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Machine learning approach for longitudinal spin fluctuation effects in bcc Fe at Tc and under
Earth-core conditions
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We propose a machine learning approach to predict the shapes of the longitudinal spin fluctuation (LSF)
energy landscapes for each local magnetic moment. This approach allows the inclusion of the effects of LSFs
in, e.g., the simulation of a magnetic material with ab initio molecular dynamics in an effective way. This
type of simulation requires knowledge of the reciprocal interaction between atoms and moments, which, in
principle, would entail calculating the energy landscape of each atom at every instant in time. The machine
learning approach is based on the kernel ridge regression method and developed using bcc Fe at the Curie
temperature and ambient pressure as a test case. We apply the trained machine learning models in a combined
atomistic spin dynamics and ab initio molecular dynamics (ASD-AIMD) simulation, where they are used to
determine the sizes of the magnetic moments of every atom at each time step. In addition to running an ASD-
AIMD simulation with the LSF machine learning approach for bcc Fe at the Curie temperature, we also simulate
Fe at temperature and pressure comparable to the conditions at the Earth’s inner solid core. The latter simulation
serves as a critical test of the generality of the method and demonstrates the importance of the magnetic effects
in Fe in the Earth’s core despite its extreme temperature and pressure.

DOI: 10.1103/PhysRevB.105.144417

I. INTRODUCTION

Theoretical simulations based on ab initio methods are
powerful tools to further design and develop materials, with
density functional theory (DFT) being the main work horse in
material science. Fe and Fe-based alloys are examples of ma-
terials currently investigated with first-principles simulations
[1] and are of great technological importance in several fields,
from constructions to memory technologies [2]. However,
the magnetic properties of Fe make ab initio simulations at
elevated temperatures nontrivial. The complexity arises from
the coupling between magnetic, electronic, and vibrational
degrees of freedom. For example, Körmann et al. showed
that the magnetic phases had to be accurately described to
make correct phonon calculations [3]. It was also shown, in
a study by Alling et al., that the impact of lattice vibrations
on magnetic and electronic properties is of importance in
paramagnetic body centered cubic (bcc) and face centered
cubic (fcc) Fe [4]. Consequently, methods that treat vibrations
and magnetism separately are not enough for a quantitative
simulation of a magnetic system at elevated temperature.

The theoretical understanding of magnetic materials has
been developed through two models: the local magnetic
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moments model and the itinerant electron model [5], nei-
ther of which alone is able to quantitatively describe the
magnetism of Fe at finite temperature. In the local magnetic
moments model (the Heisenberg model) the electrons are
assumed to be localized on the atoms, producing a local
magnetic moment with, typically, constant magnitude. The
itinerant electron model (Stoner model) is based on the Stoner
description of band theory [5]. Within this model, the mag-
netization is due to the spontaneous spin split of bands, and
the magnetic moments are associated with the itinerant con-
duction electrons [6]. Moriya developed a phenomenological
theory that connects the two models and turns it into a problem
of spin-density fluctuations [7].

The phenomenological theory of Moriya led to several
first-principles approaches for describing the paramagnetic
(PM) state of magnetic materials [5]. One such method is
the disordered local moment (DLM) model [8]. By combining
the DLM model with ab initio molecular dynamics (AIMD),
in the DLM-AIMD method [4,9], the vibrational degree of
freedom can be accounted for while considering an ideally
disordered magnetic phase, which corresponds to the assump-
tion of adiabatically fast magnetic degrees of freedom. This
approach allows for the investigation of the effects of lattice
vibrations in the PM state. However, within DLM-AIMD,
magnetic short-range order is neglected. Ma et al. introduced
a spin-lattice dynamics approach for modeling magnetic
bcc Fe [10], an approach which has later been extended
to incorporate spin-orbit coupling [11] and to, for exam-
ple, investigate the dynamic interplay between phonons and
magnons in bcc Fe [12]. Inspired by the spin-lattice dynamics
simulations, a first-principles based methodology was devel-
oped by Stockem et al., called the combined atomistic spin
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dynamics and ab initio molecular dynamics (ASD-AIMD)
method [13]. This method combines AIMD simulations to
model the vibrations of the atoms with ASD simulations to
model the change of the spin state in time through rotations
of the magnetic moments, which is propagated following the
Landau-Lifshitz-Gilbert (LLG) equation [14]. ASD-AIMD
method was applied to CrN where they observed that coupling
the spin and lattice dynamics leads to shortening of phonon
lifetimes compared with using an adiabaticlike simulation like
DLM-AIMD [13].

These methods have often focused only on the transverse
magnetic excitations; however, excitations along the direc-
tions of the magnetic moments also occur in magnetic metals.
These types of excitations are called longitudinal spin fluctu-
ations (LSFs). The LSFs are connected to the itinerant nature
of electrons and are especially important for itinerant systems
where local magnetic moments are induced by entropy [15].
For localized moment systems the magnitudes do not depend
as much on temperature, and the effects of LSFs become less
important. LSFs are not included in the classical Heisenberg
Hamiltonian, and so to include their effects, extended model
Hamiltonians have been developed [7,15–24]. In the work by
Uhl and Kübler [17] the effects of both transverse and longi-
tudinal spin fluctuations are included using the semiclassical
approach developed by Murata and Doniach [16] when study-
ing Fe, Ni, and Co. In Murata and Doniach’s work the energy
functional has a fourth-order dependence on the magnetic
moment, applying an approach similar to Ginzburg-Landau
expansion. Rosengaard and Johansson also included the ef-
fects of both longitudinal and transverse degrees of freedom
in a study like Uhl and Kübler’s, however, they assume local
interatomic exchange interactions, which leads to a real-space
formulation [18]. Ma and Dudarev included the evolution
of both transverse and longitudinal spin fluctuations in their
generalized Langevin spin dynamics method and applied it
to ferromagnetic Fe [20]. They also used the semiclassical
approach; however, the semiclassical term was expanded up to
the sixth order as it was shown to better reproduce the energy
landscape for ferromagnetic Fe. The LSF energy of a certain
atomic magnetic moment depends on the size of the moment
itself, and a curve showing how the LSF energy changes with
moment size can thus be plotted. These curves are referred to
as LSF energy landscapes.

