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Multipolar exchange interaction and complex order in insulating lanthanides
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In insulating lanthanides, unquenched orbital momentum and weak crystal-field (CF) splitting of the atomic
J multiplet at lanthanide ions result in a highly ranked (multipolar) exchange interaction between them and
a complex low-temperature magnetic order not fully uncovered by experiment. Explicitly correlated ab initio
methods proved to be highly efficient for an accurate description of CF multiplets and magnetism of individual
lanthanide ions in such materials. Here we extend this ab initio methodology and develop a first-principles
microscopic theory of multipolar exchange interaction between J multiplets in f -metal compounds. The key
point of the approach is a complete account of Goodenough’s exchange mechanism along with traditional
Anderson’s superexchange and other contributions, the former being dominant in many lanthanide materials.
Application of this methodology to the description of the ground-state order in the neodymium nitride with
rocksalt structure reveals the multipolar nature of its ferromagnetic order. We found that the primary and sec-
ondary order parameters (of T1u and Eg symmetry, respectively) contain non-negligible J-tensorial contributions
up to the ninth order. The calculated spin-wave dispersion and magnetic and thermodynamic properties show
that they cannot be simulated quantitatively by confining to the ground CF multiplet on the Nd sites. Our results
demonstrate that the ab initio approach to the low-energy Hamiltonian represents a powerful tool for the study
of materials with complex magnetic order.
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I. INTRODUCTION

Magnetic insulators with strong spin-orbit coupling on
magnetic sites often exhibit unconventional magnetic phases
characterized by magnetic multipole moments. Contrary to
pure spin systems, the unquenched orbital momentum renders
relevant high-ranked components in the magnetic moments
of the corresponding magnetic centers, resulting in uncon-
ventional magnetic orders and quantum spin liquids. Such
multipolar phases can appear in lanthanide and actinide com-
pounds [1–19], in heavy transition metal systems [20–26], and
possibly in cold atom systems [27].

The multipolar order is often difficult to characterize ex-
perimentally because of the lack of response of high-rank
multipoles to external perturbations. This situation, for ex-
ample, has prevented us from unraveling the nature of the
hidden order phase in URu2Si2 for a long time [6]. Another
difficulty is the large number of parameters characterizing the
intersite multipolar interactions. For example, the total num-
ber of independent parameters characterizing the exchange
interaction between J multiplets of magnetic centers with
open f -orbital shells (e.g., lanthanide ions) can be as large
as 2079. In addition, the high-rank multipolar structure of
magnetic centers gives rise to a complicated tensorial form
of electron-lattice coupling which increases the complexity
of the low-energy states [1,8,28]. From the theoretical side,
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a reliable modeling of the multipolar phase also faces prob-
lems because only a few interactions are usually considered.
For instance, the quadrupole ordering in CeB6 [7] and the
triakontadipole order in NpO2 [9] have been investigated in
this manner. Phenomenological approaches always encounter
the following issues: (1) it is not possible to know a priori the
dominant contribution among the multipolar interactions and
(2) it is unclear what is the actual impact of the remaining part
of the interactions.

The multipolar order could be, in principle, quantitatively
analyzed by combining the microscopic theory and quantum
chemistry approaches. Attempts to build such a connection
have been undertaken in the past for various compounds
[8,29–35]. Recently, a microscopic theory of the superex-
change interaction between the ground atomic J multiplets has
been developed for the f -metal compounds [1,36]. The devel-
oped microscopic model in combination with first-principles
calculations enables us to accurately determine all multipolar
interactions from several tens of input microscopic parame-
ters. By this approach, the multipolar interactions in a family
of lanthanide-radical single-molecule magnets were deter-
mined, and on this basis the relaxation path of magnetization
was established [37,38]. It appears very tempting to extend
this approach to the ab initio study of multipolar order in
lanthanide-based magnetic insulators.

In lanthanides, the multiconfigurational structure of low-
lying multiplets arises from a subtle competition between
electrostatic and covalent effects in the crystal field (CF) of
surrounding ligands [39]. While such level of treatment of the
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electronic structure cannot be attained by single-determinant
methods like Hartee-Fock (HF) approximation or density
functional theory (DFT), explicitly correlated ab initio post
HF methods based on complete active space self-consistent
field (CASSCF) [40,41] were recently found highly efficient
for accurate description of CF multiplets and magnetism of
lanthanide (Ln) centers in various materials [39,42,43]. This
approach cannot be directly applied at the same level of
accuracy to complexes and fragments with more than one
Ln ion, which has hampered a straightforward derivation of
low-energy Hamiltonian describing their multipolar exchange
interaction. However, given a very strong localization of mul-
tiplets’ wave functions at Ln centers, second-order electron
transfer processes involving Ln 4 f orbitals are sufficient for
an adequate description of kinetic contribution to exchange
interaction [1,36]. Such electron transfer processes between
Ln 4 f orbitals have been recently considered for the inves-
tigation of exchange interaction in Ln-radical pairs [37,38].
However, for a quantitative description of Ln-Ln exchange
interaction, besides virtual electron transfer between magnetic
4 f orbitals, it is also indispensable to take into account the
electron delocalization from them to 5d and other empty Ln
orbitals at neighbor magnetic centers, which gives rise to the
Goodenough’s exchange contribution.

We would like to stress the major difference between
the exchange interaction in transition metal and lanthanide
magnetic insulators. In the former, the usual situation is that
the antiferromagnetic Anderson’s superexchange is absolutely
dominant when not forbidden by symmetry rules, exceeding
by ca. an order of magnitude all other exchange contribu-
tions and leading, therefore, to strong antiferromagnetism.
A known example in this paradigm is, e.g., the strong an-
tiferromagnetism in La2CuO4 [44]. Exceptions arise when
the overlap of magnetic orbitals is weak or exactly zero on
symmetry grounds (Goodenough-Kanamori-Anderson rules
[45–47]) and when Anderson’s description of exchange in-
teraction is not appropriate [48]. Then materials may become
ferromagnetic due to dominating potential exchange and/or
ligands’ spin polarization mechanism in the former case
and kinetic ferromagnetic superexchange in the latter case.
On the contrary, in lanthanides the Goodenough’s exchange
mechanism is often dominant because of a much stronger
hybridization of magnetic 4 f orbitals with empty orbitals
of excited Ln shells due to a strong admixture of bridg-
ing ligands’ orbitals. When the geometry of the bridge and
the symmetry of magnetic 4 f orbitals favor strong orbital
interaction with empty Ln orbitals, a relatively strong fer-
romagnetism arises due to this Goodenough’s mechanism
as, e.g., in the series of DynSc3−nN@C80, n = 1,2,3, com-
plexes [49,50]. Note that this scenario is valid for Ln-Ln pairs
and not for Ln-radical ones which can exhibit a very strong
antiferromagnetism [37,51–54]. Along with exchange inter-
action, a dipolar magnetic interaction should be considered
too when treating the pairs of lanthanide ions. None of the
mentioned interactions can be neglected a priori in this case
and should, therefore, be accounted for as contributions to the
overall multipolar magnetic coupling. Such a comprehensive
treatment of exchange contributions and multipolar magnetic
interaction has never been attempted by ab initio methods
so far.

Here we extend the ab initio approach proved success-
ful for the description of mononuclear lanthanide complexes
and fragments to the treatment of exchange interaction and
develop on its basis a first-principles microscopic theory
of multipolar magnetic coupling between J-multiplets in f -
metal compounds. The key point of the approach is a complete
account of Goodenough’s exchange mechanism along with
traditional Anderson’s superexchange and other contributions.

The developed theory is applied to the investigation of
the multipolar order in prototypical lanthanide magnetic in-
sulator, neodymium nitride NdN, a member of a vast family
of lanthanide nitrides exhibiting ferromagnetism with high
critical (Curie) temperature of about a few tens of K [55]. The
ferromagnetic transition does not change the x-ray diffraction
patterns, indicating the irrelevance of electron-lattice interac-
tion [56]. In addition, the magnetism in the entire family does
not depend much on the kind of rare-earth ions, suggesting
the primary role of intersite magnetic interaction rather than
single-ion properties and prompting simple models for the
explanation of its ferromagnetism [57]. Despite this apparent
simplicity, our analysis unravels a complex magnetic order in
NdN described by primary and secondary order parameters
and containing non-negligible J-tensorial contributions up to
the ninth order. At the same time, the first-principles theory
reproduces well the known experimental data on the observed
ferromagnetic phase. Finally, the fingerprints of multipolar
order in the low-energy excitations and magnetic and thermo-
dynamic properties are analyzed and explored.

