited by thermally activated
magnons in the ferromagnet, driven by a spin Seebeck effect,
by means of a three-magnon process, similar to the one in the
theory presented here, but with a different magnon interac-
tion. It turns out that, as we show in Sec. II, none of these
four mechanisms can explain quantitatively the experimental
results.
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In this paper, we present a theory for the spin caloritronic
nano-oscillator driven by magnonic spin currents created by
thermal gradients in the SSE based on a process in which
one magnon in the spin current splits into two magnons.
We consider that the magnons in the mode resonating in
the nanostructure are driven by magnons in the spin cur-
rent by means of a three-magnon splitting process mediated
by the dipolar interaction, with conservation of energy and
momentum. The theoretical value of the negative damping
produced by the temperature gradient comfortably explains
the damping compensation observed experimentally. In Sec. II
we show that previously proposed models for the antidamping
mechanisms do not explain quantitatively the experimental
results. Sections III and IV are devoted to the formulation of
the theory for magnon pumping by the three-magnon split-
ting process driven by the magnonic spin current. In Sec. V
we compare the results of the theory with the temperature
gradients used in the experiments of the spin caloritronic
nano-oscillator and present the conclusions.

II. CONSIDERATIONS ABOUT PREVIOUSLY
PROPOSED MODELS

One model proposed [41] for the control of the magnetic
damping in a bilayer made of a ferromagnetic insulator (FMI)
in contact with a normal metal (NM) by a thermal gradient re-
lies on the magnonic spin-current theory for the spin Seebeck
effect [12,13]. The authors consider a FMI/NM bilayer under
microwave driving that excites a coherent magnon with wave
number k and frequency ωk and a thermal gradient across the
thickness. They show that the bulk magnon spin current gener-
ated through the spin Seebeck effect superimposes to the spin
current at the FMI/NM interface created by the magnetization
dynamics that produces the spin-pumping damping, so that
the total relaxation rate is

ηT = ηk + γ h̄ωkg↑↓
eff

4πMtFMI

(
1 − τkvkcT

M
∇yT

)
, (1)

where ηk is the intrinsic coherent magnon relaxation rate, γ is
the gyromagnetic ratio, M and tFMI are the FMI magnetization
and thickness, g↑↓

eff is the spin-mixing conductance of the inter-
face, τk and νk are the coherent magnon relaxation time and
velocity, ∇yT = ∂T /∂y is the amplitude of the temperature
gradient, and cT = −∂M/∂T . The second term in Eq. (1) is
the net spin-pumping damping which, depending on the sign
of the temperature gradient, can be increased or decreased due
to spin current produced by the thermal gradient. Although
this result explains quantitatively some experimental observa-
tions of the effect of a thermal gradient on the magnon damp-
ing in the insulating ferrimagnet yttrium iron garnet (YIG)
[25], it cannot account for the full damping compensation
necessary for the operation of the spin caloritronic nano-
oscillator.

Another mechanism proposed for the control of the mag-
netic damping by a thermal gradient is based on the concept
of spin-transfer torque (STT) [44]. The FMI magnetization
dynamics under the action of the STT produced by the spin
current �JS with polarization σ̂ created by the SSE is governed

by the Landau-Lifshitz-Gilbert equation [24,29],

d �M
dt

= γ �M × �Heff + α

M
�M × d �M

dt

− γ
JS

M2tFMI

�M × ( �M × σ̂
)∣∣∣

int
, (2)

where �Heff is the total effective field acting on the magneti-
zation of the FMI layer with thickness tFMI, α is the Gilbert
damping parameter, and the last term represents the STT at
the interface. Comparison of the last two terms in Eq. (2)
shows that the effect of the torque is to change the magnetic
relaxation rate by

�η = −γ
JS

MtFMI
. (3)

In the SSE, the spin current at the FMI/NM interface is
proportional to the temperature gradient across the bilayer,
JS = CS∇yT , so that the variation in the relaxation rate due
to the thermal gradient is given by

�η = −γ
CS

MtFMI
∇yT . (4)

The parameter CS can be obtained directly in a SSE ex-
periment with a FMI/NM bilayer, since the charge-current
density JC measured in the NM layer is related to the spin
current by JC = θH JS . For a YIG/Pt bilayer, using the param-
eters CS = 5×10−10 erg/K cm, calculated from the measured
SSE voltages [12,13], M = 144 G, tFMI = 23 nm, and γ =
1.76×107 s−1 Oe−1, we obtain for the variation of the relax-
ation rate due to a thermal gradient,

�η = −23.5 ∇yT s−1 K−1 cm. (5)

This result shows that with a typical gradient of 200 K/cm
in a YIG/Pt bilayer, the variation in the damping is only
4.95×103 s−1, which is much smaller than the magnetic re-
laxation rate of at least 107 s−1.

