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We develop a Floquet protocol for long-range entanglement generation in the one-dimensional quantum Potts
model, which generalizes the transverse-filed Ising model by allowing each spin to have n > 2 states. We focus
on the case of n = 3, so that the model describes a chain of qutrits. The suggested protocol creates qutrit
Bell-like pairs with nonlocal long-range entanglement that spans over the entire chain. We then conjecture that
the proposed Floquet protocol is integrable and explicitly construct a few first nontrivial conserved quantities
that commute with the stroboscopic evolution operator. Our analysis of the Floquet integrability relies on the
deep connection between the quantum Potts model and a much broader class of models described by the
Temperley-Lieb algebra. We work at the purely algebraic level and our results on Floquet integrability are valid
for any representation of the Temperley-Lieb algebra. We expect that our findings can be probed with present
experimental facilities using Rydberg programmable quantum simulators and can find various applications in
quantum technologies.
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I. INTRODUCTION

Over the past few years, a tremendous progress in the
development of programmable quantum simulators of various
nature has greatly pushed the research field in the direction
of probing novel nonconventional states of quantum matter
[1–7]. Recent achievements include investigations of exotic
nonequilibrium many-body states and phase transitions in
strongly correlated quantum systems, e.g., in quantum spin
chains, such as the transverse-field Ising model (TFIM) [1,2]
and its extensions [7]. Specifically, the use of a Rydberg pro-
grammable simulator enables one to study generalizations of
TFIM, in which each spin has n > 2 states [7,8]. The n-state
model with Zn symmetry is known as the chiral clock model,
whereas a model with a larger (Sn) symmetry comes under
the name of the n-state Potts model. Both models exhibit
incredibly rich physics and have been extensively. studied
in the context of quantum phase transitions [1,7,8], critical
phenomena [7], exotic quasiparticle excitations (e.g., mesonic
and baryonic) [9], and integrable lattice models [10]. An ad-
ditional interest to the n-state Potts model is motivated by the
fact that it admits a description in terms of parafermions, par-
ticles obeying nontrivial quasilocal anyonic statistics, which
is linked to topological quantum computing [11–13]. On the
other hand, the n-state model corresponds to an array of qu-
dits, which are promising for improving the performance of
various quantum computational schemes and algorithms, e.g.,
by using them in the multiqubit gate decomposition [14–17].
In order to maximize the improvement, one has to use qudits

with a certain number of internal states that depends on the
spatial topology and connectivity of a quantum system [16].
For example, in the case of a one-dimensional (1D) chain
with all-to-all connectivity, the best performance is shown by
qutrits (qudits with n = 3 internal states) [16].

One of the key challenges that arise in controllable spin
chains and generic many-body systems is the generation of
entanglement, which is a crucial resource for applications in
quantum computing, simulation, and metrology. The case of
long-range entanglement is traditionally of special interest,
since it plays a key role in the understanding of various
many-body phenomena, with the paradigmatic example being
the quantum magnetism [18]. A powerful tool for generating
states with a long-range entanglement and other nontrivial
properties is provided by the periodic (Floquet) driving, which
allows steering the dynamics to the desired state by a se-
quence of discrete time steps [19–28]. Recently, this method
has been used in the realization of exotic nonequilibrium
quantum many-body states, such as discrete time crystals [28]
and quantum many-body scars [28,29]. A periodic driving
protocol for on-demand generation of long-range entangle-
ment has been suggested for a system of ultracold atoms in
optical superlattices, a setup which simulates the 1D spin-1/2
Heisenberg model with time-dependent exchange interaction
[19]. In this system, the consecutive switching of the inter-
action between the spins on even and odd links of the chain
transforms the initial short-range entanglement between the
the nearest-neighbor spins into the nonlocal one. A similar
protocol was later studied for the case of the 1D TFIM, where
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the nonlocal entanglement between the pairs of distant spins is
generated by repeatedly switching the transverse field on and
off [30–33]. A natural question is whether these long-range
entanglement protocols can be extended beyond the spin-1/2
chains, such as the Heisenberg or Ising model, to the case
of Zn chains, e.g., n-state Potts model. This is of practical
interest due to the aforementioned advantages for quantum
computing that are offered by the qudit-based platforms.

From the fundamental point of view, it is important to
emphasize that despite a significant amount of known Floquet
protocols generating various nontrivial quantum states, all
these cases are rather exceptional and require the system to
be fine-tuned. In contrast, a generic interacting many-body
quantum system subject to a periodic drive simply reaches an
infinite temperature state. This happens because the energy is
continuously pumped into the system and in the general case
there are no conservation laws that can prevent the system
from heating [34–36]. Thus, the situation is analogous to
the phenomenon of termalization in statistical physics, which
is characteristic of nonintegrable systems in the absence of
disorder [37,38]. On the other hand, it is well known from
statistical physics that integrable or localized many-body sys-
tems do not termalize due to a large number of conserved
quantities (charges). Continuing the analogy between statis-
tical models and systems with periodic driving, it is natural
to expect that Floquet systems which do not heat up to an
infinite temperature must be also in a certain sense integrable
and possess an extensive number of conservations laws. This
is indeed the case, and the field of Floquet integrability is
a growing research area (for a review of recent results see,
e.g., Ref. [20] and references therein), but a complete under-
standing is still missing. In particular, explicit construction of
conservation laws for integrable Floquet protocols remains an
open question.

In this paper, we propose a Floquet protocol for iterative
generation of nonlocal entangled qutrit pairs in the 1D three-
state Potts model, which describes a chain of qutrits. We show
that by starting from a polarized state (i.e., the product state
in which all qutrits are initially in one and the same internal
state) and performing a state preparation scheme followed by
a consequent switching of the transverse field on and off with
a certain frequency, one arrives at a state consisting of qutrit
pairs with increasingly long-ranged entanglement.

We then go one step further and argue that the existence
of the suggested Floquet protocol is not merely a fortunate
coincidence but a consequence of its integrability. Namely,
we demonstrate the presence of emerging conservations laws
in the parameter regime corresponding to the long-range en-
tanglement generation. We explicitly construct the first few
conserved charges and conjecture that one can similarly con-
struct the higher ones. Using the fact that the Hamiltonian of
the three-state Potts model can be thought of as a represen-
tation of a more general operator belonging to the so-called
Temperley-Lieb algebra, we show that the long-range entan-
glement generating Floquet protocols for the TFIM and the
Heisenberg models are also integrable as their Hamiltonians
are nothing other as different representations of the same
Temperley-Lieb-algebraic operator. Finally, we briefly discuss
different driving regimes that do not result in the entanglement
generation but nevertheless exhibit some interesting features,

although their detailed investigation is beyond the scope of the
present work.

The rest of the paper is organized as follows. In Sec. II we
introduce the 1D three-state Potts model and discuss an op-
erator basis convenient for our purposes. Then, in Sec. III we
construct the Floquet protocol, identify the parameter regime
that leads to the entanglement generation, and present the
resulting many-body state with the long-range entanglement
between the qutrit pairs. In Sec. IV we show that the suggested
Floquet protocol is integrable, present a few first nontrivial
conserved charges, and extend our findings to other protocols
related to the Temperley-Lieb algebraic models. We discuss
our results and conclude in Sec. V.

II. THREE-STATE POTTS MODEL HAMILTONIAN

We consider the Potts model with n = 3 states per site, a
generalization of the Ising model to spin variables taking three
values. The Hamiltonian of the three-state Potts model on a
chain of 2N sites can be written as

H = −JH1 − f H2, (1)

where J and f are real constants and for later convenience we
separated the terms H1 and H2, which are given by

H1 =
2N−1∑

j=1

( X †
j Xj+1 + XjX

†
j+1),

H2 =
2N∑
j=1

( Zj + Z†
j ).

(2)

For concreteness, throughout this work we assume open
boundary conditions although most of the results can be
straightforwardly generalized to the periodic ones [39]. The
operators Xj and Zj in Eq. (2) satisfy the following relations:

X 3
j = 1, Z3

j = 1,

X 2
j = X †

j = X −1
j , Z2

j = Z†
j = Z−1

j ,

XjZ j = ωZjXj, XjZk = ZkXj ( j �= k),

(3)

where ω = e2π i/3 is the principal cube root of unity. They
act nontrivially on the jth site of the chain, i.e., Xj = 1 ⊗
. . .1 ⊗ X ⊗ 1 . . . ⊗ 1 and Zj = 1 ⊗ . . .1 ⊗ Z ⊗ 1 . . . ⊗ 1.
For the operators X and Z we choose the following matrix
representations:

Z =
⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠, X =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠. (4)

Labelling the local basis states as |l〉 j , with l ∈ {0, 1, 2}, we
have Zm

j |l〉 j = ωlm|l〉 j and X m
j |l〉 j = |l − m mod 3〉 j , where

m = 1, 2. The matrices Zj and Xj generalize the Pauli matrices
σ z

j and σ x
j , correspondingly, and are commonly referred to as

the shift (Xj) and clock (Zj) matrices.
In Eq. (2), the term H1 corresponds to the nearest-neighbor

interaction between the spins, whereas the term H2 plays
the role of the transverse field. The operators Xj , Zj , and
their conjugates are related to each other by a unitary

144306-2



FLOQUET INTEGRABILITY AND LONG-RANGE … PHYSICAL REVIEW B 105, 144306 (2022)

transformation Wj = 1 ⊗ . . .1 ⊗ W ⊗ 1 . . . ⊗ 1, with

W = 1√
3

⎛
⎝1 1 1

1 ω2 ω

1 ω ω2

⎞
⎠, (5)

which acts on the operators Xj and Zj as

WjXjW
†
j = Zj, WjZjW

†
j = X †

j ,

WjX
†
j W †

j = Z†
j , WjZ

†
j W

†
j = Xj .

(6)

Thus, the transformation
∏2N

j=1 Wj applied to H1,2 from Eq. (2)
simply replaces Xj ↔ Zj .

Unlike the Pauli matrices, Zj and Xj alone do not form
a group under multiplication [40], which makes them in-
convenient for our purposes. Thus, we choose a different
basis that satisfies the group properties. Namely, following
Refs. [41,42], we introduce the operators [43]

J m
j ≡ J (m1,m2 )

j = ωm1m2 X m1
j Zm2

j , (7)

with 0 � m1,2 � 2. Using the representation (4), from Eq. (7)
we obtain a unit matrix and eight unitary traceless matrices
spanning the Lie algebra sl(3,C). Taking into account that
X m1

j Zm2
j = ωm1m2 Zm2

j X m1
j and ω2m2n1 = ω−m2n1 , one can easily

show that the operators (7) satisfy

J m
j J n

j = ω−m×nJ m+n
j , (8)

where m × n ≡ m1n2 − m2n1 and components of the vector
m + n are mod 3. This leads to the following commutation
relations:[

J m
j ,J n

k

] = −2i δ jk sin
(2π

3
m × n

)
J m+n

j , (9)

with δ jk being the Kronecker symbol. In terms of the operators
in Eq. (7) we have

H1 =
2N−1∑

j=1

[
J (2,0)

j J (1,0)
j+1 + J (1,0)

j J (2,0)
j+1

]
,

H2 =
2N∑
j=1

[
J (0,1)

j + J (0,2)
j

]
.

