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We propose a solid-state implementation of the Larmor clock that exploits tunnel magnetoresistance to distill
information on how long itinerant spins take to traverse a barrier embedded in it. Keeping in mind that the
tunneling time innately involves pristine preselection and postselection, our proposal takes into account the
detrimental aspects of multiple reflections by incorporating multiple contacts, multiple current measurements,
and suitably defined magnetoresistance signals. Our analysis provides a direct mapping between the magnetore-
sistance signals and the tunneling times and aligns well with the interpretation in terms of generalized quantum
measurements and quantum weak values. By means of an engineered preselection in one of the ferromagnetic
contacts, we also elucidate how one can make the measurement “weak” by minimizing the backaction, whereas
keeping the tunneling time unchanged. We then analyze the resulting interpretations of the tunneling time and
the measurement backaction in the presence of phase breaking effects that are intrinsic to solid-state systems. We
unravel that whereas the time-keeping aspect of the Larmor clock is reasonably undeterred due to momentum and
phase relaxation processes, it degrades significantly in the presence of spin dephasing. We believe that the ideas
presented here also open up a fructuous solid-state platform to encompass emerging ideas in quantum technology,
such as quantum weak values and its applications that are currently exclusive to quantum optics and cold atoms.
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I. INTRODUCTION

Despite the lack of a “time operator” in quantum me-
chanics [1], quantum time keeping can be connected with
the measurement of space-time distances [2—4] signifying
the passage of time needed for a quantum process to occur,
most generally, between two spatial coordinates [2,3]. The
tunneling time—the time a particle takes to tunnel through
a barrier that has been a subject at the heart of hot debates
in physics [5-9] precisely fits into this paradigm. Biittiker
and Landauer [10] and Biittiker [11], following earlier works
[12-14], solidified a construct—the Larmor clock to estimate
the tunneling time, which is based on the Larmor preces-
sion of a stream of spins inside a barrier subject to a weak
Zeeman field perpendicular to the plane of the precession.
This idea was further elegantly interpreted in the perspective
of generalized von Neumann measurements [15] with the
tunneling time proportional to a quantum weak value [4,16—
21]. A holistic viewpoint of the tunnel time problem requires
delving into the following intertwined aspects: (a) the con-
struct of the Larmor clock that is based on a straightforward
analysis of spin-dependent tunneling [11], the description of
the tunneling time, and the dwell time from this analysis, (b)
its connection with generalized von Neumann measurements
in relation to a generic description of quantum time keeping,
and (c) that the preselection and postselection of quantum
states are inherently involved which necessitates a connection
to quantum weak values [15].
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Recent ground breaking experiments on this topic using
a cold atoms realization of the Larmor clock [22,23] open
the possibility of making the time-keeping aspects as well
as the aspects related to quantum weak values accessible to
a larger class of experiments. Given the current progress in
nanoelectronics, and especially nanomagnetism and spintron-
ics [24-26], a suitably designed solid-state device platform
can potentially provide for a fruitful test bed to integrate
such emerging ideas into such a platform. The object of this
paper is to propose a prototype solid-state spintronic test bed
that caters to the holistic viewpoint of quantum time keeping
described above. We also believe that the ideas presented here
can encompass emerging ideas in quantum technology, such
as quantum weak values and its applications that are currently
exclusive to quantum optics and cold atoms [21].

Before delving into our setup, we briefly describe the
generics of quantum time keeping in connection with the
Larmor clock, for which, we refer to Figs. 1(a) and 1(b).
The measurement of tunnel time can be thought of in terms
of a pointer that gets “kicked” as the particle tunnels through
the barrier. The difference between the initial and the final
pointer readings can be used to decipher the time taken for
the process. In the Larmor clock, as depicted in Fig. 1(b),
the spin orientation of the particle along the x-y plane acts
as the pointer, and the in-plane angle of rotation denotes the
pointer reading. Based on this, for the in-plane rotation to act
as a viable pointer it becomes crucial to have a well-defined
preselection and postselection [4,15] of states at the incident
and at the transmitted regions, respectively.

Our proposal is schematized in Fig. 1(c) in which we
utilize tunnel magnetoresistance transport signals to distill the

©2022 American Physical Society
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FIG. 1. Schematics: (a) Depiction of quantum time keeping in terms of tunneling time estimation. A pointer movement attached with the
particle tracks the time taken. (b) A schematic of Larmor precession as well as the alignment in the Z direction of a tunneling electron. (c) The
proposed magnetoresistive setup. The yellow contacts are normal metallic (NM) contacts whereas the red contacts are ferromagnetic (FM)
in the direction specified by the blue arrows. The current measurements across the two ammeters are used to deduce the necessary transport
signals. The schematic is along the transport direction, J, direction. (d) Because tunneling time is defined for a particular value of k, we consider
a low-bias situation in which only electrons within a small energy range conduct current. The corresponding k values can be modulated by

using a gate voltage to scan through the k space.

necessary information on the tunneling time of itinerant spins
traversing a barrier embedded in it. Ferromangetic contacts
take into account the crucial aspects involving the preselection
and the postselective measurement. Unlike the cold atoms
implementation, however, spintronic devices suffer from set-
backs, such as multiple reflections at the ferromagnetic
contacts, impurities, and channel phase breaking processes.
These aspects are serious impediments specifically to prese-
lection and postselection of the states that the proposal heavily
relies on. The detrimental aspect of multiple reflections, we
show, can be mitigated using additional “padding contacts”
and incorporating multiple current measurements that will be
described in detail.