The mechanism proposed in Ref. [42] for the magnon
instability accompanied by microwave emission in a MI/NM
bilayer driven by a temperature gradient is based on the
change in the magnon lifetime by the phonon heat current.
The authors demonstrate that the magnon instability occurs
upon suppression of the umklapp scattering at low tem-
peratures, leading to microwave emission. This mechanism
does not explain the experiments of Ref. [27] demonstrating
the spin caloritronic nano-oscillator because the experiments
were carried out at room temperature. Also, the material
used in the MI layer is yttrium iron garnet (YIG), that has
a small magnon-phonon interaction. Finally, as mentioned in
the Introduction, in the mechanism proposed in Ref. [43], the
magnon modes undergoing instability are excited by magnons
in the spin current produced in the MI layer in the spin See-
beck effect by means of three-magnon scattering, similarly
to the mechanism presented in Sec. III. However, the theory
has several ingredients that hinder its ability to explain the
spin caloritronic oscillator experiments. First, it considers a
three-magnon confluence process, in which two thermally
excited magnons are annihilated and one instability magnon
is created. Since the driven magnons in the experiments of
Ref. [27] have a small wave number and the three-magnon
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FIG. 1. Illustration of the ferromagnetic insulator (FMI)/normal
metal (NM) bilayer and coordinate axes used to formulate the theo-
retical model for the microwave oscillator produced by the thermally
generated magnonic spin current in the configuration of the spin
Seebeck effect.

process must conserve energy and momentum, the thermally
activated magnon modes in the spin current occupy a very
small volume in the center of the Brillouin zone, making the
process quite inefficient. The second difficulty of the theory
is that it considers the anisotropy energy as the source of the
magnon-magnon interaction, and further that the magnetiza-
tion is misaligned relative to the main crystalline axes so as
to break the SU(2) symmetry and produce a torque. It turns
out that in YIG the anisotropy field is much smaller than the
magnetization, so that the contribution of the anisotropy to
the three-magnon scattering is much smaller than the dipolar
interaction considered here. In summary, none of the four
mechanisms proposed earlier can explain quantitatively the
spin caloritronic nano-oscillator experiments of Ref. [27].

III. MAGNONIC SPIN CURRENT GENERATED
BY A THERMAL GRADIENT

The mechanism proposed here for the spin caloritronic
oscillator involves the magnon flow in the spin current in a
ferromagnetic insulator created by a thermal gradient. Thus,
in this section, we review the theory for the spin Seebeck
effect based on the thermal magnonic spin current [12,13,45].
Initially, we calculate the distribution in configuration space
of the magnon distribution in the spin current. Consider the
FMI/NM bilayer illustrated in Fig. 1, in the presence of a
temperature gradient normal to the plane and with a static
magnetic field H applied in the plane. The spin current in the
FMI is carried by spin waves (magnons) with wave vector �k
and energy h̄ωk . Call nk the number of magnons with wave
number k in the volume V of the FMI layer, n0

k the number in
thermal equilibrium, given by the Bose-Einstein distribution,
n0

k = 1/[exp(h̄ωk/kBT ) − 1], and δnk = nk − n0
k the number

in excess of equilibrium. The magnon accumulation δ nm,
defined as the density of magnons in excess of equilibrium
[46,47], is

δnm(y) = 1

(2π )3

∫
d3k

[
nk (y) − n0

k

] = 1

(2π )3

∫
d3kδnk .