II. MULTIPOLAR SUPEREXCHANGE INTERACTION

Because of a strong localization of magnetic 4 f or-
bitals, the multipolar exchange interaction Hamiltonian for
lanthanide magnetic insulators can be derived from a micro-
scopic Hamiltonian within Anderson’s superexchange theory
[45,58]. In Sec. II A, the microscopic Hamiltonian is intro-
duced. In Sec. II B, the local CF model is derived. Due to a
strong localization of 4 f orbitals and their weak hybridization
with ligands’ orbitals, the low-energy electronic states at Ln
sites are well described by weakly CF split atomic J multi-
plets [59]. The corresponding CF operators are conveniently
represented by irreducible tensor operators defined on the cor-
responding J multiplets, hereafter referred to as CF model. In
Sec. II C, the intersite interaction model acting on the ground J
multiplets on Ln sites is derived. Previous microscopic theory
[36] is extended here to include the Goodenough’s contri-
bution [47,60] due to virtual electron transfers between the
partially filled f and empty d and other orbitals. The derived
exchange interaction is transformed into the irreducible tensor
form, i.e., the multipolar exchange interaction Hamiltonian.

A. Microscopic Hamiltonian

The microscopic Hamiltonian Ĥ for an insulating f -metal
compound contains all the essential interactions. The Hamil-
tonian is written as

Ĥ =
∑

i

Ĥ i
loc + ĤC + ĤPE + Ĥt. (1)
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The first term Ĥ i
loc contains the single f ion Hamiltonians at

site i:

Ĥ i
loc = Ĥ i

orb + Ĥ i
C + Ĥ i

SO. (2)

These terms include the orbital splittings, on-site Coulomb,
and spin-orbit couplings, respectively. The other terms are in-
tersite Coulomb (ĤC), potential exchange (ĤPE), and electron
transfer (Ĥt) interactions. The present model includes only the
orbitals on magnetic centers in the spirit of Anderson’s theory
[45]. The relevant orbitals are partially filled f (l f = 3) and
empty d (ld = 2) and s (ls = 0) orbitals.

The explicit form of the local Hamiltonian Ĥloc (2) is the
following. The first term (Ĥ i

orb) includes the atomic orbital
energies and the CF splitting:

Ĥ i
orb =

∑
lmm′

(
Hi

l

)
mm′ â

†
ilmσ

âilm′σ . (3)

Here l and m are the quantum numbers for the atomic orbital

angular momentum l̂
2

and its z component l̂z, respectively,
â†

ilmσ
(âilmσ ) are the electron creation (annihilation) operators

in the orbital lm with the component of electron spin σ (=
±1/2) on site i [61], and (Hl )mm′ are the matrix elements of
the one-electron Hamiltonian. The second term (Ĥ i

C) in Eq. (2)
consists of the atomic electrostatic interaction between the
electrons in the f shell and those between the f and the d or
s orbitals (for concrete expressions, see Sec. II in Ref. [62]).
The last term (Ĥ i

SO) of Eq. (2) is the spin-orbit coupling,

Ĥ i
SO =

∑
lmσm′σ ′

λl〈lmsσ |l̂ · ŝ|lm′sσ ′〉â†
ilmσ

âilm′σ ′ , (4)

where λl is the spin-orbit coupling parameter for the l or-
bital, s = 1/2 is electron spin, ŝ the electron spin operator,
and |lmsσ 〉 are the spin-orbital decoupled states. Among the
local interactions Eq. (2), only Ĥ i

orb may break the spherical
symmetry of the model.

The explicit form of the intersite interactions in Eq. (1) is
the following. The intersite ĤC and ĤPE are, respectively,

ĤC/PE =1

2

′∑
i j(i �= j)

Ĥ i j
C/PE, (5)

Ĥ i j
C =

∑
lmσ

(ilm, jl ′m′|ĝ|iln, jl ′n′)

× â†
ilmσ

âilnσ â†
jl ′m′σ ′ â jl ′n′σ ′ , (6)

Ĥ i j
PE =

∑
lmσ

−(ilm, jl ′m′|ĝ| jl ′n′, iln)

× â†
ilmσ

âilnσ ′ â†
jl ′m′σ ′ â jl ′n′σ . (7)

Here
∑

lmσ is the sum over all orbital and spin angular
momenta, ĝ is the Coulomb interaction operator between elec-
trons, and (ilm, jl ′m′|ĝ|iln, jl ′n′) and (ilm, jl ′m′|ĝ| jl ′n′, iln)
are the matrix elements. The electron transfer interaction is
expressed by

Ĥt =
′∑

i j(i �= j)

∑
lml ′m′σ

t i j
lm,l ′m′ â

†
ilmσ

â jl ′m′σ , (8)

where t i j
lm,l ′m′ indicate the electron transfer parameters between

sites i and j.
The knowledge on the energy scales of the microscopic

interactions is decisive to construct the low-energy states in
Secs. II B 2 and II C. In the case of lanthanide systems, the on-
site Coulomb interaction is the strongest (5–7 eV) [63], which
is followed by the on-site spin-orbit coupling (λ f ≈ 0.1 eV)
[59] and the 4 f orbital splitting due to the hybridization with
the environment (3) [39,64] and the electron transfer interac-
tion parameters Eq. (8) between f shells (about 0.1–0.3 eV).
The intersite Coulomb interaction Eq. (6) is expected to be a
few times weaker than the on-site Coulomb interaction and the
intersite potential exchange interaction Eq. (7) will be a few
orders of magnitude smaller than the Coulomb interaction.
The local interactions and the intersite Coulomb interaction
are much stronger than the remaining intersite interactions.
The situation is similar to those of actinide compounds. There-
fore, the same approach applies to actinides [1], though the
stronger delocalization of the 5 f orbitals than the 4 f orbitals
weakens the intrasite interactions, while enhancing the CF and
intersite interactions [59].

B. Crystal field model

In this section, the low-energy eigenstates of single f N ions
are derived, and on this basis the CF model is constructed.
Among the microscopic interactions in the model Eq. (1), the
eigenstates of a f N ion are in the first place determined by the
intra-atomic Coulomb interaction and then by the spin-orbit
coupling. Thus, derived atomic states are weakly CF split. As
mentioned above, the CF splitting of the atomic J multiplet
is described through irreducible tensor operators acting in the
space of this multiplet.

Throughout Sec. II B, the index for site i is omitted for
simplicity.

1. Crystal-field states

The degeneracy of f N configurations is lifted by the intra-
atomic exchange (Hund) coupling in ĤC. The eigenstates of
ĤC, the LS terms, are characterized by the total orbital L̂ and
spin Ŝ angular momenta because of the spherical symmetry of
ĤC:

ĤC| f NαLMLSMS〉 = EC( f NαLS)| f NαLMLSMS〉. (9)

Here L (S) is the quantum number for the orbital (spin)
angular momentum, ML (MS) is the eigenvalue of L̂z (Ŝz),
α distinguishes the repeated LS terms, and EC( f NαLS) is
the eigenenergy. LS-terms are [L][S]-fold degenerate, where
[x] = 2x + 1.

The LS terms are split into J multiplets by the spin-orbit
coupling ĤSO:

(ĤC + ĤSO)| f NαJMJ〉 = EJ ( f NαJ )| f NαJMJ〉. (10)

Here J and MJ are, respectively, the quantum numbers for the
total angular momentum operators, Ĵ = L̂ + Ŝ and Ĵz, and α

distinguishes the repeated J multiplets, [65].
The ground J-multiplet states | f NαJMJ〉 are approximated

by linear combinations of the lowest LS terms when the hy-
bridization between the ground and the excited LS terms by
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ĤSO can be ignored:

| f N JMJ〉 =
∑

MLMS

| f N LMLSMS〉(JMJ |LMLSMS ). (11)

Here (JM|LMLSMS ) are the Clebsch-Gordan coefficients
[66,67,68]. α is not written in Eq. (11) because each J ap-
pears only once. This approximation is often adequate for the
description of the ground states of the lanthanide and actinide
ions. Equation (11) becomes the basis for the description of
the low-energy states of embedded f ion (hereafter L, S, and
J stand for the angular momenta for the ground LS term and
the ground J multiplet of the f -metal ion, respectively).