Using the Keldysh nonequilibrium Green’s function
(NEGF) technique [27-29] to calculate the transport signals,
we first demonstrate that our analysis provides a direct map-
ping between the magnetoresistance signals and the Larmor
tunneling times. Our results also consistently align with the
interpretation of the tunneling time as a quantum weak value
with the real and imaginary parts signifying the tunneling time
and the measurement backaction [15,21]. By means of an en-
gineered preselection in one of the ferromagnetic contacts, we
further elucidate how one can make the measurement “weak”
by minimizing the backaction, whereas keeping the tunneling
time unchanged.

We further analyze the resulting interpretations of the
tunneling time and the measurement backaction in the pres-
ence of phase breaking effects [27,30-37], that are intrinsic
to solid-state systems. We uncover that, whereas the time-
keeping aspect of the Larmor clock is reasonably undeterred
due to momentum and phase relaxation processes, it degrades
significantly in the presence of spin dephasing.

The paper is organized as follows. In Sec. II, we for-
malize the crucial aspects that were described earlier before
describing the magnetoresistive setup in detail in Sec. IIC.
The results are expanded in Sec. III. In Sec. IIT A, we show the
central results of the proposal wherein the magnetoresistive
Larmor clock setup matches the theoretical framework from
earlier works. In Sec. III B, we explore the aspect of minimiz-
ing the measurement backaction. In Sec. III C, we demonstrate
the effects of dephasing on the time-keeping aspect of our
proposed setup. We conclude in Sec. I'V.

II. DEVICE SETUP
A. The Larmor clock

For the orientation we consider, X-polarized spins tunnel
through a barrier that encloses a Zeeman field in the Z direc-
tion. Inside this barrier the spins undergo Larmor precession
in the x-y plane and a damping that tries to orient the spins
along the Z direction. In the weak magnetic-field limit, the
orientation of the average spin (S) of the outgoing stream
dictates the tunnel time, which can be written as

(Sz) = (h/z)wLTz,
(Sy) = —=(n/2)wrty, (D)
(Sx) = (1/2)(1 — w7 1¢/2),

where hwp/2 is the Zeeman energy and «; is the Lar-
mor frequency. Although ty and 7 are purely mathematical
constructs that describe various times involved in the tunnel-
ing process, Biittiker [11] argued that the actual tunneling time
is given by 77 =/t + t2. It was further remarked that 77 is
the tunneling traversal time and that in the case of symmet-
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FIG. 2. Transport signals and comparison with the Biittiker model [11]. (a) Tunneling time and (b) measurement backaction as a function
of k as predicted by NEGF model which matches the analytical results from the Biittiker model [11]. (c) and (d) The corresponding
magnetoresistive transport signal Dy and Dy, respectively. For our setup, measurable polarization in percentages gives the embedded

information on 7y and 7 as seen in (a) and (b).

ric barriers, such as the ones considered here, it is equal to
another quantity called the dwell time ;. Keeping in mind
various stimulating discussions in this field, we will follow
the interpretation based on generalized measurements [15].

B. Generalized measurements

To formalize the above discussion, we refer back to
the schematic in Fig. 1(a), which depicts the space-time
measurement. Connecting with the theory of generalized mea-
surements discussed in Appendix C, the S. operator is the
generator of the Larmor precession angle ¢ for measuring
the spatial barrier operator U (y). The interaction Hamilto-
nian that defines the measurement process is then given by
Hin. = gusB.S.U ($), which represents the standard Zeeman
interaction Hamiltonian with a magnetic-field B, along the Z
direction, but only limited to the barrier region represented
by the barrier function V(§). Connecting with the Biittiker
clock, the stream of x-polarized electrons form the preselec-
tion and the measurement along y or Z direction forms the
postselection process.

Quantum weak values. Whereas the treatment of the Lar-
mor clock gives a straightforward prescription for calculating
Ty(z), it can be established that 7y and 1z from (1) actually
translate to the real and imaginary parts of the weak value of
the measurement process described above and is defined as

_mo ((fIUG) | 0)

i fsze( i) ) @
_m_((f1UQ) D)

o= () ®

where (y|i(f)) represents the wave function of the incident
(transmitted) stream of spins. The incident and the transmit-
ted beams represent the preselection and the postselection,

respectively. The weak value has both real and imaginary
components and, thus, in this interpretation, ty alone is the
tunneling time, whereas tz, the imaginary part represents the
backaction due to the measurement process.

C. Magnetoresistive setup

Consolidating the concepts discussed above and elaborated
in Appendix C, we now proceed to a detailed exposition of
the magnetoresistive setup, shown in Fig. 1(c). The device
region consists of a long enough single moded channel with
a barrier in the middle where a small Zeeman field B, is
applied along the Z direction with the Zeeman splitting en-
ergy Vz. Two NM contacts are placed at the ends in order to
manipulate reflections and, hence, produce a viable transport
signal at the ammeters. The ferromagnetic (FM1) contact
on the left side injects the X-polarized stream of electrons, and
the ferromagnetic contact (FM2) on the right side is used as
the detector for postselective measurement, whose orientation
is along the y direction or the Z direction, so as to measure Ty
or 1z, respectively. The unpolarized contact to the left of FM 1
acts as a sink that collects the reflected waves from the barrier.
We read the currents through the £3j- (or £2-) polarized FM2
contacts which are also grounded. Since the current drains into
these contacts, and they are located “downstream” from the
barrier, postselection rules are also satisfied, and the measured
current is composed of electrons that have tunneled through
the barrier.

The entire setup is backgated such that a gate voltage Vg
can add an energy offset to the entire channel in order to
select a particular carrier momentum k. Figure 1(d) shows the
schematic of the cross section of the setup with the two NM
contacts kept at electrochemical potentials (; and ;. For the
transport measurement, a small electrochemical potential dif-
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ference ;; — wy = eV is maintained such that a small applied
voltage can inject the desired momentum k for the incoming
stream of electrons.