(6)

The magnon spin-current density with polarization z, �Jz
S ,

related to the magnetization current �Jz
M by �Jz

S = �Jz
M/γ , can be

written as

�Jz
S (y) = h̄

(2π )3

∫
d3k�vk

[
nk (y) − n0

k

]
, (7)

where �vk is the k-magnon velocity. The distribution of the
magnon number under the influence of a thermal gradient can
be calculated with the Boltzmann transport equation (BTE).
In the absence of external forces and in the relaxation approx-
imation, in steady state BTE gives

nk (y) − n0
k = −τk�vk · ∇nk (y), (8)

where τk is the k-magnon relaxation time. Using Eq. (8) in (7)
one can show [12,13,45] that the spin current is the sum of
two parts, �Jz

S = �Jz
S∇T + �Jz

Sδn, where

�Jz
S∇T = − h̄

(2π )3

∫
d3kτk

∂n0
k

∂T
�vk (�vk · ∇T ) (9)

is the contribution of the temperature gradient and

�Jz
Sδn(y) = − h̄

(2π )3

∫
d3k τk �vk[�vk · ∇δ nk (y)] (10)

is due to the spatial distribution of the magnon accumulation.
With the temperature gradient ∇T normal to the plane, Eq. (9)
gives the spin current in the y direction,

Jz
S∇T = −Sz

S∇yT, (11)

Sz
S = h̄

(2π )3T

∫
d3kτkv

2
ky

exx

(ex − 1)2 , (12)

where T is the average temperature and x = h̄ωk/kBT is the
normalized magnon energy. Equation (10) represents a spin
current due to the spatial variation of the magnon occupation
number, so it can be written as a diffusion current,

Jz
Sδn(y) = −h̄Dm

∂

∂y
δnm(y), (13)

where Dm is the diffusion parameter to be calculated. Consid-
ering the conservation equation,

∂

∂y
Jz

Sδn(y) = −h̄
δnm(y)

τmp
, (14)

where τmp is the time it takes for the magnon system to relax to
the phonon temperature, we have in the steady state a diffusion
equation for the magnon accumulation,

∂2δnm(y)

∂y2
= δnm(y)

l2
m

, (15)

where lm is the diffusion length, related to the diffusion param-
eter by Dm = l2

m/τmp. The solutions of Eq. (15) can be written
as

δnm(y) = A cosh [(y + tFMI)/lm] + B sinh [(y + tFMI)/lm].
(16)
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Using (16) in Eq. (13) we obtain the total y component of
the z-polarized magnon spin-current density in the FMI,

Jz
S (y) = −Sz

S∇yT − h̄
Dm

lm
A sinh [(y + tFMI)/lm]

− h̄
Dm

lm
B cosh [(y + tFMI)/lm], (17)

where the coefficients A and B are determined by the boundary
conditions set by conservation of the angular momentum flow
that requires continuity of the spin currents at the FMI/NM
interface (y = 0), and Jz

S = 0 at the substrate/FMI interface
(y = −tFMI). The spin current is injected into the NM layer
by means of the spin pumping produced by the magnetization
dynamics associated to the thermal magnon accumulation at
the interface [12,13]. Notice that the presence of the NM
layer provides a means for the flow of the spin current and
is essential for its existence. In spin Seebeck experiments the
NM layer is used as a detector of the thermally generated spin
current that is converted into a charge current by means of the
inverse spin Hall effect. With the boundary conditions, one
obtains the relations between the coefficients A and B with
the magnon accumulation at the FMI/NM interface and from
Eq. (18) one finds the spin-current density at the interface
[13,45],

JS (0) = −CS∇yT, (18)

where we have omitted the superscript z for simplicity, and
the spin Seebeck coefficient is given by

CS = F
B1Bs

(B0B2)1/2 ρg↑↓
eff , (19)

where ρ is a factor that represents the effect of the finite FMI
layer thickness, given by

ρ = cosh(tFMI/lm) − 1

sinh(tFMI/lm)
, (20)

such that ρ ≈ 1 for tFMI � lm and ρ ≈ 0 for tFMI � lm. The
factor F in (19) depends on material parameters and universal

constants,

F = γ h̄kBτ 1/2
mp τ

1/2
0 k2

mωZB

4πMπ2
√

3
, (21)

where ωZB is the zone boundary magnon frequency, km is the
value of the maximum wave number assuming a spherical
Brillouin zone, τ0 is the lifetime of magnons near the zone
center (k ≈ 0), and the parameters B in Eq. (19) are given by
the integrals

Bs =
∫ 1

0
dqq2sin2

(
πq

2

)
exx

ηq(ex − 1)2 , B1 =
∫ 1

0
dqq2 x2

ex−1
,

(22)

B0 =
∫ 1

0
dqq2 x

ex − 1
, B2 =

∫ 1

0
dqq2sin2

(
πq

2

)
x

ηq(ex−1)
.