(10)

Note that all terms in H1 (H2) commute with each other,
whereas [H1, H2] �= 0. Let us also mention that the Hamilto-
nian (1) is integrable at the critical point J = f [10], and its
superintegrable variations are known [44]. We now proceed
with the discussion of a periodic driving protocol.

III. FLOQUET PROTOCOL

A. Preliminary remarks

We begin with a brief overview of the Floquet formalism
for (isolated) time-dependent quantum systems. For a more
detailed discussion see, e.g., Ref. [45]. The evolution operator
for a time-dependent Hamiltonian H (t ) is given by the time-
ordered exponential

U (t ) = Te−i
∫ t

0 dτH (τ ), (11)

where T denotes the time ordering and we set h̄ = 1. Accord-
ing to the Floquet theorem, for periodic time dependence of

the Hamiltonian, H (t + T ) = H (t ), one can rewrite Eq. (11)
in the following way:

UF (t ) = P(t )e−itHF , (12)

where HF is time-independent effective (Floquet) Hamilto-
nian, whereas the operator P(t ) is periodic, P(t + T ) = P(t ),
and satisfies P(mT ) = 1 for integer m. Thus, if one observes
the system stroboscopically, i.e., only at times t = nT with
integer n, then the evolution operator becomes

UF (T ) = e−iT HF . (13)

We note in passing that the Floquet Hamiltonian HF can
depend on the period duration T . Despite the simple form of
Eq. (13), explicit construction of HF remains in most cases
extremely tedious, if not impossible. Remarkable exceptions
are provided by the Lie-algebraic [20] and free-fermionic [46]
Hamiltonians, for which one can obtain HF quite easily.

An important and widely used class of periodic Hamilto-
nians corresponds to the so-called kicked models. A typical
Hamiltonian is of the form

H (t ) = g1H1 + g2T
∑
m∈Z

δ(t − mT )H2, (14)

which describes a sequence of instantaneous kicks by the term
g2H2 performed with a frequency ω = 2π/T . In Eq. (14) we
explicitly include the factor of T in the second term in order to
fix the dimension of the Hamiltonian. Substituting H (t ) into
Eq. (11) with t = T and taking into account the δ-functional
time dependence, we immediately obtain that the stroboscopic
evolution operator factorizes and can be written as

UF (T ) = e−iT g2H2 e−iT g1H1 . (15)

Thus, over the period T the evolution is governed solely by
g1H1, which is followed by the kick with g2H2 in the end.

Alternatively, the stroboscopic Floquet protocol (15) can
be obtained for the periodic steplike time dependence of the
Hamiltonian:

H (t ) =
{

H1, t mod T1 + T2 ∈ [0, T1),
H2, t mod T1 + T2 ∈ [T1, T1 + T2), (16)

where H1 and H2 are time independent. We thus have H (t +
T1 + T2) = H (t ) and the one-period stroboscopic Floquet op-
erator is

UF (T1 + T2) = e−iT2H2 e−iT1H1 . (17)

Clearly, if H1 and H2 do not commute, then it is highly non-
trivial to obtain the Floquet Hamiltonian HF in a closed form.
Indeed, in order to reduce the evolution operator from Eq. (15)
or Eq. (17) to a single exponential as in Eq. (12), one has
to sum the Baker-Campbell-Hausdorff series, which is only
possible in a limited number of cases. Nevertheless, the form
of the stroboscopic Floquet operator in Eq. (15) is already
simple enough to work with and it has been investigated for
various models and settings, see, e.g., Refs. [19,20,22–28,30–
33] and references therein. In what follows we study the step-
like stroboscopic Floquet protocol for the kicked three-state
Potts model discussed in Sec. II.
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B. Kicked three-state Potts model

We now consider the time-dependent Hamiltonian of the
three-state Potts model subject to periodically kicked trans-
verse field H1:

H (t ) = −JH1 − f T
∑
m∈Z

δ(t − mT )H2, (18)

where H1,2 are given by Eq. (10). Thus, the time-dependent
Hamiltonian H (t ) in Eq. (18) is of the form (14), with g1 =
−J and g2 = − f . Then, the one-period stroboscopic Floquet
operator is given by Eq. (15) and reads as

UF (T ) = ei f T H2 eiJT H1 . (19)

It corresponds to the evolution for time T with the interaction
Hamiltonian −JH1, followed by an instantaneous kick by the
uniform transverse field − f H2. We are interested in the state
of the system

|ψ (kT )〉 = U k
F (T )|ψ (0)〉 (20)

after k periods of the protocol.
Let us denote by H̃1 the interaction part of the Hamiltonian

with the central link (i.e., that between the sites N and N + 1)
being switched off [47]:

H̃1 = H1 − (X †
N XN+1 + XN X †

N+1). (21)

Then, we rewrite the one-period evolution operator by sepa-
rating the part V0 that acts only in the middle of the chain:

UF (T ) = ei f T H2 eiJT H̃1V0(T ) ≡ Ũ (T )V0(T ), (22)

where we introduced unitary operators V0 and Ũ . The former
is given by

V0 = exp{iJT (X †
N XN+1 + XN X †

N+1)} (23)

and acts nontrivially only at the N th and (N + 1)-th sites, i.e.,
over the central link of the chain. On the contrary, the operator

Ũ (T ) = ei f T H2 eiJT H̃1 (24)

acts nontrivially on the left and right halves of the chain and
not across the central link. Therefore, Ũ does not entangle the
left and right halves with each other and can be written in the
factorized form

Ũ (T ) = ŨL(T )ŨR(T ), (25)

where ŨL(R) acts on the left (right) half of the lattice and
[ŨL, ŨR] = 0. Then, we rewrite the one-period Floquet opera-
tor in Eq. (22) as

UF = ŨV0 = V1Ũ , V1 = ŨV0Ũ
†, (26)

were for the sake of readability we omitted the T dependence.
Similarly, for two periods we have U 2

F = ŨV0V1Ũ , which can
be written as

U 2
F = V1V2Ũ

2, V2 = ŨV1Ũ
†. (27)

One can easily check that the evolution operator for k periods
becomes

U k
F = V1 . . .Vk Ũ k, Vl = ŨVl−1Ũ

†. (28)

The unitary operators Vk act nontrivially on both halves of the
chain and entangle them. However, for some specific values
of f T and JT the resulting entanglement has a very simple
structure, as we show below.

C. Explicit form of Vk

Let us now find the explicit form of the operators Vk . We
first rewrite the operator V1 from Eq. (26) as

V1 = ŨV0Ũ
† = ei f T adH2 V0

=
N+1∏
j=N

2∏
n=1

∞∑
k=0

(i f T )k

k!
adk

J (0,n)
j

V0,
(29)

where adk
XY ≡ [X, [X, . . . [X,Y ]]] is a k-fold nested commu-

tator. In writing Eq. (29) we took into account that [H̃1,V0] =
0 and all terms in H2 commute with each other, since the
operators J m

j commute on different sites. We also used a
well-known identity eXYe−X = eadX Y , valid for any X and Y
in a Lie algebra [sl (3,C) in our case]. To simplify Eq. (29) it
is convenient to expand the exponential in V0. From Eq. (23)
we have (for details, see Appendix A)

V0 = μ1 + ν
[
J (1,0)

N J (2,0)
N+1 + J (2,0)

N J (1,0)
N+1

]
, (30)

were we took into account Eq. (7) for the definition of the
operators J m

j . The coefficients in Eq. (30) are given by

μ = ν + e−iT J , ν = e−iT J (e3iT J − 1)/3. (31)

It is now straightforward to calculate V1. For generic values
of f T the calculation of the adjoint action in Eq. (29) can
be found in Appendix D. Importantly, the expression for V1

becomes especially simple for f T = αm, where we denoted

αm = 2π

9
(3l − m), (32)

with l ∈ Z and m ∈ {0, 1, 2}. In this case, V1 reads as

V1 = μ1 + ν
[
J (1,m)

N J (2,2m)
N+1 + J (2,2m)

N J (1,m)
N+1

]
. (33)

Obviously, the case m = 0 is trivial, since it results in V1 = V0.
Moreover, one can show that the operator V2 from Eq. (27)

also acquires a compact form for

f T = JT = αm, (34)

where αm is given by Eq. (32). Using the results of Appen-
dices C and D, we find

V2 = μ1 + ν
[
J (1,m)

N−1 J (0,m)
N J (0,2m)

N+1 J (2,2m)
N+2

+ J (2,2m)
N−1 J (0,2m)

N J (0,m)
N+1 J (1,m)

N+2

]
. (35)

Similarly, under the conditions JT = f T = αm and 2 � k �
N one obtains the following expression for Vk:

Vk = μ1 + ν
[
J (1,m)

N−k+1 J
(0,m)

N−k+2 . . .J (0,m)
N

× J (0,2m)
N+1 . . .J (0,2m)

N+k−1 J
(2,2m)

N+k + H.c.
]
, (36)

where in the conjugated term (denoted by “H.c.”), one simply
makes a replacement m ↔ 2m in the upper indices of J (p,q)

j .
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In terms of the operators Xj and Zj one can write Vk as

Vk = μ1 + νω2m
(
XN−k+1Zm

N−k+1 . . . Zm
N

× Z2m
N+1 . . . Z2m

N+k−1X 2
N+k Z2m

N+k + H.c.
)
, (37)

which follows from Eq. (7). We thus see that for JT = f T =
2π (3l − m)/9 the form of the operator Vk from Eq. (37) is
quite simple, as well as its action on the chain. It only changes
the internal state of qutrits on the sites N − k + 1 and N + k,
whereas on the rest of the chain Vk either produces an extra
phase factor or acts trivially.

Interestingly, for k > N the form of Vk exhibits a peculiar
structure. Before we proceed, let us rewrite Vk for later conve-
nience as

Vk = μ1 + ν(Vk + V†
k ), (38)

which can be always done since V0 has this form. Moreover,
the operator Vk in Eq. (38) can be always written as

Vk ≡ WkW̃k =
N∏

j=1

J (p j (k),q j (k))
j

×
2N∏

j=N+1

J (2p2N+1− j (k),2q2N+1− j (k))
j ,

(39)

because the upper indices of J (p j (k),q j (k))
j in Vk are sym-

metric with respect to reflection across the N th link of the
chain. For brevity, let us focus on the structure of Wk =∏N

j=1 J
(p j (k),q j (k))
j . Using the results of Appendices C and D,

we obtain the following expressions for Wk with k > N :

WN+l =
l−1∏
j=1

J (0,2m)
j J (1,2m)

l

N∏
j=l+1

J (0,m)
j ,

W2N+l =
N−l∏
j=1

J (0,2m)
j J (1,0)

N−l+1

N∏
j=N−l+2

1 j,

W3N+l =
l−1∏
j=1

J (0,m)
j J (1,m)

l

N∏
j=l+1

1 j,

W4N+l =
N−l∏
j=1

J (0,m)
j J (1,2m)

N−l+1

N∏
j=N−l+2

J (0,2m),

W5N+l =
l−1∏
j=1

1 j J (1,0)
l

N∏
j=l+1

J (0,2m),

W6N+l =
N−l∏
j=1

1 j J (1,m)
N−l+1

N∏
j=N−l+2

J (0,m),

(40)

where 1 � l � N . The structure of Wk in Eq. (40) is fairly
complicated and one can see that the upper indices of
J (p j (k),q j (k))

j change completely across Wk several times as k
increases from N to 6N [recall that N is half the length of
the chain]. Quite remarkably, the expression for W6N+l from
Eq. (40) coincides with that for Wl with 1 � l � N , as can
be seen from Eq. (36). This means that the operators Vk are

periodic with respect to k and one has

V6N+k = Vk. (41)

Then, taking into account Eq. (28) we have V6N+k =
Ũ 6NVkŨ † 6N , and one concludes that [Ũ 6N ,Vk] = 0 for any k.
Our detailed analysis shows that in fact one has

Ũ 6N = 1, (42)

meaning that under the condition (34) the unitary operator Ũ
from Eq. (24) is a permutation. This has far reaching conse-
quences as one should be able to find explicitely the spectrum
of the total Floquet operator UF from Eq. (19). However, this
lies beyond the scope of the present work and we leave it to
future studies.