Ruban et al. showed that LSFs are necessary to accurately
describe magnetism at high temperatures [15]. They looked
at fcc Ni and bcc Fe as examples of an itinerant and a lo-
calized system, respectively. In this work, they used one type
of modified Heisenberg Hamiltonian to include the effects of
LSFs. In the PM state, the LSF energy landscape of bcc Fe
has a deep minimum, around 2μB, which is the typical shape
of the landscapes of a localized moment system. For fcc Ni,
the minimum is at zero, which is representative of an itinerant
system. Because of the deep minimum in the case of bcc Fe,
the average size of the magnetic moment is similar in the PM
and ferromagnetic (FM) states. The relatively robust magnetic
moments of bcc Fe make the classical Heisenberg Hamilto-
nian work quite well without the need of accounting for LSFs.
In the case of fcc Ni, the magnitudes of the magnetic moments
are less robust, and therefore the effects of LSFs are bigger,
making it especially necessary to include them. However, they

conclude that including the LSF effects is important even in
the case of Fe.

In the study by Ruban et al., described above, the LSF
energy landscapes were calculated within the coherent po-
tential approximation [15], which does not account for the
differences in local environments due to vibrations or local
magnetic configurations. One way to account for the lattice
vibrations is with a supercell approach. An example of this
method is found in the work by Ruban and Peil, where they
investigated the effect of lattice distortions on the magnetic
exchange interactions using AIMD simulations to obtain the
atomic configurations [25]. Another example is the work by
Gambino et al., where a supercell approach was developed to
calculate the LSF energy landscapes corresponding to every
atomic magnetic moment and, from that, derive the finite-
temperature magnitudes of the magnetic moments [26]. It was
found that the shapes of the LSF energy landscapes depended
on the local environment of the atomic moments, such as the
lattice vibrations, with some landscapes having very shallow
minima.

The impact of LSFs is especially strong in the PM state,
where the magnetic moments have disordered directions, and
so to accurately theoretically simulate this state, the LSF
energy landscape, in principle, has to be calculated for each
atom [26]. In an AIMD simulation or ASD-AIMD simulation,
where the local environments (atomic configuration and, in
the ASD-AIMD case, the magnetic configuration) changes
with each time step, the LSF energy landscape would have
to be calculated for each atom at each moment in time. In a
supercell during a long AIMD run, this becomes a practically
overwhelming task. One solution to this issue could be to use
machine learning (ML) methods. By training ML models on
relevant inputs it is possible to efficiently predict properties.
Since the local environment of the magnetic moments plays an
important role in how the shapes of the LSF energy landscapes
turn out, ML methods are a promising tool to overcome the
difficulty of determining these landscapes of multiple atoms
over time. In this work, we probe this idea.

It has become increasingly popular to use ML methods
in materials science and they have proven successful in pre-
dicting numerous material properties and accelerating the
discovery of new materials [27,28]. Applying ML methods to
magnetic materials is still in its early stages, but there are a few
examples. In the work by Sanvito et al., the Curie temperature
was estimated using an ML model, which in turn was used
to accelerate the discovery of new magnets that fulfill certain
requirements [29]. Long et al. also developed an ML model
to predict the Curie temperature, and they trained another
ML model to classify between ferromagnetic and antiferro-
magnetic materials [30]. Recently, ML interatomic potentials
were developed by Novikov et al. to incorporate the transverse
magnetic degree of freedom, called the magnetic moment ten-
sor potentials [31]. The work by Yu et al. is another recently
developed application of ML to describe magnetic properties
[32]. In their work, artificial neural networks were used to
construct spin Hamiltonians.

In this work, we have developed ML models to estimate the
shapes of LSF energy landscapes based on the local atomic
and magnetic environments of a magnetic moment. The ML
method used is kernel ridge regression which has been suc-
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cessfully used in earlier studies regarding formation energies
of atomic crystals [33,34] and is a good starting point in
investigating the use of ML in this case. The ML models are
trained mainly on data for bcc Fe at the Curie temperature
(1043 K) and ambient pressure. A small portion of data for bcc
Fe at 6000 K and 300 GPa, corresponding to the conditions
expected in the solid inner core of the Earth, were added to
test the generality of the developed ML models. Since the
training data only consist of data from different cases of bcc
Fe, the implementation of the ML approach in this work only
addresses bcc crystals. However, the same methodology can
also be applied to magnetic materials with different crystal
structures, with some adjustments.

This machine learned LSF approach has been implemented
into the ASD-AIMD scheme (denoted as ASD-AIMD-
MLLSF simulations) to accelerate the determination of sizes
of the magnetic moments for each atom at each time step.
With this implementation we include both the longitudinal and
transverse magnetic degrees of freedom, where the ML ap-
proach accounts for the longitudinal spin fluctuations and the
transverse spin fluctuations are treated within the ASD-AIMD
scheme using the LLG equations. The ASD-AIMD-MLLSF
simulations have been done for both bcc Fe at the Curie
temperature and ambient pressure and for bcc Fe at 6000 K
and 300 GPa. As a result, we find that predicting the LSF
energy landscapes using ML models reduces the mean ab-
solute error compared to other approximate methods, e.g.,
using a mean LSF energy landscape to describe all landscapes.
The representation of the input data is also shown to have a
significant impact on the performance of the ML models. We
see that allowing for entropy-induced local magnetic moments
increases the pressure at a given volume which becomes espe-
cially interesting in the case of estimating the density of the
Earth’s inner solid core.

The paper is structured as follows: Section II gives a theo-
retical background to longitudinal spin fluctuations (Sec. II A)
and the kernel ridge regression ML method (Sec. II B). In the
remaining part of Sec. II, the ASD-AIMD method combined
with the ML of LSF approach is presented as well as the
representation of input data in the descriptor and the compu-
tational details. Section III contains the results of applying the
ML approach to ASD-AIMD simulations. Lastly, in Sec. IV,
conclusions are discussed.

II. THEORETICAL METHODS

A. Theory of longitudinal spin fluctuations

To include the effects of LSFs to the Heisenberg Hamilto-
nian, the Heisenberg-Landau Hamiltonian is used [16–18,20]

H = −
∑
i �= j

Ji jmi · m j +
∑

i

Ei(mi ), (1)

where Ji j are interatomic exchange constants between the mo-
ments at sites i and j, mi is the magnetic moment vector at site
i, and E (mi ) is the LSF energy depending on the magnitude of
the ith moment. The LSF energy E (mi ) can be expanded in

even powers,

Ei(mi ) =
∞∑

n=0

anm2n
i ≈ aim

2
i + bim

4
i , (2)

where a fourth-order polynomial has shown to be sufficient
for our purpose.

