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Accumulation of magnetoelastic bosons in yttrium iron garnet:
Kinetic theory and wave-vector-resolved Brillouin light scattering
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We derive and solve quantum kinetic equations describing the accumulation of magnetoelastic bosons in an
overpopulated magnon gas realized in a thin film of the magnetic insulator yttrium iron garnet. We show that in
the presence of a magnon condensate, there is a non-equilibrium steady state in which incoherent magnetoelastic
bosons accumulate in a narrow region in momentum space for energies slightly below the bottom of the magnon
spectrum. The results of our calculations agree quite well with Brillouin light scattering measurements of the
stationary non-equilibrium state of magnons and magnetoelastic bosons in yttrium iron garnet.
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I. INTRODUCTION

The theoretical investigation of magnon-phonon interac-
tions in magnetic insulators was initiated by Abrahams and
Kittel [1] in 1952. Over the years the interest in this topic
has waned and often the effect of the phonons on magnons
has been taken into account only implicitly by assuming
that phonons merely serve as a thermal bath and an energy
sink for the magnons. Recently magnon-phonon interactions
have attracted renewed interest in the field of spintronics
[2] where one can now study phenomena, which are dom-
inated by the magnetoelastic coupling [3–10]. Of particular
interest are magnetoelastic bosons, which emerge because
of the hybridization of magnons with phonons and as such
combine properties of both. For example, in a recent se-
ries of experiments [11,12], the spontaneous accumulation
of magnetoelastic bosons during the thermalization of an
overpopulated magnon gas in the magnetic insulator yttrium
iron garnet (YIG) was observed by Brillouin light scatter-
ing spectroscopy. While a phenomenological explanation of
this observation in terms of a bottleneck accumulation effect
was already provided by the authors of Ref. [11], important
questions about the nature of the accumulation remain open.
For example, it is not clear whether the accumulation in the
magnetoelastic mode is coherent. Moreover, in addition to
the magnetoelastic accumulation, in the experiment a magnon
condensate at the bottom of the magnon spectrum was also
observed. As the magnon condensate and the magnetoelastic
boson are energetically nearly degenerate, this raises the ques-
tion of the importance of interactions between these different
types of modes.

The theory of magnons, phonons, and hybrid magnetoe-
lastic bosons in YIG films is already well developed, see for
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example Refs. [4,13,14]. In the present paper, we go beyond
this established theory by developing a kinetic theory for the
coupled magnon-phonon system, which allows us to gain a
complete microscopic understanding of the physical processes
leading to the accumulation of magnetoelastic bosons in YIG
[11,12]. To this end, we derive quantum kinetic equations for
the incoherent distribution functions and condensate ampli-
tudes of the magnetoelastic bosons. We then solve the kinetic
equations numerically to obtain a non-equilibrium steady state
that displays the magnetoelastic accumulation. In the exper-
imental section of this paper, we present new wave vector
resolved Brillouin light scattering results for the magnetoelas-
tic accumulation in YIG, which are in good agreement with
our theoretical predictions.

The rest of this paper is organized as follows: In Sec. II, we
briefly review the theory of magnons and phonons in thin YIG
films; in particular, we discuss the magnetoelastic modes and
the relevant interaction vertices. The quantum kinetic equa-
tions describing the dynamics of the coupled magnon-phonon
system are derived and self-consistently solved in Sec. III; we
also compare our theoretical results with new Brillouin light
scattering measurements. In the concluding Sec. IV we briefly
summarize our results. Finally, in three appendices we present
technical details of the derivation of the magnon-phonon
Hamiltonian in YIG and of the derivation of the relevant
collision integrals using an unconventional method based on
a systematic expansion in powers of connected equal-time
correlations [15,16].

II. MAGNETOELASTIC BOSONS IN YIG

A. Magnons

At room temperature, the low-energy magnetic properties
of YIG can be described by the following effective quantum
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FIG. 1. Geometry of a thin YIG film with thickness d in the
presence of a uniform external magnetic field H = Hez parallel to
the plane of the film. In this paper we consider only the lowest, uni-
form thickness modes with in-plane wave vectors k = ez|k| cos θk +
ey|k| sin θk.

spin Hamiltonian [13,17,18],

Hm = −1

2

∑
i j

∑
αβ

(
Ji jδ

αβ + Dαβ
i j

)
Sα

i Sβ
j − h

∑
i

Sz
i , (1)

where the indices i, j = 1, . . . , N label the sites Ri and R j

of a simple cubic lattice with spacing a ≈ 12.376 Å, and
α, β ∈ {x, y, z} denote the Cartesian components of the spin
operators Si localized at lattice sites Ri. The ferromagnetic
exchange coupling Ji j = J (Ri − R j ) has the value J ≈ 3.19 K
if the lattice sites Ri and R j are nearest neighbors and vanishes
otherwise. Finally, the dipole-dipole interaction tensor is

Dαβ
i j = (1 − δi j )

μ2

|Ri j |3
[
3R̂α

i j R̂
β
i j − δαβ

]
, (2)

where Ri j = Ri − R j and R̂i j = Ri j/|Ri j | is the corresponding
unit vector. The magnetic moment is denoted by μ = 2μB

where μB is the Bohr magneton. The external magnetic field
H = Hez is assumed to be applied in z direction (the classical
ground state is then a saturated ferromagnet with macro-
scopic magnetization also pointing in z direction) and we
denote by h = μH the corresponding Zeeman energy. Having
fixed μ as described above, we may use the value of the
room-temperature saturation magnetization 4πMS = 1750 G
of YIG to determine the effective spin S = Msa3/μ ≈ 14.2
of our spin model [13,18]. This large value of S allows us to
bosonize the spin Hamiltonian (1) via the Holstein-Primakoff
transformation [19] and expand the resulting effective boson
Hamiltonian with respect to the small parameter 1/S. As
described in Appendix A, the quadratic part of the bosonic
Hamiltonian is then diagonalized by transforming to mo-
mentum space and a canonical (Bogoliubov) transformation.
Dropping unimportant constants, this procedure yields the
following quadratic magnon Hamiltonian for YIG:

H(2)
m =

∑
k

εkb†
kbk, (3)

where b†
k creates a magnon with momentum k and energy

dispersion εk. In the thin film geometry shown in Fig. 1,
it is sufficient to work with an effective two-dimensional