In the following we show explicitly that in the regime
f T = JT = αm, with αm given by Eq. (32), the Floquet pro-
tocol described in this section leads to the generation of
long-range entanglement between the pairs of qutrits, and the
resulting entanglement has a very simple form.

D. Long-range entangled state generation

The protocol consists of the preliminary state preparation
and the generation of long-range entanglement itself. In the
first stage, we start from an initial polarized state |ψ0〉, i.e.,
the product state in which all qutrits are in one and the same
internal state [48]. For instance, let us assume that every qutrit
is initialized in the state |0〉. Thus, the initial state for the
protocol reads

|ψ (0)〉 = ⊗2N
j=1 |0〉 j . (43)

Then, the state preparation procedure consists of evolving the
state |ψ (0)〉 for k periods by the two-step Floquet protocol
with the one period Floquet unitary Ũ †(T ):

|ψ̃ (kT )〉 = Ũ † k (T )|ψ (0)〉 = |
̃(kT )〉L ⊗ |
̃(kT )〉R, (44)

where Ũ (T ) is given by Eq. (24) and we took into account that
it factorizes according to Eq. (25). From Eq. (24) we have

Ũ †(T ) = e−iJT H̃1 e−i f T H2 , (45)

which corresponds to the stroboscopic evolution with the
Hamiltonian

H ′(t ) = f H2 + J
∑
n∈Z

T δ(t − nT )H̃1, (46)

where H̃2 is given by Eq. (21) and H2 by Eq. (2). In other
words, each period of the state preparation stage consists
of evolving the state for time T with the Hamiltonian f H2

(corresponding to the transverse field), followed by an instan-
taneous kick with the Hamiltonian JH̃1, which corresponds to
the interaction between the nearest neighbor spins on all links
except for the central one [47].

At the next step, we perform the Floquet protocol with the
full evolution operator UF (T ) from Eqs. (19) and (22). After
the first period of the protocol we obtain

|ψ (T )〉 = UF (T ) |ψ̃ (kT )〉 = V1[Ũ †(T )]k−1|ψ (0)〉
= V1|
̃[(k − 1)T ]〉L ⊗ |
̃[(k − 1)T ]〉R. (47)
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Then, after k periods we arrive at the state

|ψ (kT )〉 = U k
F (T ) |ψ̃ (kT )〉 = V1 . . .Vk|ψ (0)〉, (48)

where for U k
F we used Eq. (28). We thus see that the evolution

generated by the operator Ũ † k is eliminated, and the resulting
state |ψ (kT )〉 in Eq. (48) is fully determined by the action
of the string V1 . . .Vk on the initial state |ψ (0)〉. Note that
Eq. (48) is completely general and is valid for arbitrary values
of f T and JT .

In order to proceed with constructing the explicit form
of the state |ψ (kT )〉 from Eq. (48), we choose JT = f T =
2π (3l − m)/9, so that the operators Vk have the simple form
given in Eq. (37). In this case, one can clearly see that by
applying Vk to the initial state |ψ (0)〉 we entangle only the
sites N − k + 1 and N + k:

Vk|ψ (0)〉 = |�(μ, ν)〉k

2N⊗
j=1

′ |0〉 j, (49)

where the prime means that the tensor product does not in-
clude sites j = N − k + 1 and j = N + k. In Eq. (49) we
denoted by |�(μ, ν)〉 j the maximally entangled two-qutrit
Bell-like state

|�(μ, ν)〉 j = μ|0〉N− j+1|0〉N+ j + ω2mν(|1〉N− j+1|2〉N+ j

+ |2〉N− j+1|1〉N+ j ), (50)

with m = 1, 2 and μ and ν given by Eq. (31). One can easily
see that the state |�(μ, ν)〉 j has the Schmidt rank r = 3.

Taking into account that for JT = 2π (3l − m)/9 we have
|μ| = |ν| = 1/

√
3, it is also easy to check that the partial trace

of |�(μ, ν)〉 j〈�(μ, ν)| with respect to either of the two sub-
spaces gives 1/3. Therefore, the state |�(μ, ν)〉 j in Eq. (50) is
indeed a maximally entangled one [49]. Then, from Eqs. (48)
and (49) we immediately obtain the final state of the chain
after k periods of the Floquet protocol:

|ψ (kT )〉 =
N−k⊗
j=1

|0〉 j

k⊗
j=1

|�(μ, ν)〉 j

2N⊗
j=N+k+1

|0〉 j, (51)

which is build of nonlocal qutrit pairs with a long-range
entanglement. The result in Eq. (51) is valid for the number
of periods k � N ; otherwise, there are obviously not enough
qutrit pairs to entangle. In particular, for k = N the final
state consists of N maximally entangled qutrit pairs, which
are symmetrically distributed around the middle of the chain.
We schematically illustrate the Floquet protocol in Fig. 1.
Let us emphasize that the suggested Floquet protocol works
properly only under a specific choice of the system param-
eters. Namely, the state (51) is obtained under the condition
f T = JT = αm, with αm given in Eq. (32), which guarantees
the remarkably simple structure of the operators Vk in Eq. (37)
and, consequently, that of the final state |ψ (kT )〉 in Eqs. (48)
and (51).

Before we complete the discussion of the long-range en-
tanglement generation, we also would like to mention a
somewhat unrelated but peculiar observation. Imagine that
instead of considering the regime in Eq. (34) one takes, say,
f T = 2π/9 and JT = 4π/9. In this case, the operator Vk still
contains only three terms, just like in Eqs. (37) and (38). For
f T = JT = αm one can immediately read off the form of Vk

from Eq. (37), and it is extremely simple. On the contrary,
for f T = α2m and JT = αm (or vice versa), the structure of
Vk in Eq. (38) turns out to be quite complex and it drastically
changes with k, as we discuss in more detail in Appendix D
[see Eq. (D31)]. Neglecting the phase factor, one can write
Vk as

Vk ∼
0∏

j=k−1

X
pj+1

N− j Z
qj+1

N− j

k∏
j=1

X
2p j

N+ jZ
2q j

N+ j, (52)

so that the operator content of Vk in Eq. (38) is characterized
by two 2N-dimensional vectors Pk and Qk , containing the
powers of Xj and Zj , correspondingly, on all lattice sites:

Pk = {p1(k), . . . , pN (k), 2pN (k), . . . , 2p1(k)}, (53)

and similarly for Qk . In the course of the Floquet protocol, the
components of Pk and Qk are updated via Eq. (D34), which
follows from the relation Vk = ŨVk−1Ũ † in Eq. (28). Then, in
order to gain insight on the structure of Vk for f T = 2π/9
and JT = 4π/9, let us plot the components of Pk and Qk
for different values of k and see how they change across the
chain as the number of periods k increases. Our findings are

illustrated in Fig. 2. One clearly sees that the components
of Pk and Qk form a fractal pattern, which exhibits a large-
scale structure resembling the Sierpiński carpet. It would be
interesting to investigate the origin of this fractal behavior,
as well as its possible physical consequences on the Floquet
dynamics. However, this lies beyond the scope of the present
paper and we leave it to future studies.

Returning to the regime of equal f T and JT , one may ask
what is the physical reason behind the fine-tuning requirement
in Eq. (34), which has to be satisfied for the Floquet protocol
to generate the state with long-range entangled pairwise en-
tanglement between qutrits. In Sec. IV we argue that Eq. (34)
is nothing else than the integrability condition for the strobo-
scopic Floquet protocol (19). In this view it is quite natural
that the protocol creates a state of a simple form, instead of
simply heating the system up to infinite temperature.

IV. INTEGRABILITY OF THE FLOQUET PROTOCOL

A. General remarks and relation to the Temperley-Lieb algebra

We now show that the protocol consider in Sec. III can
be viewed as a special case of a more general Floquet pro-
tocol. The reason is that the three-state Potts model is a
representation of a Hamiltonian that belongs to the so-called
Temperley-Lieb algebra. In this section we briefly overview
the Temperley-Lieb algebra, construct a stroboscopic two-step
Floquet protocol using the generators of the algebra and dis-
cuss the Floquet integrability of the protocol.
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FIG. 1. Schematic illustration of the protocol for generating long-range entanglement in the three-state Potts model. The protocol starts
with the initial state (a) and consists of the preliminary state preparation scheme [shown in (b) and (c)] followed by the procedure for generating
nonlocal entanglement [displayed in (d) and (e)] between distant qutrit pairs. (a) At t = 0 every qutrit is in one and the same state |0〉 j , so that
the chain initially is in the polararized product state |ψ (0)〉. At the first iteration of the state preparation scheme (b), the central link of the chain
is switched off (shown by the red cross on the link) and the two halves of the chain are evolved independently with the unitary operator Ũ †(T ),
which is given by Eq. (45). This produces a bipartite state |ψ̃ (T )〉 shown by two light colored blocks in (b). Then, after N − 1 more iterations
of the state preparation scheme (c), the chain is in the bipartite state |ψ̃ (NT )〉. The two halves of the chain are still factorized, but each of them
is now highly entangled, as illustrated by the darker colored blocks in (c). This completes the state preparation scheme and one proceeds with
the protocol generating entanglement between qutrit pairs. At the first period the protocol (d), one first reduces the amount of entanglement
inside the left and right halves of the chain by the operator UF (T ) and produces the state |ψ̃ ((N − 1)T )〉 [note that it is represented by the
blocks of lighter color as compared to (c)]. In addition, by the operator V1 one creates a two-particle entanglement between the left and right
halves of the chain [blue dashed arc in (d)]. The result of every next period is also twofold: One further disentangles separately the states of
the left and right halves of the chain and creates another two-site entanglement between them. As a result, after N periods of the protocol (e)
the final state |ψ (NT )〉 is simply the product of maximally entangled two-qutrit states |�(μ, ν )〉 j [blue solid arcs in (e)].

