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Over the last decade, the interest in the spin-1/2 Heisenberg antiferromagnet (HAF) on the square kagome
(also called shuriken) lattice has been growing as a model system of quantum magnetism with a quantum
paramagnetic ground state, flat-band physics near the saturation field, and quantum scars. A further motivation
to study this model comes from the recent discovery of a gapless spin liquid in the square kagome magnet
KCu6AlBiO4(SO4)5Cl [M. Fujihala et al., Nat. Commun. 11, 3429 (2020)]. Here, we present large-scale
numerical investigations of the specific heat C(T ), the entropy S(T ), as well as the susceptibility χ (T ) by
means of the finite-temperature Lanczos method for system sizes of N = 18, 24, 30, 36, 42, 48, and N = 54.
We find that the specific heat exhibits a low-temperature shoulder below the major maximum which can be
attributed to low-lying singlet excitations filling the singlet-triplet gap, which is significantly larger than the
singlet-singlet gap. This observation is further supported by the behavior of the entropy S(T ), where a change
in curvature is present just at about T/J = 0.2, the same temperature where the shoulder in C sets in. For the
susceptibility the low-lying singlet excitations are irrelevant, and the singlet-triplet gap leads to an exponentially
activated low-temperature behavior. The maximum in χ (T ) is found at a pretty low temperature Tmax/J = 0.146
(for N = 42) compared to Tmax/J = 0.935 for the unfrustrated square-lattice HAF signaling the crucial role
of frustration also for the susceptibility. We find a striking similarity of our square kagome data with the
corresponding ones for the kagome HAF down to very low T . The magnetization process featuring plateaus
and jumps and the field dependence of the specific heat that exhibits characteristic peculiarities attributed to the
existence of a flat one-magnon band are discussed as well.

DOI: 10.1103/PhysRevB.105.144427

I. INTRODUCTION

The spin-1/2 Heisenberg antiferromagnet (HAF) ex-
hibits Néel semiclassical magnetic long-range order on most
of the two-dimensional (2D) lattices. Among the 11 2D
Archimedean tilings [1,2], only the celebrated kagome lattice
and the so-called star lattice have nonmagnetic spin-liquid
ground states [3–9]. Both lattices have low coordination num-
ber z, and they are highly frustrated. A non-Archimedean
lattice without magnetic long-range order is the square
kagome (sometimes also called shuriken) lattice [10–13].
Similar to the kagome lattice it is a 2D tiling of corner-
sharing triangles, i.e. the classical ground state of the square
kagome Heisenberg antiferromagnet (SKHAF) is highly de-
generated. There are two non-equivalent sites A and B and
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nearest-neighbor bonds J and J ′, see the inset in Fig. 1. In
our paper we will focus on the balanced situation J = J ′ = 1
which is most similar to the kagome HAF. The corresponding
Hamiltonian augmented with a Zeeman term is given by

H∼ = J
∑

<i, j>

�s∼i · �s∼ j + gμB B
∑

i

s∼
z
i , (1)

where quantum mechanical operators are marked by a tilde.
Over the last decade, the interest in the spin-1/2 SKHAF

has been growing as a model system of quantum magnetism
with a quantum paramagnetic ground state as well as flat-band
physics near the saturation field and quantum scars [13–25].
It is expected that the low-energy physics of the SKHAF is
just as fascinating as for the related kagome HAF. While it
is not questioned that the strong frustration prevents ground-
state magnetic ordering, the specific nature of the quantum
ground state is under debate. Thus, a recent Schwinger-boson
approach leads to a topological spin-liquid ground state with
weak nematicity and a small gap [22], whereas a variational
Monte Carlo study is in favor of a gapped pinwheel valence-
bond crystal state [25]. Previous exact-diagonalization studies
seem to also suggest a finite singlet-triplet gap (spin gap)
[12,13], though this issue seems as yet unresolved. However
and again similar to the kagome HAF [26–28], there are many
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FIG. 1. Main panel: Modified Wilson ratio P, cf. Eq. (3), of the
spin-1/2 SKHAF (N = 42) compared with respective data of the
kagome HAF (N = 42) and square-lattice HAF (N = 40). Note that
the data for N = 36 (not shown) practically coincide with the data
for N = 42. Note further that corresponding data for N = 36 for the
kagome and the square-lattice HAF where previously presented in
Ref. [47]. Inset: Sketch of the square kagome lattice. Here A and B
label the two nonequivalent sites and J and J ′ label the two nonequiv-
alent nearest-neighbor bonds. All calculations are preformed for the
balanced case J ′ = J .

