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We discuss a spin- 1
2 Heisenberg antiferromagnet on the triangular lattice using the recently proposed bond-

operator technique (BOT). We use the variant of the BOT which takes into account all spin degrees of freedom
in the magnetic unit cell containing three spins. Apart from conventional magnons known from the spin-wave
theory (SWT), there are high-energy collective excitations in the BOT which are built from high-energy
excitations of the magnetic unit cell. We also obtain another high-energy quasiparticle which has no counterpart
not only in the SWT but also in the harmonic approximation of the BOT. All observed elementary excitations
produce visible anomalies in dynamical spin correlators. We show that quantum fluctuations considerably change
properties of conventional magnons predicted by the SWT. The effect of a small easy-plane anisotropy is
discussed. The anomalous spin dynamics with multiple peaks in the dynamical structure factor is explained that
was observed recently experimentally in Ba3CoSb2O9 and which the SWT could not describe even qualitatively.
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I. INTRODUCTION

Plenty of collective phenomena are discussed in the mod-
ern theory of many-body systems in terms of appropriate
elementary excitations (quasiparticles) [1–5]. According to
the quasiparticle concept, each weakly excited state of a
system can be represented as a set of weakly interacting quasi-
particles carrying quanta of momentum and energy. Thus,
the search and characterization of elementary excitations is
of fundamental importance. Because poles of Green’s func-
tions are determined by spectra of elementary excitations,
quasiparticles produce peaks in dynamical correlators which
can be observed experimentally and numerically. However,
some peaks can be smeared due to their small spectral
weights (small residues of the corresponding poles), insuffi-
cient experimental resolution, finite-size effects (in numerical
studies), and/or a finite quasiparticle damping. In addition,
some anomalies in observable quantities may have non-
single-quasiparticle nature originating from continuums of
excitations. Then the interpretation of numerical and experi-
mental data relies heavily on conclusions of existing analytical
approaches operating with suitable elementary excitations.

It can be stated that properties of long-wavelength elemen-
tary excitations (magnons) in ordered phases of quantum spin
systems are well understood [3,6–10]. However, there is grow-
ing evidence that in (quasi-)two-dimensional collinear and
noncollinear quantum systems, standard analytical methods
do not properly describe short-wavelength spin excitations.

For example, a mysterious anomaly of the magnon spec-
trum near momentum k = (π, 0) was found experimentally
[11,12] and numerically [12–18] in a spin- 1

2 Heisenberg anti-
ferromagnet (HAF) on a square lattice. In addition, a distinct
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continuum of excitations arises in the transverse dynamical
structure factor (DSF) at k = (π, 0), which has the form of
a high-energy tail of the one-magnon peak (similar features
were also observed in layered cuprates [19–21]). This contin-
uum was ascribed to a magnon instability at k = (π, 0) with
respect to a decay either into two spinons [12,16,22,23] or into
a Higgs excitation and another magnon [17,18,24].

An even more exotic picture was discovered numerically
in spin- 1

2 HAFs on the square lattice in strong magnetic field:
Not far from the saturation field, a large number of peaks
(instead of one magnon peak) appear in dynamical spin cor-
relators at a given momentum [25,26]. These anomalies were
interpreted as an indication of a short-wavelength magnon’s
instability observed self-consistently in the spin-wave theory
(SWT) in the first order in 1/S, where S is the spin value
[25,27].

Then, in a series of recent inelastic neutron scatter-
ing experiments carried out in Ba3CoSb2O9, the complete
inability of standard theoretical approaches to describe short-
wavelength spin excitations in spin- 1

2 HAFs on the triangular
lattice was demonstrated [28–30]. In particular, at least four
peaks can be distinguished in experimentally found DSFs at
the M point (see Fig. 1) of the Brillouin zone (BZ), whereas
the SWT predicts only two magnon peaks and a high-energy
continuum of excitations [27,31,32]. Recent application of the
Schwinger boson approach to this problem reproduces qual-
itatively high-energy peculiarities in experimental data [33].
A quantitative agreement with the experiment was achieved
recently in a numerical consideration using the tensor network
renormalization group method [34]. The resonating valence
bond (RVB) physics was invoked recently in the description
of the ground state and the spin dynamics of this system
[35]. Despite certain success in the description of the low-
energy spin excitations around the M point, the RVB theory
failed to discern the experimentally observed anomalies in the
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FIG. 1. (a) Antiferromagnet on the triangular lattice with three spins in the magnetic unit cell. Sites are distinguished by color belonging
to three magnetic sublattices in the magnetically ordered ground state. Translation vectors are shown of the crystal (a1,2) and of the magnetic
lattice (e1,2). (b) Crystal (blue hexagon) and magnetic (red hexagon) Brillouin zones. Translation vectors are depicted of the crystal (b1,2) and
of the magnetic (f1,2) reciprocal lattices.

high-energy spectral continuum. The anomalous dynamics in
Ba3CoSb2O9 was explained in Ref. [30] only phenomenolog-
ically.

Notice also that the clarification of the nature of short-
wavelength magnons in quantum low-dimensional spin sys-
tems would be of broad importance in view of recent findings
that short-wavelength spin excitations can play an important
role in the spin-fluctuation-mediated pairing mechanism in
high-temperature superconductors [36].