The ground J multiplets are slightly split by the weak
hybridization between the f orbitals and the surrounding lig-
ands. The local quantum states are obtained by solving the
equation

(Ĥloc + Ĥint )| f Nν〉 = E ( f Nν)| f Nν〉. (12)

Ĥint stands for a potential which originates from some parts of
Coulomb and potential exchange interactions from the envi-
ronment of the Ln ion. The splitting of the J multiplet occurs
due to the low-symmetric components in Ĥorb and Ĥint. The
low-energy CF states | f Nν〉 can be expressed by the linear
combinations of the ground atomic J multiplet states,

| f Nν〉 =
∑
MJ

| f N JMJ〉CJMJ ,ν , (13)

with the expansion coefficients CJMJ ,ν (ν = 0, 1, ..., 2J),
which define a [J]-dimensional unitary transformation matrix
from | f N JMJ〉 to | f Nν〉 states. This transformation assumes
negligible mixing of the ground and excited J multiplets (J
mixing), which is often fulfilled in lanthanide and actinide
systems because the energy gaps between the ground and
the excited J multiplets (�λ f J) are much larger than the CF
splitting. The weakly CF split J mutiplet Eq. (13) is employed
in the derivation of analytical form of the exchange interac-
tion below, whereas the not-explicitly-included effects of the
J mixing are recovered at the level of derivation of model
parameters from ab initio calculations of Ln fragments.

2. Model CF Hamiltonian

The CF Hamiltonian is derived by transforming the low-
energy part of the local Hamiltonian into irreducible tensor
form within the ground J multiplets [59]. The transformation
consists of two steps: projection of the local Hamiltonian
(Ĥloc + Ĥint) into the space of the ground atomic J multiplets,

HJ = {| f N JMJ〉|MJ = −J,−J + 1, ..., J}, (14)

and the expansion of the Hamiltonian with the irreducible
tensor operators. First, the local Hamiltonian in Eq. (12) is
projected into the Hilbert space HJ :

ĤCF = P̂J (Ĥloc + Ĥint )P̂J , (15)

where P̂J is the projection operator into HJ Eq. (14):

P̂J =
∑
MJ

| f N JMJ〉〈 f N JMJ |. (16)

This procedure entails the approximation employed in
Eq. (13). Then introducing the irreducible tensor operators

[1,67,69] (see also Sec. I E in the Supplemental Material [62])
[70],

T̂kq =
∑
MJ NJ

(−1)J−NJ (kq|JMJJ − NJ )| f N JMJ〉〈 f N JNJ |, (17)

Eq. (15) is rewritten as

ĤCF =
∑

kq

BkqT̂kq. (18)

From the triangle inequality for the Clebsch-Gordan coeffi-
cients in Eq. (17), ranks k are integers satisfying

0 � k � 2J. (19)

The CF parameters Bkq are calculated as

Bkq = Tr[T̂ †
kqĤCF], (20)

with ĤCF from Eq. (15). The trace (Tr) is on HJ Eq. (14).
The symmetry properties of ĤCF are imprinted in Bkq. The

Hermiticity of ĤCF, Ĥ†
CF = ĤCF, leads to

B∗
kq = (−1)qBk−q. (21)

The time eveness, �ĤCF�
−1 = ĤCF [59], makes Bkq �= 0 if

and only if

k ∈ even positive integers (22)

under the constraint Eq. (19). If the CF Hamiltonian is
given by the f -shell model, the upper bound of k becomes
min(2J, 2l f + 1). When 2J > 2l f + 1, as occurs in many f
elements, the number of CF parameters is at most 27, i.e.,
much less than the number of the matrix elements of general
2J-dimensional Hermitian matrices. The number is further
reduced when the system has spatial symmetry.

The CF Hamiltonian is sometimes expressed by the tesseral
tensors introduced below instead of T̂kq. T̂kq Eq. (17) may
be transformed into real and imaginary (tesseral) tensors (see
Eq. (10) in Ref. [1]). For q = 0,

Ô0
k = T̂k0, (23)

and for q > 0,

Ô−q
k = i√

2
[−(−1)qT̂k−q + T̂kq],

Ôq
k = 1√

2
[T̂k−q + (−1)qT̂kq]. (24)

In the following sections, the tesseral tensor form is some-
times used.

C. Effective intersite interaction

Starting from the microscopic Hamiltonian Eq. (1), first,
the effective low-energy model is derived in Sec. II C 1. Sub-
sequently, the low-energy model is cast into the irreducible
tensor (multipolar) form (Sec. II C 2).
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1. General form

The microscopic Hamiltonian Eq. (1) is transformed into
an effective model on a low-energy Hilbert space,

H0 =
⊗

i

Hi
J , (25)

using the Anderson’s superexchange approach [45,58], which
is appropriate for insulating lanthanides as mentioned above.
Here Hi

J = {| f Ni JiMJ〉}, Eq. (14). The microscopic Hamil-
tonian Eq. (1) is divided into the unperturbed Ĥ0 and
perturbation V̂ parts:

Ĥ0 =
∑

i

(
Ĥ i

d + Ĥ i
s + Ĥ i

C + Ĥ i
SO

) + Ĥ (0)
C , (26)

V̂ =
∑

i

Ĥ i
f + (

ĤC − Ĥ (0)
C

) + ĤPE + Ĥt. (27)

Here the orbital term Ĥorb (3) is divided into the f , d , and s
terms (Ĥf , Ĥd , and Ĥs, respectively), and Ĥ (0)

C is the classical
intersite Coulomb interaction u′n̂in̂ j , where u′ is the intersite
Coulomb repulsion parameter and n̂i = ∑

mσ â†
i f mσ

âi f mσ . Ĥ0

in Eq. (26) is defined in a form that ensures the degeneracy of
its eigenvalues within H0,

Ĥ0P̂0 = E0P̂0, (28)

where P̂0 = ⊗
i P̂i

J and P̂i
J is given by Eq. (16). Applying the

second-order perturbation theory, the effective Hamiltonian
Ĥeff is derived (see, e.g., Chap. XVI in Ref. [71]):

Ĥeff = E0P̂0 + P̂0V̂ P̂0 + P̂0V̂
Q̂0

a
V̂ P̂0, (29)

Q̂0

a
=

∑
κ /∈H0

P̂κ

1

E0 − Ĥ0
P̂κ . (30)

Here κ denotes quantum states not included in H0, i.e., excited
(nonmagnetic) f N states on Ln sites and one-electron trans-
ferred states. Substituting Ĥ0 Eq. (26) and V̂ Eq. (27) into Ĥeff

Eq. (29), the following form of the effective Hamiltonian is
derived:

Ĥeff = ĤCF + �ĤC + �ĤPE + ĤKE. (31)

Here ĤCF = ∑
i Ĥ i

CF, and �ĤC and �ĤPE are the intersite
Coulomb and exchange interactions with Ĥint Eq. (12) sub-
tracted. �ĤC/PE reads as P̂0�ĤC/PEP̂0 [P̂0 is omitted in Eq. (31)
for simplicity]. The kinetic exchange interaction ĤKE is given
by [72]

ĤKE = P̂0Ĥt
Q̂0

a
ĤtP̂0. (32)

This term contains the contributions from the virtual one elec-
tron transfer processes, e.g., f N − f N ′ → f N−1 − f N ′

l ′1 →
f N − f N ′

(l ′ = f , d, s and f N ′
f 1 = f N ′+1). Accordingly, the

kinetic exchange interaction is divided into three terms:

ĤKE = Ĥf f + Ĥf d + Ĥf s, (33)

where Ĥf l ′ stands for the term involving the electron transfer
interaction between the orbitals f and l ′. The first term is
the standard Anderson’s kinetic contribution and the last two
terms are Goodenough’s weak ferromagnetic contributions
(see Sec. II C 2 for details).

The derived low-energy model Ĥeff Eq. (31) is transformed
into the irreducible tensor form. Following the same proce-
dure as for ĤCF Eq. (18), the intersite interactions (the second,
third, and fourth terms in Ĥeff) are transformed:

ĤX = 1

2

′∑
i j

∑
kiqik j q j

(
I i j

X

)
kiqik j q j

T̂ i
kiqi

T̂ j
k j q j

. (34)

Here subscript X stands for Coulomb (C), potential exchange
(PE), kinetic (KE or f f , f d , f s) contributions, and (I i j

X )kiqik j q j

are the interaction parameters. Each component of I i j
X is cal-

culated as [see Eq. (20)](
I i j

X

)
kiqik j q j

= Tri j
[(

T̂ i
kiqi

⊗ T̂ j
k j q j

)†
Ĥ i j

X

]
, (35)

where Ĥ i j
X is the second, third, or fourth term in Eq. (31) and

the trace (Tri j) is over Hi
J ⊗ H j

J . The explicit form of Eq. (35)
for different contributions is shown in Sec. II C 2 and Sec. III
of the Supplemental Material [62].

The nature of ĤX is reflected in IX . The Hermiticity of ĤX

gives

(I i j )∗kiqik j q j
= (−1)qi+q j (I i j )ki−qik j−q j . (36)

The time evenness of ĤX leads to the rule that (I i j )kiqik j q j is
nonzero if and only if

ki + k j ∈ even positive integers (37)

for which Eq. (19) is fulfilled. In the case that one of the k’s
is zero, the relations Eqs. (36) and (37) reduce to those for the
CF parameters BX , Eqs. (21) and (22), respectively.