low-lying singlet excitations filling the singlet-triplet spin gap
[12]. In addition to the zero-field properties, the magnetiza-
tion process is of particular interest. Prominent features of
the magnetization curve M(B) are a wide plateau at 1/3 of
the saturation magnetization Msat and a jump to saturation
with a preceding plateau at (2/3)Msat [12,13]. A further moti-
vation to study this model comes from recent experimental
investigations. A gapless spin liquid was dicovered in the
square kagome magnet KCu6AlBiO4(SO4)5Cl [29,30] which
is, however, not a well-balanced (i.e., J �= J ′) SKHAF; rather
in this compound three different exchange couplings are rel-
evant. For Na6Cu7BiO4(PO4)4[Cl, (OH)]3 measurements of
the magnetization as well as of the heat capacity indicate the
absence of long-range order which might be a signal of spin
liquid behavior [30,31].

While almost all previous studies of the SKHAF are fo-
cused on ground-state properties, the thermodynamics of the
model is much less investigated. Only, in the early paper
Ref. [32] the specific heat was calculated by a simple renor-
malization group approach. In our paper we want to fill
this gap of missing finite-temperature studies of the spin-1/2
SKHAF by large-scale numerical simulations of finite lattices
of up to N = 54 sites (see Fig. 11 in the Appendix) by means
of full exact diagonalization [33] and of the finite-temperature
Lanczos method (FTLM) [34–42]. We will use the well inves-
tigated kagome HAF as reference system when discussing the
data of the SKHAF.

The very existence of an excitation gap is crucial for low-
temperature thermodynamics at low temperatures T . Thus,
a singlet-triplet gap leads to an exponentially activated low-
temperature behavior of the susceptibility, whereas low-lying
nonmagnetic singlet excitations are relevant for the specific
heat. As indicated by previous Lanczos data for finite lattices

up to N = 36 sites [12] similarly to the kagome HAF we
may expect a small singlet-triplet gap filled with a noticeable
number of singlet states.

It is appropriate to mention here, that for smaller cluster
sizes some related data have already been reported in previous
works. That concerns (i) the zero-temperature magnetzation
curves shown in Sec. III B, cf. Refs. [12,13]. However, here
we add some new data for larger lattice sizes of N = 48 and
N = 54 sites and we present the finite-size dependence of
the widths of the magnetization plateaus. Furthermore, (ii)
it concerns the specific heat in strong magnetic fields near
saturation. In Ref. [12] one can find related specific-heat data
for much smaller sizes of N = 18 and N = 24. In our paper
we show specific-heat data up to N = 54.

The paper is organized as follow. In Sec. II we introduce
our numerical scheme, in Sec. III we present our results for
the SKHAF and compare them with corresponding data for
kagome HAF. In the last Sec. IV we discuss and summarize
our findings. For convenience we show the finite lattices con-
sidered here in the Appendix.

II. CALCULATIONAL SCHEME

The investigated spin system is modeled by the spin-1/2
Heisenberg Hamiltonian given in Eq. (1). The complete spec-
trum for the spin-half system can be calculated only for the
smallest finite lattice of N = 18 spins. For larger systems we
perform full diagonalization in high sectors of magnetization
M (e.g., for N = 42 in subspaces with M = 16, . . . , 21). The
obtained exact energy spectrum yields the contribution of
these M sectors to the partition function Z (T, B).