(23)

In Eqs. (22) and (23) q = k/km is a normalized wave
number and ηq = ηk/η0 is an adimensional relaxation rate.
Numerical calculation of these integrals with the magnon
dispersion relation for YIG [12]

ωk = ωZB

(
1 − cos

πq

2

)
, (24)

using ωZB = 4.4×1013 s−1, τ0 = 0.5×10−7 s, and the magnon
relaxation rate of Ref. [12] gives Bs = 0.0002, B0 = 0.617,
B1 = 0.23, and B2 = 0.000 16. Using in Eqs. (19) and (21)
these values, as well as km = 1.74×107 cm−1, τmp = 10−12 s,
and g↑↓

eff = 1014 cm−2 for a YIG/Pt bilayer, we obtain for
the coefficient of the thermal spin-current density in Eq. (19)
CS = 4.9×10−8 erg/K cm, which is in excellent agreement
with the value measured experimentally, used in Sec. II.

A very important quantity for us here is the magnon accu-
mulation in the FMI, given by Eq. (16). With the expressions
for the coefficients in (16) calculated with the boundary con-
ditions one can show that the variation with y of the magnon
accumulation in the FMI is [12,13]

δnm(y) = lmCS∇yT

h̄Dm

{[
ρ(tFMI/lm)

sinh(tFMI/lm)
+ tanh(tFMI/lm)

]
cosh [(y + tFMI)/lm] − sinh [(y + tFMI)/lm]

}
. (25)

Using the coefficients in Eq. (18) one obtains for the variation of the spin-current density in the FMI,

JS (y) = −CS∇yT {1 + tanh(tFMI/lm) sinh [(y + tFMI)/lm] − cosh [(y + tFMI)/lm] − tanh [(y + tFMI)/lm]}. (26)

The variations of the magnon accumulation and spin-
current density along the direction perpendicular to the sample
plane calculated with Eqs. (25) and (26) for a FMI with
tFMI = lm are shown in Fig. 2.

IV. MECHANISM FOR MAGNON PUMPING
BY A MAGNONIC SPIN CURRENT

The mechanism proposed here for driving magnons con-
sists of a three-magnon (3-m) splitting process due to the
dipolar interaction, in which one magnon in the magnonic spin

current splits into two magnons, one of them being the mode
that is in a resonance condition at the sample structure, as
illustrated in Fig. 3. This mode has a wave vector determined
by the sample shape and dimensions, and frequency that
also depends on the applied magnetic field. In samples with
nanometric dimensions, the wave number of the resonating
magnon mode is on the order of k ∼ 106 cm–1, which is near
the center of the Brillouin zone. This mechanism is similar to
the one used to explain the pumping of phonons by magnonic
spin currents [48]. Considering long wavelength magnons in
a cubic ferromagnetic crystal and neglecting the effect of the
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FIG. 2. Variations of the magnon accumulation (a) and spin-
current density (b) along the coordinate normal to the sample plane.

surfaces, the dipolar interaction gives for the 3-m Hamiltonian
[49–51],

H (3)
dip ≈ −gμB

πM√
2SN

∑
k1,k2,k

�(�k1 − �k2 − �k)

× [(
sin 2θk2 e−iϕk2 + sin 2θkeiϕk

)
c†

k1
ck2 ck + H.c.