The interaction parameter Eq. (35) for each contribution is
divided into three physically different components. The first
one corresponds to the case when the ranks on both sites are
zero, C i j = (I i j

X )0000. This component is a constant C i j within
H0. Since T̂00 is proportional to the identity operator on HJ ,
the corresponding Eq. (35) reduces to

C i j
X = 1

[Ji][Jj]
Tri j

[
Ĥ i j

X

]
. (38)

The second component corresponds to the terms whose rank
is zero only on one site. This term reduces to CF contribution
Bi j , and hence is added to ĤCF (18) on site i ( j) when ki > 0
and k j = 0 (ki = 0, k j > 0). From Eq. (35), Bi j reads

(
Bi j

X

)
kiqi

= 1

[Jj]
Tri j

[(
T̂ i

kiqi

)†
Ĥ i j

X

]
. (39)

The last component corresponds to I i j
X with ki, k j > 0. This

term is the exchange contribution J i j
X . The sum of all contri-

butions yields for ĤX in Eq. (34),

Ĥ i j
X = C i j

X +
′∑

kiqi

(
Bi j

X

)
kiqi

T̂ i
kiqi

+
′∑

k j q j

(
Bi j

X

)
k j q j

T̂ j
k j q j

+
′∑

kiqik j q j

(
J i j

X

)
kiqik j q j

T̂ i
kiqi

T̂ j
k j q j

, (40)

where summations go over positive k (1 � k � 2J).
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2. Irreducible tensor form of the Goodenough’s contribution

A microscopic expression of the kinetic exchange contri-
butions is obtained by substituting the perturbation Ĥt Eq. (8)
into Ĥf d Eq. (32). Then we distinguish two contributions
(1) f − f , involving virtual electron transfer between 4 f
Anderson’s magnetic orbitals on the two sites (Anderson’s
superexchange mechanism), and (2) f − d , involving virtual
electron transfer between 4 f magnetic and 5d (and other)
orbitals on the two sites (Goodenough’s mechanism). The
derivation of these microscopic expressions (and for all other

contributions to intersite magnetic interactions) as well as of
their irreducible tensor form are given in Sec. III of the Sup-
plemental Material [62]. Here we present the results for the
Goodenough’s contribution only. Its microscopic evaluation
was not done in the past whereas, as mentioned above, it plays
a crucial role in explaining particularily the ferromagnetism of
lanthanide materials.

Using only f − d electron transfer terms in Eqs. (8) and
(32), a microscopic form of Goodenough’s contribution is
obtained as follows:

Ĥ i j
f d =

∑
ᾱi J̄i

∑
ν̃ j

∑
mnσ

∑
m′n′σ ′

−t i j
f m,dm′t

ji
dn′, f n

U i→ j
f d + �Ei( f Ni−1ᾱiJ̄i ) + �Ej ( f Nj d1ν̃ j )

(â†
i f mσ

P̂i( f Ni−1ᾱiJ̄i )âi f nσ ′ )(â jdm′σ P̂j ( f Nj d1ν̃ j )â
†
jdn′σ ′ )

+
∑
ν̃i

∑
ᾱ j J̄ j

∑
mnσ

∑
m′n′σ ′

−t ji
dm′, f mt i j

f n,dn′

U j→i
f d + �Ei( f Ni d1ν̃i ) + �Ej ( f Nj−1ᾱ j J̄ j )

(âidmσ P̂i( f Ni d1ν̃i )â
†
idnσ ′ )(â

†
j f m′σ P̂j ( f Nj−1ᾱ j J̄ j )â j f n′σ ′ ).

(41)

Ĥ i j
f d is understood as an operator on H0 Eq. (25) [P̂0 in Eq. (32) is omitted for simplicity]. In the microscopic form Eq. (41),

P̂( f N−1ᾱJ̄ ) and P̂( f N d1ν̃) are the local projection operators into the electronic states shown in the parentheses. The quantum
numbers for the f N−1 and f N d1 configurations are denoted with bar and tilde, e.g., J̄ and ν̃, respectively. U i→ j

f d in the denominator
is the minimal activation energy for the virtual electron transfer processes, and �Ei( f Ni−1ᾱJ̄i ) and �Ej ( f Nj d1ν̃ j ) are the local
excitation energies with respect to the ground energies of the corresponding electron configurations. The energies of eigenstates
of f Nj d1ν̃ j are approximated by atomic multiplet states α̃ j J̃ j when the effect of orbital splitting Eq. (3) is small compared with
the J multiplet splittings, which always applies to f Ni−1. On the other hand, the splitting of the 5d orbital is comparable to that
of LS term, and hence the orbital splitting effect has to be included in the calculations of the intermediate states ν̃ j .

The microscopic expression Eq. (41) is transformed into the irreducible tensor form Eq. (40). First, each of the electronic
operators in the parentheses in Eq. (41) is expanded with T̂kq, and then the coefficients are simplified. The intermediate states of
an f N d1 ion are expanded with the atomic J multiplets | f N d1α̃J̃M̃J〉 as

| f N d1ν〉 =
∑
α̃J̃M̃J

| f N d1α̃J̃M̃J〉Cα̃J̃M̃J ,ν̃
. (42)

Substituting the intermediate states Eq. (42) into Ĥf d Eq. (41), the exchange parameters become

(
I i j

f d

)
kiqik j q j

=
∑
ᾱi J̄i

∑
ν̃ j

∑
xiξi

∑
yiηi

∑
x jξ j

∑
y jη j

−(−1)ki+ηi+ξ j τ
i j
f d (xiξi, x jξ j )

(
τ

i j
f d (yiηi, y jη j )

)∗
(kiqi|xiξiyi − ηi )

U i→ j
f d + �Ei( f Ni−1ᾱiJ̄i ) + �Ej ( f Nj d1ν̃ j )

× �̄i
f (ᾱiL̄iS̄iJ̄i, xiyiki )Z̃

j
ν̃ j

(x jξ j, y jη j, k jq j ) + (i ↔ j), (43)

where τ f d are related to the electron transfer parameters,

τ
i j
f d (xiξi, x jξ j ) =

∑
mm′σ

t i j
f m,dm′ (xiξi|l f msσ )(x jξ j |ld m′sσ ). (44)

�̄ f and Z̃ν̃ are related to the information on on-site quantum states:

�̄i
f (ᾱiL̄iS̄iJ̄i, xiyiki ) =(−1)Ji+J̄i

[ ∏
z=xiyi

X̄ i
f (ᾱiL̄iS̄iJ̄i, z)

]{
xi J̄i Ji

Ji ki yi

}
, (45)

X̄ i
f (ᾱiL̄iS̄iJ̄i, xi ) =(−1)Ni−1√Ni( f Ni LiSi{| f Ni−1(ᾱiL̄iS̄i ) f , LiSi )

√
[Li][Si][Ji][J̄i][xi]

⎧⎪⎨
⎪⎩

Li Si Ji

L̄i S̄i J̄i

l f s xi

⎫⎪⎬
⎪⎭ (46)
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and

Z̃ j
ν̃ j

(x jξ j, y jη j, k jq j ) =
∑
M ′

J N ′
J

(−1)Jj−M ′
J−ξ ′

(k j − q j |JjN
′
JJj − M ′

J )

×
∑
α̃J̃

(−1)L̃+S̃
√

[L̃][S̃][J̃][Jj]

⎡
⎣∑

M̃J

Cα̃J̃M̃J ,ν̃ j
(x jξ j |Jj − M ′

J J̃M̃J )

⎤
⎦

⎧⎨
⎩

Lj S j Jj

L̃ S̃ J̃
ld s x j

⎫⎬
⎭

×
∑
α̃′ J̃ ′

(−1)−L̃′−S̃′
√

[L̃′][S̃′][J̃ ′][Jj]

⎡
⎣∑

M̃ ′
J

C∗
α̃′ J̃ ′M̃ ′

J ,ν̃ j
(y jη j |Jj − N ′

J J̃ ′M̃ ′
J )

⎤
⎦

⎧⎨
⎩

Lj S j Jj

L̃′ S̃′ J̃ ′
ld s y j

⎫⎬
⎭. (47)

Here ( f N LS{| f N−1(ᾱL̄S̄) f LS) are coefficients of fractional
parentage (c.f.p.) [73–75,76] and 6 j and 9 j symbols [67] are
used.