Different thermodynamic quantities can be calculated for
the LSF Heisenberg Hamiltonian, which requires the partition
function Z . Since the longitudinal excitations are faster than
transversal, the first term in Eq. (1) can be considered constant
at each time step; as a result, the partition function can be
separated. Since the last term in Eq. (1) does not depend on
other magnetic moments explicitly, the partition function may
be written as the product of N partition functions Z = ∏

Zi in
the PM state. Hence,

Zi =
∫

dmi e− Ei (mi )
kBT =

∫ ∞

0
dmi PSM e− Ei (mi )

kBT , (3)

where the last part comes from expressing mi in spherical
coordinates and leaving out the constant from integrating the
angular variables. This change of variables leads to the phase-
space measure (PSM) simply being m2; kB is the Boltzmann
constant and T is the temperature.

Here we should state that the issue of PSM is intimately
related to the semiclassical approximations done of separating
longitudinal and transverse degrees of freedom, as has been
discussed heavily in the literature, e.g., in Ref. [21]. The
above derivation is based on an assumption of dealing with an
itinerant system, where the magnetic moments may change
direction by shrinking in size and reappearing in a different
direction, i.e., we can assume full coupling between longitudi-
nal and transversal degrees of freedom. When instead dealing
with a localized system, changes in the direction of the mag-
netic moments appear through rigid rotations which are slow
compared to the fluctuations in size, and so the LSFs can be
treated as restricted to the directions of the magnetic moments.
In this localized moments case the magnetic moments would
fluctuate along one dimension and the PSM of Eq. (3) would
instead be equal to 1, which was introduced by Murata and
Doniach [16]. This ambiguity in the choice of PSM can be
seen in that different studies investigating bcc Fe chose differ-
ent PSM. Ruban et al. used a PSM of m2 when studying bcc
Fe under Earth’s inner core conditions [35] and Pan et al. used
PSM = 1 when applying an extended atomistic spin model
to several systems, including bcc Fe [23]. Khmelevskyi even
suggested a PSM equal to m and applied it for bcc Fe and
fcc Ni, which was shown to improve the estimation of the
Curie temperature especially for fcc Ni [24]. We would like
to point out that the ML approach described in this work is
not restricted to any particular choice of PSM.

In this work, the average magnitude of every individual
magnetic moment at temperature T is used, which is calcu-
lated as

〈mi(t, T )〉 = 1

Zi

∫ ∞

0
dmi PSM mi e− Ei (mi ,t )

kBT , (4)

where t is the time step and Ei(mi, t ) = ai(t )m2
i + bi(t )m4

i ; the
a and b parameters of each LSF energy landscape changes at
each time step.
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B. Machine learning with kernel ridge regression

This work uses the kernel ridge regression (KRR) ML
method, which is an extension of the linear regression
method ridge regression. Ridge regression uses the least-
square estimation method, but adds a penalizing term to
the minimization of the coefficients to avoid overfitting.
A function f approximates the known set of outputs y =
(y1, y2, . . . , yn)T , corresponding to a given set of input vectors
X = (x1, x2, . . . , xn)T , where each xi = (xi1, xi2, . . . , xim )
and xi j is the jth element of the ith input vector. As a result,
X is an n × m matrix. The input vectors are called descrip-
tors and their elements are referred to as features. In ridge
regression, the following function approximates the output y
corresponding to a descriptor x for an arbitrary input:

f (x,α) = k(x)α =
∑

i

ki(x)αi, (5)

where k(x) = (k1(x), k2(x), . . . , kn(x))T is a function ansatz
acting on the vector x, and α = (α1, α2, . . . , αn) are the coef-
ficients that are chosen to minimize the Euclidean norm for a
given set of inputs and outputs ||y − f (X ,α)||2, which is the
regular norm of an n-dimensional vector. With a penalty term
λ the coefficients are then given by

α = [k(X )T k(X ) + λI]−1k(X )T y, (6)

where I is the identity matrix and λ is called the regularization
parameter.

The extension from ridge regression to kernel ridge re-
gression comes from the so-called kernel trick and allows
one to solve a nonlinear problem. This is possible by using
a mapping �(x) from a nonlinear space to a linear space. It is
not necessary to know the mapping explicitly, but simply the
inner product between the mapping functions, which can be
expressed as a general function k(x, x′), called a kernel, given
by

k(x, x′) = 〈x, x′〉 = 〈�(x),�(x′)〉. (7)

In KRR the function to approximate the output is

f (x,α) =
∑

i

k(x, xi )αi, (8)

which is optimized using a training set of known inputs y and
a set of the corresponding descriptors X so that

α = (K + λI )−1y, (9)

where K is the kernel matrix with Ki j = k(xi, x j ) for each pair
of descriptors in the training set. From Eq. (9) we see that
we get one coefficient αi for each training data point. The
sum in Eq. (8) goes over all training data. Consequently, the
function f (x, α) is a sum of the the kernel function acting on
the input descriptor and each of the descriptors of the training
data times the corresponding coefficient.

This work uses the Laplacian kernel function

k(x, x′) = e−||x−x′||1/σ , (10)

where ||x − x′||1 = ∑
i |xi − x′

i| is the Manhattan norm and σ

is the kernel width. The kernel width regulates how similar
two vectors (x and x′) are categorized to be. The kernel width

σ and the regularization parameter λ are calibrated to the
problem at hand.

To evaluate the performance of the ML models, a subset
of the available data is left as a test set and the ML models
are trained on the remainder of the data (the training set). The
errors of the ML models predictions of previously unseen data
are given by the mean absolute error (MAE)

MAEtest = 1

n

n∑
i=1

|yi − f (xi,α)|, (11)

where n is the size of the test set. To more accurately estimate
the MAE for predictions, 10-fold cross validation is used,
where the data are divided into 10 subsets and in 10 iterations
the subsets alternate in acting as the test set. A mean of all
MAEs is then taken as the estimate of the MAE for predictions
on data outside the training set.