For subspaces that are not accessible by full exact diag-
onalization we use the FTLM [34,35,43,44], which provides
approximations of thermodynamic quantities with remarkable
accuracy [36,37,42]. Within the FTLM scheme the sum over
an orthonormal basis in the partition function is replaced by a
much smaller sum over R random vectors:

Z (T, B) ≈
�∑

γ=1

dim(H(γ ))

R

R∑

ν=1

NL∑

n=1

e−βε (ν)
n |〈 n(ν) | ν 〉|2 .

(2)

Here the | ν 〉 label random vectors for each symmetry-related
orthogonal subspace H(γ ) of the Hilbert space, where γ

denotes the respective symmetry. In Eq. (2) the exponential of
the Hamiltonian is approximated by its spectral representation
in a Krylov space spanned by the NL Lanczos vectors starting
from the respective random vector | ν 〉, where | n(ν) 〉 is the
nth eigenvector of H∼ in this Krylov space. This method is

known to provide accurate data for typical observables such as
magnetization, uniform magnetic susceptibility and specific
heat, see, e.g., Ref. [42].

Naturally, we take into account the commutation of the
Hamiltonian H∼ with the z component of the total spin S∼z =
∑

i s∼
z
i to decompose the full Hilbert space into much smaller

orthogonal subspaces which can be labeled by the magneti-
zation M = 〈S∼z〉. For a further decomposition of the Hilbert

space by employing lattice symmetries we use Jörg Schulen-
burg’s publicly available spinpack package [45,46].
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FIG. 2. (a) Specific heat of the SKHAF as function of tem-
perature for various systems sizes (logarithmic temperature scale).
Lattice structures for N = 24, 30, 36, 42 as in Ref. [18], also see
the Appendix. The red arrow shows the emergence of the shoulder
in C(T )/N . (b) Specific heat of the SKHAF and the kagome HAF
(N = 42) as function of temperature (linear temperature scale).

For the number of random vectors R used to approxi-
mate the partition function we chose at least R = 20 which
is sufficiently large to ensure very accurate FTLM data, cf.
Refs. [39,40]. However, for N = 42, where the largest Hilbert-
space dimension is NH = 7.34 × 1010, we used R = 5 in the
subspaces of M = 0 (that contains the ground state and the
lowest energy levels), R = 2 for M = 1 and M = 2, and then
R = 10 for 2 < M < 16. This strategy was used already in
Ref. [39], where also the accuracy of this approach was
evaluated.

III. THE SQUARE KAGOME LATTICE
ANTIFERROMAGNET

In what follows we discuss the Wilson ratio, the density of
states, the specific heat, the uniform susceptibility, the entropy
and the magnetization process.

A. Zero-field properties

First we study the modified Wilson ratio [47,48]

P(T ) = 4π2T χ/(3S), (3)

FIG. 3. Histogrammed density of states of the N = 42 SKHAF
(solid curves) and the kagome HAF (dashed curves) as a function
of the respective excitation energy E∗: total density of states, black,
total density of states for |M| = 1, red, for |M| = 2, green, and for
|M| = 3, blue (curves from left to right). For technical details, see
Ref. [50].

where χ is the uniform magnetic susceptibility and S is the
entropy. It measures the ratio of the density of magnetic
excitations with M > 0 and the density of all excitations
including singlet excitations with M = 0. As demonstrated
for the kagome HAF [47,48], a vanishing P as temperature
T → 0 is a hallmark of quantum spin-liquid ground state
with dominating singlet excitations at low T . On the other
hand, for quantum spin models with semiclassical magnetic
ground-state order, such as the square lattice HAF the Wilson
ratio diverges as P(T → 0) ∝ T η, η � 1.

In Fig. 1 we show the Wilson ratio for the N = 42 SKHAF
in comparison with the N = 42 kagome HAF (both with
nonmagnetic spin liquid ground state) as well as for the N =
40 square-lattice HAF (with a magnetically ordered ground
state). The striking accordance of the kagome and square
kagome data is obvious signaling the dominance of singlets
as T → 0. This behavior is in agreement with the findings
reported in Ref. [12] where a noticeable number of singlets
was found below the first triplet excitation.