From the structure of I f d Eq. (43), additional constraints
on the allowed ranks are derived. The ranges of the ranks ki

and k j in the first term of I f d Eq. (43) become, respectively,

0 � ki � min[2(l f + s), 2Ji],

0 � k j � min[2(ld + s) + 2M̃, 2Jj], (48)

due to the approximation employed in the above derivation.
Here M̃ is the largest projection Ĵz involved in the intermediate
states Eq. (42). In the second term of Eq. (43), the ranges of
ranks Eqs. (48) are interchanged. In a special case of degen-
eracy of 5d orbitals, the intermediate states Eq. (42) reduce to
the J multiplets | f N d1α̃J̃M̃J〉, and M̃ in Eqs. (48) becomes 0,
and consequently, the maximum allowed rank k j for the site j
becomes 5 (when Jj > 5/2).

III. APPLICATION TO NEODYMIUM NITRIDE

The developed theoretical framework in combination with
first-principles calculations is applied to a microscopic analy-
sis of magnetism in NdN. The system is a ferromagnet with
rocksalt structure (Fm3̄m), where Nd ions form a face cen-
tered cubic sublattice. First, the CF Eq. (18) and multipolar
exchange parameters Eq. (43) are determined. Then on their
basis the multipolar magnetic order is investigated.

A. Ab initio CF model

The CF states of an embedded Nd ions were derived based
on the ab initio CASSCF method (see Appendix A 1). The
low-lying spin-orbit multiplets of the neodymium fragment
originate from the CF splitting of the ground atomic multiplet
J = 9/2 of Nd3+ ion as shown in Table I. The order of the
three CF multiplets, 
8 (
(2)

8 ), 
6, and 
8 (
(1)
8 ) agrees with

the previous reports [77,78].

TABLE I. Ab initio energy levels E
 and CF parameters Bk for
NdN (meV).

E



(2)
8

0 B0 61.652

E
6 18.844 B4 −32.260
E



(1)
8

39.318 B6 −12.781

B8 1.064

Using the ab initio energies and wave functions of these
CF multiplets, the CF Hamiltonian ĤCF (18) for Nd sites was
uniquely derived [42,43,79],

ĤCF = B0Ô0
0 + B4

(
Ô0

4 +
√

5

7
Ô4

4

)
+ B6

(
Ô0

6 −
√

7Ô4
6

)

+B8

(
Ô0

8 + 2

3

√
7

11
Ô4

8 + 1

3

√
65

11
Ô8

8

)
, (49)

where tesseral tensor operators Eq. (24) are used. In the
present case, the transformation was done using the algorithm
developed for the cubic systems [80]. The calculated CF pa-
rameters are listed in Table I. The derived CF model contains
eighth-rank terms at variance to the traditional f shell model
[59,81], albeit their contribution is rather small [82].

The magnetic moments in the states of the ground 
8

multiplet, 〈
8m|μ̂z|
8m〉, are ±0.0134μB for m = ∓3/2 and
∓2.0156μB for m = ∓1/2, respectively. They are thus ob-
tained much smaller than the free ion’s value of gJJ = 3.27
in μB. The reduction is explained by the strong admixture in
the states of the ground 
8 multiplet of |J,±M〉 components
with low value of angular momentum projection M:∣∣
8,± 3

2

〉 = ±0.800
∣∣J,± 3

2

〉 ± 0.600
∣∣J,∓ 5

2

〉
,∣∣
8,± 1

2

〉 = ±0.789
∣∣J,± 9

2

〉 ∓ 0.607
∣∣J,± 1

2

〉
∓0.096

∣∣J,∓ 7
2

〉
. (50)

In addition, due to relatively weak spin-orbit coupling at Nd3+

in comparison with other Ln3+ in the lanthanide row, there is
a strong CF admixture of states from excited atomic J multi-
plets [80]. The calculated reduced magnetic moment ≈2μB

agrees well with experimental saturated magnetic moment
Msat (Table II).

B. Band structure and tight-binding model

A tight-binding electron model (Ĥorb + Ĥt) in the basis
of maximally localized Wannier orbitals [83,84] was derived
from the DFT electronic bands around the Fermi level (see
Appendix A 2). To reproduce the DFT bands with the tight-
binding model (the red lines in Fig. 1), the Wannier functions
of 4 f , 5d , and 6s type had to be included, which was achieved
by including the bands from the energy interval of 2 ÷ 12 eV
(Fig. 1). The energies of the derived Wannier orbitals in one
unit cell are given in Table III and the electron transfer param-
eters in Table S5 of the Supplemental Material [62]. Among
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TABLE II. Magnetic properties of NdN in the paramagnetic and ferromagnetic phases: the Curie-Weiss constant T0, the effective magnetic
moment (Meff), the Curie temperature (TC), and the saturated magnetic moment Msat. The free ion data are Meff = gJ

√
J (J + 1) and Msat = gJ J

with gJ = 8/11 and J = 9/2.

Paramagnetic Ferromagnetic
T0 (K) Meff (μB) TC (K) Msat (μB)

Theory (present) 17.9 3.70 34.5 2.22
Free ion - 3.62 - 3.27
Anton et al. [78]a 3 ± 4 3.6 ± 0.1 43 ± 1 1.0 ± 0.2
Olcese [97] 10 3.63
Schobinger-Papamantellos et al. [56] 2.7
Busch et al. [98,99] 24 3.65-4.00 32 3.1
Schumacher and Wallace [100] 15 3.70 35 2.15
Veyssie et al. [101] 19 Free ion 27.6 2.2

aThin film with many defects.

the calculated DFT parameters, the 4 f orbital energy levels
are less accurate (Appendix B), and we do not use them in our
analysis below.

The calculated band (Fig. 1) indicates a metallic ground
state despite the fact that NdN is an insulator, whereas the
nature of the solution does not give significant influence on
Ĥt because the electron transfer parameters are basically de-
termined by the overlap of the atomic orbitals of neighboring
ions. The nature of the ground state is fully taken into con-
sideration at the stage of the treatment of the entire model
Hamiltonian. The derived transfer parameters are by several
tens times smaller than Coulomb repulsion [63], clearly in-
dicating that the ground state of our model Hamiltonian is
deep in the correlated insulating phase. On this basis, the
exchange interaction is derived by employing Anderson’s su-
perexchange theory [45] in the next section.

C. Multipolar kinetic exchange interactions

The multipolar magnetic interaction in NdN is investigated
within the developed formalism in Sec. II using the input
from the first-principles calculations. As we already men-

 0

 3

 6

 9

 12

Γ X W Γ K W Γ L

E
 (

eV
)

FIG. 1. Electronic band structure of NdN. Black lines correspond
to DFT calculation and red lines are the result of the calculation with
maximally localized Wannier functions. The Fermi level corresponds
to zero energy.

tioned, the whole family of the lanthanide nitrides LnN (Ln
= Nd, Sm, Gd, Tb, Dy, Ho, Er) displays ferromagnetism with
close Curie temperatures (TC) despite strong differences in
the structure of the lowest multiplets of Ln3+ ions. The latter
have less than half-filled f shells in NdN and SmN, exactly
half filled in GdN, and more than half-filled in DyN and
HoN [55] implying large difference in the structure of their
CF multiplets. The absence of the essential difference in TC

among the LnN compounds suggests that the Goodenough’s
contribution Ĥf d is dominant. In this subsection we analyze
the Goodenough’s exchange contribution arising from Ĥf d in
Eq. (41). The other kinetic exchange contributions and the
dipolar magnetic interaction within Nd-Nd pairs are given in
Sec. V of the Supplemental Material [62].

The exchange parameters I f d Eq. (43) were calculated by
substituting the first principles data (see Sec. A) and Uf d into
the the expressions derived in Sec. II C 2. We have chosen
the values Uf d = 3 eV and 5 eV for the nearest and the
next nearest neighbor Nd pairs, respectively, with which the
experimental magnetic data are reproduced (see Sec. III D).
These values of Uf d can be justified as follows. Uf d is
roughly estimated as Uf d ≈ (εd − ε f ) + N (u f d − u f f ) − u′,
where N = 3 is the number of 4 f electrons in Nd3+. The
DFT values of the orbital energy gaps (εd − ε f ) between
the 5d and the 4 f are ca. 4.3–7.6 eV (Table III). The intra-
atomic Coulomb repulsion u f d is smaller than u f f ≈ 5–7 eV
[63] because of the diffuseness of the 5d orbitals. Indeed,
the first-principles Slater-Condon f d parameters were found
several times smaller than the f f ones (see Table S4 in the

TABLE III. Orbital energy levels extracted from the post HF and
band calculations (eV). The irreducible representations (irrep.) of the
Oh group are shown in parenthesis. The lowest post HF orbital energy
level is set at zero energy.

nl Irrep. Post HF DFT

4 f a2u 0 0.0297
t1u 0.0941 0.3175
t2u 0.0191 0.2793

5d t2g 4.3216
eg 7.5913

6s a1g 8.6130
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FIG. 2. Magnitude of calculated exchange parameters (J f d )kqk′q′ in the logarithmic scale (log10 |(J f d )kqk′q′/meV|) for allowed values of
kq and k′q′ for the nearest neighbor (a) and the next-nearest neighbor (b) Nd pairs in NdN. The (J f d ) parameters presented here correspond
to the tesseral tensor operators and are obtained by applying the transformation Eq. (24) to the corresponding parameters I f d in Eq. (43). The
ticks are for kq in the increasing order of k and q.