We have proposed recently and tested on a number of
spin systems a method based on the bond representation of
spin- 1

2 operators in terms of Bose operators [37–39]. This
bond-operator technique (BOT) is suitable for describing both
magnetically ordered and disordered phases (and transitions
between them). The idea of the BOT is to increase the unit
cell and to construct a representation of all spins in it via
Bose operators which create or annihilate quantum states
of the whole unit cell. It is clear that along with common
quasiparticles (magnons or triplons), there are extra bosons
in the spin representation which describe elementary excita-
tions arising in conventional approaches as bound states of
magnons or triplons. We have developed a general procedure
in Ref. [37] for constructing the bosonic spin representations
for an arbitrary number of spins in the unit cell. There is
a formal parameter n in the BOT, the maximum number of
bosons which can occupy a unit cell, that allows a regular
expansion of physical observables in powers of 1/n (physical
results correspond to n = 1). Importantly, the spin commuta-
tion algebra is fulfilled for any n > 0 that guarantees existence
of Goldstone excitations in phases with spontaneously broken
continuous symmetry in any order in 1/n. Then, the BOT
is very close in spirit to the standard SWT based on the
expansion in powers of 1/S, but it more accurately takes into
account short-range spin correlations and makes it possible,
along with magnons, to quite simply study high-energy exci-
tations arising in the SWT as bound states of several magnons.
In particular, in the BOT with four spins in the unit cell, which

was suggested for the ordered phase in spin- 1
2 HAF, there are

separate bosons describing the amplitude (Higgs) excitation
and a spin-0 quasiparticle named singlon. [37] The latter is
responsible for the anomaly in Raman intensity in the B1g

symmetry observed, e.g., in layered cuprates [37]. By compar-
ison with other available numerical and experimental results
obtained in a number of two-dimensional spin models, we
demonstrated [37,38] that in most cases first 1/n corrections
make the main renormalization of the staggered magnetiza-
tion, the ground-state energy, and energies of quasiparticles
(similar to the SWT in which first 1/S corrections provide in
many cases the main renormalization of observable quantities
even in two-dimensional systems with S = 1/2 [3,40]).

Using the BOT with four spins in the unit cell, we quan-
titatively reproduced in Ref. [37] the anomaly of the magnon
spectrum near k = (π, 0) in spin- 1

2 HAF on the square lattice
and excluded the Higgs-magnon mechanism of the formation
of this anomaly. In Ref. [39], we used the four-spin variant
of the BOT to describe numerous anomalies in dynamical
spin correlators in spin- 1

2 HAF on the square lattice in strong
field. A very rare phenomenon was discovered: Quantum
fluctuations are so strong in this system that these anoma-
lies correspond to poles of Green’s functions, which have
no counterparts in the semiclassical SWT (i.e., we showed
that taking into account self-energy parts in the first order in
1/n leads to the appearance of the novel poles). That is, the
system contains numerous short-wavelength magnetic excita-
tions (magnons) which have nothing to do with magnons in
the SWT.

In the present paper, we use a three-spin variant of the BOT
considered in some detail in Sec. II for discussion of spin
dynamics in spin- 1

2 HAF with a small easy-plane anisotropy
on the triangular lattice described by the Hamiltonian

H =
∑
〈i, j〉

J
(
SiS j − ASy

i Sy
j

)
, (1)
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where 〈i, j〉 denote nearest-neighbor sites, the exchange cou-
pling constant J is set to be equal to unity below, and the
anisotropy value A � 0. Our theory takes into account all
excited states in the magnetic unit cell containing three spins
and it respects the symmetry of the magnetic ordering [see
Fig. 1(a)]. We consider static properties in Sec. III of model
Eq. (1) at A = 0 and show that the 120◦ magnetic ordering is
reproduced in the BOT both in the harmonic approximation
and in the first order in 1/n. The ground-state energy and the
value of the sublattice magnetization found in the first order in
1/n are in good quantitative agreement at n = 1 with previous
analytical and numerical findings.

We calculate the magnon spectrum in Sec. IV at A = 0 in
the first order in 1/n. There are seven branches of excitations
in the BOT, three of which are Goldstone quasiparticles (low-
energy magnons) known from the SWT and the remaining
four optical branches (high-energy magnons) stem from high-
energy excitations of the unit cell. We also obtain the eighth
quasiparticle which has no counterparts in the SWT nor in the
harmonic approximation of the BOT. Similar to the elemen-
tary excitations obtained in Ref. [39] in the HAF on the square
lattice in a strong magnetic field (see above), the origin of the
eighth quasiparticle is in strong quantum fluctuations in the
system. We demonstrate that all observed quasiparticles pro-
duce visible anomalies in dynamical spin correlators. Spectra
of low-energy magnons are in good agreement with previous
numerical results obtained using the series expansion [41]
and the dynamical variational Monte Carlo approach [42,43].
In particular, the BOT reproduces the roton minima in the
spectrum of the well-defined low-energy magnon around M
and P points. We show that quantum fluctuations considerably
change properties of conventional magnons predicted by the
SWT. In particular, we demonstrate that quantum fluctuations
lift a degeneracy of two low-energy magnon branches pre-
dicted by the SWT along �M lines and along blue dashed
lines in Fig. 1(b) that, in turn, lead to larger number of peaks
in dynamical spin correlators.

The latter conclusion is in quantitative agreement with
results of recent experiments in Ba3CoSb2O9, as we show in
Sec. V, which is devoted to a discussion of the small easy-
plane anisotropy A in model Eq. (1) and to comparison of our
theory with experiments. In agreement with the conclusions
made in the spin-wave analysis [27,32], we find that even
small easy-plane anisotropy considerably reduces the phase
space for magnon decay into two other magnons so four
low-energy elementary excitations obtained in the BOT have
negligible damping at A = 0.15. We propose that four anoma-
lies obtained in Ba3CoSb2O9 at the M point in Ref. [29] in the
interval 0–3 meV stem from three low-energy magnons and
the eighth quasiparticle. High-energy magnons found in the
BOT contribute to a broad anomaly around 3.5 meV observed
in Ba3CoSb2O9 in Refs. [28,30].

Section VI contains our conclusion. Three appendices are
added with details of our analysis.