FIG. 2. Magnon dispersion εk as a function of wave vector k =
|k| of a YIG film with thickness d = 6.7 μm in a magnetic field H =
145 mT for momenta parallel (blue) and perpendicular (red) to the
magnetic field. Note that for very small momenta perpendicular to
the field, the magnon dispersion relation (4) exhibits an unphysical
negative slope, which we indicate by the shading of the red curve
[21]. We also show the dispersion ωk⊥ = c⊥|k| (dashed green) of the
transverse acoustic phonon mode in YIG.

model in order to describe the lowest magnon band of YIG.
Then the long-wavelength dispersion is well approximated by
[13,14,18,20]

εk = [h + ρsk
2 + (1 − fk)
 sin2 θk]1/2

× [h + ρsk
2 + fk
]1/2. (4)

Here, θk is the angle between the magnetic field and the wave
vector k (see Fig. 1), ρs = JSa2 and 
 = 4πMs are the spin
stiffness and the dipolar energy scale respectively, and

fk = 1 − e−|k|d

|k|d (5)

is the form factor for a film of thickness d . The magnon
dispersion (4) is shown in Fig. 2 for momenta parallel and
perpendicular to the magnetic field and experimentally rel-
evant parameters. Note that in the long-wavelength regime
probed by experiments [11,12], which we aim to describe,
the magnon dispersion (4) of YIG is rather flat. As a con-
sequence, all decay processes, which do not conserve the
number of participating magnons are forbidden by energy
conservation. Thus, there is an (approximate) U (1) symmetry
for low-energy magnons in YIG, which is one of the rea-
sons that magnon condensation is possible in the first place.
Therefore we retain only the number-conserving two-body
magnon-magnon interaction

H(4)
m = 1

N

∑
k1...k4

δk1+···+k4,0
1

4
Uk1,k2;k3,k4 b†

−k1
b†

−k2
bk3 bk4 , (6)

where the interaction vertex Uk1,k2;k3,k4 is explicitly given in
Eq. (A14) of Appendix A.

B. Phonons and magnetoelastic hybridization in YIG

So far, we have considered only the magnon subsystem. In
order to address the accumulation of magnetoelastic bosons,
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we should also take the phonons in YIG into account. At
long wavelengths, the three relevant acoustic phonon branches
of YIG are described by the following quadratic phonon
Hamiltonian:

H(2)
p =

∑
kλ

ωkλ

(
a†

kλ
akλ + 1

2

)
, (7)

where a†
kλ

creates a phonon with momentum k, polarization λ,
and energy ωkλ = cλ|k|, where cλ are the phonon velocities.
It is well known [22,23] that in YIG there are two degenerate
transverse (λ = ⊥1, ⊥2) phonon modes with phonon velocity
c⊥1 = c⊥2 ≡ c⊥ = 3.843 × 105 cm/s, and one longitudinal
(λ = ‖) mode with velocity c‖ = 7.209 × 105 cm/s. Interac-
tions between the phonons can be safely ignored because
of the large mass density ρ = 5.17 g/cm3 of YIG [22]. The
transverse phonon dispersion ωk⊥ is shown in Fig. 2 as a
dashed-green line.

The coupling between the magnons and the phonons arises
both from the dependence of the exchange interaction on the
ionic positions as well as from relativistic effects involving
the charge degrees of freedom, which cannot be taken into
account directly within an effective spin model. As the lat-
ter is usually dominant in collinear magnets at low energies
[22], we opt to derive the magnon-phonon interactions by
quantizing the phenomenological expression for the classical
magnetoelastic energy. This strategy was pioneered by Abra-
hams and Kittel [1] and more recently adopted in Ref. [4].
At long wavelengths, the relevant contribution to the classical
magnetoelastic energy is

Eme = n

M2
s

∫
d3r

∑
αβ

BαβMα (r)Mβ (r)X αβ (r), (8)

where M(r) is the local magnetization, X αβ (r) is the symmet-
ric strain tensor, n = a−3 is the number density of magnetic
ions, and Bαβ are phenomenological magnetoelastic con-
stants. For a cubic lattice, these constants can be written as
Bαβ = δαβB‖ + (1 − δαβ )B⊥, where B‖ = 47.8 K and B⊥ =
95.6 K for YIG [22,24,25]. The magnetoelastic energy (8)
can then be quantized by replacing M(r = Ri ) → μnSi and
expanding the strain tensor X αβ (r) in terms of the phonon
operators akλ and a†

kλ
. This procedure, outlined in Appendix B

and discussed in detail in Ref. [4], yields to lowest order in 1/S
the following Hamiltonian for the hybridization of magnons
and phonons:

H(2)
mp = 1

2

∑
kλ

�kλ(a−kλ + a†
kλ

)bk + H.c., (9)

where H.c. denotes the Hermitian conjugate, and the hy-
bridization vertices �kλ are given explicitly in Eqs. (B6) and
(B7) of Appendix B. Higher order magnon-phonon interac-
tions open up additional decay channels [4,26]. However, for
YIG films the contribution of these processes is generally
several orders of magnitude smaller than the contribution
of the magnon-magnon interaction (6) at long wavelengths
[4,26,27], which justifies neglecting them.

In the following, we will focus solely on the transverse
phonon branches and drop the longitudinal ones, because in
thin YIG films only the two transverse branches hybridize

FIG. 3. Dispersions of magnetoelastic modes in YIG for mo-
menta parallel to the magnetic field: the blue-solid curve represents
the + branch while the red-solid curve represents the – branch. The
blue circle shows the minimum of the dispersion of the + branch and
the red circle marks the point where the dispersion of the – branch
has the same value. The magnon and phonon dispersions in absence
of hybridization are also shown as dotted-purple and dashed-green
line respectively. The film thickness is chosen as d = 6.7 μm and
the magnetic field strength is H = 145 mT.

with the magnons in the experimentally relevant region [4,12].
To describe the magnetoelastic modes, we may furthermore
neglect the nonresonant terms a−kλbk and a†

−kλ
b†

k in the hy-
bridization Hamiltonian (9) as discussed in Refs. [7,11]. In
this approximation, the quadratic Hamiltonian

H(2) = H(2)
m + H(2)

p + H(2)
mp (10)

of the coupled magnon-phonon system can be diagonalized
by the unitary transformation⎛