Next we discuss the specific heat C(T ), the entropy S(T )
and the uniform susceptibility χ (T ). We use a logarithmic
scale for T that makes the low-temperature features transpar-
ent, see Figs. 2(a), 4(a), and 5(a). In corresponding panels
(b) we compare kagome and square kagome results using a
linear temperature scale. The position Tmax = 0.67 and height
Cmax = 0.189N of the main maximum of C(T ), set by the
exchange coupling J = 1, coincide for both models [49].

Below T ∼ 0.2 the curvature of C(T ) changes and a shoul-
derlike profile or an additional low-temperature maximum
appears for 0.05 � T � 0.2. The very existence of such an
unconventional low-temperature feature below the main max-
imum seems to be size-independent, where the shrinking
height of the low-T maximum with growing N [marked by the
red arrow in Fig. 2(a)] indicates that there will survive rather
a shoulder than an additional maximum in the thermody-
namic limit. At very low temperatures the singlet excitations
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FIG. 4. (a) Entropy of the SKHAF as function of temperature for
various systems sizes (logarithmic temperature scale). (b) Entropy of
the SKHAF and the kagome HAF (N = 42) as function of tempera-
ture (linear temperature scale).

dominate the temperature dependence of C. For N = 36 and
N = 42 the singlet-singlet gap is the smallest and therefore C
remains nonzero even below T ∼ 0.01.

In Fig. 2(b) we compare C(T ) of the SKHAF and of the
kagome HAF for N = 42. There is an almost perfect coin-
cidence down to T = 0.3. Below this temperature deviations
between the curves are obvious, which can be attributed to
subtle details in the low-energy singlet excitation spectrum
(see also the discussion of the susceptibility given below,
where singlet excitations do not play a role). However, the
shoulderlike profile is present in both systems, whereas the
sharp low-T peak in C(T ) below the shoulder observed
for the kagome HAF is absent for the SKHAF. Note that
very recently such a shoulder of the low-temperature specific
heat has been found in the kagome quantum antiferromagnet
YCu3(OH)6Br2[Brx(OH)1−x] [51].

To shed light on the relevance of low-lying excitations of
different sectors of M for the low-temperature behavior of
C(T ) we show the contributions of the different sectors of
total magnetization M to the density of states n(E∗) as a func-
tion of the respective excitation energy E∗ in Fig. 3, where
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FIG. 5. (a) Susceptibility of the SKHAF as function of tem-
perature for various systems sizes (logarithmic temperature scale).
(b) Susceptibility of the SKHAF and the kagome HAF Heisenberg
antiferromagnet (N = 42) as function of temperature (linear temper-
ature scale).

n(E∗) is calculated by histograming the Krylov space energy
eigenvalues in combination with their respective weights. The
dominance of the singlet excitations below E∗ ∼ 0.1 is obvi-
ous. This observation is further supported by the behavior of
the entropy S(T ) as shown in Fig. 4(a), where a change in the
curvature is present just at about T = 0.2. As for the specific
heat finite-size effects become visible below about T = 0.2.
The comparison of the S(T ) profiles of the kagome HAF and
SKHAF, see Fig. 4(b), confirms again the striking similarity
of both models up to pretty low T .

Next we turn to the zero-field susceptibility χ displayed in
Fig. 5. As shown in Fig. 3 the relevant singlet-triplet gap (spin
gap) is significantly larger than the singlet-singlet gap leading
to an exponentially activated low-temperature behavior. Since
the singlet-triplet gap shrinks with growing N , cf. Ref. [13],
this feature sets in at lower T as increasing N . However, the
question of a finite spin gap as N → ∞ seems to be not clari-
fied so far. Since the nonmagnetic singlet excitations are irrel-
evant for the susceptibility, the temperature profiles of χ of the
SKHAF and the kagome HAF show an excellent agreement
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FIG. 6. Magnetization of the SKHAF for various lattice sizes and
T = 0 (main panel) and width of plateaus (inset).

also below T = 0.3, where the specific heat starts to deviate
for both models. As already discussed in Refs. [39,52] for the
kagome HAF, the maximum in χ (T ) is at a pretty low tem-
perature Tmax = 0.146 (for the N = 42 SKHAF) compared to
Tmax = 0.935 for the square-lattice HAF [53,54], thus signal-
ing the crucial role of frustration also for the susceptibility.