C. Descriptors

The accuracy of the KRR method depends on the precise
choice of representation of the input data in the descriptor,
i.e., the vector x given as input to f (x,α) in Eq. (8). There
are certain requirements for a good descriptor: for instance,
it should contain all relevant features, but have a minimal
number of redundant features, and it should require as little
computational effort as possible. The descriptor should also
be able to detect similarities in the input data of different
instances by representing instances that are close with descrip-
tors that are close, i.e., give a small ||x1 − x2|| [33].

Since the LSF energy landscapes depend on the struc-
tural and magnetic local environments of the atomic magnetic
moments, the descriptors need to contain information which
describes the local environment. One such feature that has
proven important is the local Voronoi volume [26]. The posi-
tions and the magnetic moments of neighboring atoms should
also be of interest when describing the local environment of a
specific atomic magnetic moment. Four different descriptors
are proposed and tested in this work, each containing the
Voronoi volume and the positions of neighboring atoms in the
form of spherical coordinates with respect to the central atom.
The content of the different proposed descriptors is presented
in Table I, and they differ in the following way: descriptor
1 includes the explicit directions of the magnetic moments,
i.e., ex, ey, and ez. The other descriptors, instead, contain the
scalar products between the magnetic moment of the central
atom and of each neighboring atom. Descriptor 2 contains
each scalar product and descriptor 3 contains the sum of the
scalar products. Descriptor 4 only differs from descriptor 2 by
one element: it adds the standard DFT result of the size of the
magnetic moment of the central atom, denoted as m0. Adding
m0 requires running an additional DFT simulation, where
only the directions of the magnetic moments are constrained,
giving the size of the moments corresponding to a temperature
of 0 K for this degree of freedom. For an itinerant system, with
its LSF energy landscape minimum at zero, the solution at 0 K
would be nonmagnetic in this type of DFT calculation.

Aside from which features to include in the descriptor,
another important aspect is how many features to include. The
number of features couples to the amount of available training
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TABLE I. The four descriptors tested in this work. V is the Voronoi volume, ei is the direction of the ith magnetic moment (with components
exi , eyi , and ezi ), r, θ, φ are the spherical coordinates of the neighboring atoms with respect to the central atom, and mi is the size of the ith
magnetic moment obtained from a DFT simulation without longitudinal constraints. Subscript “0” indicates the central atom and “1, 2, . . . ”
indicate neighboring atoms.

Descriptor no. Descriptor, x

1 [V, ex0 , ey0 , ez0 , r1, θ1, φ1, ex1 , ey1 , ez1 ,..., rN , θN , φN , exN , eyN , ezN ]
2 [V, r1, θ1, φ1, e0 · e1,..., rN , θN , φN , e0 · eN ]
3 [V, r1, θ1, φ1,..., rN , θN , φN ,

∑N
n=1 e0 · en]

4 [V, m0, r1, θ1, φ1, e0 · e1,..., rN , θN , φN , e0 · eN ]

data since a small amount of data will not work well with a
too big feature space. In the present case, the number of shells
of neighboring atoms included in the descriptor impacts the
size of the feature space. We determine the number of shells
to take into account by comparing the MAEs when including
different numbers of shells.

In Fig. 1 the MAE is shown as a function of the training set
size for each descriptor and LSF energy landscape parameter,
when including up to four coordination shells. We see that,
especially for descriptors 2 and 3, the MAE converges quite
rapidly, already at about 200 data points. For descriptors 1 and
4, there is still a slight tilt, indicating that more data points
in the training data set should further decrease their MAEs.
In the implementations of the ML models presented in this
paper, we use descriptor 3 with only one coordination shell
included since it gives the lowest error without having to do
an extra DFT calculation to get the m0 feature. Our training
data set contains about 680 data points (90% of the complete
data set) which, based on Fig. 1, should be quite enough to get
the lowest possible MAE with this descriptor.

In Table II the lowest MAE of each descriptor is pre-
sented with the corresponding number of coordination shells
included. Including more than one coordination shell in the
descriptor increases the error in most cases. Using the scalar

products of the directions of the magnetic moments is clearly
an advantage compared to the explicit directions; this is briefly
discussed below.

A final aspect of the representation of input data in the
descriptor is the ordering of the features. The neighboring
atoms are sorted based on their ideal lattice positions as de-
scribed schematically in Fig. 2. From the ideal positions, the
neighboring atoms are sorted based on which coordination
shell they belong to (i.e., distance from the central atom) and
by their angle, θ and φ, to the central atom. Although the in-
dexing is based on the ideal crystal points, the actual positions,
including thermal displacements, are used in the descriptors.
As previously mentioned, a requirement on the descriptor is
that similar LSF energy landscapes (the output) should be rep-
resented by similar descriptors, i.e., with a small Manhattan
distance in the case of a Laplacian kernel. When constructing
the descriptor in the manner described previously, with the
explicit atomic positions with regards to the central atom
ordered in this way, some detections of similarities will most
likely be lost. As seen in the right-hand illustration of Fig. 2,
a rotation of the coordinate system can shift the order of the
atoms in the descriptor. We would therefore get two different
descriptors for two LSF energy landscapes that refer to the
same physical system (a rigid rotation of the crystal does not

FIG. 1. Mean absolute error (MAE) as a function of the training set size for each of the four descriptors proposed in this work (listed in
Table I), represented by the numbers 1–4 in the figures. Graphs for up to four coordination shells in the descriptor are shown. (a), (b) Show,
respectively, the parameters a and b of the LSF energy landscape parametrization.
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TABLE II. The lowest mean absolute error (MAE) for predictions of the validation data set for parameters a and b for each descriptor. The
number of included coordination shells is shown in parentheses.

Descriptor 1 Descriptor 2 Descriptor 3 Descriptor 4

MAEa,test 0.0167 (1 shell) 0.0115 (3 shells) 0.0116 (1 shell) 0.00767 (1 shell)
MAEb,test 0.00138 (1 shell) 0.000989 (1 shell) 0.000973 (1 shell) 0.000798 (1 shell)

change the energy landscapes). It was previously seen that
including the scalar products instead of the explicit magnetic
moment directions decreases the errors, and a reason for this
could be this issue of rotations changing the order of the el-
ements in the descriptor. When including the scalar products,
and especially the sum of the scalar products as in descriptor
3, there are fewer elements that are ordered differently after
a rotation. If we have two systems that are the same except
rotated differently, their descriptors will be slightly more sim-
ilar when using scalar products compared to using the explicit
directions of the moments.