⎝ bk

ak⊥1

ak⊥2

⎞
⎠ = (φk+,φk−,φkp)

⎛
⎝ψk+

ψk−
ψkp

⎞
⎠. (11)

Here, ψk+, ψk− and ψkp are canonical bosonic annihilation
operators associated with magnetoelastic modes, and the three
column vectors φk+, φk−, φkp are given by

φk± = (2(Ek± − ωk⊥), �k⊥1, �k⊥2)T√
4(Ek± − ωk⊥)2 + |�k⊥1|2 + |�k⊥2|2

, (12a)

φkp = (0,−�∗
k⊥2, �

∗
k⊥1)T√

|�k⊥1|2 + |�k⊥2|2
. (12b)

These vectors can be identified with eigenvectors of the rel-
evant 3 × 3 Hamiltonian matrix. The dispersions of the two
magnetoelastic modes are given by

Ek± = 1
2 [εk + ωk⊥ ±

√
(εk − ωk⊥)2 + |�k⊥1|2 + |�k⊥2|2].

(13)

In Fig. 3 a graph of these dispersions is shown for a YIG film
with experimentally relevant parameters. The diagonalized
quadratic Hamiltonian of the coupled magnon-phonon system
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then takes the simple form

H(2) =
∑

k

[Ek+ψ
†
k+ψk+ + Ek−ψ

†
k−ψk− + ωk⊥ψ

†
kpψkp].

(14)

The purely phononic operators ψkp will not play a role in
the following and are hence discarded. Expressing the quartic
magnon-magnon interaction (6) in terms of the creation and
annihilation operators ψ

†
k± and ψk± of the magnetoelastic

bosons and dropping some subleading intermodal terms (see
below), we obtain

H(4)
m ≈ 1

N

∑
k1...k4

δk1+···+k4,0
1

4

×[U ++++
1,2;3,4 ψ

†
−1+ψ

†
−2+ψ3+ψ4+

+U −−−−
1,2;3,4 ψ

†
−1−ψ

†
−2−ψ3−ψ4−

+U ++−−
1,2;3,4 ψ

†
−1+ψ

†
−2+ψ3−ψ4−

+U −−++
1,2;3,4 ψ

†
−1−ψ

†
−2−ψ3+ψ4+], (15)

where the subscripts 1, 2, . . . represent k1, k2, . . .. The inter-
action vertices are

U ±±±±
1,2;3,4 = (

φ1
−1±

)∗(
φ1

−2±
)∗

φ1
3±φ1

4±U1,2;3,4, (16a)

U ±±∓∓
1,2;3,4 = (

φ1
−1±

)∗(
φ1

−2±
)∗

φ1
3∓φ1

4∓U1,2;3,4, (16b)

and φ1
k± = (1, 0, 0) · φk± are the magnonic components of the

magnetoelastic wave functions defined in Eq. (12a). The ver-
tices U ±±±±

1,2;3,4 describe ++ ⇔ ++ and −− ⇔ −− intramodal
scattering events where the number of each magnetoelas-
tic boson is conserved. They are responsible for the rapid
thermalization of the pumped magnon gas away from the hy-
bridization area. The other class of vertices U ±±∓∓

1,2;3,4 describe
++ ⇔ −− intermodal scattering events where the number of
magnetoelastic bosons in the + or – branch changes by two
while the total number of magnetoelastic bosons is conserved.
Consequently, these processes exchange both energy and par-
ticles between the two magnetoelastic modes and thus are
important for the thermalization of the low- and high-energy
parts of the magnon spectrum. Because of their energy and
momentum conservation constraints, they furthermore lead
to a direct coupling of the region around the bottom of the
magnon dispersion on the + mode and the nearly degenerate
hybridization area of the – mode. Hence, we expect these
intermodal processes to be crucial for the eventual appearance
of a magnetoelastic accumulation.

Note that in Eq. (15) we have followed the ansatz described
in Ref. [11] and dropped two types of subleading intermodal
scattering processes: A +− ⇔ +− process, which does not
change the number of bosons in both branches, as well as
++ ⇔ +− and −− ⇔ −+ processes where the number of
bosons on each branch changes only by one. While these
scattering processes give rise to additional thermalization
channels, we do not expect them to substantially affect the
steady state. The first process only redistributes the bosons
within the two branches, similar to the intramodal scattering.
On the other hand, the second process can lead to an exchange
of bosons between the bottom of the + mode and the energeti-
cally degenerate hybridization area of the – mode. However, to
satisfy energy and momentum conservation, such a scattering
requires the participation of high-energy magnons from the –
branch. Close to the steady state, we generally expect such
processes that also involve high-energy bosons to be less
important than the direct scattering between the low-energy
bosons and the macroscopically occupied condensate.

III. ACCUMULATION OF MAGNETOELASTIC BOSONS

In order to describe the experimentally observed accumu-
lation of magnetoelastic bosons [11,12], we derive in this
section quantum kinetic equations for the single-particle dis-
tribution functions and the condensation amplitudes of the
magnetoelastic modes associated with the bosonic operators
ψk±. The kinetic equations are then solved self-consistently to
obtain a non-equilibrium steady state, which can be compared
with experiments.

A. Quantum kinetic equations

The dynamics of the connected single-particle distribution
function of the magnetoelastic modes,

nk± ≡ 〈ψ†
k±ψk±〉c ≡ 〈ψ†

k±ψk±〉 − |�k±|2, (17)

and the dynamics of the associated condensate amplitude
(vacuum expectation value)

�k± ≡ 〈ψk±〉 (18)

can be obtained from the Heisenberg equations of motion of
the Bose operators ψk±. We write the equation of motion for
the single-particle distribution function in the form

∂t nk± = Ik±, (19)

where Ik± is the relevant collision integral. The derivation
of this collision integral is outlined in Appendix C and the
approximate expression sufficient for our purpose is given
below in Eq. (21). The equation of motion for the condensate
amplitude is