Transport signals. Following a detailed analysis (see
Appendix B) of multiple reflections at the FM contacts, we
can show that the transport signal Dy related to ty can be
derived based on the currents registered at the FM2 contact,

DY _ II;'_MZ — I;M2 (4)

IPJ‘FMZ +II?M2’

where I}f,,, and I, represent the measured currents at the
FM2 contact when it is polarized in the +9 and —¥ directions,
respectively. This transport signal Dy is a measure of polar-
ization of  spin of electrons in the channel. Specifically, we
have the average postselected $ component of the spin as

Ly — 1)
(Sy) = (/) HP—E1 = —(h/Dorry. (5
Iepy e
We can, therefore, write the tunneling time 7y in terms of
currents observed at the FM2 contact as
115, — I
oy = —— T ©)
oL gy + Iean
The derivation of the transport signature D that captures
the measurement backaction 7 as explained in Appendix B is
more involved and is given by

U= ) = U = Ty -
(II-; - II-'rMZ) + (IR_ - II:MZ)

where I, are similar to the previous case, the currents
through the FM2 contact whereas it is in the +Z orienta-
tion, respectively. / ;et are the currents measured in the second
ammeter connected to the right NM contact when the ferro-
magnetic contact is in the &2 orientation, respectively. Thus,
Dy is analogous to Dy defined in (4) and, correspondingly,
measures the postselected Z spin which is given by

(1; _ I;MZ) _ (IR_ _ IF_Mz)
(g = Iiyp) + Uy —

Dy =

(Sz) = =(n/2)

= (Fl/Z)(l)LTZ .
(®)

Thus, the measurement backaction in terms of contact currents
is given by

Tema)

1 (IEF — I;MZ) _ (11; — I;MZ)

Cop (I — I+ Uy — )

©)

Tz =

III. RESULTS

A. Coherent transport

With the above formulation, we evaluate the transport
signal currents using the Keldysh NEGF technique [27,28]
detailed in Appendix A. With the terminal current operator
igp, where @« = FM1, FM2, we can find quantities related to

spin currents as I, = Tr[61,], where & represents the vector
Pauli spin operator. The channel is written in the tight-binding
representation of the one-band effective-mass Hamiltonian
with an on-site energy E( and hopping energy #y. The barrier
region in the middle has a potential V5 and is subject to a
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FIG. 3. Realistic barrier. (a) The tunnel time, and (b) measure-
ment backaction profile as a function of carrier momentum k for a
realistic barrier with band-bending effects. We clearly note the effect
of the barrier narrowing near the top of the barrier and widening near
the bottom.

Zeeman energy V; along the Z direction. In order to resolve
carrier momenta, we relate the energy of the carrier with the
gate potential given by

E = —eVg + 2t[1 — cos(ka)]. (10)

Assuming E = 0 without loss of generality such that the
gate potential gives the required energy translation, gives the
necessary transformation between carrier momenta and gate
potential.

We observe that in the coherent ballistic regime, the re-
sults from our simulation are a near perfect match with the
analytical results derived by Biittiker [11] as shown in Fig. 2.
Figures 2(c) and 2(d) show the magnetoresistance signature
Dy as a function of the gate voltage, thus, correlating a mag-
netoresistance measurement with the Larmor tunnel time. We
clearly see how an experimental setup that tracks the transport
signals Dy and Dy that can indeed yield the tunneling time as
well as a measure of the backaction. This aspect constitutes
the crux of our solid-state Larmor clock.

Having demonstrated the setup in terms of reproducing
transport signals that connect to the free-space Biittiker pro-
posal [11], we move on to analyze a few realistic effects. First,
we see what happens with realistic barriers and then move on
to effects that relate to dephasing that naturally occurs in such
solid-state setups.

Realistic barriers. Instead of a perfectly rectangular barrier,
we now consider a barrier of the form

U(y) = Vg[tanh(L/2 — y) + tanh(L/2 +y)]/2.  (11)

This is implemented by replacing the perfect square barrier
potential in the channel Hamiltonian by a the appropriate
function defined above.

As noted in Fig. 3, we find that for such a barrier, in the tun-
neling regime, i.e., k/ky < 1, where ko = /2mVp/h, electrons
take a longer time to traverse the barrier. However, the maxima
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of the tunneling time is smaller than that of the rectangular
barrier. This is expected since the barrier has indeed thinned
near the top as expected in a typical band-bending situation
created upon contacting dissimilar materials. We also note that
the tunneling time is greater at smaller energies due to the
widening of the barrier in those regions.

B. Minimizing the measurement backaction

We now focus on the interpretation of the imaginary part
77 that relates to the measurement backaction. According to
Steinberg [15], it possible to make this measurement “weaker”
and reduce the measurement backaction by preparing the
electron in a spin-squeezed initial state that increases the
uncertainty in the pointer position. Although squeezed states
are impossible to prepare from a solid-state perspective, we
present an alternate method that can exhibit similar phenom-
ena. This aspect is elaborated in Appendix D. We consider
injected electrons with its spin oriented on the x-z plane as
opposed to the x orientation considered earlier. This can be
carried out by using external magnetic fields to rotate the
ferromagnetic contacts as commonly performed in spintronic
experiments to modulate the injection and detection (pre-
/postselection) of spins [38]. This decreases the uncertainty
in S; and increases the uncertainty in the pointer ¢ position.
We have from Ref. [15] that the change in pointer position
(corresponding to 7y) and the pointer momentum (corre-
sponding to 7;) is related to the uncertainty in pointer position
as

A¢ = wrty = kRe{U () i,

12
AS; = w17 = kIm(U (y)) i/207, (12
where (U (y)) s; is the weak value of the barrier function U (y),
o2 is the variance in the ¢ distribution. This implies that the
precession angle remains constant whereas the measurement
backaction decreases proportional to a decrease in uncertainty
in Sz. This is explicitly verified using our calculations on our
setup where on comparing Figs. 4(a) and 4(b), we clearly
note the measurement backaction decreasing as the variance
in S7 decreases, whereas keeping the signal pointer position
A¢ unchanged. This implies clearly that the measured tunnel
time is indeed 1y, thus, complying with the interpretation in
Ref. [15].