Supplemental Material [62]). The intersite classical Coulomb
repulsion in vacuum is estimated to be 4 eV for the nearest
neighbors and 2.8 eV for the next-nearest neighbors, which
are reduced few times by the screening effects. With these
estimates, Uf d amounts to 4–6 eV or less. All components
of the calculated J f d are shown in Fig. 2. The parameters
corresponding to other exchange contributions are given in
Figs. S3-S6 of the Supplemental Material [62].

It is easily seen that the range of possible ranks for
nonzero exchange parameters Eqs. (48) is satisfied in the
plots of Fig. 2. The maximum rank becomes 9 (= 2J) due
to the ligand-field splitting of the 5d orbital levels at Nd [see
Eqs. (48)] [85]. It also emerges that J f d are zero whenever
the ranks ki and k j are of different parity, i.e., when Eq. (37) is
not fulfilled. Figure 2 shows that actually there are more cases
of (J f d )kiqik j q j = 0 than those required by the parity of the
ranks ki and k j , which is explained by the spatial symmetry of
the interacting ion pair (for details, see Sec. V.A.1 in the Sup-
plemental Material [62]). Furthermore, the nearest-neighbor
pairs have twofold rotational symmetry, which gives an addi-
tional condition for nonzero (J f d )kiqik j q j that qi + q j is even
[86]. The next-nearest-neighbor pairs have fourfold rotational
symmetry, resulting in the condition for finite (J f d )kiqik j q j that
qi + q j is a multiple of 4. The derived interaction parameters
are consistent with these symmetry requirements as well as
with the constraints imposed by Eqs. (48).

The multipolar interactions have non-negligible high-order
terms. Figure 2 shows that the lower rank exchange param-
eters tend to be larger (darker in the figure) than the higher
rank ones, whereas a vast number of the high rank exchange
coupling terms are nonzero, and their sum could result in
non-negligible effects. The significance of the high-order
terms was examined by calculating the exchange spectrum
of the pairs within models gradually including higher ranked

exchange interactions (k = 1, 2, ...9) (Fig. 3). Besides, the
kinetic contributions to the CF on Nd sites [the second and
third terms in Eq. (40)] were analyzed in the same manner.
The exchange splitting shows that the first rank contribution
(ki = k j = 1) is dominant [Fig. 3(a)]. This contribution differs
from an isotropic Heisenberg exchange model 2JHeisĴi · Ĵ j by
several additional terms [87]. The calculated spectra display
clear changes with the increase of the rank of added terms in
the model up to k = 7 for the exchange spectrum [Fig. 3(a)]
and k = 6 for the CF spectrum on sites [Fig. 3(b)]. This
analysis suggests the importance of the high-order terms in
Ĥf d for the magnetic properties of NdN and eventually other
lanthanide nitrides.

(a) (b)

1 2 3 4 5 6 7 8 9
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− 55
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FIG. 3. The spectrum of eigenstates of the exchange (a) and CF
(b) parts of the Ĥf d operator Eq. (40) for the nearest-neighbor Nd-Nd
pair. The spectrum for a given value of k corresponds to the case
when terms up to kth rank are included in the corresponding operator.
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FIG. 4. The exchange parameters (J f d )kqk′q′ between the 
8 multiplets of Nd3+ (in meV) for the nearest (a) and the next nearest
(b) neighbors. The J parameters correspond to the tesseral representation of the downfolded exchange interaction between the J multiplets
of the coresponding Nd pairs with exchange parameters given in Fig. 2. The red and green squares correspond to ferromagnetic and
antiferromagnetic contributions.

The multipolar interactions also contribute to a scalar sta-
bilization of the pair via the constant term C f d Eq. (38) in
Ĥf d (the first term in Eq. 40). The value of this term can
amount to as much as ca. 10 times of the overall exchange
splitting. The CF kinetic contribution described by the param-
eters Eq. (39) energetically is also significant [cf. Fig. 3(b)].
Again, this CF contribution is stronger than the exchange one,
which becomes evident when analyzing the Goodenough’s
exchange mechanism [47,60]. Indeed, the expression for the
exchange parameter corresponding to this mechanism con-
tains an additional quenching factor JH/(U ′ + � f d ) compared
to the destabilization energy of 4 f orbitals due to f -d hy-
bridization, ≈ t2/(U ′ + � f d ), where t , � f d , U ′ and JH are the
electron transfer parameter, the energy gap between the 4 f
and 5d orbitals, and intrasite Coulomb and Hund couplings,
respectively.

The negligible effect of magnetic dipolar interaction in
NdN (and probably in other lanthanide nitrides) is in sharp
contrast with its dominant contribution to the exchange inter-
action in many polynuclear lanthanide complexes [88]. The
Ln ions are usually found in a low-symmetric environment fa-
voring axial CF components with respect to some quantization
axis which, at its turn, stabilize a CF multiplet with a maximal
projection of magnetic moment on this axis [89]. Thus, in
most dysprosium complexes, the saturated magnetic moment
at Dy3+ is ≈10 μB (being, of cause, highly anisotropic). Given
the obtained magnetic moment on Nd3+ in NdN of 2.2 μB, the
dipolar magnetic interaction in the former is expected to be
≈20 times larger than that in Nd for equal separation between
Ln ions.

The evaluated exchange interaction suggests that the fer-
romagnetic order of NdN is of multipolar type. To obtain
further physical insight, the exchange model was projected
into the space of the ground 
8 multiplets, and transformed
into the tesseral tensor form. The derived 
8 model shows that
the strength of the nearest-neighbor interaction is about one

order of magnitude stronger than that of the next nearest-
neighbor one (Fig. 4). The interactions contain both ferro-
(red) and antiferromultipolar (green) contributions, the ferro-
magnetic contributions being overall dominant. In particular,
the interactions between octupole moments (k = 3) are found
to be the strongest. One may conclude that the exchange
interaction is of ferro-octupolar type.

We have derived the multipolar exchange parameters by
combining the DFT data and formula Eq. (43) rather than
using other DFT based approaches because the applicability
of the existing methods largely differs from that of the present
method. The exchange interaction parameters have been often
derived from the DFT band states by using Green’s function
based approach [90], which is implemented in, e.g., TB2J
[91]. The approach uses one-particle Green’s function con-
structed on top of the DFT band structure, which naturally
is suitable for the description of the systems that can be well
described by band states: Simple magnetic metals (Fe, Ni, Co)
and alloys, and some correlated insulators SrMnO3, BiFeO3

and La2CuO4 which could be well described within DFT+U
method with spin polarization. In these systems, the multiplet
electronic structures would not play significant role. On the
other hand, it is difficult to utilize the Green’s function based
method to study the multipolar exchange interactions of the
compounds containing heavy transition metal, lanthanide, and
actinide ions because in the latter systems explicit considera-
tion of multiplet electronic structure is required.

D. Magnetic phase

With the derived multipolar interaction and CF at Nd sites,
we next investigate the magnetic order of NdN within the
mean-field approximation. In particular, the question on the
origin of the ferromagnetism of NdN (and the entire family
of lanthanide nitrides) is now addressed [92]. To establish the
correct nature of the multipolar magnetic phase, the primary
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order parameters should be first determined by employing the
Landau theory for systems with multiple components.

The mean-field Hamiltonian for a single ion has the fol-
lowing form (Sec. VI.A.1 in the Supplemental Material [62]):

Ĥ i
MF = Ci

MF + Ĥ i
CF +

∑
kiqi

T̂ i
kiqi

F i
kiqi

, (51)

where Ci
MF is given by

Ci
MF = −1

2

∑
kiqi

〈
T̂ i

kiqi

〉
F i

kiqi
, (52)

and the molecular field F i
kq on site i is defined as

F i
kiqi

=
′∑

j( �=i)

∑
k j q j

(I i j )kiqik j q j

〈
T̂ j

k j q j

〉
, (53)

where 〈T̂ j
k j q j

〉 is the expectation value of the irreducible tensor
operator (multipole moment) in thermal equilibrium. Diago-
nalizing Eq. (51), we obtain the eigenstates,

ĤMF|μ〉 = εμ|μ〉, (54)

where μ = 0, 1, ..., 9 and ε0 � ε1 � ... � ε9. The mean-field
solutions were obtained self-consistently so the 〈T̂ j

k j q j
〉 en-

tering ĤMF and the ones calculated with its eigenstates |μ〉
coincide. The most stable magnetic order was found to be the
ferromagnetic one with all magnetic moments aligned along
one of the crystal axes, e.g., c, in full agreement with the
neutron diffraction data [56].