]
,

(27)

where we have used M = gμBSN/V . For the 3-m splitting
process we have

H3m =
∑

k1,k2,k

(
V3mc†

k1
c†

k2
ck + V ∗

3mck1 ck2 c†
k

)
�(�k1 − �k2 − �k),

(28)
where V3m is originated by the dipolar interaction (27). In this
process, a magnon with wave vector �k1 splits into a thermal
magnon �k2 to generate a third magnon �k, conserving momen-
tum and energy. Note that the four-magnon interaction also
contributes to the change in the magnon damping. However,
the four-magnon interaction arising from the dipolar energy
is of higher order compared to Eq. (28) and the one arising
from exchange is small for magnon modes in the center of the
Brillouin zone [49–51]. Also, the three-magnon interaction
arising from the anisotropy energy is nonzero only for the
magnetization misaligned with the crystal axes, and in YIG
it is much smaller than the dipolar one.

The probability that one magnon of the nk mode is created
in this process can be calculated with first-order perturbation
theory. The matrix element that corresponds to this process is,
with the Hamiltonian (28),〈

nk1 − 1, nk + 1, nk2 + 1
∣∣H3m

∣∣nk1 , nk, nk2

〉
= [

nk1 (nk + 1)(nk2 + 1)
]1/2

(V3m). (29)

Thus, the probability per unit time for the number of
magnons nk to increase by one unit, given by the Fermi

FIG. 3. Illustration of three-magnon splitting process.

“golden rule,” is

Wnk→nk+1 = 2π

h̄2

∑
k2

(2V3m)2[nk1(nk + 1)(nk2 + 1)]

× δ(ωk1 − ωk − ωk2), (30)

where the sum runs only over �k2 because of the momentum
conservation relation �k1 = �k + �k2. The factor 2 is due to the
fact that the mode k of interest can be either one of the
created pair. The reverse process by which the number of
magnons decreases by one unit is calculated in a similar man-
ner, so that the time rate of change of the magnon number is
given by

dnk

dt
= Wnk→nk+1 − Wnk→nk−1. (31)

Thus, we find that the rate of change for the number of
magnons in mode �k to increase by means of the magnon
splitting process is

dnk

dt
= 2π

h̄2

∑
k2

(2V3m)2[nk1(nk + 1)(nk2 + 1)

− nknk2(nk1 + 1)]δ(ωk1 − ωk − ωk2). (32)

Introducing the excess in the magnon number of the pump-
ing mode 1 and considering that the magnon mode 2 is in
thermal equilibrium, omitting the ks in the subscript to sim-
plify the notation, Eq. (32) gives

dnk

dt
= 2π

h̄2

∑
k2

(2V3m)2[(nk + 1)δn1 + δn1n̄2 + (nk + 1)

× n̄1(n̄2 + 1) − nkn̄2(n̄1 + 1)]δ(ω). (33)

In thermal equilibrium dnk/dt = 0, so that we have the
following relation for the thermal numbers (n̄k +1)n̄1(n̄2+1)
− n̄k n̄2(n̄1 + 1) = 0. Actually, this relation follows directly
from the expression for the Bose-Einstein distribution.
Thus, we can add this null result to Eq. (33), which
becomes

dnk

dt
= 2π

h̄2

∑
k2

(2V3m)2[(nk + 1)δn1 + 2δn1n̄2

+ (nk − n̄k )n̄1(n̄2 + 1) − (nk − n̄k )n̄2(n̄1 + 1)]δ(ω).

(34)

Note that if there is no spin-current pumping, δn1 = 0 and
this equation becomes

dnk

dt
= −(nk − n̄k )

2π

h̄2

∑
k2

(2V3m)2

× [n̄2(n̄1 + 1) − n̄1(n̄2 + 1)]δ(ω), (35)

which is consistent with the equation for the relaxation rate
for the three-boson splitting process [49–51]. Since the wave
number of the pumped magnon mode in experiments is on
the order of 106 cm–1 and the magnons involved have a wave
number ∼107 cm–1, we consider that k2 = k1 − k ≈ k1. We
also consider that the magnon mode population n2 is not
perturbed much from thermal equilibrium, so that n2 ≈ n̄2.
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Thus, leaving the damping term out, Eq. (35) becomes

dnk

dt
= nk

2π

h̄2

∑
km

(2V3m)2δnk2δ(ωk1 − ωk − ωk2). (36)

This expression can be written in the form

dnk

dt
= αknk, (37)

where

αk = 8π

h̄2

∑
km

V 2
3mδnk2δ(ωk1 − ωk − ωk2), (38)