C. Channels with dephasing

Dephasing interactions that are typical in solid-state sys-
tems, typically give rise to phase breaking processes that
would degrade the crucial phase coherent nature of the spins.
Typical interactions of this kind include pure phase relax-
ation via electron-electron interactions, momentum, and phase
relaxation via fluctuating local nonmagnetic impurities and
spin relaxation via magnetic impurities. These aspects can
be added phenomenologically within the framework of the
Keldysh NEGF formalism [27,30-32,35-37] via appropriate
dephasing self-energies.

Phase as well as momentum relaxation processes [39]
within the channel can be added via a scattering self-energy
and its related in-scattering self-energy [36] in its matrix form
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FIG. 4. Minimizing the measurement backaction. (a) Precession
angle of electron spin about the Z axis (A¢) is found to remain
constant whereas (b) the measurement backaction, AS; decreases
proportional to the variance in Sz, indicating that the pointer de-
flection is unaffected. This aligns well with Ref. [15] (see the
corresponding right insets for results at k = 0.8k() that the tunnel
time is indeed 7y, which remains constant as the measurement is
made weaker.

as
[Eg]ij = D;julG" .,
[Ef]ij = D;julG~ 1y,

where D; ji; is an appropriate tensor that comprises the spatial
correlation between the impurity scattering potentials [36].
The quantities [G"]i;, [G=]x represent the retarded Green’s
function and the lesser Green’s function in the matrix repre-
sentation, respectively. For pure-phase dephasing interactions
where only the phase is relaxed, this tensor has the form

Djjii = Dpéydji (14)

13)

where Dp is a tunable parameter that controls the strength
of the interactions and §;; is the Kronecker é function. For
momentum dephasing in which the phase is inevitably re-
laxed [27], the corresponding tensor for these interactions is
given by

Dijii = Dy6i0ixd i, (15)

where Dy, is the corresponding tunable parameter. In our
paper, this effect is termed as “phase + momentum” relax-
ation and it indeed corresponds to disorder averaging of local
nonmagnetic impurity potentials [40,41].

In the presence of such interactions, the observed tunneling
time profile is altered as shown in Fig. 5. Note that both these
interactions preserve the spin of the electron and, therefore,
do not affect the measurement mechanism of the setup, which
relates to the pointer movement. Thus, all the deviations from
coherent tunneling time as observed in Fig. 5 indicate dis-
turbances in the actual tunneling process. We note that in
the presence of pure-phase relaxing interactions, there is an
observed broadening in the tunnel time profile. It is also noted
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FIG. 5. Effect of phase relaxation and momentum relaxation. Tunnel time 7y profiles for varying strengths of the dephasing interaction
parameter for (a) pure phase relaxation and (b) for momentum relaxation interactions. Note that the dephasing interactions in (a) and (b) are
spin preserving and the observed disturbance in the transport signal is purely a result of disturbance in the tunneling phenomenon itself.

that increasing the strength of interactions decreases the tun-
nel time for electrons with energies close to the height of the
barrier. In the presence of momentum relaxing interactions,
however, whereas this effect is less pronounced, a shift in the
peak of the function can be observed towards lower energies.
This seems to suggest that introducing momentum dephasing
interactions to the system lowers the perceived height of the
barrier for the electron, consistent with the band-tail effects
[40] that occur due to momentum relaxation processes.

Note that in the case of pure-phase relaxation, the self-
energy matrix modifies the entire electron density matrix
G" = —iG~, whereas in the case of phase + momentum relax-
ation, the self-energy matrix only modifies the block-diagonal
portion of G". This means that the strength of dephasing
(measured in tg) in these two cases are not of one-to-one
correspondence and they result in both qualitative and quanti-
tative modifications to the line shape of the signal.

We now study the effect of spin relaxation interactions or
equivalently spin dephasing [42] which can be included via

[E;]U = Ds(0,G] ;0. + 0,G] 0, 4+ 0.G] ;0.),
(16)

[251i; = Ds(0,G 0, + 0,G 0, + 0.G02),

where o; are the Pauli matrices and G; ; and ij correspond
to the diagonal 2 x 2 sub-blocks of the matrix representation
of the retarded Green’s function and lesser Green’s function,
respectively. This form of the self-energy matrix serves the
purpose of re-injecting electrons of opposite spin into the
channel thereby relaxing spin. The observed tunnel time in
this scenario is altered as shown in Fig. 6. Note that even
at very small values of dephasing, the tunnel time signal is
completely lost. This agrees with the fact that introducing
spin-relaxing processes in the system destroys the measure-
ment setup by randomizing the “pointer apparatus” itself.