In this work we focus on two different cases of bcc Fe and
the form of the descriptor is, consequently, limited to the bcc
structure. For other crystal structures, we will need to modify
the current descriptor.

D. Atomistic spin dynamics and ab initio molecular dynamics
with a machine learning approach for longitudinal

spin fluctuations

In ASD-AIMD simulations, the coupling between spin
dynamics and lattice vibrations is accounted for [13]. In the
AIMD part, the atomic positions change over time and are
updated based on the forces acting on each atom. The forces
are calculated using noncollinear DFT, where the magnetic
moments are constrained to a certain direction that changes
at every time step. The direction of the moment is dictated
by the ASD part, which run in parallel, and where the orien-
tations are updated according to the Landau-Lifshitz-Gilbert
equation for atomistic spin dynamics [36] and the interatomic
exchange constants Ji j (Ri j ) are assigned to each pair of atoms
and depend on the local geometry. The exchange constants
are parametrized prior to the simulation. In the ASD-AIMD
simulations of Ref. [13], CrN did not include the effects of
LSFs, which were motivated by the robust local magnetic

FIG. 2. 2D illustration of how the neighboring atoms are sorted
in the descriptor: (left) ideal crystal and (right) vibrating crystal.
A rigid rotation of, e.g., 90◦ of the crystal would make neighbor 4
become neighbor 1 and so on, changing the order of elements in the
descriptor.

moments of Cr, almost 3μB [37], in CrN. When studying Fe,
however, it is important to include the effects of LSFs, as
concluded in both Refs. [15,26]. This work includes the LSF
effects in ASD-AIMD simulations in an efficient way using
the ML approach. Figure 3 is an illustration of the resulting
ASD-AIMD-MLLSF scheme. The ML models are used to
predict the sizes of the magnetic moments and, therefore, in
the AIMD step, the magnetic moments are constrained both in
direction and size. The ML models predict the a and b param-
eters of the LSF energy landscapes of each magnetic moment,
and this is then used to calculate the size of the magnetic mo-
ment as described by Eq. (4). The expectation value in Eq. (4)
is therefore used as the instantaneous magnetic moment at
time t . Since the descriptor consists of information about the
positions of neighboring atoms {R}i and the directions of their
magnetic moments {e} j this information is fed into the ML
step. The ML step, together with LSF thermodynamics, gives
the sizes of the magnetic moments which are used in the
subsequent ASD and AIMD steps.

In the atomistic spin dynamics simulation, the adiabatic
approximation is used [36,38,39]. Antropov et al. showed that
the orientations of the local magnetic moments can be con-
sidered as slowly varying relative to their magnitudes [40,41]
since the transversal degree of freedom is related to collective
electronic dynamics and the longitudinal degree of freedom
to individual electron hopping. There is approximately a two
orders of magnitude difference between the timescales of the
longitudinal (∼10−15 s) and the transverse spin fluctuations
(∼10−13 s) [38]. This adiabatic approximation is valid for
systems with well-defined local magnetic moments which is
true for, e.g., Fe [40].

E. Computational details

All calculations are employed using density functional
theory as implemented in the Vienna ab initio simula-
tion package (VASP) [42–45] with projector augmented-wave
(PAW) potentials [46,47] and the Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation (GGA) [48] for
approximating the exchange-correlation functional. Two sys-
tems are used: bcc Fe at the Curie temperature Tc (1043 K)
and ambient pressure (Tc system), and bcc Fe at the tem-
perature 6000 K and volume 7 Å3/atom [high-temperature
high-pressure (HTHP) system]. For both systems the calcula-
tions are carried out on a supercell of 54 atoms (3 × 3 × 3 bcc
unit cells). Fermi-Dirac smearing and noncollinear magnetism
are applied in all calculations.

When calculating the LSF energy landscapes, a 3 × 3 × 3
and 5 × 5 × 5 Monkhorst-Pack k-point grid [49] is used for
the Tc system and the HTHP system, respectively. For the
HTHP case, the 3s and 3p electrons are considered valence
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FIG. 3. Combined atomistic spin dynamics and ab initio molecular dynamics including our machine learning approach for longitudinal
spin fluctuations (ASD-AIMD-MLLSF). The ASD-AIMD scheme [13] is followed but with an additional step where the trained machine
learning models use the atomic positions {R}n and directions of the magnetic moments {e}n to predict the LSF energy landscapes, in terms
of coefficients ai and bi, for each atom i in the cell. The LSF energy landscapes are subsequently used in thermodynamical simulations, at the
simulated temperature, where the magnitudes of all the individual magnetic moments ({m}n) are calculated numerically according to Eq. (4).
The {R}n, {e}n, and {m}n are then passed on to the following ASD step. The subscripts n indicate a certain iteration or time step. In this work,
time steps of 1 fs are used.

electrons because of the high-pressure conditions. The LSF
energy landscapes of the Tc system are obtained from several
snapshots out of an ASD-AIMD run performed at Tc and
ambient pressure. The LSF energy landscapes of the HTHP
system are obtained from a snapshot of a 3 × 3 × 3 bcc su-
percell from a nonmagnetic MD run at 6000 K and a volume
of 7 Å3/atom. This snapshot is taken from the work by Be-
lonoshko et al. [50]. To calculate the LSF energy landscapes,
the supercell scheme developed in Ref. [26] is employed.

For the Tc system, we run a DFT calculation, constraining
only the direction of the magnetic moments. To do this type
of constrained DFT calculation, the method developed by Ma
and Dudarev [51], with constraining parameter λ set to 10,
is used. This calculation gives the magnitude of the magnetic
moments corresponding to a temperature of 0 K for the lon-
gitudinal degree of freedom. The magnetic moments are then
constrained in both direction and magnitude for the following
calculations, with λ = 10. The LSF energy landscape of one
atomic magnetic moment is now obtained by scaling the size
of the moment in steps while constraining the other moments
to the sizes corresponding to a temperature of 0 K, given in
the previous step. The magnetic moment is set to about six
or seven different sizes, generating data points in a graph of
energy as a function of the magnetic moment. A fourth-order
polynomial, as in Eq. (2), is fitted to these data points and this
gives us the LSF energy landscape. For the HTHP system, a
similar scheme is employed. Except, in the HTHP case, the
initial step of constraining only the directions of the magnetic
moments is not performed. Instead, the stepwise change of
the size of the magnetic moment is initially done in a non-
magnetic background [26]. This different approach means that
the surrounding magnetic moments are not set to the sizes

corresponding to a temperature of 0 K, instead they are the
sizes corresponding to 6000 K in this case.