II. BOND-OPERATOR FORMALISM FOR SPIN- 1
2

MAGNETS ON THE TRIANGULAR LATTICE

Let us take into account all spin degrees of freedom in the
magnetic unit cell containing three spin-1/2’s which form a

(b) (c)(a)

FIG. 2. Diagrams giving corrections of the first-order in 1/n to
(a) the ground-state energy and the staggered magnetization, and (b),
(c) to self-energy parts.

triangle [see Fig. 1(a)]. The three-spin variant of the BOT can
be built according to the general scheme described in detail
in Ref. [37]. First, we introduce seven Bose operators in each
unit cell which act on eight basis functions of three spins |0〉
and |ei〉 (i = 1, ..., 7) according to the rule

a†
i |0〉 = |ei〉, i = 1, ..., 7, (2)

where |0〉 is a selected state playing the role of the vacuum.
Suitable basis functions are presented in Appendix A. Then,
we build the bosonic representation of spins in the unit cell as
described in Ref. [37], which turns out to be quite bulky, so we
do not present it here. The code in the MATHEMATICA software
which generates this representation is presented in the Supple-
mental Material [44]. There is a formal artificial parameter n

in this representation that appears in operator
√

n − ∑7
i=1 a†

i ai

by which linear in Bose operator terms are multiplied (cf. the

term
√

2S − a†
i ai in the Holstein-Primakoff representation). It

prevents mixing of states containing more than n bosons and
states with no more than n bosons (then, the physical results of
the BOT correspond to n = 1). In addition, all constant terms
in our representation of spin components are proportional to
n whereas bilinear in Bose operator terms do not depend on n
and have the form a†

i a j . We also introduce separate represen-
tations via operators Eqs. (2) for terms SiS j in the Hamiltonian
in which i and j belong to the same unit cell. Constant terms
in these representations are proportional to n2 and terms of
the form a†

i a j are proportional to n [37]. Thus, we obtain
a close analog of the conventional Holstein-Primakoff spin
transformation which reproduces the commutation algebra of
all spin operators in the unit cell for all n > 0 and in which n is
the counterpart of the spin value S. In analogy with the SWT,
expressions for observables are found in the BOT using the
conventional diagrammatic technique as series in 1/n. This
is because terms in the Bose-analog of the spin Hamiltonian
containing products of i Bose operators are proportional to
n2−i/2 (in the SWT, such terms are proportional to S2−i/2).
For instance, to find the ground-state energy, the staggered
magnetization, and self-energy parts in the first order in 1/n
one has to calculate diagrams shown in Fig. 2 (as in the SWT
in the first order in 1/S).

Our previous applications of the BOT to two-dimensional
models well-studied before by other numerical and analytical
methods show that first 1/n terms in most cases give the main
corrections to renormalization of observables if the system
is not very close to a quantum critical point (similarly, first
1/S corrections in the SWT frequently make the main quan-
tum renormalization of observable quantities even at S = 1/2,
Ref. [40]) [37,38]. Importantly, because the spin commutation
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algebra is reproduced in our method at any n > 0, the proper
number of Goldstone excitations arises in ordered phases in
any order in 1/n (unlike the vast majority of other versions
of the BOT proposed so far [37]). Although the BOT is
technically very similar to SWT, the main disadvantage of
this technique is that it is very bulky (e.g., the part of the
Hamiltonian bilinear in Bose operators contains more than
100 terms) and it requires time-consuming numerical calcu-
lation of diagrams. That is why there is a limited number of
points on some plots below found in the first order in 1/n.

It should be noted also that we discussed so far ordered
states only in systems on bipartite lattices using the BOT
[37–39]. However, this approach can be applied without
modifications to magnets with commensurate noncollinear
magnetic orderings if the unit cell considered in the BOT is
the magnetic unit cell (as is the case in the present study
of the triangular-lattice HAF with the three-spin unit cell).
Magnetic sublattices appear inside the unit cell automatically
after minimization of the ground-state energy with respect to
parameters α introduced in Appendix A (see Ref. [37] for
extra details).

III. STATIC PROPERTIES. A = 0

As shown in Appendix A, there are three parameters α in
the three-spin variant of the BOT controlling the mixing of the
basis functions. These parameters are series in powers of 1/n
which should be found by minimization of the ground-state
energy (at these values of parameters, linear in Bose operator
terms also vanish in the Hamiltonian, see Ref. [37] for extra
discussion). Calculating also the diagram shown in Fig. 2(a),
we obtain for the staggered magnetization 〈S〉 and for the
ground-state energy per spin E ,

〈S〉 = 0.465n − 0.220 �→ 0.245 (at n = 1),

E = −0.4247n2 − 0.1114n �→ −0.5361 (at n = 1),
(3)

which are very close to previous numerical and analytical
findings (see, e.g., Ref. [32] and Table III in Ref. [41]). Note
that mean spin components do reproduce 120◦ magnetic order
in the zeroth and first orders in 1/n.

IV. DYNAMICAL PROPERTIES. A = 0

We calculate in this section the dynamical spin susceptibil-
ity

χ (k, ω) = i
∫ ∞

0
dteiωt 〈[Sk(t ), S−k(0)]〉 (4)

and the DSF

S (k, ω) = 1

π
Imχ (k, ω), (5)

where

Sk = 1√
3

(S1k + S2ke−i(k1+k2 )/3 + S3ke−i(2k2−k1 )/3) (6)

are built on spin operators 1, 2, and 3 in the unit cell [see
Fig. 1(a)]; k = k1f1 + k2f2, and f1,2 are depicted in Fig. 1(b).