Thus, we note that the time-keeping mechanism for tun-
nel time and the associated weak values break down in the
presence of spin dephasing, whereas it remains intact, albeit
measuring an altered tunnel time when subject to moder-
ate phase and momentum relaxation. These results are also
consistent with the signals obtained for 7 (backaction) in
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FIG. 6. Effect of spin relaxation on the tunnel time profile.
(a) For very small values of dephasing parameter we notice some
preservation of the tunneling time profile. (b) However, as the de-
phasing parameter is increased even marginally, we note a complete
breakdown of the tunnel time profile.
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the presence of dephasing interactions. They are qualitatively
similar and reaffirm our understanding of tunneling time in the
presence of dephasing

Feasibility of the setup. The Larmor clock signal in our
setup is fairly robust against phase and momentum dephas-
ings in the channel. This relaxes the practically difficult
requirement of designing phase-coherent ballistic channels.
However, the signal is particularly sensitive to spin dephas-
ing (Fig. 6). Spin dephasing occurs in a quantum channel
due to various contributing mechanisms, which culminate in
the experimentally accessible spin-diffusion length parameter.
In clean channels without any magnetic impurities and little
spin-orbit coupling (such as silicon) it is experimentally well
established that the spin-diffusion lengths can be of the order
of tens of micrometers (see, for example, Refs. [43,44]). As
such, we believe that the Larmor signal can be observed in
such quantum channels.

IV. CONCLUSION

In this paper, we proposed a solid-state implementation
of the Larmor clock that exploits tunnel magnetoresistance
to distill information on how long the itinerant spins take to
traverse a barrier embedded in it. In the coherent transport
limit, our analysis provided a direct mapping between the
magnetoresistance signals and the tunneling times, thereby
aligning with the well-known interpretation of the tunneling
time as a quantum weak value. By means of an engineered
preselection in one of the ferromagnetic contacts, we also
elucidated how one can make the measurement weak by min-
imizing the backaction, whereas keeping the tunneling time
unchanged. We then analyzed the resulting interpretations of
the tunneling time and the measurement backaction in the
presence of phase breaking effects [27,30-37] intrinsic to
solid-state systems. It is clearly demonstrated that, whereas
the time-keeping aspect of the Larmor clock is reasonably
undeterred due to momentum and phase relaxation processes,
it degrades significantly in the presence of spin dephasing.
We believe that the ideas presented here can potentially open
up a fertile solid-state spintronics platform to encompass
emerging ideas in quantum technology, such as quantum weak
values and its applications that are currently exclusive to
quantum optics and cold atoms. Whereas the setup we de-
scribe provides a basic realization of a spintronic Biittiker
clock consistent with the interpretations of Steinberg [15],
it is left further to look into the thermodynamic aspects of
quantum time keeping via a serious analysis of pointer tick
accuracy and efficiency [45—47]. Mesoscopic quantum Hall
setups with quantum point contacts also possess realizable
configurations for delving deep into these aspects discussed
here. Furthermore, the interaction with nuclear spins via the

J
UQy) = (VBI - VZ;Z)[® (y

__+_

28)-o-5-2)]

hyperfine interaction can offer new insights into continuous
weak measurements [48—50]. Another avenue of interest is the
study of such systems in the presence of spin-orbit coupling
(SOC), for example, in a setup where there is SOC within
the tunnel barrier, the SOC interactions in the barrier could
then act as an effective magnetic field, the measurement of
which could give us an idea of the strength of spin-orbit
interactions in the material. Ideas similar to this have been
explored in the context of spin transistors (Datta-Das [51])
and could potentially be important to analyze in our setup
as well. Most importantly, the general problem of space-time
distance estimation in quantum systems is still a matter of
intense pursuit and conceptual advancement where relativistic
quantum time dilation may also be possible [52], and suitable
test beds may be built featuring quantum materials.
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APPENDIX A: THE KELDYSH NONEQUILIBRIUM
GREEN’S FUNCTION TECHNIQUE

The Keldysh NEGF method [27,29] can be used to set up
a systematic framework to evaluate the required currents and
other quantities. In our formulation of the Keldysh NEGF, the
device is connected with multiple leads. First, we consider a
channel described by a standard tight-binding Hamiltonian of
the form

H=E)—1n Z(Ci,ciﬂ,a +H.c.),

i,0

(AD)

where i € {1, N} is the lattice index, o € {—1, 1} is the spin
index, and H.c., stands for the Hermitian conjugate. In the
matrix form, this is given by a 2N x 2N matrix with Eylrx2
on the 2 x 2 block diagonals and —#y/>«» on the 2 x 2 upper
and lower off-diagonals.

We then add a barrier with an enclosed magnetic field in
the Z direction to the channel which has the form

(A2)

where Vj is the barrier potential, / is the 2 x 2 identity matrix, V7 is the Zeeman splitting energy in the 2 direction, o is the Pauli
matrix in Z, ®(x) is the Heaviside step function, L is the length of the barrier, and N is the length of the channel. The matrix form
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]
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R
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!
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FIG. 7. Schematic of the lattice structure of the setup along with a depiction of the contact self-energies as well as the dephasing self-energy
as used in the NEGF method. «, 8 are the on-site and hopping elements in the channel Hamiltonian. Unpolarized contacts (yellow) and
polarized contacts (red) are accounted for via the respective self-energies. The scatterers that are responsible for dephasing are represented via

another bath and are accounted for via an additional self-energy.

of the above potential is simply given by

U — {(VBIZXZ —Vz0./2)é;;
=10,

where U;; represents the 2 x 2 block at location (ij) in the
matrix. A schematic of the device simulation setup has been
sketched in Fig. 7.

Now from the device Hamiltonian H, and using (A3), (AS),
and (A7), the retarded Green’s function G” can be obtained as

1

G =[EI-H-U-%-3%!], (A4)

where X/ =), X! is the sum of all the contact retarded
self-energies associated with contacts labeled o, where o =
FM1,FM2, L, R, and X7 is the scattering self-energy used to
model scattering interactions.