Let u j with j = 1, . . . , L − 1 be the generators of the
Temperley-Lieb algebra TLL(β ), where β is a complex pa-
rameter. The generators satisfy the defining relations

u2
j = βu j, (54a)

u ju j±1u j = u j, (54b)

[ui, u j] = 0, |i − j| > 1. (54c)

The elements (also called words) of TLL(β ) are obtained by
multiplying the generators u j in all possible ways. A word w

is called reduced if it cannot be shortened with the help of
the relations (54). Every reduced word w ∈ TLL(β ) can be
written in the Jones normal form [50], namely as a sequence

of decreasing sequences of the generators:

w = (u j1 u j1−1 . . . uk1 ) . . . (u jr u jr−1 . . . ukr ), (55)

where 0 < j1 < . . . < jr < L and 0 < k1 < . . . < kr < L. It
can be shown that the generator with the largest index appears
in w only once. All reduced words formed of the generators
{u j}L−1

j=1 span the basis in TLL(β ). Thus, the Temperley-Lieb
algebra is finite dimensional and one can show that its dimen-
sionality is

dim TLL(β ) = 1

L + 1

(
2L

L

)
= CL, (56)

which is the Lth Catalan number. Let us note that the defining
relations (54) can be equivalently formulated using the so-
called Gröbner-Shirshov basis [51]. To do so, one introduces
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FIG. 2. Structure of Vk in Eqs. (38) and (52). (a) Distribution of X p
j with 1 � j � 2N in Vk for f T = 2π/9 and JT = 4π/9 (main

panel), chain length of 2N = 320 sites, and the number of periods 0 � k � N = 160. The color of a pixel with coordinates ( j, k) encodes
the power p of the operator X p

j in the expression for Vk from Eq. (52). The inset shows the same distribution for f T = JT = 2π/9 and
2N = 80. (b) Distribution of Zq

j with 1 � j � 2N in Vk . The color of a ( j, k)-th pixel indicates the power q of Zq
j in the expression for Vk . The

parameters on the main panel and the inset are the same as the corresponding ones on panel (a). Note that if one instead chooses f T = 2π/9
and JT = 4π/9 for both main panels, the distribution of X p

j remains the same, whereas in the distribution of Zq
j one simply swaps q = 1 and

q = 2. Likewise, taking for the insets f T = JT = 4π/9, the inset in panel (a) does not change, whereas the inset in panel (b) gets reflected.

the operators ui, j defined as

ui,i = ui, ui,i+1 = 1,

ui, j = uiui−1 . . . u j, i � j.
(57)

Then, one replaces the relation (54b) with the following two:

ui, j ui = ui−2, j ui,

u j ui, j = u j ui, j+2,
(58)

where i > j. One can easily check that Eqs. (54a), (54c), (57),
and (58) are equivalent to the standard form of the defining
relations in Eq. (54). However, the former are often much
more convenient in practice.

Quite remarkably, the Temperley-Lieb algebra possesses
numerous representations that correspond to various paradig-
matic physical models, such as the TFIM, spin-1/2 XXZ spin
chain, and the n-state Potts model [52]. We are interested
in the representation corresponding to the three-state Potts
model on a chain with M sites and open boundary conditions:

u2 j = 1√
3

(1 + XjX
†
j+1 + X †

j Xj+1), 1 � j < M,

u2 j−1 = 1√
3

(1 + Zj + Z†
j ), 1 � j � M.

(59)

One can easily check that the operators u j in Eq. (59) satisfy
the defining relations in Eq. (54) with β = √

3 and thus form
a representation of TL2M (

√
3).

We now consider the following linear combinations be-
longing to TL2M (β ):

H1 =
M−1∑
j=1

u2 j, H2 =
M∑

j=1

u2 j−1. (60)

Assuming that u j are Hermitian, we treat H1,2 as abstract
Hamiltonians for which one can use any Hermitian represen-
tation, in particular the one in Eq. (59). We then construct a

stroboscopic two-step Floquet protocol,

UF = e−iT2H2 e−iT1H1 , (61)

where Tk is either the time period over which the dynamics
is governed by Hk , as in Eq. (17), or Tk ≡ gkT as in Eq. (15)
corresponding to the kicked protocol. In the latter case Tk are
allowed to be negative. Thus, taking M = 2N , T1 = −√

3JT ,
T2 = −√

3 f T , and using the representation (59), we reduce
Eq. (61) to the Floquet protocol in Eq. (19) up to a con-
stant phase. However, in what follows we mostly work with
the general case in Eq. (61), hereinafter referred to as the
Temperley-Lieb algebraic Floquet protocol.

B. Integrability of the Temperley-Lieb algebraic Floquet
protocol and its conservation laws

Note that the Floquet operator in Eq. (61) can be written in
the form

UF =
M∏

j=1

(1 + x2u2 j−1)
M−1∏
j=1

(1 + x1u2 j ), (62)

where we used Eq. (54) and denoted xk = (e−iβTk − 1)/β. In
this form, the Floquet evolution operator UF resembles the
transfer matrix of a two-dimensional classical integrable lat-
tice model. This similarity suggests that the Floquet protocol
(62) is also integrable in some sense [20]. This is indeed the
case, and the notion of integrability in the context of Floquet
dynamics should be understood in the following way. Let us
rewrite Eq. (61) in the form of a single exponential [as in
Eq. (13)]:

UF = e−iT HF , (63)

where HF is an effective Floquet Hamiltonian. Then, for an
integrable stroboscopic Floquet protocol with the one-period
evolution operator UF there is a macroscopically large number
of conserved quantities (charges) Qn that commute with the
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effective Hamiltonian HF and with each other:

[Qn, HF ] = 0, [Qn, Qm] = 0. (64)

Obviously, due to Eq. (63), the charges Qn also commute
with the Floquet evolution operator UF , which eliminates the
need to calculate HF explicitly. Importantly, the conserved
charges are required to be local, i.e., expressible as a linear
combination of terms with a finite support:

Qn =
∑
l�n

∑
j

q(n)
j, j+1,... j+l . (65)

The support of q(n)
j, j+1,... j+l increases with n, but for a local

charge Qn remains finite. For the Temperley-Lieb algebraic
Floquet protocol the operators q(n)

j, j+1,... j+l are multilinear in
the generators uj and correspond to the reduced words (55) in
the Temperley-Lieb algebra.

We now proceed with looking for local conserved charges
Qn that commute with the Temperley-Lieb algebraic Floquet
evolution operator UF in Eq. (61). It is convenient to rewrite
the integrability condition [ Qn,UF ] = 0 as

eiT2H2 Qne−iT2H2 = e−iT1H1 QneiT1H1 . (66)

In order to find the first conserved charge one can simply make
the most general ansatz for Qn, which is homogeneous and
consists of terms that are at most bilinear in the generators
u j . Thus, keeping in mind that the terms on even and odd sites
play distinct roles [see Eq. (62)], for the first conserved charge
we make the following ansatz:

Q1 = H1 + a0H2 +
M−1∑
j=1

(b0u2 ju2 j+1 + b1u2 j−1u2 j )

+
M−1∑
j=1

(c0u2 j+1u2 j + c1u2 ju2 j−1), (67)

where H1,2 are given by Eq. (60) and a0, b0,1, c0,1 are yet
unknown coefficients to be determined from Eq. (66). Antici-
pating the result, it is convenient to rewrite the ansatz (67) as

Q1 = H1 + a0 H2 + a1 [H1, H2] + a2 A, (68)

where from Eqs. (54) and (60) one has [53]

[H1, H2] =
2M−2∑

j=1

(−1) j[u j, u j+1] (69)

and we introduced the operator

A =
2M−2∑

j=1

{u j, u j+1}, (70)

with {·, ·} being the anticommutator. The coefficients a1,2 in
Eq. (68) are related to those in Eq. (67) via b0 = c1 = a2 + a1

and b1 = c0 = a2 − a1. Even though the number of free pa-
rameters in the ansatz (68) is reduced, detailed analysis shows
that Eq. (67) does not lead to any new solutions to Eq. (66),
apart from the one in Eq. (68).

We then substitute the ansatz (68) for Q1 into the integra-
bility condition (66) and check whether it can be satisfied for

some values of ak . Remarkably, one can perform the unitary
transformations in Eq. (66) analytically and obtain a closed
form expression for eiTkHk Q1e−iTkHk , with k = 1, 2. We discuss
the details of this calculation in Appendix F. Using Eqs. (F7)–
(F11), we find that condition (66) is satisfied if one has

T1 = T2 = T, (71)

and the coefficients ak in Eq. (68) are given by

a0 = 1, a1 = i

2β
sin βT, a2 = − 1

β
sin2 βT

2
. (72)

Thus, the local charge Q1 in Eq. (68) with the coefficients
ak from Eq. (72) provides an exact conservation law of
the Temperley-Lieb algebraic Floquet protocol (61), since
it commutes with the one-period evolution operator UF =
e−iT2H2 e−iT1H1 . We emphasize that since Q1 exists only when
T1 = T2, the same condition is required for all higher-order
conserved charges as well.

Note that we were able to derive Q1 analytically because
the adjoint action exp{s adH1,2} on the terms linear and bi-
linear in the Temperley-Lieb generators u j can be calculated
in a closed form. Unfortunately, for higher-order terms this
procedure quickly becomes cumbersome. One can still try to
find a few higher-order charges with brute force by simply
using an ansatz (65) and requiring that its commutator with
the evolution operator in the form (62) is zero. Proceeding in
this way, setting T1 = T2 = T and using the relations (57) and
(58), for the second conserved charge we obtain

Q2 = Q(2)
2 + Q(3)

2 + Q(4)
2 + Q(edge)

2 , (73)

where Q(n)
2 is a term that contains multilinear products of n

generators u j and acts in the bulk of the chain, whereas Q(edge)
2

is the boundary term, which appears due to the fact that the
Temperley-Lieb generators are defined on a chain with open
boundary conditions. Explicitly, for Q(2)

2 we have

Q(2)
2 = b2[H1, H2] + c2A, (74)

where A is given by Eq. (70) and the coefficients are

b2 = i

2β
(β2 + 2 cos βT ) tan

βT

2
,

c2 = 1

2β

(
β2 − 4 sin2 βT

2

)
.

(75)

The terms Q(n)
2 , with 3 � n � 4, are more complicated and for

the sake of readability we introduce the short-hand notations

C−
j = [u j, u j+1], C+

j = {u j, u j+1}. (76)

Then, in terms of the generator we have

Q(3)
2 = b3

2M−3∑
j=1

(−1) j ([u j,C+
j+1] − {u j,C−

j+1})

+ c3

2M−3∑
j=1

[u j,C−
j+1], (77)

where the coefficients are given by

b3 = − i

2
tan

βT

2
, c3 = 1. (78)
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The next term is given by

Q(4)
2 =

2M−4∑
j=1

(−1) j (b4[C−
j ,C−

j+2] + c4[C+
j ,C+

j+2])

+ d4

2M−4∑
j=1

([C−
j ,C+

j+2] + [C+
j ,C−

j+2]), (79)

where the coefficients read as

b4 = i

2β
sin βT, d4 = − 1

β
sin2 βT

2
,

c4 = − i

β
sin2 βT

2
tan

βT

2
.