A. Harmonic approximation

Spectra are shown in Fig. 3(a) of seven branches of elemen-
tary excitations found in the harmonic approximation of the
BOT. These excitations correspond to poles of spin correlator
Eq. (4), which is a linear combination of Green’s functions
of bosons in the harmonic approximation. Spectral weights of
these poles [i.e., coefficients before delta-functions in Eq. (5)]
are presented in Fig. 3(b). It is seen that contributions are sig-
nificant of all quasiparticles to the spin correlator. That is why
we call all of them magnons below. Figure 3(a) shows that one
can distinguish three low-energy Goldstone excitations (low-
energy magnons) and four high-energy branches (high-energy
magnons). We examine in some detail the polarization of these
excitations in Appendix B. It is demonstrated there that the
highest-energy low-energy magnon and the highest-energy
high-energy magnon correspond to spin fluctuations trans-
verse to staggered magnetization. The remaining branches
are of a mixed nature, contributing both to the transverse
and longitudinal spin fluctuations (interestingly, the character
of some of them changes upon passing along the BZ). This
should be contrasted with the linear spin-wave theory (LSWT)
in which all magnons are transverse quasiparticles.

The magnon spectrum obtained in the LSWT is also pre-
sented in Fig. 3(a). It can be found in two equivalent ways: (i)
by introducing a local rotating coordinate system at each lat-
tice site and using the Holstein-Primakoff transformation with
one type of Bose operator and momenta lying in the crystal
(extended) BZ [27,31,32] and (ii) by using the Holstein-
Primakoff transformation for each spin in the magnetic unit
cell (i.e., by introducing three types of Bose operators) and
momenta lying in the magnetic BZ [see Fig. 1(b)] [45]. Spec-
tra of three magnon branches obtained using variant (ii) are
equal to εk, εk+k0 , and εk−k0 , where εk is the spectrum ob-
tained in way (i) and k0 is an antiferromagnetic vector (k0

equal to f1 and −f1 describes 120◦ magnetic structures with
different chiral orders, where f1 is shown in Fig. 1(b) [46]).

It is clear that three (Goldstone) magnon branches in the
LSWT correspond to three (Goldstone) low-energy magnons
in the BOT. It is seen from Fig. 3(a) that the spectrum found in
the BOT is shifted down noticeably compared with the result
of the LSWT. In addition, the amount of short-range quantum
fluctuations taken into account in the harmonic approximation
of the BOT lifts the classical spectrum degeneracy (i.e., the
degeneracy of two out of three branches εk, εk+k0 , and εk−k0 )
arising at blue dashed lines and at �M lines in Fig. 1(b). From
the point of view of the SWT, it may seem that the magnon
spectrum degeneracy is robust against quantum fluctuations
because first-order corrections in 1/S preserve it [27,31,32].
However, we demonstrate below that the lifting of the spec-
tra degeneracy found in the BOT is confirmed quantitatively
experimentally in Ba3CoSb2O9.

Due to the quantum nature of the considered system and
cumbersomeness of the BOT, it is difficult to visualize some-
how or to give a simple idea of the excited states arising in the
BOT and compare them with their counterparts in the LSWT.
Nevertheless, we try to do this in Appendix C for the special
point Z in the BZ [see Fig. 1(b)]. Point Z is convenient for this
purpose because there are no zero-point fluctuations within
the LSWT and the zero-point fluctuations are very small in
the harmonic approximation of the BOT.
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(a) (b)

FIG. 3. (a) Spectra of elementary excitations corresponding to poles of dynamical spin susceptibility Eq. (4) obtained in the linear spin-
wave theory (LSWT) and within the harmonic approximation of the bond-operator technique (BOT). Three magnon branches in the LSWT
correspond to the magnon spectrum εk, εk+k0 , and εk−k0 , where k0 is the antiferromagnetic vector. The path along the Brillouin zone is shown
in Fig. 1(b). (b) Spectral weights Wk of the poles [i.e., coefficients before delta-functions in Eq. (5)] found in the harmonic approximation of
the BOT.

B. Spectrum in the first order in 1/n

We now calculate spectra of seven branches of excitations
in the first order in 1/n in the standard way by expanding the
denominator of spin correlator Eq. (4) near bare poles ε

(0)
ik (i =

1, . . . , 7) and taking self-energy parts at ω = ε
(0)
ik . The results

are presented in Fig. 4. It is seen that all excitations except for
the lowest-energy one acquire finite damping due to the decay
into two other magnons. It is seen from Fig. 4(a) that the spec-
trum of the well-defined lowest-energy magnon follows the
position of the low-energy magnon anomaly observed using
the dynamical variational Monte Carlo approach in Ref. [42].
In particular, the roton minima around M and P points are
reproduced by the BOT. Our finding that the lowest-energy

magnon is long-lived is in agreement with recent numerical
results obtained by different methods [42,47].

It is seen from Fig. 4(b) that high-energy magnons ac-
quire moderate damping except for the magnon shown in
blue, which is overdamped in the whole BZ apart from the
vicinity of M and P points. We demonstrate in the next sec-
tion that moderately damped high-energy magnons produce
the high-energy anomaly in the DSF which was observed
experimentally in Ba3CoSb2O9.