The stability of the calculated ferromagnetic phase was
confirmed by the calculations of spin-wave dispersion. The
magnon Hamiltonian was derived by employing the gen-
eralized Holstein-Primakoff transformation on top of the
mean-field solutions [20,93,94] (Sec. V.A.2 in the Supplemen-
tal Material [62]). In this approach, each mean-field single-site
state |μ〉 is regarded as a one boson state, b̂†

μ|0〉, and the

constraint on the number of magnon per site,
∑

μ b̂†
μb̂μ = 1,

is imposed. Using the magnon creation b̂†
μ and annihilation

b̂μ operators, the tensor operators in Ĥf d are transformed, and
the terms up to quadratic with respect to the magnon opera-
tors are retained. The obtained magnon Hamiltonian can be
diagonalized by applying Bogoliubov-Valatin transformation
[94–96]. The low-energy part of the calculated magnon band
εkλ shows the presence of the gap between the ground and
the first excited states (the black lines in Fig. 5). Therefore,
the stability of the mean-field ferromagnetic solution was
confirmed (for entire spin-wave spectra, see Fig. S9 in the
Supplemental Material [62]). The ground state is stabilized
by only 0.12 meV per site by including the zero-point energy
correction.

The obtained ferromagnetic phase is characterized by
non-negligible high-order multipole moments. The order
parameters were derived by employing Landau theory to
mean-field Helmholtz free energy. Within this approach, the
second derivative of the free energy with respect to the
primary order parameter becomes zero at the critical tempera-
ture. The Hessian of the mean-field free energy with respect to
the multipole moments T̂kq(
8) defined within the ground 
8
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FIG. 5. Low-energy part of the spin-wave dispersion (meV). The
spectra in black, red, and blue are derived with the full multipolar
model, the 
8 model, and the Heisenberg model, respectively.

multiplet states was calculated. One of the eigenvalues of the
Hessian becomes zero at T = 29 K (the other eigenvalues are
positive). Using the corresponding eigenvector, the primary
φT1u and the secondary φEg order parameters were determined:

φT1u = 0.454〈T̂10(
8)〉 + 0.891〈T̂30(
8)〉, (55)

φEg = 〈T̂20(
8)〉. (56)

The temperature evolution of the order parameters is shown
in Fig. 6(a). These order parameters can be expanded through
tesseral tensors Ôq

k , φ = ∑
kq ckq〈Ôq

k〉 (24):

φT1u = − 0.316
〈
Ô0

1

〉 − 0.313
〈
Ô0

3

〉 + 0.026
〈
Ô0

5

〉
+ 0.228

〈
Ô4

5

〉 − 0.257
〈
Ô0

7

〉 + 0.534
〈
Ô4

7

〉
− 0.517

〈
Ô0

9

〉 − 0.355
〈
Ô4

9

〉 + 0.075
〈
Ô8

9

〉
, (57)

φEg = − 0.397
〈
Ô0

2

〉 − 0.408
〈
Ô0

4

〉 + 0.483
〈
Ô4

4

〉
+ 0.336

〈
Ô0

6

〉 + 0.127
〈
Ô4

6

〉 − 0.308
〈
Ô0

8

〉
+ 0.462

〈
Ô4

8

〉 + 0.076
〈
Ô8

8

〉
. (58)

The expectation values of the components (ckq〈Ôq
k〉) show

that the largest contributions to the primary order parameter
φT1u come from Ô4

7, Ô0
1, and Ô0

9, and those to the secondary
order parameter φEg are also from almost all terms [Figs. 6(d)
and 6(e)]. The structures of the seventh and ninth moments
are displayed in Figs. 6(b) and 6(c). This analysis indicates
that the ferromagnetic phase is of nontrivial multipolar type,
mainly characterized by the tensor operators of ranks 7 and 9
along with the usual rank 1.

E. Magnetic and thermodynamic quantities

The derived multipolar magnetic phase and its excitations
are used for the calculation of magnetic and thermodynamic
quantities of NdN (Figs. 6 and 7) (see also Sec. VI.B in
the Supplemental Material [62]). These quantities include the
magnetization M, magnetic susceptibility χ , magnetic en-
tropy Sm, and the magnetic part of specific heat.

The calculated saturated magnetic moment and the
Curie temperature are close to the experimental data. The
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FIG. 6. Primary (T1u) and secondary (Eg) order parameters (a) and the largest components in the primary order parameters (b), (c). Blue
spheres are nitrogen atoms. The products of the expectation values 〈Ôq

k〉 and ckq for φT1u (d) and φEg (e), respectively.

temperature dependence of the magnetic moment M = 〈μ̂z〉
displays a second-order phase transition at Curie point TC =
34.5 K [Fig. 7(a)]. This agrees well with experimental data
[100] (see Table II) [102]. The saturated magnetic moment
Msat at T = 0 K is 2.22 μB, which is slightly enhanced by
the multipolar interaction compared with the post HF value
(Sec. III A). The enlargement of Msat with respect to the post
HF value is explained by the hybridization of the ground and
excited 
 multiplets mainly due to the CF contribution in Ĥf d

(40). In terms of the local 
 multiplets [the eigenstates of
the first-principles ĤCF Eq. (49)], the lowest four mean-field
solutions |μ〉 (μ = 0-3) are written as

|0〉 = 0.993
∣∣
(2)

8 ,− 1
2

〉 + 0.076
∣∣
6,− 1

2

〉
−0.087

∣∣
(1)
8 ,− 1

2

〉
,

|1〉 = 0.975
∣∣
(2)

8 ,+ 3
2

〉 − 0.223
∣∣
(1)

8 ,+ 3
2

〉
,

|2〉 = 1.000
∣∣
(2)

8 ,− 3
2

〉 + 0.018
∣∣
(1)

8 ,− 3
2

〉
,

|3〉 = 0.978
∣∣
(2)

8 ,+ 1
2

〉 + 0.136
∣∣
6,+ 1

2

〉
−0.157

∣∣
(1)
8 ,+ 1

2

〉
. (59)

The admixture of the excited CF states in the four eigenstates
Eqs. (59) are 1.3, 5.0, 0.0, and 4.3%, respectively, and the
corresponding magnetic moments 〈μ̂z〉 are 2.22, 0.67, 0.04,
and −1.60 μB.

The other calculated magnetic properties such as the
Curie-Weiss constant and the effective magnetic moment also

agree well with the experimental data derived from mag-
netic susceptibility. Using the calculated M, the magnetic
susceptibility χ was calculated [Fig. 7(b)]. The susceptibil-
ity in the high-temperature domain (80–300 K) was fit by
the Curie-Weiss formula, from which the effective magnetic
moment Meff and the Curie-Weiss constant T0 were extracted,
Meff = 3.7μB and T0 = 18 K. Meff is close to the free ion
value, suggesting that all CF multiplets contribute to the mag-
netic moment in the high-temperature domain. T0 is obtained
smaller than TC, which is also in line with the experimental
reports (Table II). The calculated inverse magnetic suscep-
tibility shows a ferrimagneticlike nonlinear behavior around
35 � T � 70 K [Fig. 7(a)], in agreement with experimental
data [78]. In usual ferrimagnetic systems, the magnetic mo-
ment of a unit cell drops at the transition temperature because
the magnetic moments of different sublattices partially cancel
each other below TC, while they do not in the paramagnetic
phase. Similar change in magnetic moment arises in NdN
too albeit by a different mechanism: the thermal population
of the excited CF multiplets with large magnetic moments
enhances the Meff above TC. The impact of the excited CF
levels becomes visible when comparing the data with (the
black lines) and without (the red lines) including them in the
calculation (Fig. 7).