∂t�k± + i(Ek± − μc)�k± + i

2N

∑
123

δ1+2+3,k[U ++++
−k,1;2,3�

∗
−1+�2+�3+ + U ++−−

−k,1;2,3�
∗
−1+�2−�3−] = Ĩk±, (20)

where μc is the chemical potential of the condensate and
the collision integral Ĩk± describes scattering into and out of
the condensate. The approximate expression for this collision

integral that we use is given in Eq. (22) below; for more
details we refer to Appendix C. For a realistic description
of the experimental setup, this chemical potential μc of the
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condensate is necessary to take into account the approximate
number conservation of the magnon subsystem. Physically,
the finite value of μc is generated by the external pumping
and is one of the parameters, which characterize the non-
equilibrium steady state. The collision integrals Ik± and Ĩk±
on the right-hand sides of the equations of motion (19) and
(20) describe the effect of the quartic interaction (15) on the
dynamics; in general, Ik± and Ĩk± are complicated functionals
of higher-order connected correlation functions, which satisfy
additional equations of motion involving even higher-order
correlation functions. One of the central problems in quan-
tum kinetic theory is to find a good truncation strategy of
this infinite hierarchy of equations of motion. Here we use
the method of expansion in connected equal-time correla-
tions developed in Ref. [15], which two of us have recently

used [16] to develop a microscopic description of the effect
of magnon decays on parametric pumping of magnons in
YIG. An advantage of this method is that it directly pro-
duces equal-time correlations and that it offers a systematic
truncation strategy in powers of connected correlations. The
dominant contributions to the collision integrals Ik± and Ĩk±
in Eqs. (19) and (20) are given in Appendix C, where we
also give a diagrammatic representation of the various terms
contributing to Ik± and Ĩk±. Because the magnon-magnon
interaction (15) in YIG is suppressed by the small factor of
1/S, for our purpose it is sufficient to truncate the hierarchy
of equations of motion at second order in the interaction.
This yields the following expressions for the collision inte-
grals on the right-hand sides of the equations of motion (19)
and (20):

Ik± = π

4N2

∑
123

δk+1,2+3

∑
r=±

∣∣U ±±rr
−k,−1;2,3

∣∣2

×
{
δ(Ek± + E1± − E2r − E3r )[(1 + nk±)(1 + n1±)n2rn3r − nk±n1±(1 + n2r )(1 + n3r )]

− 1

2
δ(Ek± + μc − E2r − E3r )|�1±|2[(1 + nk±)n2rn3r − nk±(1 + n2r )(1 + n3r )]

+ δ(Ek± + E1± − E2r − μc)|�3r |2[(1 + nk±)(1 + n1±)n2r − nk±n1±(1 + n2r )]

}
, (21)

Ĩk± = π

8N2
�k±

∑
123

δk+1,2+3

∑
r=±

∣∣U ±±rr
−k,−1;2,3

∣∣2
δ(E1± + μc − E2r − E3r )[n1±(1 + n2r )(1 + n3r ) − (1 + n1±)n2rn3r]. (22)

Note that apart from the additional ± mode label, the result-
ing kinetic equations coincide with the standard Boltzmann
equations for Bose gases known from the literature [28].

B. Non-equilibrium steady state

In principle, it would be desirable to directly simulate
the temporal evolution of the distribution functions and
condensate amplitudes that is generated by the coupled in-
tegrodifferential equations (19) and (20) with the collision
integrals given by Eqs. (21) and (22). However, this is a
computationally very demanding task because it requires us to
cover a large region of momentum space up to comparatively
large energies so that thermalization can occur, while at the
same time a very fine momentum resolution is necessary to
resolve the bottom of the magnon spectrum as well as the
energetically degenerate hybridization area in sufficient detail.
To circumvent these computational difficulties, we focus on
the steady state that eventually forms in the parametrically
pumped magnon gas. Then we can take advantage of the
fact that the magnon-magnon interaction (6) efficiently ther-
malizes the magnon gas to a quasi-equilibrium steady state
characterized by a finite chemical potential μm. When this
chemical potential approaches the minimum of the magnon
dispersion, a condensate is formed [27,29–36]. If the pumping
is turned off, the chemical potential and the condensate slowly
decay on time scales governed by the weak magnon-phonon
interactions [27,35,36]. As the magnon-phonon hybridization,
which we aim to include only affects the mode dispersions and

interaction amplitudes in a tiny region of momentum space,
we may assume that the magnon gas is thermalized almost
everywhere in momentum space. In this case the distribution
functions of the magnetoelastic modes are described by the
incoherent superposition

nk± = ∣∣φ1
k±

∣∣2
nkm + (

1 − ∣∣φ1
k±

∣∣2)
nkp (23)

of the thermalized magnon and phonon distributions

nkm = 1

e(εk−μm )/Tm − 1
, (24a)

nkp = 1

eωk⊥/T − 1
. (24b)

Here we take into account that the magnon temperature Tm

in the steady state can deviate from the temperature T of the
phonons. Since these distribution functions annihilate the col-
lision integrals (21) and (22) almost everywhere in momentum
space, we can now focus on the small region in momentum
space where deviations from Eq. (23) are expected to occur:
The hybridization area where magnons and phonons mix,
and the bottom of the magnon spectrum that is energetically
degenerate with the hybridization, see Fig. 3. The problem
is then reduced to the calculation of the change in the dis-
tribution functions and the condensate amplitudes of the two
magnetoelastic modes in these two regions. To this end, we
develop a self-consistent solution of the kinetic equations (19)
and (20) as follows: In a non-equilibrium steady state, the
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distribution functions and the condensate amplitudes are sta-
tionary, so that

∂t nk± = 0, (25a)

∂t�k± = 0. (25b)

Starting from an initial guess for nk± and �k±, we can then use
the equations of motion (19) and (20) to determine new values
for the distribution functions nk± as well as the condensate
amplitudes �k±. These are in turn used to determine the new
values of the collision integrals (21) and (22). This procedure
is iterated until convergence is achieved. As initial conditions
for the self-consistency loop, we choose the incoherent super-
position (23) for nk±, whereas the initial condensate density
is estimated as follows. We neglect the collision integral in
the equation of motion of the condensate amplitude (20) and
set the loop momenta in the Gross-Pitaevskii terms equal the
external momenta. Demanding that the time derivative of the
condensate amplitude vanishes, we then obtain

|�kr | = δk,kminδr,+

√
N

∣∣∣∣μc − Ek+
U ++++

−k,−k;k,k

∣∣∣∣. (26)

Here, kmin denotes the wave vector of the minimum of the
magnon dispersion that is located in the + branch of the mag-
netoelastic spectrum. Furthermore, changes in the distribution
of the thermal magnon cloud are accounted for by also de-
termining the magnon chemical potential μm and temperature
Tm self-consistently at each iteration. The phonon temperature
T on the other hand is kept fixed, reflecting the fact that the
phonons act as a thermal bath for the magnons.