For an unpolarized contact, the retarded self-energy X
attached to a point i in the channel has only two nonzero
elements in its 2N x 2N matrix form, given by [X]];; =

J

for NJ2—-L/2 <i<N/2-L)J2,
otherwise,

(A3)

(

—tpe'*eL,.». Thus, the retarded self-energy matrices of the two
unpolarized contacts in our channel ] and X are given by

ik
[EZ]H = —19€" 128161 j

ik
[Elr?],j = —[()el a12><23N,i6N,j-

For a perfectly polarized ferromagnetic contact polarized in
the p, direction and located at a point i in the channel, the
self-energy matrix has a block diagonal form given by

[Eé]ii = —tge"(Lxs + Pu - 0)/2,

where o are the Pauli matrices.
Thus, the self-energy matrices of the two FM-polarized
contacts in our channel X}, and X}, are given by

(A5)

(A6)

whereas measuring ty, (A7)

toeika
[E}w]]” =-— (bx2 + 0)8W-L1)/4,i S(N—L)/4, )
ika
- — 10— (b2 £ 6,)5GN+1)/4i SGN+L)/4.)»
[EFMZ]i_j = fpek

The FM1 contact is located at position (N — L)/4 and the
FM?2 contact is located at position (3N + L)/4.
Now, the lesser self-energies of the contacts are given by

2, =ilafe, (A8)

where I', is simply the broadening function given by the
imaginary part of the self-energy, such that I'y, = i[X] — X7]
and f;, is the corresponding occupation factor.

Then, the lesser Green’s function G= at a particular energy
is given by

G =G + %76, (A9)

5~ (lx2 £ 0)83N+L)/4,i SGN+L)/4, )5

whereas measuring tz.

(

where G* = [G"]! is the advanced Green’s function, s =
> o X is the sum of all contact lesser self-energies and X is
the lesser self-energy arising from the dephasing interactions.
G" = —iG~ represents the electron density (times 27r) inside
the channel.
The spectral function A is obtained as
A=i[G" -Gl =G[T. + TI's1G°. (A10)

The diagonal elements of the spectral function are related to
the local density of states at the corresponding lattice point in
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the channel. We are now left with defining the scattering self-
energies due to dephasing processes considered in this paper.

Dephasing self-energies. To account for scattering in the
contacts, we introduce a self-energy matrix for the various
dephasing processes [30,31]. We consider impurities with lo-
calized potentials Uy (i) in the channel and use their correlator
D(i, j) = (Us()U(j)) to calculate the self-energy of interac-
tion processes. This facilitates a smooth transition from the
ballistic regime to the diffusive regime.

The self-energy for the momentum dephasing process is
given by

(i, j) = DG, NG (i, ). (ALD)

253, j) = D@, HG=(, ),

where G=(i, j) is the lesser Green’s function and D(i, j) is
given by

(A12)

D, j) = (Us()U; (), (A13)

D(, j) = Dyd;;. (Al14)
This model discards the off-diagonal elements of the Green’s
function, thus, relaxing both the phase and the momentum of
quasiparticles in the channel. The quantity D,, is the dephas-
ing parameter which represents the magnitude squared of the
fluctuating scattering potentials. This parameter can be modu-
lated so that by gradually increasing it, one can transition from
the coherent ballistic limit to the diffusive limit.

Similarly, the self-energy for pure phase dephasing process
is given by

¥ =D,G, (A15)

5 =D,G~, (A16)
where D, is again the dephasing parameter that controls the
magnitude of interactions. Here, the entire Green’s function is
preserved as the self-energy matrix and relaxes only the phase
of the quasiparticles.

Spin-flip interactions can be added to the channel via the
introduction of a corresponding self-energy of the form

[):g]ij = Ds(0.G] 0, + 0,G] 0, + 0.G] ;0.),
[E<]ij = Ds(0.G ;0. + 0,G;0, + 0.G02). (A17)

5
The effect of this dephasing mechanism is to re-inject an
electron with an opposite spin back to the channel that relaxes
spin.

Current operator. The NEGF formalism provides us a
clear-cut current operator that can be used to calculate all
kinds of currents through a contact «, given by

I, = %([Z;G< -G X +[2;G" - G'%;]), (Al8)
where the current of a particular quantity X is given by Iy =
Trace(lng,,p) To find the charge current through the contact,
we then simply need to find /, = Trace(Ij,) since the charge
operator is the identity matrix (times e). Then, the charge
current per unit energy through a particular contact m, is

given by

- —ie
I, = - Trace [E;A — I[',G™]. (A19)
In our setup, we measure the currents through the right unpo-
larized contact (R) as well as the right ferromagnetic contact
(FM2), both of which are grounded.

Using (A9) solved self-consistently with the equations for
the retarded Green’s functions given in Eq. (A4) and self-
energies given in (AS), (A7), (A14), and (A16), we next obtain
the currents given by (A19). We then calculate the spin polar-
ization in the channel using the currents through the respective
contacts.