B. Field-dependent properties

The magnetization process of strongly frustrated quantum
magnets exhibits a number of interesting features, such as
plateaus and jumps [55]. We start with a brief discussion of
the ground-state magnetization curve M(B) of the SKHAF,
see Fig. 6. In previous studies [12,13] M(B) curves have
been reported for N = 18, 24, 30 and 36. Here we add new
data for N = 42 (full M(B) curve), 48 (N/2 � M � 11) and
54 (N/2 � M � 14). The saturation field gμBBsat = 3 is the
same as for the kagome HAF. Magnetization plateaus exist
at 1/3 and 2/3 of the saturation magnetization Msat for the
infinite system at T = 0. The widths W of the plateaus are
pretty large. From our data we estimate W1/3 ≈ 0.368Bsat

and W2/3 ≈ 0.123Bsat (see the inset in Fig. 6), which is
larger than corresponding plateau widths of the kagome HAF
[56,57]. Moreover, there is the typical macroscopic jump to
saturation due to the presence of independent localized mul-
timagnon eigenstates stemming from a flat one-magnon band
[58–62]. Its existence is analytically proven and it does not
exhibit finite-size effects [58,59]. The very existence of a
flat one-magnon band is connected with destructive quantum
interference which is related to the geometric structure of
corner-sharing triangles. To get an imperession of the band
structure of the one-magnon excitations above saturation we
refer the reader to Ref. [63], where the band structure is shown
for a fermionic model on the square kagome lattice which is
closely related in terms of the one-particle spectrum.

Similar to the kagome HAF, see [56,57,64], the plateau
states of the spin-half SKHAF are nonclassical valence bond
states. In the upper plateau it is the exactly known magnon-
crystal state built of one-magnon states on the squares and
z-aligned spins on intermediate A sites on the connecting
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FIG. 7. Magnetization of the SKHAF for N = 42 and T � 0.

triangles [12,17,58]. The lower 1/3 plateau state is not exactly
known. The inspection of the expectation values 〈s∼

z
i 〉 and

〈�s∼i · �s∼ j〉 provides strong evidence that the squares carry an

almost perfect singlet state and again the spins on intermediate
sites are z aligned. We find that the total spin on a square
〈�S∼

2
square〉 = ∑

i, j∈square〈�s∼i · �s∼ j〉 = 0.06 is close to zero and the

local z components of spins on A and B sites 〈s∼
z
i∈A〉 = 0.454

and 〈s∼
z
i∈B〉 = 0.023.

We present the influence of the temperature on the mag-
netization curve in Fig. 7. It is obvious that for elevated
temperatures the experimental detection of plateaus becomes
difficult, particularly, if the plateau width is only of moderate
size, see the upper part of the M(B, T ) curve. Moreover, we
notice that the jump of the magnetization to saturation at
T = 0 is washed out already for small temperatures.

To detect plateaus and jumps in experiments the first
derivative dM/dB as a function of T is more suitable, cf., e.g.,
Ref. [65]. We show dM/dB for N = 42 in Fig. 8. We notice
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FIG. 9. (a) Main: Specific heat of the SKHAF for N = 42 and
selected values of B. Inset: M(B) with arrows indicating the values
of B used in the main panel. (b) Finite-size dependence of the specific
heat for B values in the middle of the 1/3 (red lines) and 2/3 (black
lines) plateaus. Note that for N = 48 and 54 lower sectors of Sz

are not taken into account in Eq. (2) with the result that the upper
maximum is not correctly evaluated.