Notice also that the spectrum of short-wavelength quasi-
particles found in the first order in 1/n self-consistently (i.e.,
by finding zeros of the denominator of spin correlators tak-
ing into account ω dependence of self-energy parts and not

(a) (b)

FIG. 4. (a) Spectra of the magnon branch obtained in the spin-wave theory (SWT) in the first order in 1/S (Refs. [31,48]) and using
the series-expansion technique (Ref. [41]). Position of the low-energy magnon anomaly is shown, which was observed using the dynamical
variational Monte Carlo (MC) approach in Ref. [42]. Three low-energy magnon branches are presented, obtained in the present paper in the
first order of the BOT (cf. Fig. 3). These three branches in the BOT correspond to the magnon spectrum εk, εk+k0 , and εk−k0 in the SWT and
in the series-expansion technique (εk+k0 and εk−k0 are not available in the literature along the entire path and so are not presented). (b) Spectra
of four high-energy spin excitations obtained in the present paper in the first order in 1/n. Colors in both panels correspond to Fig. 3(a).
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(a) (b)

FIG. 5. Dynamical structure factor (DSF) Eq. (5) at point M of the BZ [see Fig. 1(b)] for spin- 1
2 antiferromagnet Eq. (1) on the triangular

lattice at (a) A = 0 and (b) A = 0.15. DSF obtained within the first order in 1/n has been convoluted with the energy resolution of 0.03J .
Magnon energies are also indicated in panel (a) which were obtained in Ref. [41] using the series expansion technique. Anomalies in the DSF
are produced by poles of spin correlator Eq. (4), indicated in insets by colors corresponding to excitation branches shown in Fig. 3(a). Real
parts of these poles are marked by vertical dashed lines of respective colors. Imaginary parts of poles correspond to quasiparticle damping.
Pole ω4 has no counterparts neither in the spin-wave theory nor in the harmonic approximation of the BOT.

expanding the denominator near bare poles) differ from results
of the present section (see below).

C. Dynamical structure factor in the first order in 1/n

We turn to the calculation of the DSF Eq. (5) at M and
Y points by finding all self-energy parts in the first order in
1/n and taking into account their ω-dependence. We stress
that we do not expand in this section neither numerator nor
denominator of spin correlator Eq. (4). By varying n value,
we have traced the evolution of the spin correlator poles from
the limit n → ∞ (harmonic approximation) to n = 1.

The result is shown in Fig. 5(a) for the M point at n =
1. Poles of the correlator are also indicated in the inset of
Fig. 5(a) by colors corresponding to Fig. 3(a) (imaginary parts
of poles give quasiparticles damping). Notice that these poles
values are found in the self-consistent way so the results differ
from our findings from Sec. IV B [see Fig. 4). The difference
is small for low-energy magnons whereas it reaches 25%
for some high-energy magnons (cf. Figs. 4 and 5(a)]. It is
seen from Fig. 5(a) that our self-consistent findings are in
excellent agreement with previous numerical results obtained
in Ref. [41] using the series expansion. We point out that
an incoherent background arises in the DSF at ω � 0.7 due
to the two-magnon decay so the lowest-energy magnon is
well-defined and the rest magnons acquire finite damping and
produce anomalies mounted on the incoherent background.
Importantly, three high-energy magnons, one of which has a
very small damping, give the high-energy anomaly at ω ≈ 2.5
[at ω ≈ 2 according to Fig. 4(b)] which is observed in the
experiment as we demonstrate below.

DSF behaves similarly near the Y point, as seen from
Fig. 6(a). The difference with the M point is that the in-
coherent background starts at ω ≈ 0.9, all four high-energy
magnons contribute to the high-energy anomaly at ω ≈ 2.7,
and pole ω4 acquires a very large damping thus producing no
anomaly in the DSF.

Interestingly, pole ω4 corresponds to the quasiparticle
which arises near M at n ≈ 2 [despite its quite large damping
at A = 0, it produces a visible anomaly in the DSF near M as
is seen in Fig. 5(a)]. It has no counterparts neither in the SWT
nor in the harmonic approximation of the BOT. Notice that
this elementary excitation arises only around M and P points
at A = 0: the imaginary part of the pole increases quickly
upon going away from these points and the corresponding
anomaly in the DSF merges into the incoherent continuum as
illustrated by Fig. 6(a) for the Y point. However small easy-
plane anisotropy drastically decreases the damping of four
low-energy quasiparticles so pole ω4 becomes well-defined
at A = 0.15, as seen in Figs. 5(b) and 6(b). We propose
below that this quasiparticle was observed experimentally in
Ba3CoSb2O9 near M. It is interesting to point out that we
have found by the BOT the appearance of additional poles
after taking into account self-energy parts only in another
noncollinear spin- 1

2 system, HAF in strong magnetic field,
[39] while there were no such phenomena in models with
collinear magnetic orderings [37,38].

V. EASY-PLANE ANISOTROPY AND COMPARISON
WITH EXPERIMENT

The main effect of the easy-plane anisotropy A in Eq. (1)
is the reduction of the phase space for a magnon to decay into
two other magnons [this process is described by the diagram
shown in Fig. 2(c)], as was obtained before in the spin-wave
analysis [27,32]. It is seen from Figs. 5 and 6 that imaginary
parts of four low-energy poles are substantially reduced at
A = 0.15 at M and Y points. In particular, the anisotropy
makes the quasiparticle corresponding to pole ω4 at both
points well-defined. The anisotropy also produces a gap � in
the spectra of two low-energy magnons at � and K points.

As established before, Ba3CoSb2O9 is a perfect realization
of model Eq. (1) with J ≈ 1.7 meV, A ≈ 0.1, and a small ex-
change coupling between spins from nearest triangular planes
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(a) (b)

FIG. 6. The same as Fig. 5 but for point Y of the BZ [see Fig. 1(b)]. Small easy-plane anisotropy reduces the phase space for the magnon
decay so the broad anomaly around ω ≈ 1.1 in panel (a) turns into two resolution-limited peaks in panel (b).

J ′ ≈ 0.05J [29,49,50]. We neglect the interplane interaction
for simplicity and find good agreement with experimental
observations at

J = 1.77 meV, A = 0.15. (7)

In particular, we obtain for the gap value at parameters
Eqs. (7),

�/J = 0.57n − 0.18 �→ 0.39 (at n = 1), (8)

which is in a very good agreement with the experimental
finding [30,49] � ≈ 0.7 meV ≈ 0.4J .