V3m ≈ −γ h̄
2πM√

2SN
, (39)

showing that the three-magnon interaction can drive the
magnon population exponentially in time. In (39) we have
used an approximate expression for the vertex of the 3-m
interaction neglecting its dependence on the angles of the
wave vectors. Thus, the rate of magnon pumping becomes

αk = 16π

h̄2 γ 2h̄2 π2M2

SN

∑
km

δnk2δ(ωk1 − ωk − ωk2). (40)

Replacing the sum by an integral in the Brillouin zone,
using

1

N

∑
k

→ �

(2π )3

∫
d�k, (41)

we have

αk = γ 216π3M2

S

a3

(2π )3

∫
d�k2δnk2δ(ωk1 − ωk − ωk2), (42)

that has the dimension of time−1, as it should. In order
to evaluate the time rate of magnon pumping we need
first to calculate the distribution of the relevant magnons
in the magnonic spin-current wave vector space. For this,
we consider for the magnon number a small deviation
from the equilibrium distribution in the form nk (�r) = n0

k +
n0

k[1 + λkg(�r)], such that λk in the lowest order of energy
is chosen so as to eliminate the singularity at εk = h̄ωk = 0
[13,45]. This is

nk (�r) = n0
k + n0

kεkg(y), (43)

where g(y) is a spatial distribution determined by the solution
of the boundary-value problem. Substitution in Eq. (6) shows
that

δnm(y) = I0g(y), (44)

where g(y) is a function obtained from Eq. (25) and I0 is a
parameter given by the integral

I0 = 1

(2π )3

∫
d3kn0

kεk . (45)

Using the relation (44) in (42) we have for the magnon
pumping rate,

αk (y) = δnm(y)
γ 216π3M2

S

a3

(2π )3

Iδ
I0

, (46)

where

Iδ = 1

(2π )3

∫
d�k2n0

k2εk2δ(ωk1 − ωk − ωk2). (47)

The calculation of (47) requires some approximations.
First, note that it can be written as

Iδ = 1

(2π )2

∫
k2

2dk2

∫ 1

−1
d (cos θ2)n0

k2εk2δ(ωk1 − ωk − ωk2).

(48)
Since most contribution to the integral comes from in-

termediate values of k in the Brillouin zone, we can use
the approximate quadratic dispersion relation for magnons
[49–51],

ωk = γ [(H + Dk2)(H + Dk2 + 4πMsin2θk )]1/2, (49)

where H is the applied magnetic field, D is the exchange
parameter, and θk is the angle between the wave vector and
the field. We can also consider that H + Dk2 � 4πMsin2θk

so that

ωk ≈ γ (H + Dk2 + 2πMsin2θk ). (50)

For the evaluation of Eq. (48) we replace the delta function
in frequency by

δ(ωk1 − ωk − ωk2) ≈ δ(ωk1 − ωk2)

=
∑

i

δ(cos θ2 − a j )

|d (ωk1 − ωk2)/d cos θ2| , (51)

where a j are the roots of (ωk1 − ωk2) = 0, given by

a j = ±
[

Dk2
2 − Dk2

1

2πM
+ cos2θ1

]1/2

. (52)

Using momentum conservation �k1 = �k2 + �k, considering
k1, k2 � k, and that the spin current flows perpendicularly to
the in-plane field, so that θ1 ≈ π/2, one can show that the
roots are, approximately, aj = ±(Dk2/2πM )1/2. Thus, using

d

d cos θ2
(ωk1 − ωk2) = γ 4πM cos θ2, (53)

the integral over the angle in Eq. (48) becomes
∫ 1

−1
d (cos θ2)δ(ωk1 − ωk − ωk2) = 2[γ (8πMDk2)

1/2
]
−1

.