The ASD-AIMD runs are carried out with Langevin dy-
namics on supercells of 54 atoms on both the Tc system
and the HTHP system. The ASD part of the simulation is
performed with the UPPASD code [36,39]. The k-point grid
is reduced to a �-centered 2 × 2 × 2 grid and the energy
cutoff for the plane-wave basis set is set to 500 eV for both
systems. In the Tc system the lattice parameter is set to 2.877
Å which is the equilibrium lattice parameter at 0 K expanded
with thermal expansion to the Curie temperature. For the
HTHP system the lattice parameter is 2.410 Å (volume V
is 7.0 Å3/atom). Both the direction and sizes of the mag-
netic moments are constrained in these calculations since the
sizes are fixed at the values given by Eq. (4) after the ML
models have predicted the a and b parameters. The damping
parameter in the LLG equation is set to 0.05 and the time
step for evolution of the magnetic moment direction is set
to 0.01 fs.

For comparison, a collinear ferromagnetic AIMD simula-
tion at Tc and ambient pressure, and a nonmagnetic AIMD
simulation at the temperature 6000 K and the volume 7
Å3/atom, are performed. In both these simulations, a 3 × 3 ×
3 bcc supercell is used and a �-centered 2 × 2 × 2 k-point
grid.

The exchange interactions Ji j in Eq. (1) are parametrized
for the first two coordination shells from the results of the
study by Ruban and Peil [25]. The interactions for shells
3, 4, and 5 are considered constant at 0.023, 0.002, and
−0.100 meV, respectively.

The ML method KRR is implemented using the Python
toolkit for quantum machine learning (QML) [52]. The QML
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TABLE III. Kernel widths σ corresponding to the lowest mean absolute error for the a/b parameter when including up to four coordination
shells.

Descriptor 1 Descriptor 2 Descriptor 3 Descriptor 4

1 shell 10/10 10/10 10/10 100/10
2 shells 100/100 10/10 100/100 100/100
3 shells 100/100 100/100 100/100 1000/100
4 shells 100/100 100/100 100/100 1000/100

library offers a kernel module from which the Laplacian ker-
nel can be calculated. The regularization parameter λ is set to
10−4 and the kernel width σ is set according to Table III when
including up to four coordination shells for each descriptor.
The cross-validation scheme is carried out using the Python
machine learning library SCIKIT-LEARN [53].

III. RESULTS

A. Training data set

The training data set consists of the inputs (the descriptors)
and corresponding outputs (the a and b parameters described
in Sec. II A). One ML model is trained to predict the a pa-
rameters and one the b parameters, i.e., the two parameters
are predicted independently. In practice, this means that the
function f (x, α) in Eq. (8) differs for the two parameters of
the LSF energy landscape. Specifically, the two models will
have different sets of coefficients derived from Eq. (9).

The training data consist of data from the Tc system and the
HTHP system (6000 K and 300 GPa). The main part of the
training data set comes from the former system, with 752 LSF
energy landscapes, and a smaller part comes from the latter
system, with 54 landscapes. The focus of this work is to train
the ML models on the Tc system, and the high-temperature–
high-pressure data are used as a test of the generality of the
trained ML models. In Fig. 4 some examples of LSF energy
landscapes are shown both from the Tc and the HTHP systems
[26]. Most of the LSF energy landscapes at Tc show finite
minima but the different local environments lead to some
moments having a more itinerant behavior, i.e., a shallower
LSF energy landscape [26]. The LSF energy landscapes at
6000 K and 300 GPa all have their minima at a magnitude
of the magnetic moment of 0μB. The finite magnitudes of
magnetic moments in the HTHP case are therefore entropy in-
duced whereas straightforward DFT calculations predict their
sizes to be zero [35]. There is also less of a spread around the
mean LSF energy landscape in the HTHP case, i.e., the local
environment does not have the same impact as in the Tc case.

B. Other approximate methods for determining LSF
energy landscapes

The performance of the machine learning models is com-
pared to other approximate methods for determining the
shapes of the LSF energy landscapes. In this work, three
such approximate methods are investigated: (i) the Voronoi
volume is used as the single parameter in determining the
shape of the LSF energy landscape, (ii) a mean landscape
of a set of LSF energy landscapes for a certain system is
used as an approximation of all landscapes for that particular

system, and (iii) the magnitudes of the magnetic moments ob-
tained by performing DFT calculations using VASP where the
magnitudes are unconstrained is used as an approximation of

FIG. 4. Examples of longitudinal spin fluctuation energy land-
scapes from (a) the Tc system (ambient pressure, 1043 K) and (b) the
Earth-core-like HTHP system (300 GPa, 6000 K). For the Tc system,
only a selection of the complete set of 752 LSF energy landscapes
are plotted. For the HTHP system, all 54 LSF energy landscapes
are shown. Thick blue line represents the mean energy landscape.
The inset in (b) simply shows the HTHP LSF energy landscapes in a
larger energy range.
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FIG. 5. Mean absolute errors (MAE) when predicting (a) the a
parameters and (b) the b parameters using any of the four types of
descriptors or two of the other approximation methods described in
the text.

the magnitude at the minimum of the LSF energy landscape.
These DFT calculations with unconstrained magnetic moment
magnitudes essentially give the magnitude of each moment
at the LSF temperature of 0 K. Based on the small spread
seen in Fig. 4(b), we expect that approximation (ii), the mean
landscape approximation, should work quite well in the HTHP
case but less so for the Tc case. Approximation (i) should
capture some of the differences in local environments for the
magnetic moments because of the variation in the Voronoi
volume, and therefore be better than approximation (ii). One
may also note that approximation (iii) would, for example, not
be useful for the HTHP system since the minima are all at zero
size of the magnetic moment in this case.