To describe available neutron data, one has to calculate the
following DSF [51],

Sn(k, ω) = 1

π
Im

∑
α,β

(
δαβ − k̂α k̂β

)
χαβ (k, ω), (9)

where α, β = x, y, z, k̂ = k/k, and χαβ (k, ω) are spin cor-
relators Eq. (4) built on spin operators Sα and Sβ . One also
has to take into account that there are many domains in real
samples of Ba3CoSb2O9 with different directions of staggered
magnetization [30] so Eq. (9) should be averaged over all such
domains.

The result of our calculation of Eq. (9) with parame-
ters Eqs. (7) is shown in Fig. 7(a) at the M1 point (k =
(1/2, 0,−1)) together with experimental data from Ref. [29].
Four peaks are clearly seen in experimental data which are
reproduced quite accurately by our results. The worse agree-
ment is in the intensity of the peak at ω ≈ 2.4 meV which
corresponds to the quasiparticle described by pole ω4 in Fig. 5.
The different ratio of the peaks spectral weights in Figs. 5(b)
and 7(a) is accounted for by different weights of correla-
tors χxx(k, ω), χyy(k, ω), and χzz(k, ω) in Eqs. (5) and (9).

(a) (b)

FIG. 7. Inelastic neutron scattering intensity with subtracted background obtained experimentally in Ba3CoSb2O9 at M points [M1 and M2

correspond to k = (1/2, 0, −1) and k = (1, 1/2, −1), respectively]. Red curves are theoretical results of the present study with parameters
Eqs. (7) in model Eq. (1) convoluted with the energy resolution σ . (a) Experimental data from Ref. [29], σ = 0.063 meV ≈ 0.036J (as in
the experiment [29]), and σ = 0.01J . Vertical dashed lines indicate real parts of poles of spin correlator Eq. (9) as in Fig. 5(b). The pole
shown in magenta has no counterparts neither in the spin-wave theory nor in the harmonic approximation of the BOT. (b) Experimental data
from Ref. [28] and σ = 0.08J (as in the experiment [28]). The discrepancy in the position of the high-energy anomaly between theory and
experiment can be attributed to greater sensitivity of high-energy magnons to 1/n corrections, as explained in the main text.
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FIG. 8. Basis spin functions for the bond-operator technique.
Normalization factors are omitted for clarity.

In particular, the low-energy peak at the M point is due to
spin fluctuations in the direction transverse to the plain in
which magnetic moments lie so its spectral weight is zero
in χxx(k, ω) and χzz(k, ω). This explains the increase of the
low-energy magnon energy as A rises [see Figs. 5(a) and 5(b)]
and the diminishing of its spectral weight in Eq. (9) upon
increasing of the last component of k.

Our results and data of another experiment [28] performed
on Ba3CoSb2O9 in a wider energy range (but with twice as bad
energy resolution) than that in Ref. [29] are shown in Fig. 7(b).
The broad high-energy anomaly found experimentally around
ω ≈ 3.4 meV corresponds to the anomaly produced in our re-
sults by high-energy magnons. The discrepancy of 22% in the
position of this feature between the theory and experiment can
be attributed to greater sensitivity of high-energy poles of spin
correlators to 1/n corrections: real parts of poles ω5,6,7,8 found

self-consistently in Fig. 5(a) are about 25% as large as corre-
sponding values obtained using the denominator expansion in
Fig. 4(b). This also signifies that further 1/n corrections give a
noticeable contribution to the renormalization of high-energy
magnons spectra.

Notice that the SWT predicts only two magnon peaks at M
(due to the magnon spectra degeneracy discussed above) and a
high-energy continuum of excitations [27,31,32] whereas the
BOT reproduces the number and positions of experimentally
observed anomalies. We also stress that the good agreement
with experiment confirms our finding that quantum fluctu-
ations lift the degeneracy between two low-energy magnon
branches predicted by the SWT along �M lines and along blue
dashed lines drawn in Fig. 1(b).

VI. CONCLUSION

To conclude, we use the three-spin variant of the BOT for
discussion of spin dynamics in spin- 1

2 HAF on the triangular
lattice. Our theory takes into account all excited states in the
magnetic unit cell containing three spins and it respects the
symmetry of the magnetic ordering (see Fig. 1). The ground-
state energy and the value of the sublattices magnetization
found in the first order in 1/n [see Eqs. (3)] are in good
quantitative agreement with previous analytical and numerical
findings.

We obtain seven branches of excitations in the BOT, three
of which are Goldstone quasiparticles (low-energy magnons)
known from the SWT and the remaining four previously
unknown branches (high-energy magnons) originate from
high-energy excitations of the unit cell. We also find the eighth
quasiparticle which has no counterparts neither in the SWT
nor in the harmonic approximation of the BOT and which
has small enough damping around M and P points of the BZ
(see Fig. 5). Similar to the elementary excitations obtained in
Ref. [39] in HAF on the square lattice in strong magnetic field,
the origin of the eighth quasiparticle is in strong quantum
fluctuations in the system. We demonstrate that all observed
quasiparticles produce visible anomalies in dynamical spin
correlators. Spectra of low-energy magnons are in good agree-
ment with previous numerical results. In particular, the BOT

(a) (b)

FIG. 9. Spectral weights W T,L
k of peaks in the transverse and longitudinal dynamical structure factors 1

π
ImχT,L (k, ω) built on correlators

Eqs. (B1) and (B2) which are calculated in the harmonic approximation of the BOT.
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FIG. 10. Mean values 〈S1,2,3〉 of three spins in the magnetic unit cell in the ground state and in quantum states which can be used for the
construction of excitations at Z point in the BZ [see Fig. 1(b)] by operator 1√

N

∑
j eikR j b†

j , where b†
j creates the corresponding state at jth unit

cell. There are no zero-point fluctuations at Z point within the linear spin-wave theory; three excited states are built on simple spin flips in
magnetic unit cells which have energy εk = 3/2. Zero-point fluctuations are small at Z point within the harmonic approximation of the BOT
and we neglect them here. Components are zero of 〈S1,2,3〉 perpendicular to the plane of the figure.

reproduces the roton minima in the spectrum of the well-
defined low-energy magnon around M and P points. We show
that in agreement with experiments in Ba3CoSb2O9, quantum
fluctuations lift the degeneracy of two low-energy magnon
branches predicted by the SWT along �M lines and along
blue dashed lines depicted in Fig. 1(b). High-energy magnons
produce the broad high-energy anomaly in dynamical spin
correlators as seen from Figs. 5 and 6.