APPENDIX B: TRANSPORT SIGNALS FOR THE
TUNNELING TIME AND THE BACKACTION

We refer to Figs. 8(a) and 8(b) for a description of the
transport signal for 7y. In order to measure the dwell time
of the electron, the average in-plane precession of the tun-
neled electron needs to be measured. In other the words,
a weak value measurement of the oy operator is required.
To do this, we consider the right polarized contact in the
49 directions. To understand this measurement, consider two
spin channels in the device, carrying electrons of spin po-
larization +9 and —J. Electrons that are in a superposition
of these states travel simultaneously through both channels.
The presence of a +J-polarized ferromagnetic contact then
acts as a fork in the channel; with an electron in the +9
channel draining into either the ferromagnetic 43 contact, or
the unpolarized contact. On the other hand, an electron in
the —9 channel can only drain into the unpolarized contact.
In addition to this, the Zeeman field in the barrier, being
in the +Z direction, couples the wave functions in the two
channels. Now, let the currents through the two channels,
in the absence of any forks be given by « and B, respec-
tively, for the £9 channels. The presence of a fork in the
+9 channel then modifies the current through each of the
forks to be cjo where c¢; is some constant parameter (since
the forks are identical). Note that this is independent of S since
the wave function in the —3 channel does not affect the current
through the +9 channel. However, the opposite is not true.
The reflected wave function from the fork in the +9 channel
is coupled to the —§ channel through the +Z Zeeman field in
the barrier. Thus, the current through this channel is given by
B + c3a where c3 is some other constant parameter.

Then, in the presence of the ferromagnetic +y-polarized
contact, the currents through the two contacts are now given
by I}, = cia (for the +9-polarized contact) and I = (c1 +
c3)a + B (for the unpolarized contact).

For the ferromagnetic contact polarized in the —3 direction,
the fork is now in the —9 channel. Then, the current through
each of the forks in the —9 channel is ¢, and the current
through the 43 channel is o + c38. It is important to note
that the constant parameters c¢;, c¢3 remain the same in both
these cases. This is due to the symmetry of the £y directions
with respect to the +Z Zeeman field. Since the +3 directions
are indistinguishable with respect to the +2-Zeeman field, the
systems are also indistinguishable in the two cases and, thus,
their constant parameters remain the same. Then, in the pres-
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FIG. 8. (a) and (b) Schematics of the channel downstream of the barrier for the right polarized contact in +§ and —¥ directions. Electrons
that have tunneled through the barrier (pink) move along the two spin channels to the right where they are collected by the contacts (red).
(c) and (d) Schematic of the channel downstream of the barrier for the right polarized contact in +Z and —Z directions. Note that unlike in
(a) and (b), the barrier (pink) is now of different heights for the two spin channels.

ence of the ferromagnetic —j-polarized contact, the currents
through the two contacts are now given by I,,, = ¢ (for
the —¥y-polarized contact) and I, = (c; + ¢3)B + « (for the
unpolarized contact).

To measure the polarization of the electron, we will now
define a physically observable quantity called the signature of
the electron, given by

Dy = M (B1)

v + I

where I;EMZ is the current through the ferromagnetic contact
whereas it is in the J orientation, respectively.

This signature, is a measure of the spin polarization of the
tunneled electron. In our simulations, it will play the same role
as the quantity (Sy)/(%/2) defined by Biittiker [11]. Note that
this is not the spin expectation value of the wave function in
a particular direction. It is the Y -spin expectation value of the
postselected part of the wave function.

It is easy to see that,

Dy = v — Tpun _ (@ —B)
vy +1rn (@ +B)
which gives us back the polarization of spin in the § direction
of the channel.

Then the weak value of the § spin of the electron is given
by

(B2)

) Y
(Sy) = (h/2)tM2_—FM2 — _(h/2)wp1y.  (B3)
IFMZ + IFM2
Thus, we have
v = _LI;MZ B II:MZ (B4)

- N
oL Iy + ey

To measure the measurement backaction in this setup, the out-
of-plane alignment of the spin polarization is to be measured.

This is equivalent to a weak value measurement of the oz
operator. Thus, in this setup, the right ferromagnetic contact
is polarized in the +Z directions.

We refer to Figs. 8(c) and 8(d) for a description of the
transport signal for 7. Since we have to measure the po-
larization in the Z direction, we now consider spin channels
carrying electrons of spin polarizations +Z and —Z. The pri-
mary difference to note here is that in this setup, the channels
are not coupled to each other since the Zeeman field is in
the Z direction. As a result, the two setups corresponding to
+Z-polarized ferromagnetic contact are nonidentical to each
other.

Once again, let the currents through the two channels, in
the absence of any forks be given by « and 8, respectively, for
the £Z channels. Just as before, the presence of a fork in the
+Z channel then modifies the current through each of the forks
to be ¢ where c) is some constant parameter (since the forks
are identical). However, the current through the —Z channel
is unmodified in this case and simply 8. Thus, in the pres-
ence of the ferromagnetic +Z-polarized contact, the currents
through the two contacts are now given by /;},,, = ¢y (for the
+2-polarized contact) and I = c;a + B (for the unpolarized
contact).

Similarly, in the presence of the ferromagnetic —z-
polarized contact, the currents through the two contacts are
now given by I,,, = c3B (for the +2-polarized contact) and
Iy = 3B + « (for the unpolarized contact).

Note that in this case, the constant parameters are not the
same since the channels are no longer identical. However, we
still need polarization of the form (o — f8)/(« 4 B). This can
be realized with a different choice of signature given by

_ (Il_eF _I;MZ) B (IR_ _I;MZ)
(Ig — L) + g —Ipyp)

Dy (B3)
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where [ I?Mz’s are, as in the previous case, the current through
the ferromagnetic contact whereas it is in the +Z orientation,
respectively. I,;IE is the current through the right unpolarized
contact when the ferromagnetic contact is in the £Z orienta-
tion, respectively.