In Fig. 5 the mean absolute error of approximation (i) and
(ii) are compared with each descriptor when predicting the
parameters a and b. In Fig. 6 the predictions of the magni-
tude of the magnetic moment at the LSF energy landscape
minimum are compared between the ML approach and the

FIG. 6. Mean absolute errors (MAE) when predicting the mag-
netic moment at the LSF energy landscape minima using any of the
four types of descriptors or any of the three other approximation
methods described in the text.

three other approximate methods. The predictions of the a and
b parameters are improved using the ML models regardless
of descriptor. With descriptors 2 to 4, the errors are half (or
less) of the errors of both approximations (i) and (ii). In the
case of predicting the sizes of the magnetic moments at the
minima of the LSF energy landscapes, approximation (iii)
slightly outperforms descriptors 1 and 2 whereas 3 and 4 give
a marginally smaller error. Descriptor 4 contains the infor-
mation of the size of the magnetic moment at the minimum
along with additional knowledge of the local environment
and it is therefore not surprising that it gives a smaller er-
ror than approximation (iii). The fact that descriptor 3 also
gives a slightly lower error compared to approximation (iii),
with the only difference compared to descriptor 2 being sum-
ming the scalar products or not, illustrates the importance of
how the input data are represented in the descriptor. Summing
the scalar products should lead to more similarities being
caught by the descriptor, and the result of this improvement
is most likely what we see when comparing descriptors 2 and
3.

C. Predictions at Earth’s inner core conditions

The ML models are trained on Tc data and, considering that
we are using the KRR method, the models should struggle
with making predictions of data that are far from the training
data. To test the generalizability of the present ML models,
we apply them to predict the LSF energy landscapes in Fe
under very different conditions from Tc, namely, at Earth’s
inner core conditions. Studies have indeed shown that mag-
netic effects could have an important impact even at these
conditions [26,35,54], which provides a perfect test system
for the ML models developed. In particular, in the following,
we will compare models not trained on any HTHP data with
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models where we use a transfer learning approach to fine tune
the model using a small set of such data. Here, descriptor 3 in
Table I is used. One should note that descriptor 4 cannot be
expected to give the same improvement in performance in the
HTHP case as observed for the Tc system since the magnitudes
of the magnetic moments vanish under such conditions in
straightforward DFT calculations [35]. The bcc structure is
one of several proposed alternatives for Fe at Earth’s inner
core (other alternatives are hexagonal close packed and fcc),
which has recently been predicted to be stable under this
high temperature and pressure [50,55,56]. Belonoshko et al.
demonstrated that it is complicated to accurately study the
bcc phase under these conditions because of its superionic
behavior and, as a consequence, it is required to have large
supercells for the bcc structure to be thermodynamically sta-
ble under the conditions of Earth’s inner core [50,55]. Our
3 × 3 × 3 supercell with 54 atoms does not satisfy this re-
quirement; we will therefore restrain ourselves from making
any quantitative comparison except regarding the change in
total pressure, a quantity that should be relatively robust with
respect to changes in the supercell size.

In Fig. 7, scatter plots to compare predicted and DFT calcu-
lated a and b parameter values for four different combinations
of training data and test data content are shown. As expected,
when trained only on the Tc data, the ML models struggle
to make correct predictions for both the a and b parameter
values of the HTHP system. The local environments of the
atomic moments in the HTHP system are clearly too different
compared to the Tc system for the ML models to accurately
predict the a and b parameter values in this case. On the
other hand, when including the small amount of HTHP data
into the training set, there is a significant improvement in the
predictions of the ML models. This notable reduction in MAE
suggests a high level of generalizability of the ML models.
In Fig. 7, there is a clear separation between two regions of
a parameters of the HTHP (high values) and Tc conditions
(low values), which is the signature of the transition from
an energy-driven localized moment situation to an itinerant
situation at high temperature and high pressure where the
moments are entropy driven. A similar separation can be
seen for the b values, where the ones corresponding to the
HTHP system are grouped together with the higher b values
of the Tc domain. Because of the small amount of HTHP data,
the MAEs are, however, still worse (about 2.5 times larger)
for the HTHP system compared to the Tc system even after
including a small part of this type of data in the training set.

D. Applying machine learning LSF to ASD-AIMD simulations

The ASD-AIMD-MLLSF simulations are conducted for
both the Tc system and the HTHP system. Again, descrip-
tor 3 is used. For the ASD-AIMD-MLLSF simulation of
the HTHP system, the ML models have been trained on the
complete training set, i.e., including the HTHP data. In these
simulations, the ML models predict the a and b parameter
values of the LSF energy landscape of each atomic magnetic
moment. From the energy landscapes, the magnitudes of the
magnetic moments can be calculated (see Sec. II A) following
the scheme described in Fig. 3.

FIG. 7. Comparison between predicted and DFT calculated val-
ues of (a) the a parameter and (b) the b parameter. Four different
cases are shown: (1) the models are trained only on Tc data and
tested on Tc data (magenta crosses); (2) the models are trained only
on Tc data and tested on HTHP data (blue crosses); (3) the models
are trained on both Tc and HTHP data and tested on Tc data (green
circles); (4) the models are trained on both Tc and HTHP data and
tested on HTHP data (black circles). In parentheses are the mean
absolute errors of the corresponding case with units eV/μ2

B and
eV/μ4

B for the a and b parameter, respectively.

In Fig. 8, the mean-square displacement (MSD) over time
is plotted for the Tc system both from the ASD-AIMD-
MLLSF simulation and a ferromagnetic AIMD simulation of
bcc Fe at Tc. The MSD is more than twice as large in the
ASD-AIMD-MLLSF simulation. As concluded in Ref. [3],
magnetic disorder has a large impact on the vibrational prop-
erties of bcc Fe. The shift upwards is most likely due to
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FIG. 8. Mean-square displacement (MSD) over time for bcc
Fe at Tc in a ferromagnetic (FM) AIMD simulation and in an
ASD-AIMD simulation with the added machine learning step
for calculating the longitudinal spin fluctuation energy landscapes
(ASD-AIMD-MLLSF) in the paramagnetic phase. Cumulative aver-
ages are represented by the thicker lines.

the disordered magnetic moments in the ASD-AIMD-MLLSF
simulation and their impact on the interatomic forces above
Tc, which allows for larger fluctuations in atomic positions.
This demonstrates our ASD-AIMD-MLLSFs possibility to
capture the feedback effects these higher amplitude vibrations
give on the magnetic moments and structure.