For the explicit numerical solution, we parametrize the
wave vectors k by choosing Nθ angles θk ∈ [0, π/2] and Nk

points for different lengths k = |k| of the wave vectors. For
each angle θk, the k values are chosen such that they are cen-
tered around the minimum of the magnon dispersion for the
upper (+) mode and the hybridization area for the lower (–)
mode, see Fig. 3. The resulting nonuniform mesh in momen-
tum space is illustrated in Fig. 4. All modes outside this mesh
are modeled with the quasi-equilibrium distribution (23). To
reproduce the experimental situation, the phonon temperature
is fixed at room temperature, T = 290 K, while the external
magnetic field and the thickness of the YIG film are set to
H = 145 mT and d = 6.7 μm respectively. The condensate
chemical potential is set to μc = 0.995 εkmin while we use
Tm = T and μm = 0.98 εkmin as initial conditions for the self-
consistency loop of the temperature and chemical potential
of the thermal magnons [37]. The system size appearing in
the initial value (26) for the condensate amplitude is set to
N = 8.0802 × 106.

Our numerical results for the self-consistent steady state
are shown in Fig. 5(a), where the total magnon density

ρkm = 〈b†
kbk〉 =

∑
r=±

∣∣φ1
kr

∣∣2
(nkr + |�kr |2) (27)

is plotted as function of the wave vector k = ezkz parallel to
the external field and the excitation frequency ω. Apart from
the condensate peak at the bottom of the magnon spectrum,
one clearly sees the emergence of a second sharp peak in the
lower magnetoelastic mode, which is located slightly below

(a)

(b)

FIG. 4. The mesh of wave vectors k = ezkz + eyky consisting
of 790 grid points used for the numerical solution of the kinetic
equations in this section. Crosses denote grid points for the upper
(+) branch and circles denote grid points for the lower (–) branch.
The upper figure (a) shows the grid in momentum space while the
lower figure (b) shows the grid on the plane spanned by k = |k| and
the excitation frequency ω using the same color coding and symbols
as in (a).

the bottom of the magnon spectrum in the hybridization area.
A close-up of this peak is shown in Fig. 6. Despite the nar-
rowness of the peak, our simulations furthermore reveal that
it is completely incoherent; i.e., it is not associated with a
finite condensate amplitude �k−, but only with the incoherent
distribution nk− of the magnetoelastic bosons. This peak arises
due to a bottleneck effect in the intermodal scattering across
the hybridization gap, as discussed by Bozhko et al. [11].

The change in the magnon density in momentum space is
displayed in Fig. 5(b), which demonstrates that there is no
significant deviation from the quasi-equilibrium state away
from the bottom of the magnon spectrum for wave vectors
parallel to the external magnetic field. In particular, this means
that the hybridization of magnons and phonons, which is a
continuous function of the angle θk between the wave vector
and the external magnetic field, is on its own not sufficient to
observe an accumulation of magnetoelastic bosons. Instead,
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FIG. 5. (a) Magnon density ρkm as function of the wave vector k = ezkz parallel to the external field and the excitation frequency ω,
normalized to the value of the magnon condensate. The dispersion relations of the upper (+) and lower (–) magnetoelastic modes for wave
vectors parallel to the external magnetic field are indicated as blue and red lines respectively. The left peak in (a) is due to the magnon
condensate. (b) Magnon density ρkm in momentum space, normalized as in (a). (c) Experimental magnon-phonon spectra and the population
of the lowest magnon mode, normalized to the value of the magnon condensate to facilitate direct comparison with the theoretical prediction
in (a). (d) Experimental wave vector-resolved magnon population of the lowest magnon mode, normalized as in (c).

the near degeneracy of this hybridization with the bottom
of the magnon spectrum, where the magnon condensate is
located, is also necessary. Let us also point out that the

FIG. 6. Magnon density ρkm in the hybridization area as func-
tion of the wave vector k = ezkz parallel to the external field and
the excitation frequency ω, normalized to the value of the magnon
condensate as in Fig. 5.

temperature and chemical potential of the thermal magnon
cloud in this steady state are given by Tm = 289.6 K and
μm = 0.978 εkmin respectively, which is very close to the initial
values. Therefore the magnon distribution is virtually unaf-
fected by the hybridization, indicating the adequacy of our
quasi-equilibrium ansatz (23) for the incoherent distribution
functions away from the hybridization area. To investigate the
importance of the magnon condensate for the magnetoelastic
accumulation, we also show in Fig. 7 numerical results for
the case that the magnon gas is not driven sufficiently strong
to form a magnon condensate, with μm = 0.75 εkmin . Even
in this case, we observe a small bottleneck accumulation in
the lower magnetoelastic mode, barely visible in Fig. 7(b).
This is in agreement with Ref. [11], where a magnetoelastic
accumulation below the threshold of magnon condensation
was reported. However, note the difference in scale: While the
magnetoelastic peak in Figs. 5(a) and 5(b) is of the same order
of magnitude as the magnon condensate and hence macro-
scopic, it is only slightly enhanced compared to the thermal
magnon gas without a magnon condensate. Thus, we conclude
that the scattering of incoherent magnetoelastic bosons with
the nearly degenerate condensate amplitude is an important
ingredient for the formation of a macroscopic magnetoelastic
peak.
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FIG. 7. Magnon density ρkm for a magnon gas that is not suffi-
ciently pumped to establish a magnon condensate, on the same scale
as Fig. 5. (a) Magnon density as function of the wave vector k = ezkz

parallel to the external field and the excitation frequency ω. The
dispersion relations of the upper (+) and lower (–) magnetoelastic
modes for wave vectors parallel to the external magnetic field are
indicated as blue and red lines, respectively. (b) Magnon density in
momentum space.

C. Comparison with experiment

To further test the predictions of our simulations against
experimental observations, we have performed time- and
wave-vector-resolved Brillouin light scattering (BLS) spec-
troscopy [38] measurements of the magnetoelastic accumu-
lation at room temperature in a d = 6.7 μm thick YIG film
with dielectric coating. An external magnetic field H = Hez

of 145 mT is applied in-plane parallel to the z axis. Magnons
are excited via a parallel parametric pumping [22,39] pulse of
length 1500 ns. During this process photons of the applied mi-
crowave field with frequency fp = 14 GHz are splitting into
two magnons with frequency fp/2 and opposite wave vectors.
After the pumping pulse is switched off, the magnon gas
rapidly thermalizes via number-conserving magnon-magnon
scattering processes, generating a finite chemical potential
and eventually a magnon condensate at the bottom of the
spectrum.