first that the oscillations present for the lowest temperature
T = 0.03 (red curve) are finite-size effects. The plateaus at
1/3 and 2/3 show up as pronounced minima in dM/dB,
however, the detection of such minima requires sufficiently
low temperatures. The jump of the magnetization to saturation
at T = 0 (washed out in the M(B) curve at T > 0) leads to a
high peak in dM/dB at the saturation field. The smaller peak
at the upper end of the 1/3 plateau is related to the enlarged
step (twice as high as the normal finite-size step). Contrary,
to the jump to saturation we may expect that it will disappear
as N → ∞. The melting of the pronounced plateaus at 1/3
and 2/3 with growing temperature happens more rapidly for
the upper 2/3 plateau. Furthermore, the 2/3 plateau melts
asymmetrically, i.e., the minimum in dM/dB is below the
midpoint of the plateau.

The influence of the magnetic field B on the specific heat
C for N = 42 is depicted in Fig. 9(a) for selected B values
as shown in the inset of Fig. 9(a). Below the 1/3 plateau and
at very low temperatures the influence of B is determined by

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 0.5 1 1.5 2

C
m

ax
/N

,T
m

ax

B/Bsat

square kagome, Tmax
square kagome, Cmax

kagome, Tmax
kagome, Cmax

square, Tmax
square, Cmax
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line) of the upper main maximum in C(T ) in dependence on the
magnetic field B shown for the SKHAF of N = 42 sites, the kagome
HAF of N = 42 sites and the square-lattice HAF of N = 40 sites.

the shift of the low-lying magnetic excitations with M = 1, 2
and 3 towards and even beyond the zero-field singlet ground
state. As a result, the low-T shoulder [present for B = 0, line
1 in Fig. 9(a)] may become a low-temperature peak in C(T )
(line 2), where its position and height depends on B. A similar
low-T scenario is observed for B between the 1/3 and the 2/3
plateaus (line 4) and for B above the 2/3 plateau (line 6). A
striking low-T feature for B values inside the plateaus (lines 3
and 5), where the ground state is a valence-bond state (see
above), is the well-pronounced pretty high extra peak. The
extra peak for B within the 2/3 plateau is well-understood.
It is a flat-band effect and is related to the huge manifold of
low-lying localized multimagnon states [19,39,40,61,62,66].
Apparently, it is size independent [see Fig. 9(b)], i.e., it per-
sists for N → ∞. It is worth mentioning the contrast to the
kagome HAF which is related to the different structure of the
respective localized-magnon states. While these states for the
SKHAF are located on isolated trapping cells (squares), the
trapping cells (hexagons) of the kagome HAF are connected
leading to a repulsive interaction of the traps. As a result,
this extra maximum of the specific heat of the kagome HAF
increases with N and in the thermodynamic limit it becomes
a true singularity indicating a low-temperature order-disorder
transition into a magnon-crystal phase [40,61]. For the extra
peak when B is inside the 1/3 plateau there is no straight-
forward explanation. Our data for N = 30, 36, 42 shown in
Fig. 9(b) indicate that there is only a small finite-size effect
and the height of the maximum is slightly growing with N .
We may conclude that most likely it also persists for N → ∞.

Let us turn to the main maximum around T ∼ 1, see
Fig. 9(a). At a first glance, the variation of this maximum
around T ∼ J seems to be not very systematic. However, as
discussed for the kagome HAF [39] the effect of B on the
main maximum of C is influenced by the huge manifold of
localized-magnon (flat-band) states. We compare the height
Cmax and the position of the main maximum Tmax for the
N = 42 SKHAF, the N = 42 kagome HAF and the N = 40
square-lattice HAF in Fig. 10. At low magnetic fields the
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value of Tmax is determined by J and the coordination number
z and therefore the behavior of Tmax is very similar for all
models. While Cmax remains almost constant until B ∼ 0.8Bsat

and then it increases smoothly for B > Bsat the variation
of Tmax as a function of B is more pronounced. It exhibits
two maxima at B = 0 and B ≈ 1.1Bsat and two minima at
B ≈ 0.5Bsat and B ≈ 1.4Bsat as well as two regions with an
approximately linear increase of Tmax. Again, the remarkable
agreement of the SKHAF and the kagome HAF is obvious.
On the other hand, the difference to the square-lattice HAF in
Cmax and more pronounced in Tmax is striking. While the dif-
ference in Cmax at low T is related to the different low-energy
physics which affects C at higher T according to the sum rule∫ ∞