(80)

Finally, for the boundary term one has

Q(edge)
2 = −(u1 + u2M−1) + bedge(C+

1 + C+
2M−2)

+ cedge(C−
1 − C−

2M−2), (81)

with the constants

bedge = 2

β
sin2 βT

2
, cedge = i

β
cos βT tan

βT

2
. (82)

We have checked that Q2 commutes with both Q1 in Eq. (68)
and UF in Eq. (62) for T1 = T2 = T . Note that Q2 in Eq. (73)
already includes the terms with up to four generators uj , even
though the previous charge Q1 in Eq. (68) contains at most
bilinear terms. The reason is that we are dealing with open
boundary conditions, and it is well known that in the absence
of translational invariance there only exist conserved charges
whose maximal support is even. For integrable spin chains
with open boundary conditions this is shown in Ref. [54].

We have also obtained the next conserved charge Q3 and
verified that it commutes with Q1, Q2, and UF under the same
condition. The explicit form of Q3 is extremely bulky and
not illuminating. For this reason, we do not present it here.
Expressions for higher-order charges Qn are even more com-
plicated, in particular because of the boundary terms which

proliferate for larger n [39]. Despite the fact that the general
form of Qn is missing, we strongly believe that it should be
possible to obtain it in the closed form. We thus conjecture that
for T1 = T2 the Temperley-Lieb algebraic Floquet protocol
in Eq. (61) is integrable for arbitrary β and there exists a
macroscopically large number of local conserved charges Qn

that commute with the Floquet evolution operator UF and rep-
resent the conservation laws of the Floquet Hamiltonian HF .
We leave the proof of our conjecture for future work. Let us
emphasize that integrability of the Temperley-Lieb algebraic
Floquet protocol automatically extends to every representa-
tion of the Temperley-Lieb algebra, even to non-Hermitian
ones. In particular, the results of this section cover the protocol
considered in Sec. IV for the three-state Potts model, as well
as the ones for the TFIM [31] and the Heisenberg model [19],
since all three models correspond to different representation
of the Temperley-Lieb algebra.

C. Three-step stroboscopic Floquet protocol and its integrability

One can easily obtain a slightly more general result.
Namely, consider the following evolution operator

U ′
F (λ) = e−iλT H1 e−iT H2 e−i(1−λ)T H1 , (83)

with λ ∈ R, which corresponds to a three-step stroboscopic
Floquet protocol. On the other hand, U ′

F (λ) in Eq. (83) is
nothing other than the adjoint action of H1 on the two-step
Floquet evolution operator UF from Eq. (61) at the integrable
point T1 = T2 = T , i.e., U ′

F (λ) = e−iλT H1UF eiλT H1 . Therefore,
U ′

F obviously commutes with an operator

Q′
n(λ) = e−iλT H1 QneiλT H1 , (84)

where Qn is the nth conserved charge of the two-step protocol
UF with T1 = T2 = T . This means that the three-step Floquet
protocol (83) is integrable by construction. Using the results
of Appendix F, namely Eqs. (F7), (F10), and (F11), we can
immediately find the explicit form of the first nontrivial charge
Q′

1, which reads

Q′
1(λ) = H1 + H2 + i

β
cos

βT

2
sin

(1 − 2λ)βT

2
[H1, H2] − 1

β

[
sin2 λβT

2
+ sin2 (1 − λ)βT

2

]
A

4

β2
sin

λβT

2
sin

(1 − λ)βT

2

{
i sin

(1 − 2λ)βT

2
K0 + cos

(1 − 2λ)βT

2
P0 − cos

βT

2
(2H1 + R0)

}

−16

β3
sin2 λβT

2
sin2 (1 − λ)βT

2
S0, (85)

where A is given by Eq. (70), and the operators K0, P0, R0,
and S0 are defined in Eq. (F4). Taking λ = 0 in Eq. (85)
we recover Eq. (68) with the coefficients given by Eq. (72),
whereas for λ = 1 we obtain Eq. (68) with H1 and H2 being
swapped. Likewise, one immediately sees that the Floquet
protocol

U ′′
F (μ) = e−i(1−μ)T H2 e−iT H1 eiμT H2 , (86)

with μ ∈ R is also integrable by construction, with
the charges given by Q′′

n (μ) = eiμT H2 Qne−iμT H2 . Ex-

plicit form of Q′′
1 (μ) follows from Eqs. (F7), (F10),

and (F11).

V. DISCUSSION AND CONCLUSIONS

Here we summarize the main results of the present work
and formulate some open questions for future research. In
the first part of the paper (Sec. III) we have proposed a stro-
boscopic Floquet protocol for generating very simple albeit
nonlocal pairwise entanglement between distant qutrits in the
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1D three-state Potts model with periodically kicked transverse
field. We consider a realistic and experimentally relevant case
of a finite chain with 2N sites and open boundary conditions.
The protocol consists of two main stages. At the first stage we
perform a state preparation procedure and transform an initial
polarized state of the chain (i.e., every qutrit is in one and
the same internal state) into a bipartire state in which the two
halves of the chain are completely isolated but each of them
is highly entangled. At the second stage of the protocol we
iteratively eliminate the entanglement inside the left and right
halves of the chain and at the same time create a simple but
nonlocal pairwise entanglement between them. At the end of
the second stage the system is in product state of maximally
entangled nonlocal Bell-like qutrit pairs. The protocol is il-
lustrated in Fig. 1. Note that the protocol requires tuning the
transverse field switching frequency to a specific value. We
argue that the reason for this condition is deeply rooted into
the Floquet integrability of the protocol.

The second part of the paper (Sec. IV) is dedicated to
the idea of Floquet integrability, which is understood as the
presence of local conserved charges that commute with the
Floquet evolution operator UF and, consequently, with an ef-
fective Floquet Hamiltonian HF . Motivated by the fact that the
three-state Potts model can be thought of as a representation
of the Temperley-Lieb algebra, which has remarkably many

different representations corresponding to other paramount
physical models, we rewrite the stroboscopic two step Floquet
protocol in terms of the Temperley-Lieb algebra generators.
We then find the first two nontrivial conservation laws of
the Temperley-Lieb algebraic Floquet protocol, and explic-
itly construct the corresponding conserved charges. We then
conjecture that the general closed form expression for the
conserved charges can be found, although the proof of our
conjecture is beyond the scope of this work.
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APPENDIX A: DERIVATION OF V0 IN EQ. (30)

The easiest way to derive Eq. (30) is by using the representation (59) of the Temperley-Lieb algebra:

u2N = 1√
3

(1 + X †
N XN+1 + XN X †

N+1). (A1)

We then write V0 from Eq. (23) as

V0 = exp{iJT (X †
N XN+1 + XN X †

N+1)} = e−iJT e
√

3iJTu2N . (A2)

Taking into account that u2
2N = √

3u2N according to Eq. (54), we immediately obtain

V0 = e−iT J

(
1 +

+∞∑
k=1

(
√

3iJT )k

k!
3(k−1)/2u2N

)
= e−iT J

[
1 + 1√

3
(e3iJT − 1)u2N

]
. (A3)

Using Eq. (A1) for u2N we arrive at

V0 = μ1 + ν(X †
N XN+1 + XN X †

N+1), μ = ν + e−iJT , ν = 1

3
e−iJT (e3iJT − 1). (A4)

We then write Xj = J (1,0)
j and X †

j = X 2
j = J (2,0)

j , as follows from Eq. (7), and obtain Eq. (30) of the main text.

APPENDIX B: GENERALIZED HYPERBOLIC FUNCTIONS

In this Appendix we review basic properties of the generalized hyperbolic functions and present some relations that are useful
for our purposes. We closely follow the discussion in Ref. [55]. Generalized hyperbolic functions Hn,k (x) of order n and kth kind
are solutions to an ordinary differential equation,

dn

dzn
Hn,k (z) = Hn,k (z), 0 � k � n − 1. (B1)

They have the following series representation:

Hn,k (z) =
+∞∑
r=0

znr+k

(nr + k)!
, z ∈ C, (B2)
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from which one immediately obtains

d

dz
Hn,k (z) = Hn,k−1(z), Hn,−1 = Hn,n−1(z). (B3)

Clearly, Eq. (B2) for n = 2 reduces to the series for usual hyperbolic functions, i.e., H2,0 = cosh z and H2,1 = sinh z. We are
interested in the case n = 3, for which Eq. (B2) gives

H3,0(z) ≡ h0(z) = 1

3

[
ez + 2e−z/2 cos

√
3z

2

]
= 1

3
(ez + eωz + eω2z ),

H3,1(z) ≡ h1(z) = 1

3

[
ez − 2e−z/2 cos

(√
3z

2
+ π

3

)]
= 1

3
(ez + ωeωz + ω2eω2z ),

H3,2(z) ≡ h2(z) = 1

3

[
ex − 2e−x/2 cos

(√
3x

2
− π

3

)]
= 1

3
(ez + ω2eωz + ωeω2z ),

(B4)

where we introduced the functions hk (z) for brevity and ω = e2π i/3, as in the rest of the paper. One immediately sees that hk (z)
satisfy

h0(ωz) = h0(z), h0(ω2z) = h0(z),

h1(ωz) = ω2h1(z), h1(ω2z) = ωh1(z)

h2(ωz) = ωh2(z) h2(ω2z) = ω2h2(z),

(B5)

and one has ez = ∑2
l=0 hl (z). Let us combine hk (z) into a circulant matrix

H(z) =
⎡
⎣h0(z) h2(z) h1(z)

h1(z) h0(z) h2(z)
h2(z) h1(z) h0(z)

⎤
⎦. (B6)

One can show that the matrix H(z) satisfies det H(z) = 1 and the following group property:

H(z1)H(z2) = H(z2)H(z1) = H(z1 + z2). (B7)

Thus, for the generalized hyperbolic functions of order 3 we have

h0(z1 + z2) = h0(z1)h0(z2) + h1(z1)h2(z2) + h2(z1)h1(z2),

h1(z1 + z2) = h0(z1)h1(z2) + h1(z1)h0(z2) + h2(z1)h2(z2),

h2(z1 + z2) = h0(z1)h2(z2) + h1(z1)h1(z2) + h2(z1)h0(z2).

(B8)

The symmetry relations (B5) can be written in a compact form

H(ωmz) = Z−mH(z)Zm, (B9)

where 0 � m � 2 and the matrix Z = diag{1, ω, ω2} coincides with the one given in Eq. (4). One can also easily check the
following interesting relations:

2∑
l=0

hl (x)hl (y) = 1

3

[
ex+y + 2e−(x+y)/2 cos

√
3(x − y)

2

]
,

2∑
l=0

hl+k mod 3(x)hl (y) = 1

3

[
ex+y − 2e−(x+y)/2 cos

(√
3(x − y)

2
+ (−1)k−1 π

3

)]
, k = 1, 2. (B10)

Finally, we note that Eqs. (B7) [with n × n circulant matrix] and (B9) [with 0 � m � n − 1] also hold for the generalized
hyperbolic functions of order n [55–57], and all other relations can be easily extended to the case of arbitrary n.