The calculated magnetic entropy Sm is zero at T = 0 K
and rapidly grows as temperature rises [Fig. 7(c)]. It reaches
the value of kBln4 at T = TC, which is the entropy from
the ground 
8 quartet, and displays a kink. Above TC, the
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FIG. 7. Magnetic and thermodynamic properties calculated with the full multipolar model (black), the model involving only the ground 
8

multiplet (red), and the Heisenberg exchange model (blue). (a) Magnetization M (μB), (b) magnetic susceptibility χ = (μ2
B/kB)χ̃ , (c) magnetic

entropy, (d) magnetic specific heat as functions of temperature T (K). All quantities are in rapport to one unit cell.

entropy gradually increases. The magnetic part of the specific
heat Cm grows from T = 0 K and displays a sharp peak at
TC [Fig. 7(d)]. Above TC, Cm has a broad peak as expected
from Sm. The temperature evolution of Sm and Cm above
TC is explained by the thermal population of the excited CF
multiplets, similarly to Meff. The importance of the excited
CF multiplets for the calculated properties becomes evident
from a comparison with the results of the corresponding cal-
culations in which they are not included [red lines in Figs. 7(c)
and 7(d)].

F. Fingerprint of multipolar ordering

The signs of multipolar character of the ferromagnetic
phase appear in the magnon spectra. To evidence them, the
magnon spectrum calculated within the multipolar exchange
model was compared with the one calculated within the
isotropic Heisenberg model, 2J i j

HeisĴi · Ĵ j . The Heisenberg
exchange parameters were chosen to match the overall ex-
change splitting given by the multipolar model [Fig. 3(a)],
JHeis = −3.51 and −0.28 meV for the nearest- and the next-
nearest-neighbor pairs, respectively. The CF Hamiltonian was
kept the same as in the multipolar calculations. Figure 7 shows
(blue lines) that the Heisenberg model gives similar behavior
of magnetic and thermodynamic quantities with the multipole

model. Notable differences are seen in the low-energy part of
the spin-wave spectrum (Fig. 5). Thus the Heisenberg magnon
band (blue) at about 6 meV is flat, while the multipolar one
(black) is not. Moreover, the two Heisenberg bands on X-W-L
and K-L-U-X paths are quasidegenerate, while those of the
multipolar model are largely split.

Hence the excitation spectra can give straightforward in-
formation on the multipolar order and interactions, however,
in NdN they have not been experimentally investigated. To get
insight into the multipolar order and to check the predictions
given here experimental studies such as inelastic neutron scat-
tering are most desired.

IV. CONCLUSIONS

In this paper, on the basis of explicitly correlated ab
initio approaches and DFT calculations a first-principles mi-
croscopic theory of multipolar magnetic coupling between
J-multiplets in f -electron magnetic insulators was devel-
oped. Besides conventional contributions to the exchange
coupling, an important ingredient of the present theory is
a complete first-principles description of Goodenough’s ex-
change mechanism, which is of primary importance for
the magnetic coupling in lanthanide materials. The theory
was applied to the investigation of multipolar exchange
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interaction and magnetic order in neodymium nitride. Despite
the apparent simplicity of this material exhibiting a collinear
ferromagnetism, our analysis reveals the multipolar nature
of its magnetic order, described by primary and secondary
order parameters and containing non-negligible J-tensorial
contributions up to the ninth order. The first-principles theory
reproduces well the known experimental data on its octupolar-
ferromagnetic phase. We predict that the fingerprints of the
multipolar order in this material can be found in the spin-wave
dispersion and should be observable, e.g., in inelastic neutron
scattering. The developed first-principles framework for the
calculation of multipolar exchange parameters can become an
indispensable tool in future investigations of lanthanide and
actinide based magnetic insulators.
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APPENDIX A: COMPUTATIONAL METHOD

1. Post HF calculations

The CF states of embedded Nd3+ were calculated employ-
ing a post-HF approach (CASSCF). To this end fragment
calculations of NdN have been performed by cutting a
mononuclear cluster from the experimental structure of NdN
[97]. The cluster has Oh symmetry and consists of a central
Nd and six nearest-neighbor N atoms which were treated fully
quantum mechanically with atomic-natural orbital relativistic-
correlation consistent-valence quadruple zeta polarization
(ANO-RCC-VQZP) basis, and neighboring 32 N and 42 Nd
with ANO-RCC-minimal basis (MB) and ab initio embed-
ding model potential [103], respectively. This cluster was
surrounded by 648 point charges. For the calculations of
multiplet structures, CASSCF method and subsequently spin-
orbit restricted-active-space state interaction (SO-RASSI)
approach [40] were employed. The CASSCF/SO-RASSI cal-
culations of the cluster were performed with three electrons
in 14 active orbitals (4 f and 5 f types) [104]. The atomic
two-electron integrals were computed using Cholesky decom-
position with a threshold of 1.0 × 10−9 Eh. The inversion

symmetry was used. All the calculations were carried out with
MOLCAS 8.2 package [105].

Based on the calculated low-energy SO-RASSI states, the
CF Hamiltonian was derived. By a unitary transformation of
the lowest ten SO-RASSI states, the J-pseudospin states (J =
9/2) were uniquely defined [42,43,79]. With the obtained J
pseudospin states and the energy spectrum, the first-principles
based CF model [39,42,43] was derived employing the algo-
rithm developed for Oh systems [80]. The CF parameters Bkq

were mapped into an effective 4 f orbital model to extract the
effective orbital energy levels as in Ref. [106].

The post-HF approach was also used for isolated Nd ions
to derive the Coulomb interaction (Slater-Condon) parameters
and spin-orbit couplings. The CASSCF calculations of iso-
lated Ndn+ ions (n = 2−4) were performed for all possible
spin multiplicities to determine the LS-term energies. The
calculated energies were fit to the electrostatic Hamiltonian
for the f N ion tabulated in Ref. [75] or those for the f N d1

or f N s1 ions [107] (see Sec. II.D in the Supplemental Ma-
terial [62]). The eigenstates of the electrostatic Hamiltonian
give the relation between the symmetrized LS states [75] and
the LS-term states, with which the c.f.p. were transformed.
The J multiplet states were obtained by performing the SO-
RASSI calculations on top of the CASSCF states. By fitting
the SO-RASSI levels to the model atomic Hamiltonian, the
spin-orbit parameters Eq. (4) were determined (see Sec. II E
in Ref. [62]).

2. DFT band calculations

The band calculations were performed with the full
potential linearized augmented plane wave (LAPW) ap-
proach implemented in WIEN2K [108], allowing an accurate
treatment of heavy elements. The generalized gradient ap-
proximation (GGA) functional parameterized by Perdew et al.
[109] were employed. For the LAPW basis functions in the
interstitial region, a plane-wave cutoff of kmax = 8.5/Rmt was
chosen, where Rmt is the smallest atomic muffin-tin radius in
the unit cell. The muffin-tin radii were set to 2.50 a0 for Nd
and 2.11 a0 for N, where a0 is the Bohr radius. A 6 × 6 × 6 k
point sampling for Brillouin zone integral was used in the
self-consistent calculation.

Based on the obtained band structure, maximally lo-
calized Wannier functions [83,84] were derived using
WIEN2WANNIER [110], for which a 3 × 3 × 3 k sampling was
employed. In the present case, the target bands entangle with
other irrelevant bands; so to derive the Wannier functions, the
strategy used in Ref. [111] was employed: This consists of
including all the bands within the energy window of [−0.5,
12.5] eV with an inner energy window [−0.5, 10] eV (the
Fermi level is set to zero of energy), and projecting the target
bands onto 4 f , 5d , and 6s orbitals of Nd atom. The symme-
try of the obtained Wannier functions was slightly lowered,
and hence they were symmetrized by comparing the obtained
tight-binding model with the Slater-Koster model [112,113].

APPENDIX B: ORBITAL ENERGY LEVELS

The validity of the 4 f orbital levels from ab initio and
DFT calculations can be checked by making use of a relation
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between the CF levels and 4 f orbital levels. Assuming that the
CF originates from single electron potential, the CF Hamilto-
nian ĤCF Eq. (18) can be mapped into a single-electron model
Ĥloc Eq. (2) and vice versa (see Sec. II B in the Supplemental
Material [62]). The calculated effective orbital energy levels
are given in Table III.

The 4 f orbital energy levels derived from the post
HF and DFT calculations differ significantly. The ab ini-
tio 4 f orbital splitting is estimated to be only 94 meV,
which is much smaller than the other intrasite interactions

Eq. (2). The order of the CF split 4 f orbitals are con-
sistent with the post-HF data, whereas the quantities are
a few times larger than the latter. By using the same
relation, we found that the DFT 4 f orbital levels give qual-
itatively wrong CF levels: The calculated DFT CF levels
are 0 (
6), 86 (
8), and 120 (
8) meV. The discrepancy
between DFT data and post-HF calculations could be ex-
plained by an exaggerated hybridization of the 4 f orbitals
with the ligand environment in the DFT calculations at GGA
level.
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