Regarding the BLS spectroscopy experiment, a probing
laser beam is focused onto the YIG film and the frequency
shift of the scattered light is analyzed with a tandem Fabry-
Pérot interferometer. This method is selective for magnons

with a certain wave vector depending on the incident angle
of the probing laser. Since the BLS setup is only sensitive
to modes with a uniform profile along the film normal [40],
we are only able to detect the magnon intensity in the lowest
mode. The BLS intensity depending on the magnon wave
vector and energy is shown in Figs. 5(c) and 5(d). Note
that these measurements are in good agreement with the
numerical results obtained from the solution of the kinetic
equations shown in Figs. 5(a), 5(b), and 6. In particular,
the position of the peak in the magnetoelastic mode agrees
very well with our theoretical predictions, while its magni-
tude is of the same order as the magnon condensate. The
overall broader shape of the experimental distributions can
at least partially be attributed to a lower resolution than
in the numerical simulation. As all qualitative features of
the experiment are furthermore reproduced by our calcu-
lations, we conclude that our non-equilibrium steady state
solution of the kinetic equations correctly describes the rel-
evant physics of the observed magnetoelastic accumulation
in YIG.

IV. SUMMARY AND CONCLUSIONS

In this work we have studied the accumulation of mag-
netoelastic bosons—hybrid quasiparticles formed by the cou-
pling of magnons and phonons—in an overpopulated magnon
gas in YIG. Starting from an effective spin Hamiltonian and
a phenomenological expression for the magnetoelastic en-
ergy, we have derived quantum kinetic equations describing
the dominant scattering mechanisms for the magnetoelas-
tic bosons, both for the incoherent quasiparticle distribution
functions and for the condensate amplitudes. Guided by the
observation that the bulk of the magnon and phonon clouds
efficiently thermalize to their respective (quasi-)equilibria,
we have developed an efficient numerical strategy, which
has enabled us to self-consistently determine the non-
equilibrium steady state from the explicit solution of our
kinetic equations without further approximation. This self-
consistent steady-state solution has allowed us to reproduce
the spontaneous accumulation of magnetoelastic bosons in
a microscopic calculation. For the first time, we also pre-
sented a two-dimensional wave-vector resolved measurement
of this accumulation in YIG, which agrees well with our the-
oretical predictions. In particular, our microscopic theoretical
approach based on the self-consistent solution of a quantum
kinetic equation quantitatively describes the accumulation of
quasiparticles in the hybridization area of the lower magne-
toelastic branch, slightly below the bottom of the magnon
spectrum.

Our study furthermore clarifies the importance of the
magnon condensate for the accumulation of the magnetoe-
lastic bosons: It turns out that the existence of a magnon
condensate strongly enhances the accumulation of magnetoe-
lastic bosons. Importantly, we have also shown that despite
the spectral narrowness of the accumulation, it resides solely
in the incoherent part of the distribution function and is thus
not associated with a coherent state. We expect that these
findings will be helpful for future studies of this intriguing
phenomenon.
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APPENDIX A: EFFECTIVE MAGNON HAMILTONIAN
FOR YIG

To make this paper self-contained, we briefly review in this
Appendix the derivation of the interaction Hamiltonian (6) de-
scribing two-body interactions between magnons in YIG. For
a more detailed derivation see, for example, Refs. [13,16,41].
With the help of the Holstein-Primakoff transformation [19]
the effective spin-Hamiltonian (1) can be expressed in terms
of canonical boson operators ci and c†

i as usual. Expanding
the resulting effective boson Hamiltonian in powers of 1/S
we obtain

Hm = H(0)
m + H(2)

m + H(3)
m + H(4)

m + O(S−1/2), (A1)

so that H(n)
m = O(S2−n/2) contains the terms of order n in the

ci and c†
i . Transforming to momentum space,

ci = 1√
N

∑
k

eik·ri ck, (A2)

where N denotes the number of lattice sites in the yz plane,
we find that the quadratic part H(2)

m of the Hamiltonian can be
written as [41]

H(2)
m =

∑
k

[
Akc†

kck + Bk

2
(c†

kc†
−k + c−kck)

]
, (A3)

where

Ak = h + S(J0 − Jk) + S

[
Dzz

0 − 1

2

(
Dxx

k + Dyy
k

)]
, (A4)

Bk = −S

2

[
Dxx

k − 2iDxy
k − Dyy

k

]
, (A5)

and the Fourier transforms of the exchange and dipolar cou-
plings are defined by

Jk =
∑

i

e−ik·ri j Ji j, (A6)

Dαβ

k =
∑

i

e−ik·ri j Dαβ
i j . (A7)

As explained in Sec. II A, the cubic part H(3)
n of the Hamil-

tonian can be neglected for our purpose because energy and
momentum conservation cannot be fulfilled by the cubic in-
teractions in the parameter regime of interest to us. Therefore

we need only the quartic part of the Hamiltonian, which reads
[41]

H(4)
m = 1

N

∑
k1...k4

δk1+k2+k3+k4,0

×
[

1

(2!)2 �c̄c̄cc
1,2;3,4c†

−1c†
−2c3c4

+ 1

3!
�c̄ccc

1;2,3,4c†
−1c2c3c4

+ 1

3!
�c̄c̄c̄c

1,2,3;4c†
−1c†

−2c†
−3c4

]
, (A8)

where we abbreviate the momenta ki by i. The vertices are
given by

�c̄c̄cc
1,2;3,4 = −1

2

[
Jk1+k3 + Jk2+k3 + Jk1+k4 + Jk2+k4

+ Dzz
k1+k3

+ Dzz
k2+k3

+ Dzz
k1+k4

+ Dzz
k2+k4

−
4∑

i=1

(
Jki − 2Dzz

ki

)]
, (A9a)

�c̄ccc
1;2,3,4 = 1

4

[
Dxx

k2
− 2iDxy

k2
− Dyy

k2
+ Dxx

k3
− 2iDxy

k3
− Dyy

k3

+ Dxx
k4

− 2iDxy
k4

− Dyy
k4

]
, (A9b)