In agreement with the conclusion made in the spin-
wave analysis [27,32], we find that even small easy-plane
anisotropy considerably reduces the phase space for magnon
decay into two other magnons so four low-energy elementary
excitations obtained in the BOT have negligible damping at
A = 0.15 in Eq. (1). We propose that four anomalies obtained
in Ba3CoSb2O9 at M1 point in Ref. [29] in the interval 0–
3 meV stem from three low-energy magnons and the eighth
quasiparticle [see Fig. 7(a)]. High-energy magnons found in
the BOT contribute to the broad anomaly around 3.5 meV
observed in Ba3CoSb2O9 in Ref. [28] [see Fig. 7(b)]. The
discrepancy of 22% in the position of this anomaly between
the theory and experiment can be attributed to the greater
sensitivity of high-energy magnons to 1/n corrections and the
necessity to go beyond the first order in 1/n.

The easy-plane anisotropy produces the gap in spectra of
two low-energy magnons at K and � points. The gap value
given by Eq. (8) for model parameters Eqs. (7) is in quantita-
tive agreement with experimental findings in Ba3CoSb2O9.

Short-range spin correlations are taken into account more
accurately in the BOT compared with standard approaches

that result in a more precise description of the high-energy
(short-wavelength) spin dynamics.
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APPENDIX A: BASIS FOR BOND-OPERATOR THEORY

Basis functions for the proposed bond-operator theory [see
Eqs. (2)] are shown in Fig. 8. All these states are simple linear
combinations of eigenfunctions of the total spin S and its z
projection Sz: |φ1〉 is the sum of the state with (S = 3/2, Sz =
3/2) and the state with (S = 3/2, Sz = −3/2); |φ2,3,4〉 are
sums of states with (S = 1/2, Sz = 1/2) and states with (S =
1/2, Sz = −1/2); |e4,5,6〉 are difference of states with (S =
1/2, Sz = 1/2) and states with (S = 1/2, Sz = −1/2); |e7〉
is the difference of the state with (S = 3/2, Sz = 3/2) and
the state with (S = 3/2, Sz = −3/2). Bearing in mind the
common wisdom that the ground-state ordering is coplanar
in the considered system and is from sector Sz = 0, one can
search the vacuum state |0〉 in the sector in which mean
values are zero of operators Sy

1,2,3 and Sz
1 + Sz

2 + Sz
3, i.e., in the

subspace formed by |φ1,2,3,4〉. Then, we confined ourselves to
searching a coplanar magnetic ground-state ordering in the xz
plane because the plane in which spins lie does not effect the
dynamics in the Heisenberg system. Then it is convenient to
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represent |0〉 and |e1,2,3〉 in Eqs. (2) as follows:

|0〉 = cos α3(|φ2〉 sin α1 + |φ1〉 cos α1)

+ sin α3(|φ4〉 sin α2 + |φ3〉 cos α2),

|e1〉 = sin α3(|φ2〉 sin α1 + |φ1〉 cos α1)

− cos α3(|φ4〉 sin α2 + |φ3〉 cos α2),

|e2〉 = cos α3(|φ2〉 cos α1 − |φ1〉 sin α1)

+ sin α3(|φ4〉 cos α2 − |φ3〉 sin α2),

|e3〉 = sin α3(|φ2〉 cos α1 − |φ1〉 sin α1)

− cos α3(|φ4〉 cos α2 − |φ3〉 sin α2), (A1)

where real parameters α1,2,3 should be found as a result of
minimization of the system ground-state energy [i.e., the term
without Bose operators in the Bose analog of spin Hamilto-
nian Eq. (1)] or, equivalently, from the requirement that the
term H1 in the Hamiltonian linear in Bose operators should
vanish. We find in this way α1 = 1.0472, α2 = 0.2618, and
α3 = 1.8635. There are also 1/n corrections to these quan-
tities coming from the contribution to H1 from terms in the
Hamiltonian containing products of three Bose operators after
making all possible couplings of two Bose operators. As a
result, we find α1 = 1.0472 + 0/n, α2 = 0.2618 + 0/n, and
α3 = 1.8635 − 0.1247/n. Because all terms in the Hamilto-
nian depend on α1,2,3, 1/n corrections to these parameters
contribute to the renormalization of observables in the first
order in 1/n and we have taken them into account in all our
calculations. Notice that mean spin components calculated
both in the zeroth and first orders in 1/n show the 120◦
magnetic ordering in the ground state in the xz plane (it
is the minimization of the system ground-state energy with
respect to α1,2,3 that fixes the angle of 120◦ between mean
spin components in zeroth order in 1/n).