In Fig. 9, the pressure is plotted over time for the HTHP
system, both from the ASD-AIMD-MLLSF simulation and
a nonmagnetic (NM) AIMD simulation. In the NM-AIMD
simulation the pressure is ≈320 GPa when the volume is

FIG. 9. Pressure over time for bcc Fe at 6000 K and a volume
of 7.0 Å3/atom in a nonmagnetic (NM) AIMD simulation and in
an ASD-AIMD simulation with the added machine learning step
for calculating the longitudinal spin fluctuation energy landscapes
(ASD-AIMD-MLLSF) in the paramagnetic phase. Cumulative aver-
ages are shown by the thicker lines.

7.0 Å3/atom. When adding magnetic moments in the ASD-
AIMD simulation (which is made possible by our MLLSF
method) the pressure is increased to ≈360 GPa, supporting
the results from Refs. [26,35]. In Ref. [35], lattice vibrations
were not included and a pressure increase of ≈ 50 GPa was
observed. In Ref. [26], a pressure increase of ≈ 30 GPa was
found when LSF moments were present and lattice vibrations
were included by using a single snapshot from a nonmagnetic
MD run. One may speculate on the impact of these results
on the density of Earth’s inner core. The density of pure Fe
and Fe-Ni alloys at Earth’s core conditions has been found
to be higher compared to the preliminary reference Earth
model (PREM) [57]. To adjust for this discrepancy, it has
been proposed that some additional light elements might be
present [58]. The increase in pressure we find when includ-
ing magnetic moments indicates a lowering in density if the
volume was allowed to expand to match the external pressure
of 320 GPa. The presence of magnetic moments even when
subject to high-temperature vibrations should therefore reduce
the density deficit between previous nonmagnetic models for
bcc Fe under Earth’s inner core conditions and the PREM
data.

At this point, we should comment on the efficiency of
including the ML models in the ASD-AIMD scheme. If
we imagine the calculations needed to determine all LSF
energy landscapes of a configuration of 54 atoms being
parallelized to the fullest, it would take about 40 minutes to
calculate these 54 LSF energy landscapes in the Tc system.
For our ASD-AIMD simulation at Tc of approximately 5000
fs we would need more than 3300 h of DFT calculations
to determine the LSF energy landscapes. It would take
about 10 h to generate the entire training data set from
the Tc system used in this work, if we assume the same
level of parallelizability as before. At each time step in the
ASD-AIMD simulations, predicting the complete set of LSF
energy landscapes takes approximatively 30 s.

We can do the same comparison for the HTHP system. In
this case, it takes a lot longer to generate the individual LSF
energy landscapes. We imagine, as before, the calculations
being parallelized as much as possible. All in all, it would take
about 10.5 h to generate the 54 LSF energy landscapes of the
HTHP system used in this work, and it would take 8000 h
to calculate all LSF energy landscapes of the ASD-AIMD
simulation of 2000 fs at Earth’s inner core conditions.

In conclusion, it is clear that the hours of computational
time needed to generate the training data are quickly compen-
sated for by using the ML models to predict the LSF energy
landscapes.

IV. CONCLUSIONS

We have developed a kernel ridge regression ML approach
for determining the shape of the longitudinal spin fluctuation
energy landscapes of atomic magnetic moments based on
their local environments. Our results show that using an ML
approach improves the predictions of longitudinal spin fluctu-
ation energy landscapes compared to other more approximate
methods such as, e.g., approximating the energy landscapes
to a mean landscape. Our method enables efficient calcula-
tions of temperature-dependent magnitudes of the magnetic
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moments in dynamic simulations such as AIMD where each
magnetic moment at each time step needs to be determined.
Our approach thus avoids explicit calculations of thousands
of LSF energy landscapes, which would be unfeasible using
DFT or other computationally expensive ab initio methods.

The approach has been applied both to bcc Fe at Tc and
at Earth-core-like conditions of 6000 K and approximately
300 GPa. Our tests show that a model trained only on data at
Tc does not extrapolate well to other conditions, which is the
expected behavior of this type of ML method. Nevertheless,
a transfer-learning approach where a small portion of data
(less than 10%) is introduced to cover the HTHP conditions
significantly improves the accuracy of the predictions in the
HTHP domain. This behavior suggests that the model has a
high level of generalizability. However, even when introduc-
ing the HTHP data into the training data set, the errors of the
HTHP-data predictions are ≈ 2.5 times larger than for the Tc

data, which is as expected because of the comparatively scarce
training data from the HTHP domain.

In this work, the only crystal structure looked at is bcc. The
bcc Fe at Earth’s inner core conditions is quite far from perfect
bcc crystal but still the ML models are able to train on this
data and make reasonable predictions. However, in principle,
for the ML models to be able to handle chemical disorder,
transition between crystal structures, or even melting, a gen-
eralization of how the descriptor is chosen is needed, this is,
nonetheless, outside the scope of this work. Since hexagonal
close-packed Fe is another suggested crystal structure of Fe
under Earth’s inner core conditions, an interesting future study
would be to do similar simulations for this crystal structure as
well.

Including this ML-LSF approach into ASD-AIMD sim-
ulations has shown its potential in overcoming difficulties
with incorporating both longitudinal and transverse magnetic
degrees of freedom and vibrations in theoretical simulations.
As pointed out by the example of the ASD-AIMD-MLLSF
simulation at the condition of Earth’s inner core, allowing
for entropy-induced magnetic moments can be of importance
when calculating properties such as the density of a mate-

rial. The ASD-AIMD-MLLSF simulation gives an increase
of ≈40 GPa or 12.5% compared to the nonmagnetic simula-
tion under these HTHP conditions. The ASD-AIMD-MLLSF
simulation at Tc demonstrates the difference in vibrational be-
havior of the atoms between ferromagnetic and paramagnetic
Fe at this temperature, where the mean-square displacement
is determined to be much larger in the ASD-AIMD-MLLSF
simulation. The MSD in the FM simulation is ≈0.04 Å2 com-
pared to ≈0.09 Å2 in the ASD-AIMD-MLLSF simulation.

An important possible improvement of the ML models ex-
plored in this work is the design of the descriptor. Descriptor
3 in Table I gives the best results without having to make an
extra DFT simulation out of the four tested here. However, as
mentioned previously, the representation of the input data in
the descriptor could be improved to reduce the representation
of redundant structural information, which may reduce the
errors further. Furthermore, the success of this work motivates
investigating if other types of models, e.g., neural-network-
based methods, can further increase the performance.
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