�c̄c̄c̄c
1,2,3;4 = (

�c̄ccc
4;1,2,3

)∗
. (A9c)

The quadratic part H(2)
m of the Hamiltonian can be diagonal-

ized by the Bogoliubov transformation to new canonical Bose
operators bk and b†

k,(
ck

c†
−k

)
=

(
uk −vk

−v∗
k uk

)(
bk

b†
−k

)
, (A10)

where the Bogoliubov coefficients are

uk =
√

Ak + εk

2εk
, (A11a)

vk = Bk

|Bk|

√
Ak − εk

2εk
, (A11b)

and the magnon dispersion εk is given by

εk =
√

A2
k − |Bk|2. (A12)

In terms of the new Bose operators, the quadratic part of the
Hamiltonian has the form

H(2)
m =

∑
k

[
εkb†

kbk + Ak − εk

2εk

]
. (A13)

By neglecting the constant term in Eq. (A13) above, we arrive
at Eq. (3). Finally, applying the Bogoliubov transformation
(A10) to the quartic Hamiltonian (A8) and dropping the terms
that do not conserve the magnon number yields the interaction
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Hamiltonian (6), with the quartic vertex explicitly given by

U1,2;3,4 = �c̄c̄cc
1,2;3,4u1u2u3u4 + �c̄c̄cc

1,3;4,2u1u4v3v2

+�c̄c̄cc
1,4;3,2u1u3v4v2 + �c̄c̄cc

2,3;4,1u2u4v3v1

+�c̄c̄cc
2,4;3,1u2u3v4v1 + �c̄c̄cc

3,4;2,1v1v2v3v4

−�c̄ccc
4;3,2,1u3v2v1v4 − �c̄ccc

3;4,2,1u4v2v1v3

−�c̄ccc
2;3,4,1u2u3u4v1 − �c̄ccc

1;3,4,2u1u3u4v2

−�c̄c̄c̄c
2,3,4;1u2v3v4v1 − �c̄c̄c̄c

1,3,4;2u1v3v4v2

−�c̄c̄c̄c
1,2,4;3u1u2u3v4 − �c̄c̄c̄c

1,2,3;4u1u2u4v3. (A14)

APPENDIX B: QUANTIZATION OF THE
MAGNETOELASTIC ENERGY

In order to quantize the magnetoelastic energy (8), we first
note that the (linear) symmetric strain tensor X αβ (r) can be
expressed in terms of the phonon displacement field X (r) as
[42]

X αβ (r) = 1

2

[
∂X α (r)

∂rβ
+ ∂X β (r)

∂rα

]
. (B1)

Following the standard approach of expanding the displace-
ment field in terms of the phonon creation and annihilation
operators a†

kλ
and akλ then yields

X (r) → 1√
N

∑
kλ

eik·r akλ + a†
−kλ√

2ρnωkλ

ekλ. (B2)

where n = 1/a3 is the number density of ions and ρ ≈
5.17 g/cm2 is the mass density of YIG. The phonon po-
larization vectors ekλ = e∗

−kλ satisfy the orthogonality and
completeness relations e∗

kλ · ekλ′ = δλλ′ and
∑

λ ekλe†
kλ

= 1. In
the thin film geometry of Fig. 1, a convenient choice for the
three polarization vectors is [4]

ek‖ = ik/|k| = i(ez cos θk + ey sin θk), (B3a)

ek⊥1 = i(ez sin θk + ey cos θk), (B3b)

ek⊥2 = ex. (B3c)

To leading order in 1/S, the local magnetization is quan-
tized by replacing

Mx(r) → μn√
N

∑
k

eik·r
√

S

2
(ck + c†

−k), (B4a)

My(r) → μn√
N

∑
k

eik·r 1

i

√
S

2
(ck − c†

−k), (B4b)

Mz(r) → μnS. (B4c)

With this prescription the classical magnetoelastic energy Eme

defined in Eq. (8) is replaced by the quantized magnon-
phonon Hamiltonian H(2)

mp + O(1/S) with

H(2)
mp = 1

2

∑
kλ

γkλ(a−kλ + a†
kλ

)ck + H.c. . (B5)

FIG. 8. The diagrams contributing to the time evolution of the
correlation nk+ = 〈ψ†

k+ψk+〉c in an approximation where only the
quartic vertices are retained. Note that the diagrams used here differ
from Feynman diagrams as they represent contributions to the differ-
ential equations for the correlations at a fixed time. External vertices
denote creation operators (outgoing arrows) or annihilation operators
(incoming arrows) and internal vertices denote the bare interactions.
Lines between the interaction vertices and external vertices represent
connected correlations of order two where solid lines denote the
upper (+) branch and dashed lines denote the lower (–) branch. The
circles represent connected correlations.

FIG. 9. The diagrams contributing to the time evolution of the
correlations 〈ψ†

k1+ψ†
k2+ψk3+ψk4+〉c (left) and 〈ψ†

k1+ψ†
k2+ψk3−ψk4−〉c

(right). The diagrams contain only the intramodal scattering vertex
U ++++

1,2;3,4 and the intermodal scattering vertex U ++−−
1,2;3,4 . Diagrams con-

taining correlations are of higher order in the interaction vertices and
are neglected here.
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For the thin-film geometry shown in Fig. 1 the hybridization
vertices are given by [4]

γk‖ = i
B⊥√

Sρnωkλ

2kykz

|k| = i
B⊥√

Sρnωkλ

|k| sin (2θk), (B6a)

γk⊥1 = i
B⊥√

Sρnωkλ

k2
y − k2

z

|k| = −i
B⊥√

Sρnωkλ

|k| cos (2θk),

(B6b)

γk⊥2 = −i
B⊥√

Sρnωkλ

kz = −i
B⊥√

Sρnωkλ

|k| cos θk. (B6c)

In the last step, we apply the Bogoliubov transformation
(A10) to the magnon operators, which yields the magnon-
phonon hybridization Hamiltonian given in Eq. (9), with the

transformed hybridization vertices

�kλ = ukγkλ − v∗
kγ

∗
−kλ. (B7)

APPENDIX C: COLLISION INTEGRALS

In this Appendix we outline the derivation of the collision
integrals Ik± and Ĩk± in Eqs. (21) and (22). Therefore we
use the method developed in Ref. [15], which produces a
systematic expansion of the collision integrals in powers of
connected equal-time correlation functions, see also Ref. [16]
for a recent application of this method in the context of YIG.