It is just for the sake of reduction of the number of parame-
ters in the theory that we choose the subspace for |0〉 in which

mean values are zero of operators Sy
1,2,3 and Sz

1 + Sz
2 + Sz

3
(i.e., the subspace formed by |φ1,2,3,4〉). The 120◦ magnetic
structure which we obtain is in agreement with all results
found before by other methods that corroborates our simpli-
fied consideration. The stability of the spectra of elementary
excitations which we observe also indicates that the 120◦
magnetic structure we find provides a minimum of the system
energy. One has to introduce a linear combination of all basis
functions for |0〉 (with complex coefficients) and minimize the
system ground-state energy with respect to all (complex) co-
efficients to discuss the ground-state ordering rigorously. This
is a tedious procedure which has to be done in an unknown
system, whereas the consideration can be simplified by using
previous results in the case of well-studied models. We choose
the simplest way in the present paper.

It should also be stressed that the BOT built on a ba-
sis containing linear combinations of all states |φ1,2,3,4〉 and
|e4,5,6,7〉 with seven parameters α gives the same results for
observables. One can also consider linear combinations of
states |e1,2,3,4,5,6,7〉 for excited states. However, Bose opera-
tors arisen in this case would be related with Bose operators
Eqs. (2) via a unitary transformation that guarantees the same
results for observable quantities.

APPENDIX B: POLARIZATION OF SPIN EXCITATIONS

In this Appendix, we explore the nature of seven spin exci-
tations arising in the harmonic approximation of the BOT (see
Fig. 3 for their spectra). It is well-known that conventional
magnons in the SWT are collective excitations related with
fluctuations transverse to staggered magnetizations. In the
longitudinal channel, there can arise other excitations, one of
which is the amplitude (Higgs) mode. As the longitudinal and
the transverse channels are mixed in noncollinear magnets,
one expects that all excitations would be of a mixed nature.
However, it is interesting to consider this point in some detail
and discuss the spin susceptibility [cf. Eqs. (4) and (6)],

χT (k, ω) = i
∫ ∞

0
dteiωt 〈[Bk(t ),C−k(0)]〉,

Bk = 1√
3

((√
3

2
Sx

1k + 1

2
Sz

1k + iSy
1k

)
− (

Sz
2k − iSy

2k

)
e−i(k1+k2 )/3 +

(
−

√
3

2
Sx

3k + 1

2
Sz

3k + iSy
3k

)
e−i(2k2−k1 )/3

)
,

Ck = 1√
3

((√
3

2
Sx

1k + 1

2
Sz

1k − iSy
1k

)
− (

Sz
2k + iSy

2k

)
e−i(k1+k2 )/3 +

(
−

√
3

2
Sx

3k + 1

2
Sz

3k − iSy
3k

)
e−i(2k2−k1 )/3

)
, (B1)

where Bk and Ck are built, respectively, on operators S+
1,2,3 and S−

1,2,3 in the local coordinate frames in which z axes are directed
along the local mean magnetizations. Here, we also take into account that for parameters α1,2,3 presented in Appendix A, the
mean magnetic moments are directed along (−1/2,

√
3/2), (1,0), and (−1/2,−√

3/2) at sites 1, 2, and 3 in the unit cell [see
Fig. 1(a)], respectively.

Similarly, we introduce the longitudinal spin correlator which is built on operators Sz
1,2,3 in the local coordinate frames

χL(k, ω) = i
∫ ∞

0
dteiωt 〈[Bk(t ),C−k(0)]〉,

Bk = Ck = 1√
3

((
−1

2
Sx

1k +
√

3

2
Sz

1k

)
+ Sx

2ke−i(k1+k2 )/3 −
(

1

2
Sx

3k +
√

3

2
Sz

3k

)
e−i(2k2−k1 )/3

)
(B2)
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We plot in Fig. 9 spectral weights of peaks in DSFs
1
π

ImχT,L(k, ω) built on correlators Eqs. (B1) and (B2) which
are calculated in the harmonic approximation of the BOT.
It is seen that the highest-energy low-energy magnon and
the highest-energy high-energy magnon are purely transverse.
The remaining branches are of mixed type and the character
of some of them changes upon passing along the BZ.

APPENDIX C: SPIN EXCITATIONS IN THE BOT
AND IN THE SPIN-WAVE THEORY

We try to give a simple idea in this Appendix of excited
states arising in the BOT and we try to compare them with
their counterpart in the LSWT. This is particularly easy to do
at the special point Z of the BZ [see Fig. 1(b)] at which there
are no zero-point fluctuations within the LSWT and they are
very small in the harmonic approximation of the BOT. For the
sake of comparison, it is convenient to develop the standard
LSWT with three types of bosons (i.e., by performing the
Holstein-Primakoff transformation at each site in the magnetic
unit cell in the local coordinate frame).

Due to the absence of zero-point fluctuations, the contribu-
tion to the Hamiltonian from the Z point has a simple form
in the LSWT εk(b†

1kb1k + b†
2kb2k + b†

3kb3k ), where εk = 3/2,
and the excited states with the corresponding k are created
from the classical ground state having 120◦ magnetic structure
by operators 1√

N

∑
j eikR j b†

q j , where N is the number of unit

cells in the lattice, q = 1, 2, 3, and b†
q j creates a simple spin

flip at the qth site in the jth unit cell (see Fig. 10).
Within the harmonic approximation of the BOT, by

discarding terms in the Hamiltonian describing zero-point
fluctuations (i.e., terms containing products of two opera-
tors of creation or two operators of annihilation), one can
bring the contribution to the Hamiltonian from the Z point
to the simple form

∑7
q=1 εqkb†

qkbqk, where (b1, b2, ..., b7) =
U (a1, a2, ..., a7), ai are introduced in Eqs. (2), and U is a
unitary matrix. States created by b†

q j are related with basis
functions shown in Fig. 8 by the unitary transformation U .
Figure 10 demonstrates mean spin values in these states,
where corresponding εqk are also presented. The latter values
are very close to the bare spectrum at the Z point shown in
Fig. 3 that indicates the minor role of zero-point fluctuations
at this momentum.
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