(54)
Using this result in Eq. (48) we obtain

Iδ = 1

γ (8πMD)1/2k
I0, (55)

where k is the wave number of the pumped magnon, which
is determined by the dimension of the resonating structure in
the sample. Equation (46) shows that the time rate of magnon
pumping varies in space, because so does the magnon accu-
mulation carried by the spin current. Considering tFMI � lm,
Eq. (25) gives a relation between the magnon accumulation
and the temperature gradient,

δnm(0) = lmCS∇yT

h̄Dm
. (56)
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Finally, using the relations (45), (55), and (56) in Eq. (46)
we obtain an expression for the pumping rate in terms of the
temperature gradient,

αk = 2gT ∇yT, (57)

where

gT = CSlmω2
Ma2

16πSkh̄DmωD
, (58)

and the frequency parameters are defined by

ωM = γ 4πM, ωD = γ
(
8πMDk2

m

)1/2
, (59)

where km = π/a is the radius of the spherical Brillouin zone.
In the presence of a magnonic spin-current pumping, the

time dependence of the magnon population is

nk (t ) = nk (0)e(αk−2ηk )t , (60)

where ηk is the magnon relaxation rate. Thus, in an experi-
ment with a FMI/NM bilayer sample under a thermal gradient
applied perpendicularly to the plane, Eqs. (57) and (60) re-
veal that if the temperature gradient is increased above the
critical value ∇yTcrit = ηk/gT , the magnon population initially
with thermal values grows exponentially in time. The magnon
mode excited corresponds to a standing spin wave, with wave
number k determined by a relevant dimension of the sample,
similarly to a laser. The frequency of the excited magnon
mode varies with k0 and with the magnetic field intensity,
as in Eq. (49). Note that as the pumped magnon population
increases in time, the four-magnon interactions come into play
to produce two important consequences. These are the satu-
ration of the pumped magnon population and the induction
of quantum coherence in the magnon states, similar to the
behavior of a current-driven spin-torque nano-oscillator [52].

V. COMPARISON WITH EXPERIMENTS
IN YIG/Pt AND CONCLUSIONS

In order to compare the results of the theory with ex-
periments, we consider a YIG/Pt sample such as the one
sketched in Fig. 1, with the dimensions of the sample used
by Safransky et al. [27]. The sample consists of a YIG
strip with thickness 23 nm, lateral width of 350 nm, and
15 μm long, grown on a 0.5 mm thick gadolinium gallium
garnet (GGG) substrate, onto which an 8 nm Pt layer is de-
posited. We use for YIG the following parameters: 4πM =
1760 G, a = 1.24×10−7 cm, S = 2.5, γ = 1.76×107 s–1,

CS = 4.9×10−8 erg/cm K, Dm = 6.6 cm2/s, lm = 10−4 cm,
D = 5.4×10−9 Oe cm2, km = π/a = 2.53×107 cm−1, and
k = π/d = 1.36×106 cm−1, where d = 23 nm is the YIG
thickness. With these values and the frequency parameters
ωD = 3.86×108 s−1 and ωM = 3.1×1010 s−1, calculated with
Eq. (59), we obtain with Eq. (58) gT = 1.6×105 s−1 K−1cm.
Considering the ferromagnetic resonance linewidth measured
in Ref. [27], �H = 1.6 Oe, the relaxation rate of the pumped
magnon can be taken as ηk = γ �H = 2.8×107 s−1. Thus,
the critical temperature gradient necessary to achieve full
damping compensation is

∇yTcrit = ηk

gT
= 175 K/cm. (61)

This value is obtained in a sample with total thickness of
0.5 mm by a temperature difference of only 9 K, similar to the
ones used in the experiments of Ref. [27].

In conclusion, we have presented a theoretical formulation
for the magnon pumping by thermally induced magnonic
spin currents that explains quantitatively the experimental
observation of microwave generation in a spin caloritronic
nano-oscillator, performed with bilayer samples made of a
YIG film strip covered by a platinum layer under a thermal
gradient [27]. The thermal gradient produces a magnonic
spin current that flows across the thickness of the YIG film
and injects magnons into the film. We have shown that a
mechanism in which one magnon in the spin current splits
into two magnons, one of them being the magnon mode
resonating at the nanostructure, can effectively decrease the
damping. If the temperature gradient overcomes the magnon
damping, magnons with a certain frequency in the microwave
range are excited, resulting in an auto-oscillation. The crit-
ical temperature gradient calculated with the theory is in
good agreement with the values used in the realization of the
spin caloritronic nano-oscillator. From a fundamental physics
point of view, our results represent an important step in the
research of the interconversion of heat and spin degrees of
freedom. Our findings also might provide an additional boost
in the development of spintronic devices for information and
communication technologies.
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