Let us start with the collision integral Ik±, which controls
the time-derivative ∂t nk± of the distribution of the magnetoe-
lastic modes. A diagrammatic representation of the various
terms contributing to this collision integral is shown in Fig. 8.
Note that the circles in Fig. 8 represent the exact equal-time
correlations, while the black dots represent the bare four-point
vertices defined in Eq. (16). These diagrams represent the
following mathematical expression:

Ik+ = i

2N

∑
q1,q2,q3

δk+q1−q2−q3,0
[
U ++++

−k,−q1;q2,q3

〈
ψ

†
q2+ψ

†
q3+ψk+ψq1+

〉c + U ++−−
−k,−q1;q2,q3

〈
ψ

†
q2−ψ

†
q3−ψk+ψq1+

〉c − c.c.
]
.

+ i

2N

∑
q1,q2,q3

δk+q1−q2−q3,0
[
U ++++

−k,−q1;q2,q3

〈
ψ

†
q2+ψ

†
q3+ψk+

〉c〈
ψq1+

〉c + 2U ++++
−k,−q1;q2,q3

〈
ψ

†
q1+ψq2+ψk+

〉c〈
ψ

†
q3+

〉c
+U ++−−

−k,−q1;q2,q3

〈
ψ

†
q2−ψ

†
q3−ψk+

〉c〈
ψq1+

〉c + 2U ++−−
−k,−q1;q2,q3

〈
ψ

†
q1+ψq2−ψk+

〉c〈
ψ

†
q3−

〉c − c.c.
]
. (C1)

For the four-point and three-point correlations in this expression, we use again their equations of motion. We will explicitly
show only the calculations for the term shown in Fig. 8 containing the correlation 〈ψ†

q2+ψ
†
q3+ψk+ψq1+〉c as an example. The

contributions to the equation of motion of 〈ψ†
q2+ψ

†
q3+ψk+ψq1+〉c are shown in Fig. 9 and correspond to the expression[

d

dt
+ i

(
Ek+ + Eq1+ − Eq2+ − Eq3+

)]〈
ψ

†
q2+ψ

†
q3+ψk+ψq1+

〉c
= i

4N
U ++++

−q2,−q3;k,q1

(〈
ψk+ψ

†
k+

〉c〈
ψq1+ψ

†
q1+

〉c〈
ψ

†
q2+ψq2+

〉c〈
ψ

†
q3+ψq3+

〉c
− 〈

ψ
†
k+ψk+

〉c〈
ψ

†
q1+ψq1+

〉c〈
ψq2+ψ

†
q2+

〉c〈
ψq3+ψ

†
q3+

〉c) + . . .

= i

4N
U ++++

−q2,−q3;k,q1
[(1 + nk+)(1 + n1+)n2+n3+ − nk+n1+(1 + n2+)(1 + n3+)] + . . . . (C2)

The other contributions denoted by the dots contain three-point, four-point or six-point correlations, which we neglect to leading
order in the interaction. As the contributions from the other diagrams have the same form the calculations are analogous for all
terms. We now integrate this equation to obtain the formal result

〈
ψ

†
q2+ψ

†
q3+ψk+ψq1+

〉c = i

4N

∫ t

t0

dt ′ cos
[(

Ek+ + Eq1+ − Eq2+ − Eq3+
)
(t − t ′)

]
U ++++

−q2,−q3;k,q1

× [(1 + nk+)(1 + n1+)n2+n3+ − nk+n1+(1 + n2+)(1 + n3+)] + . . . . (C3)

Inserting Eq. (C3) into Eq. (C1) then leads to

Ik+ = 1

4N2

∑
q1,q2,q3

δk+q1−q2−q3,0

∣∣U ++++
−k,−q1;q2,q3

∣∣2
∫ t

t0

dt ′ cos
[(

Ek+ + Eq1+ − Eq2+ − Eq3+
)
(t − t ′)

]
× [(1 + nk+)(1 + n1+)n2+n3+ − nk+n1+(1 + n2+)(1 + n3+)] + . . . . (C4)

t0 → −∞−−−−−−→
π

4N2

∑
q1,q2,q3

δk+q1−q2−q3,0

∣∣U ++++
−k,−q1;q2,q3

∣∣2
δ
(
Ek+ + Eq1+ − Eq2+ − Eq3+

)
× [(1 + nk+)(1 + n1+)n2+n3+ − nk+n1+(1 + n2+)(1 + n3+)] + . . . , (C5)
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FIG. 10. The diagrams contributing to the time evolution of the
condensate amplitude �k+ = 〈ψk+〉. The graphical elements are de-
fined in the caption of Fig. 8. The two diagrams in the second
line represent the Gross-Pitaevskii term on the left-hand side of the
equation of motion (20) for the condensate density �k±.

where in the last step we have taken the limit t0 → −∞. In
this way all terms entering the equation of motion for the one-
particle distribution functions can be expressed in terms of the
bare interaction vertices.

Finally, let us also give the diagrams contributing to the
collision integral Ĩk± in Eq. (22), which appears in the equa-

FIG. 11. The diagrams contributing to the time evolution of the
three-field correlations 〈ψk1+ψ†

k2+ψ†
k3+〉c (left) and 〈ψk1+ψ†

k2−ψ†
k3−〉c

(right) contain the condensate amplitude and the intramodal scatter-
ing vertex U ++++

1,2;3,4 (left) and the intermodal scattering vertex U ++−−
1,2;3,4

(right). The symbols have the same meaning as in Fig. 8. Note
that diagrams containing higher-order correlations are neglected here
because they lead to terms of higher order in the interaction vertices.

tion of motion (20) for the condensate density �k±. The
diagrams in the first line of Fig. 10 represent the contributions
to the equation of motion for the condensate density �k±
involving higher-order correlations. On the other hand, the
diagrams in the second line of Fig. 10 correspond to the
Gross-Pitaevskii term, which is not included in the collision
integral in Eq. (20).

To lowest order in the interaction, the equation of motion
for the three-point correlations in the diagrams of the first line
of Fig. 11 can be expressed again in terms of the bare four-
point vertices as shown in Fig. 11.
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