It is easy to see that Ij — I}, = B and similarly, I, —

I, = a. Thus, we have

_(113— - I;MZ) — Ug —Iryp) _ (@ —pB)
U =) + Uy —Ioyn) (@ +B)

Then the weak value of the Z spin of the electron is given by

Dy =

(B6)

(11;— _ I;Mz) — (IR_ _ IEMz)

Sz) = —(h/2 — (h/2)wL1z.
(B7)

We then have
Tz = _i (g — IFMz) — Ug —Ipyp) (BS)

wr, (11-; - I;—MZ) + g — IPTMZ).

It is also important to note that this choice of signature only
holds true in the tunneling regime. When the particle is no
longer tunneling, it is possible for the contact reflections to
traverse back through the barrier and interact with the +X
contact which, in turn, couples the +Z channels with each
other. This violates our initial assumption that the current
in the unforked channel is unaffected and, thus, distorts the
results. In the tunneling regime, these reflections (which have

J

to tunnel back through the barrier and then through it again)
are of very low magnitude to cause any significant distortions
in the result.

APPENDIX C: WEAK VALUES

When one tries to measure a variable attached to an op-
erator, say A, using a pointer generated via an operator, say
P, the generic interaction for the measurement within the von
Neumann framework [19,20] is given by

Hin = —g()P @ A. (ChH

Here, g(¢) is a compact supported function in the duration of
the measurement such that y = [ g(¢)dt represents a small
coupling parameter that characterizes this interaction. Based
on the preselection and postselection, we can then characterize
the measurement of an eigenvalue a, of the operator A via the
movement of the conjugate O of the pointer variable P, as
derived quite explicitly in Ref. [17].

We need to measure the expectation of A, given the initial-
and final-states |i) and | f). This is given as

(fIAll9)
(f1i)
Let us assume that the pointer was initially in the state,
¥); = exp (=Q*/4o?),

where o2 is the variance of Q. After the measurement, this
then transforms to

(A)i =

), = exp(

402

—(0— <A>fi)2) _ (-(Q —Re(A) i — ilm(A>_fi)2>
—= U ) =exp
402

_ (—(Q - Re(A)fi)2> <_(Im(A>fi)2> <_i1m<A>fi(Q - Re(A),ﬁ))
=exp| ———— |exp| ————— | exp .

402

From the above, we see that the change in pointer position is
given by

AQ = Re(A)y, (C2)

whereas the change in pointer momentum is the associated
phase of the form exp(ipg) which means the change in pointer
momentum,

AP =1Tm(A) /207, (C3)

where AQ and AP are the weak values. However, this does
not mean the measurement is weak. It becomes weaker when
Q is more uncertain and, thus, o increases as will be shown in
the next part.

APPENDIX D: WEAK MEASUREMENTS IN OUR SETUP

In our setup, the pointer is ¢ and, therefore, the conju-
gate momentum is Sz. The operator, whose expectation value
needs to be measuredas shown by Steinberg [15], is U(y) =
1/2[@(y + L/2) — ®©(y — L/2)], where ©(y) is the Heaviside

402

202

(

step function. Here the barrier is fromy = —L/2 toy = L/2.
To couple this operator to the pointer as in (1), we put a
magnetic field inside the barrier in the Z direction. Thus, the
Hamiltonian becomes

H=—yB.S.U®). (D1)

Then, as shown in (C2) and (C3), the change in pointer posi-
tion,

A¢ = wpty = kRe(U ()i, D2)

where wy is the Larmor frequency. The change in pointer
momentum,

ASz = wptz = kIm(U (v))i/[2 Var(¢)]

= kIm({U (y)) i * Var(Sz)/2.  (D3)

Since our initial state is in the X-polarized direction, (Sz); =
0= ASz = (Sz); — (Sz)i = (Sz) .

Thus, the pointer momentum measured by our device is
indeed the correct and required change in pointer momentum.
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However, this is not the case for ¢. We are capable of mea-
suring only the expectation value of spins of the electron and
not the angle on the x-y plane. Specifically, this angle is the
phase difference between the two components of the spinor.
Consider a spinor of the form

| cos0/2
V) = |:sin 0/2 ei¢:|’
then, (¥ |Sy|y) = 2 sin(6/2) cos(6/2) sin ¢ = sin ¢ sin 6.

(D4)
If our spinor is initially in state 8 = /2, we have

(¥|Sy|¥) = sin ¢ ~ ¢ when ¢ — 0.

Thus, we can obtain the change in ¢ via the measurement
of Sy only when ¢ is very small. Now we need to find ¢ in the
case where 6 # /2. Note that

(W|Sz|1¥) = cos?0/2 — sin® /2. (D5)
Then the variance in Sz,
Var(Sz) = 1 — (Sz)? =1 — cos? 6 = sin® 4. (D6)

Combining (D4) and (D6), we have
(YISyly)

————— =sin¢ ~ ¢ when ¢ — 0.
N So) p~¢ ¢
From (D2), we know that A¢ should remain constant even
when Var(¢) changes. Thus, from (D7), we see that %
must remain constant and this is verified using NEGF.

Similarly, from (D3), we see that ASz * Var(¢) must
remain constant which means, ASz/Var(Sz) must remain
constant as is quite well verified using our NEGF approach
also.

Thus, we see that the measurement can be made weaker
by changing the polarization of the electron to ¢ < 7 /2. This
decreases the uncertainty in Sz and, therefore, increases the
uncertainty in ¢. The measurement backaction, AS7 is found
to decrease proportionally to the decrease in Var(Sz). The real
part of the measurement ¢ remains a constant, but since that
cannot be explicitly measured, we show that the measured
quantity, (¥ |Sy|y) decreases ﬁ)roportionally to the square root

of Var(Sz) and that ¢ = % is the actual real part of the
measurement.

D7)
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