0
C(T )
NT dT = ∫ T =∞

T =0
1
N dS = kB ln(2), the different behavior

of Tmax(B) beyond B ∼ 0.5Bsat signals flat-band effects, i.e.,
the exponentially growing number of localized multimagnon
states [66] yields an increase of Tmax up to a noticeable
maximum around B = Bsat. It follows a linear increase of
Tmax above Bsat present in all models which is linked to the
paramagnetic phase.

IV. CONCLUSIONS

In our study we performed large-scale calculations of
thermodynamic quantities such as the magnetization M(T ),
the specific heat C(T ), the entropy S(T ) and the suscepti-
biliy χ (T ) for the highly frustrated spin-half square-kagome
Heisenberg antiferromagnet (SKHAF). For that we used the
finite-temperature Lanczos method (FTLM) applied to seven
different finite lattices including the large lattices of N =
42, 48, and 54 sites, where for N = 48 and 54 only the
thermodynamics near the saturation field was considered.
At zero magnetic field, we find a remarkable accordance of
the thermodynamic properties of the SKHAF with those of
the paradigmatic kagome HAF. Our results for N = 42 and
smaller sizes indicate that the specific heat very likely has
got a low-temperature shoulder instead of an additional low-
temperature maximum. There is also a considerable influence
of frustration on the susceptibility and on the entropy. Thus
we find a noticeable shift of the maximum of χ (T ) to low
T compared to two-dimensional unfrustrated HAFs, and, the
entropy per site S(T )/N acquires about 40% of its maximum
value ln 2 already at T/J ∼ 0.1.

Other interesting properties of the SKHAF are related to
the magnetization process in an applied magnetic field B.
There are two well pronounced plateaus at 1/3 and 2/3 of
the saturation magnetization and a jump from the 2/3 plateau
directly to saturation caused by the flat one-magnon band. The
melting of the plateaus with growing temperature is faster
for the upper 2/3 plateau and it melts asymmetrically. For
magnetic fields inside the plateaus the specific heat shows a
well-pronounced extra peak at low temperatures, which ex-
hibits only small finite-size effects. Furthermore, we find that
the influence of strong frustration is not only visible at low
temperatures T � J , it is also noticeable at moderate (and
high) temperatures T ∼ J . Especially, the presence of a flat
one-magnon band leading to a huge manifold of low-lying
flat-band states yields pronounced effects in the magnetization
process and the temperature dependence of the specific heat at
magnetic fields above B ∼ 0.5Bsat.

Though our investigation of the spin-1/2 SKHAF as a
highly frustrated quantum spin system is of interest in its own
right, it is also motivated by the recent discovery of a spin liq-
uid in the square-kagome magnet KCu6AlBiO4(SO4)5Cl [29],
which exhibits, however, three different exchange couplings.
Moreover, the large variety of magnetic insulators [67,68] as
well as the progress in synthesizing new magnetic molecules
and compounds with predefined spin lattices may open the
window to get access to the observation of the discussed
phenomena.

Bearing in mind the numerous studies of the low-energy
physics of the related kagome HAF we argue that our work
may also stimulate other studies using alternative techniques,
such as tensor network methods, DMRG, numerical linked
cluster expansion or Green’s function techniques [69–73].
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APPENDIX: FINITE SQUARE KAGOME LATTICES USED
FOR THE EXACT DIAGONALIZATION AND THE

FINITE-TEMPERATURE LANCZOS METHOD

Here, we provide the employed lattice structures in Fig. 11.

N=54

N=42

N=48

N=36

N=30N=18 N=24

FIG. 11. Finite lattices used for FTLM. The structures 24, 30, 36,
42 are the same as used in Ref. [18].
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