APPENDIX C: ADJOINT ACTIONS

In this Appendix we present a detailed derivation of the adjoint actions e
iα adJ m

j J p
j and e

iα adJm
j+�

J n
j+�+1J p

j J
q
j+1, which we then

use in Appendix D to obtain the explicit forms for V1, V2, and Vk .
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1. Adjoint action of J (m1,m2 )
j on J (p1,p2 )

j

Using Eq. (9) for the commutator [J m
j ,J p

j ] ≡ adJ m
j
J p

j multiple times, we obtain:

adk
J m

j
J p

j = (−2i)k sink

(
2π

3
m × p

)
J p+k m

j , (C1)

where the components of the two-dimensional vector p + k m are mod 3. Therefore, we have the following adjoint action:

e
iα adJ m

j J p
j =

∞∑
n=0

(iα)n

n!
adn

J m
j
J p

j =
2∑

k=0

∞∑
n=0

(iα)3n+k

(3n + k)!
ad3n+k

J m
j

J p
j =

2∑
k=0

hk (α ξm,p)J p+km
j , (C2)

where we denoted ξm,p = 2 sin[2π (m × p)/3], and hk (z) are the generalized hyperbolic functions of order 3 and kth kind, given
by Eq. (B4).

2. Adjoint action of J (m1,m2 )
j+� J (n1,n2 )

j+�+1 on J (p1,p2 )
j J (q1,q2 )

j+1

We proceed with calculating the adjoint actions containing more than two operators, i.e., the commutators of the form

adJ m
j+�

J n
j+�+1

J p
j J

q
j+1 = [

J m
j+�J n

j+�+1,J
p
j J

q
j+1

]
. (C3)

Clearly, the resulting expression differs from zero only if � = 0,±1. Taking � = 0, Eq. (C3) yields

adJ m
j J n

j+1
J p

j J
q
j+1 = −2i sin

[
2π

3
(m × p + n × q)

]
J p+m

j J q+n
j+1 , (C4)

where we took into account that the operators J m
j commute on different sites and used Eq. (8). Thus, for the adjoint action we

obtain

e
iα adJ m

j J n
j+1J p

j J
q
j+1 =

2∑
k=0

hk
(
αζ n,q

m,p

)
J p+km

j J q+kn
j+1 , (C5)

where ζ
n,q
m,p = 2 sin[2π (m × p + n × q)/3]. Note that by taking n = q = (0, 0) or m = p = (0, 0), we simply reduce Eq. (C5)

to Eq. (C2).
The result for � = ±1 can be easily found in a similar way. In this case one has

e
iα adJ m

j+1J
n
j+2J p

j J
q
j+1 =

2∑
k=0

hk (αξm,q)J p
j J

q+km
j+1 J kn

j+2,

e
iα adJ m

j−1J
n
j J p

j J
q
j+1 =

2∑
k=0

hk (αξn,p)J km
j−1J

p+kn
j J q

j+1,

(C6)

with ξr,s given after Eq. (C2).

APPENDIX D: DERIVATION OF V1 IN EQ. (33), V2 in Eq. (35), and Vk in Eq. (36)

In this Appendix we present a detailed derivations of the operators V1, V2, and Vk . The most important relations obtained this
Appendix are summarized in D 4.

1. Adjoint action of H2 on J (p1,p2 )
j and expression for V1 in Eq. (33)

In order to explicitly calculate V1 in Eq. (29), let us consider the adjoint action of the transverse field H2, given by Eq. (10),
on J p

j . Using Eq. (C2), we obtain

eiα adH2J p
j =

2∏
n=1

e
iα adJ (0,n)

j J p
j =

2∏
n=1

∞∑
k=0

(i f T )k

k!
adk

J (0,n)
j

J p
j =

2∑
k,q=0

hk (α ξ(0,1),p)hq(α ξ(0,2),p)J (p1,p2+k+2q)
j , (D1)

where ξ(0,n),p = −2 sin(2np1π/3) and 1 � j � 2N . Keeping in mind that p2 + k + 2q should be taken mod 3, we can rewrite
Eq. (D1) as

2∏
n=1

e
iα adJ (0,n)

j J p
j =

2∑
k=0

G(1,2)
k (−α, p1)J (p1,p2+k)

j . (D2)
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In deriving Eq. (D2) we used the explicit expressions ξ(0,m),p = −2 sin[2mp1π/3] and introduced the function

G(m,n)
k (α, p) ≡

2∑
l=0

hl+k mod 3(2α sin[2mpπ/3]) hl (2α sin[2npπ/3]). (D3)

Taking into account that p ∈ {0, 1, 2} and using the relations (B10), we obtain

G(1,2)
k (α, p) =

{
δp,0 + 1

3
(δp,1 + δp,2)(1 + 2 cos 3α)

}
δk,0 + 1

3

{
δp,1

[
1 + 2 cos

(
3α − 2π

3

)]
+ δp,2

[
1 + 2 cos

(
3α+2π

3

)]}
δk,1

+ 1

3

{
δp,1

[
1 + 2 cos

(
3α + 2π

3

)]
+ δp,2

[
1 + 2 cos

(
3α − 2π

3

)]}
δk,2

= δp,0δk,0 + 1

3
(1 − δp,0)

[
1 + 2 cos

(
3α − 2pkπ

3

)]
. (D4)

Then, we further simplify the adjoint action in Eq. (D2) and it becomes

2∏
n=1

e
iα adJ (0,n)

j J (p1,p2 )
j = δp1,0J

(p1,p2 )
j + 1

3
(1 − δp1,0)

2∑
k=0

[
1 + 2 cos

(
3α + 2p1kπ

3

)]
J (p1,p2+k)

j . (D5)

Changing the summation index to p1q and taking into account that for p1 ∈ {1, 2} one has p2
1 mod 3 = 1, we write

eiα adH2J (p1,p2 )
j = δp1,0J

(0,p2 )
j + 1

3
(1 − δp1,0)

2∑
k=0

[
1 + 2 cos

(
3α + 2kπ

3

)]
J (p1,p2+kp1 )

j . (D6)

It is now clear that by choosing

α = αm = 2π

9
(3l − m), with l ∈ Z, m ∈ {0, 1, 2}, (D7)

the expression (D6) simplifies, since in the sum over k only the term with k = m differs from zero. We then have

eiαm adH2J (p1,p2 )
j = δp1,0J

(0,p2 )
j + (1 − δp1,0)J (p1,p2+mp1 )

j , 1 � j � 2N. (D8)

Thus, using Eq. (23) for V0 and the definition of V1 in Eq. (29), for f T = αm we obtain

V1 = eiαm adH2 V0 = μ1 + ν
[
J (1,m)

N J (2,2m)
N+1 + J (2,2m)

N J (1,m)
N+1

]
, (D9)

which is the expression for V1 in Eq. (33). Clearly, V1 produces a maximally entangled two-qutrit state on the sites N and N + 1.

2. Adjoint action of H̃1 on J (p1,p2 )
j with j = 1, N, N + 1, 2N, and expression for V2 in Eq. (35)

Let us now proceed with showing that the explicit form of V2 is given by Eq. (35). To do so, we consider the adjoint action

eiα adH̃1J p
N = exp

{
iα adJ (2,0)

N−1 J
(1,0)

N

}
exp

{
iα adJ (1,0)

N−1 J
(2,0)

N

}
J p

N ,

eiα adH̃1J p
N+1 = exp

{
iα adJ (2,0)

N+1 J
(1,0)

N+2

}
exp

{
iα adJ (1,0)

N+1 J
(2,0)

N+2

}
J p

N+1,
(D10)

where we took into account that H̃1, given by Eqs. (10) and (21), does not contain the terms that act on the central link between
the sites N and N + 1. Using Eq. (C6) with q = (0, 0) and Eq. (C5), from the first line of Eq. (D10) we have

e
iα adJ (2,0)

N−1 J (1,0)
N e

iα adJ (1,0)
N−1 J (2,0)

N J p
N = e

iα adJ (2,0)
N−1 J (1,0)

N

2∑
k=0

hk (αξ(2,0),p)J (k,0)
N−1 J

(p1+2k,p2 )
N

=
2∑

k,q=0

hk (αξ(2,0),p)hq
(
αζ

(1,0),(p1+2k,p2 )
(2,0),(k,0)

)
J (k+2q,0)

N−1 J (p1+2k+q,p2 )
N

=
2∑

k=0

G(1,2)
k (α, p2)J (2k,0)

N−1 J (p1+k,p2 )
N , (D11)

where we used the fact that k + 2q and p1 + 2k + q are mod 3, along with the expressions ξ(2,0),p = 2 sin(4p2π/3) and
ζ

(1,0),(p1+2k,p2 )
(2,0),(k,0) = 2 sin[2p2π/3], and took into account Eq. (D3) for the function G(m,n)

k (α, p). Then, using Eq. (D4) and repeating
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the steps leading to Eq. (D6), we immediately obtain

eiα adH̃1J p
N = δp2,0J

(p1,0)
N + 1

3
(1 − δp2,0)

2∑
k=0

[
1 + 2 cos

(
3α − 2kπ

3

)]
J (2kp2,0)

N−1 J (p1+kp2,p2 )
N . (D12)

It is easy to see that one similarly has

eiα adH̃1J p
N+1 = δp2,0J

(p1,0)
N+1 + 1

3
(1 − δp2,0)

2∑
k=0

[
1 + 2 cos

(
3α − 2kπ

3

)]
J (p1+kp2,p2 )

N+1 J (2kp2,0)
N+2 . (D13)

Just like with Eq. (D6), we can simplify Eqs. (D12) and (D13) by using α = αm from Eq. (D7). In this case only the term with
k = 2m does not vanish in Eqs. (D12), (D12), and one obtains

eiαm adH̃1J p
N = δp2,0J

(p1,0)
N + (1 − δp2,0)J (mp2,0)

N−1 J (p1+2mp2,p2 )
N ,

eiαm adH̃1J p
N+1 = δp2,0J

(p1,0)
N + (1 − δp2,0)J (p1+2mp2,p2 )

N+1 J (mp2,0)
N+2 .

(D14)

Then, in order to find the explicit form of V2 from Eq. (27), we need to calculate

V2 = ŨV1Ũ
† = ei f T adH2 eiJT adH̃1 V1, (D15)

where V1 is given by Eq. (D9). Taking JT = αn and f T = αs, with αm given by Eq. (D7), we obtain

eiαs adH2 eiαn adH̃1J (1,m)
N J (2,2m)

N+1 = eiαs adH2J (nm,0)
N−1 J (1+2nm,m)

N J (2+4nm,2m)
N+1 J (2nm,0)

N+2

= J (nm,snm)
N−1 J (1+2nm,m+s(1+2nm))

N J (2+nm,2m+s(2+nm))
N+1 J (2nm,2snm)

N+2 . (D16)

The resulting expression for V2 is especially simple for m = n = s, which corresponds to f T = JT = αm = 2π (3l − m)/9. In
this case V2 is given by

V2 = μ1 + ν
[
J (1,m)

N−1 J (0,m)
N J (0,2m)

N+1 J (2,2m)
N+2 + H.c.

]
, (D17)

where we took into account that for m ∈ {1, 2} one has m2 mod 3 = 1 and m3 mod 3 = m. Setting l = 1 and m = 2 we obtain
f T = JT = 2π/9 and V2 reduces to Eq. (35). Using Eq. (7), one can rewrite Eq. (D17) as

V2 = μ1 + ν
(
XN−1Zm

N−1Zm
N Z2m

N+1X 2
N+2Z2m

N+2 + H.c.
)
, (D18)

and we see that V2 entangles the spins on sites N − 1 and N + 2, while only changing the phase on the sites N and N + 1. On
the other hand, for n = 2m and s = m [which corresponds to f T = αm and JT = α2m, with αn given in Eq. (D7)], we have

V2 = μ1 + ν
[
J (2,2m)

N−1 J (2,0)
N J (1,0)

N+1 J
(1,m)

N+2 + H.c.
] = μ1 + ν

(
X 2

N−1Z2m
N−1X 2

N XN+1XN+2Zm
N+2 + H.c.

)
. (D19)

The effect of V2 in this case is more complicated as compared to Eq. (D17), since it now shifts the states on sites N and N + 1.
For the adjoint actions eiα adH̃1J p

j with j = 1 and 2N , the result follows immediately from Eqs. (D12) and (D13). Replacing

N + 1 with 1 in Eq. (D13) gives the expression for eiα adH̃1J p
1 , and changing N to 2N in Eq. (D12) we obtain the result for

eiα adH̃1J p
2N .

3. Adjoint action of H̃1 on J (p1,p2 )
j with j �= 1, N, N + 1, 2N, and expression for Vk in Eq. (36)

Finally, we derive the explicit expression for Vk in Eq. (36). Let us first calculate the following adjoint action, with j �=
1, N, N + 1, 2N :

eiα adH̃1J p
j = exp

{
iα adJ (2,0)

j J (1,0)
j+1 +J (1,0)

j J (2,0)
j+1

}
exp

{
iα adJ (2,0)

j−1 J (1,0)
j +J (1,0)

j−1 J (2,0)
j

}
J p

j , (D20)

where we used Eqs. (10) and (21) for H̃1 and took into account that the operators J (k,0)
j with k = 1, 2 commute. For the first

adjoint action in Eq. (D20) we can simply use Eq. (D11) with N replaced by j, which yields

e
iα adJ (2,0)

j−1 J (1,0)
j e

iα adJ (1,0)
j−1 J (2,0)

j J p
j =

2∑
k=0

G(1,2)
k (α, p2)J (2k,0)

j−1 J (p1+k,p2 )
j . (D21)

Then, using Eqs. (C5) and (C6), for the remaining adjoint action in Eq. (D20) we obtain

e
iα adJ (2,0)

j J (1,0)
j+1 e

iα adJ (1,0)
j J (2,0)

j+1 J (2k,0)
j−1 J (p1+k,p2 )

j

= e
iα adJ (2,0)

j J (1,0)
j+1

2∑
r=0

hr (αξ(1,0),(p1+k,p2 ) )J (2k,0)
j−1 J (p1+k+r,p2 )

j J (2r,0)
j+1
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=
2∑

r,s=0

hr (αξ(1,0),(p1+k,p2 ) )hs
(
αζ

(1,0),(2r,0)
(2,0),(p1+k+r,p2 )

)
J (2k,0)

j−1 J (p1+k+r+2s,p2 )
j J (2r+s,0)

j+1

=
2∑

r=0

G(1,2)
r (α, p2)J (2k,0)

j−1 J (p1+k+r,p2 )
j J (2r,0)

j+1 , (D22)

where we took into account that ξ(1,0),(p1+k,p2 ) = 2 sin[2p2π/3] and ζ
(1,0),(2r,0)
(2,0),(p1+k+r,p2 ) = 2 sin[4p2π/3]. Thus, combining

Eqs. (D20), (D21), and (D22), we have

eiα adH̃1J p
j =

2∑
k,r=0

G(1,2)
k (α, p2) G(1,2)

r (α, p2) J (2k,0)
j−1 J (p1+k+r,p2 )

j J (2r,0)
j+1 = δp2,0J

(p1,p2 )
j

+ 1

9
(1 − δp2,0)

2∑
k,r=0

[
1 + 2 cos

(
3α − 2kπ

3

)][
1 + 2 cos

(
3α − 2rπ

3

)]
J (2kp2,0)

j−1 J (p1+(r+k)p2,p2 )
j J (2r p2,0)

j+1 ,

(D23)

where we used Eq. (D4) and the fact that δp,0(1 − δp,0) ≡ 0. Clearly, Eq. (D23) greatly simplifies if one takes αs from Eq. (D7).
In this case the sum over k and r in Eq. (D23) contains only one nonzero term corresponding to k = r = 2s, and we obtain

eiαs adH̃1J (p1,p2 )
j = δp2,0J

(p1,0)
j + (1 − δp2,0)J (s p2,0)

j−1 J (p1+s p2,p2 )
j J (s p2,0)

j+1 , j �= 1, N, N + 1, 2N. (D24)

Let us now calculate V3 using the relation

V3 = ei f T adH2 eiJT adH̃1 V2 = ei f T adH2 eiJT adH̃1 ei f T adH2 eiJT adH̃1 ei f T adH2 V0. (D25)

In what follows we consider the cases f T = JT = αm and f T = αm, JT = α2m separately.

a. f T = JT = αm

We first assume that f T = JT = αm, so that V2 is given by Eq. (D17). Then, we have

ei f T adH2 eiJT adH̃1J (1,m)
N−1

(D24)= ei f T adH2J (1,0)
N−2 J

(2,m)
N−1 J (1,0)

N
(D8)= J (1,m)

N−2 J (2,0)
N−1 J

(1,m)
N ,

ei f T adH2 eiJT adH̃1J (0,m)
N

(D14)= ei f T adH2J (1,0)
N−1 J

(2,m)
N

(D8)= J (1,m)
N−1 J (2,0)

N ,

ei f T adH2 eiJT adH̃1J (0,2m)
N+1

(D14)= ei f T adH2J (1,2m)
N+1 J (2,0)

N+2
(D8)= J (1,0)

N+1 J
(2,2m)

N+2 ,

ei f T adH2 eiJT adH̃1J (0,2m)
N+2

(D24)= ei f T adH2J (2,0)
N+1 J

(1,2m)
N+2 J (2,0)

N+3
(D8)= J (2,2m)

N+1 J (1,0)
N+2 J

(2,2m)
N+3 . (D26)

Using Eqs. (D17) and (D25) for V2 and V3, correspondingly, and multiplying the results in Eq. (D26), we obtain

V3 = μ1 + ν
(
J (1,m)

N−2 J (0,m)
N−1 J (0,m)

N J (0,2m)
N+1 J (0,2m)

N+2 J (2,2m)
N+3 + H.c.

)
, (D27)

where all factors of ω, which appear [see Eq. (8)] from the products of two operators on the same site, cancel each other. We see
that for f T = JT = αm the action of V3 is similar to that of V2 from Eq. (D17). Namely, V3 entangles the sites N − 2 and N + 3,
whereas on all sites in between it only rotates the phase.

Then, using Eqs. (D35) and (D36), one can easily show by induction that for f T = JT = αm and 1 � k < N the operator Vk

has the following form:

Vk = μ1 + ν

⎡
⎣J (1,m)

N−k+1

0∏
j=k−2

J (0,m)
N− j

k−1∏
j=1

J (0,2m)
N+ j J (2,2m)

N+k + H.c.

⎤
⎦. (D28)

Quite remarkably, it only entangles the sites N − k + 1 and N + k, while on the rest of the sites N − k + 1 < j < N + k its
effect is a simple phase rotation. Due to this fact, the operator V1V2 . . .Vk in Eq. (48) produces an entangled state of a very simple
product form, as discussed at the end of Sec. III.

b. f T = αm, JT = α2m

Let us now investigate what happens if one chooses different values of f T and JT , and consider f T = αm, JT = α2m. In this
case V2 is given by Eq. (D19), and instead of Eq. (D26) we need the relations

ei f T adH2 eiJT adH̃1J (2,2m)
N−1

(D24)= ei f T adH2J (1,0)
N−2 J

(0,2m)
N−1 J (1,0)

N
(D8)= J (1,m)

N−2 J (0,2m)
N−1 J (1,m)

N ,

ei f T adH2 eiJT adH̃1J (2,0)
N

(D14)= ei f T adH2J (2,0)
N

(D8)= J (2,2m)
N ,
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ei f T adH2 eiJT adH̃1J (1,0)
N+1

(D14)= ei f T adH2J (1,0)
N+1

(D8)= J (1,m)
N+1 ,

ei f T adH2 eiJT adH̃1J (1,m)
N+2

(D24)= ei f T adH2J (2,0)
N+1 J

(0,m)
N+2 J (2,0)

N+3
(D8)= J (2,2m)

N+1 J (0,m)
N+2 J (2,2m)

N+3 . (D29)

Using Eq. (D19) for V2 and multiplying the terms in Eq. (D29), from Eq. (D25) for V3 we obtain

V3 = μ1 + ν
[
J (1,m)

N−2 J (0,2m)
N−1 1N1N+1J (0,m)

N+2 J (2,2m)
N+3 + H.c.

]
. (D30)

At the first sight, the resulting expression for V3 in Eq. (D30) looks even simpler as compared to Eq. (D27). However, the
situation turns out to be more complicated, because for f T = αm and JT = α2m, the expression for Vk strongly depends on k, in
contrast to the case of f T = JT = αm [see Eq. (D28)]. Indeed, using Eqs. (D35) and (D36) it can be easily shown that the next
few Vk are given by

V4 = μ1 + ν
[
J (2,2m)

N−3 J (1,2m)
N−2 J (0,2m)

N−1 J (1,m)
N J (2,2m)

N+1 J (0,m)
N+2 J (2,m)

N+3 J (1,m)
N+4 + H.c.

]
,

V5 = μ1 + ν
[
J (1,m)

N−4 J (1,0)
N−3 J (1,0)

N−2 J (1,0)
N−1 J (0,m)

N J (0,2m)
N+1 J (2,0)

N+2 J (2,0)
N+3 J (2,0)

N+4 J (2,2m)
N+5 + H.c.

]
,

V6 = μ1 + ν
[
J (2,2m)

N−5 J (0,m)
N−4 1N−3 J (1,m)

N−2 1N−1 J (1,2m)
N J (2,m)

N+1 1N+2 J (2,2m)
N+3 1N+4 J (0,2m)

N+5 J (1,m)
N+6 + H.c.

]
,

(D31)

where we assumed that N > 6 to avoid dealing with the boundaries. We see that the form of Vk drastically changes with increasing
k. Thus, Eq. (D31) suggests that in the case f T = αm and JT = α2m the general expression for Vk cannot be written in a closed
form.

Nevertheless, writing Vk = μ1 + ν(Vk + H.c.) as in Eq. (38), one can obtain a recursive relation between the indices of J (p,q)
j

in Vk and Vk+1. Indeed, for every 1 � k < N we can write Vk in the form

Vk = J (pN−k+1,qN−k+1 )
N−k+1 . . .J (pN ,qN )

N J (2pN ,2qN )
N+1 . . .J (2pN−k+1,2qN−k+1 )

N+k . (D32)

Then, for Vk+1 = ŨVkŨ = ei f T adH2 eiJT adH̃1Vk we can write

eiαm adH2 eiα2m adH̃1 J (pN−k+1,qN−k+1 )
N−k+1 . . .J (pN ,qN )

N J (2pN ,2qN )
N+1 . . .J (2pN−k+1,2qN−k+1 )

N+k

= J (p′
N−k ,q

′
N−k )

N−k . . .J (p′
N ,q′

N )
N J (2p′

N ,2q′
N )

N+1 . . .J (2p′
N−k ,2q′

N−k )
N+k+1 . (D33)

The relation (D33) can be viewed simply as a linear transformation between the indices of J (p j ,q j )
j , which can be shown to be

(p′
N−k, q′

N−k ) = (2m qN−k+1, 2 qN−k+1),

(q′
N−k+1, q′

N−k+1) = (2m qN−k+2 + pN−k+1 + 2m qN−k+1, 2 qN−k+2 + m pN−k+1),

...

(p′
N− j, q′

N− j ) = (2m qN− j+1 + pN− j + 2m qN− j + 2m qN− j−1, 2 qN− j+1 + m pN− j + 2 qN− j−1),

...

(p′
N−1, q′

N−1) = (2m qN + pN−1 + 2m qN−1 + 2m qN−2, 2 qN + m pN−1 + 2 qN−2),

(p′
N , q′

N ) = (pN + m qN + 2m qN−1, m pN + 2 qN + 2 qN−1). (D34)

Using Eq. (D34) we generate Fig. 2, which shows that the distributions of X p
j and Zq

j in Vk exhibit a fractal structure similar to
the Sierpiński carpet.

4. Summary: Adjoint action eiαs adH2 eiαm adH̃1 on J (p1,p2 )
j

For convenience, here we summarize the most important relations derived in this Appendix. For the values of f T = αs and
JT = αm, where αr is given in Eq. (D7), the adjoint action eiαs adH2 eiαm adH̃1 provides the following mapping:

eiαm adH2 eiαs adH̃1 : J (p1,p2 )
j → J (sp2,msp2 )

j−1 J (p1+sp2,(1+ms)p2+mp1 )
j J (sp2,msp2 )

j+1 , j �= 1, N, N + 1, 2N, (D35)

and similarly for the boundary and central terms:

J (p1,p2 )
j → J (p1+2sp2,(1+2ms)p2+mp1 )

j J (sp2,msp2 )
j+1 , j = 1, N + 1,

J (p1,p2 )
j → J (sp2,msp2 )

j−1 J (p1+2sp2,(1+2ms)p2+mp1 )
j , j = N, 2N.

(D36)

Eqs. (D35) and (D36) are easily obtained by combining Eqs. (D8), (D14), and (D24).
Choosing s = m ∈ {1, 2} and taking into account that m2 mod 3 = 1 and m3 mod 3 = m, from Eq. (D35) we obtain

eiαm adH2 eiαm adH̃1 : J (p1,p2 )
j → J (mp2,p2 )

j−1 J (p1+mp2,2p2+mp1 )
j J (mp2,p2 )

j+1 , j �= 1, N, N + 1, 2N, (D37)
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whereas Eq. (D36) reduces to

J (p1,p2 )
j → J (p1+2mp2,mp1 )

j J (mp2,p2 )
j+1 , j = 1, N + 1,

J (p1,p2 )
j → J (mp2,p2 )

j−1 J (p1+2mp2,mp1 )
j , j = N, 2N.

(D38)

APPENDIX E: UNEQUAL SPLITTING OF THE CHAIN

In this Appendix we discuss a more general entanglement generating Floquet protocol based on switching off links other than
the central one. Choosing the central link in Eq. (21) is not crucial and one can easily switch off any other Mth link [between
sites M and M + 1], with 1 � M � 2N − 1. Then, assuming M � 2 (we are not interesting the case of M = 1 since the protocol
consists of a single period) and taking the same value for f T = JT = αm as in Eqs. (32), one simply has to replace N → M in
Eq. (36) for Vk , which now becomes

Vk = μ1 + ν
[
J (1,m)

M−k+1 J
(0,m)

M−k+2 . . .J (0,m)
M J (0,2m)

M+1 . . .J (0,2m)
M+k−1 J

(2,2m)
M+k + H.c.

]
, 2 � k � K. (E1)

The upper bound on k is given by

K = min(M, 2N − M ) (E2)

and it depends on whether the eliminated Mth link is closer to the left or right boundary of the chain. Clearly, Vk in Eq. (E1)
only changes the internal state of qutrits on the sites M − k + 1 and M + k whereas on the rest of the chain Vk either produces an
extra phase factor or acts trivially. As a consequence, switching off the Mth link limits the number of generated entangled qutrit
pairs to K , which is maximal for M = N . Indeed, the entanglement generating protocol also requires some minor modifications.
After k periods of the state preparation part of the protocol followed by k periods of the entanglement generating part of the
protocol, the state of the chain is |ψ (kT )〉 = V1 . . .Vk ⊗2N

j=1 |0〉 j, as given by Eq. (48). Then, using Eq. (E1) it is straightforward
to rewrite |ψ (kT )〉 as

|ψ (kT )〉 =
M−k⊗
j=1

|0〉 j

k⊗
j=1

|�(μ, ν)〉 j

2N⊗
j=M+k+1

|0〉 j, (E3)

where |�(μ, ν)〉 j is given by Eq. (50) with the replacement N → M. Finally, taking into account that k � K , we immediately
obtain

|ψ (KT )〉 =
M⊗

j=1

|�(μ, ν)〉 j

2N⊗
j=2M+1

|0〉 j, 1 � M < N,

|ψ (KT )〉 =
2(M−N )⊗

j=1

|0〉 j

2N−M⊗
j=1

|�(μ, ν)〉 j, N < M � 2N − 1.

(E4)

Thus, by switching off the Mth link one obtains K entangled qutrit pairs, whereas the remaining 2|N − M| qutrits are not affected
and stay in their initial states. For M = N one has K = N and Eq. (E4) agrees with Eq. (51).

APPENDIX F: ADJOINT ACTIONS IN THE TEMPERLEY-LIEB ALGEBRA

In this Appendix we present some useful algebraic relations satisfied by the elements of the Temperley-Lieb algebra TL2M (β ).
From Eqs. (54) and (60) one obviously has

adH1 H2 ≡ [H1, H2] =
2M−2∑

j=1

(−1) j[u j, u j+1]. (F1)

A little less obvious is the observation that there is a closed form expression for any number of nested commutators:

adk
Hm

Hn = [
Hm, [Hm, . . . [Hm︸ ︷︷ ︸

k

, Hn]]
] =

{
F (m)

k (β ), k = 2l − 1,

G (m)
k (β ), k = 2l,

(F2)

where m, n ∈ {1, 2}, m �= n, and l is a positive integer. Explicitly, the functions F (m)
k and G (m)

k read as

F (1)
k (β ) = βk−1[H1, H2] + (2k − 2)βk−2 K0, F (2)

k (β ) = −βk−1[H1, H2] + (2k − 2)βk−2K1,

G (1)
k (β ) = −4βk−2 H1 + βk−2 (βA − 2R0) + (2k − 2)βk−2 P0 − (2k+1 − 8)βk−3 S0,

G (2)
k (β ) = −4βk−2[H2 − 1

2 (u1 + u2M−1)
] + βk−2(βA − 2R1) + (2k − 2)βk−2P1 − (2k+1 − 8)βk−3S1,

(F3)
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where A is given by Eq. (70) and we introduced the following k-independent operators (n = 0, 1):

Kn =
M−2+n∑

j=1

[u2 j−nu2 j+2−n, u2 j+1−n], Rn =
M−2+n∑

j=1

(u2 j−nu2 j+1−nu2 j+2−n + u2 j+2−nu2 j+1−nu2 j−n),

Pn =
M−2+n∑

j=1

{u2 j−nu2 j+2−n, u2 j+1−n}, Sn =
M−2+n∑

j=1

u2 j−nu2 j+2−n. (F4)

The proof is by induction and is left as an exercise. One can also check that

adk
Hm
A =

{
β F (m)

k (β ) + 2kβk−1 Km−1, k = 2l − 1,

β G (m)
k (β ) + 2kβk−2 (βPm−1 − 2Sm−1), k = 2l.

(F5)

Equations (F2)–(F5) allow us to calculate various adjoint actions in a closed form. Let us consider

H̃n(s) ≡ esHm Hn e−sHm = es adHm Hn =
+∞∑
k=0

sk

k!
adk

Hm
Hn = Hn +

+∞∑
l=1

s2l−1

(2l − 1)!
F (m)

2l−1(β ) +
+∞∑
l=1

s2l

(2l )!
G (m)

2l (β ). (F6)

Then, using Eq. (F3), we immediately obtain

H̃2(s) = esH1 H2 e−sH1 = H2 − 8

β2
sinh2 sβ

2
H1 + 1

β
sinh sβ [H1, H2] + 4

β2
sinh sβ sinh2 sβ

2
K0

+ 2

β2
sinh2 sβ

2
(βA − 2R0) + 4

β2
cosh sβ sinh2 sβ

2
P0 − 16

β3
sinh4 sβ

2
S0. (F7)

Similarly, for H̃1(s) one has the following expression:

H̃1(s) = esH2 H1 e−sH2 = H1 − 8

β2
sinh2 sβ

2

[
H2 − 1

2
(u1 + u2M−1)

]
− 1

β
sinh sβ [H1, H2]

+ 4

β2
sinh sβ sinh2 sβ

2
K1 + 2

β2
sinh2 sβ

2
(βA − 2R1) + 4

β2
cosh sβ sinh2 sβ

2
P1 − 16

β3
sinh4 sβ

2
S1. (F8)

In the same way one can calculate

esHm [Hm, Hn]e−sHm =
+∞∑
k=0

sk

k!
adk+1

Hm
Hn = [Hm, Hn] +

+∞∑
l=1

s2l−1

(2l − 1)!
G (m)

2l (β ) +
+∞∑
l=1

s2l

(2l )!
F (m)

2l+1(β ), (F9)

which yields

esH1 [H1, H2]e−sH1 = cosh sβ [H1, H2] − 4

β
sinh sβH1 + 4

β
sinh

3sβ

2
sinh

sβ

2
K0

+ 1

β
sinh sβ(βA − 2R0) + 4

β
cosh

3sβ

2
sinh

sβ

2
P0 − 16

β2
sinh sβ sinh2 sβ

2
S0,

esH2 [H2, H1]e−sH2 = cosh sβ [H2, H1] − 4

β
sinh sβ

[
H2 − 1

2
(u1 + u2M−1)

]
+ 4

β
sinh

3sβ

2
sinh

sβ

2
K1

+ 1

β
sinh sβ(βA − 2R1) + 4

β
cosh

3sβ

2
sinh

sβ

2
P1 − 16

β2
sinh sβ sinh2 sβ

2
S1.

(F10)

Proceeding as in Eq. (F6), it is also easy to show that

esH1Ae−sH1 = A + β(H̃2(s) − H2) + 1

β
sinh 2sβ K0 + 2

β2
sinh2 sβ (βP0 − 2S0),

esH2Ae−sH2 = A + β(H̃1(s) − H1) + 1

β
sinh 2sβ K1 + 2

β2
sinh2 sβ (βP1 − 2S1).

(F11)

It is now straightforward to check whether the ansatz (68) for the first conserved charge satisfies the integrability condition
(66). Using Eqs. (F7), (F8), (F10), and (F11), one finds that [UF , Q1] = 0 only if T1 = T2 and the coefficients ak are given by
Eq. (72).
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