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Energy relaxation dynamics in a nodal-line semimetal
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We study the temperature relaxation dynamics of nodal-line semimetals after a sudden excitation in the
presence of acoustic and optical phonon modes. We find that the nodal line constrains the electron momenta
in scattering processes, and as a result, the temperature relaxation due to acoustic phonons is exponential as
a function of time. However, depending on initial conditions, other functional forms are possible. In typical
pump-probe experiments, the temperature relaxation is linear due to acoustic phonons with rates that vary as
∼n1/2 with density. The temperature relaxation due to optical phonons is also linear with rates ∼n−1/2 or ∼n.
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I. INTRODUCTION

Energy dissipation via phonon scattering is the main path-
way to thermalization in electronic systems [1–5]. Energy
relaxation in metals has been extensively studied in the con-
text of pump-probe experiments where electrons are excited
via short laser pulses. After the initial excitation, electrons
lose energy to the lattice degrees of freedom and eventually
reach equilibrium.

In a typical pump-probe experiment, the temperature ini-
tially falls rapidly due to optical phonon emission. Below a
certain crossover temperature, optical phonon emission be-
comes less efficient, and a slower decay associated with
acoustic phonons sets in. While this scenario is understood,
the effects of the Fermi surface (FS) topology on the re-
laxation dynamics are just beginning to be explored. For
example, it is known that at low temperature, the so-called
phonon cooling power scales as P ∝ T κ

e − T κ
L with the instan-

taneous electron temperature Te and the lattice temperature TL.
For a conventional three-dimensional (3D) metal [1,4], κ = 5,
but for thin films [6,7], κ = 6. If the phonon phase space is
constrained [8], κ = 3, and for graphene [9], κ = 4.

Of recent interest is the relaxation dynamics of Dirac
materials which have zero-energy manifolds embedded in
the Brillouin zone [10]. For example, graphene and topo-
logical insulators are two-dimensional (2D) semimetals with
zero-energy points (Dirac points). Near the Dirac point the
quasiparticle dispersion is linear in momentum. As a conse-
quence of its small FS, graphene exhibits strong suppression
of electron-phonon scattering below the Bloch-Grüneisen
temperature [11,12] and novel disorder-mediated electron-
phonon scattering [13–15]. Graphene also exhibits Te ∼ 1/

√
t

temperature relaxation as a function of time due to acoustic
phonon relaxation [16–18].

Weyl (or Dirac) semimetals (SMs) are different Dirac ma-
terials in that they are 3D SMs with zero-energy (Weyl) points.
Near Weyl points, the FS is a sphere instead of a circle.
They exhibit asymmetric Fano line shapes [19] and a strong
electron-phonon coupling constant [20]. The temperature

relaxation in Weyl SMs varies as Te ∼ 1/ 3
√

t (at long times)
due to acoustic phonon scattering [21].

The discovery of nodal-line semimetals (NLSMs) [22,23]
added another member to the family of Dirac materials.
NLSMs are 3D semimetals with zero-energy lines in mo-
mentum space. NLSMs can also be classified by topological
invariants [23–25] and were demonstrated experimentally in
PbTaSe2 [26], PtSn4 [27], and ZrSiS [28,29] with other ma-
terials being investigated [30,31]. NLSMs exhibit unusual
magnetoresistance [32], strong light-matter interactions [33],
and correlation-induced reduction of free carrier Drude weight
[34]. They are predicted to exhibit a quasi-topological electro-
magnetic response [35], enhanced excitonic instability [36],
low Coulomb screening [37], and diverging mobility [38].

In this paper, we investigate the temperature relaxation
dynamics of NLSMs and, in particular, the role of the nodal
line. We find that despite the complex FS topology of NLSMs
the relaxation due to acoustic phonons is exponential, just as
in typical 3D metals. In a NLSM, phonon scattering events
constrain the electron’s initial and final momenta to be close
to the nodal line. This has two important consequences: (a)
at high temperatures the acoustic phonon cooling power is

TABLE I. Temperature scaling of the cooling power Pa and the
heat capacity C for NLSMs, graphene, and Weyl SMs. C is sensitive
to the volume of the FS, whereas Pa is sensitive to the topology of the
FS. NLSMs have small Pa and small C, which result in exponential
temperature relaxation. Graphene and Weyl SMs, on the other hand,
have slower 1/

√
t and 1/ 3

√
t temperature relaxations, [see Eq. (1)].

NLSM Graphene Weyl

Spatial dimension 3 2 3
Nodal dimension 1 0 0
C ∼ T c

e , c = 2 2 3
Pa ∼ T p

e , p = 3 5 7
Pa/C ∼ T p−c

e 1 3a 4b

aReference [16].
bReference [21].
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TABLE II. Electron temperature as a function of time in NLSMs, graphene, and Weyl SMs for various limits. Te is the electron temperature,
ω0 is the optical phonon energy, μ is the chemical potential, TL is the lattice temperature, exp indicates exponential, lin indicates linear, and
inv log indicates the inverse log. By low density we mean μ � kBTe and by high density μ � kBTe. Only the tails of the relaxation functions
are shown. The reference indicates the relevant equation in the text. For clarity we omit h̄ and kB.

NLSM Weyl SM Graphene

Spatial dimension 3 3 2
Nodal dimension 1 0 0

Optical phonon relaxation
Low density: ω0 � Te � TL, μ inv log, (20) inv log, (D6) inv log, (20)
Low density: Te � ω0, TL, μ exp, (22) 1/t , (D7) exp, (22)
High density: μ, ω0 � Te � TL inv log, (27) inv log, (D11) inv log, (27)
High density: μ � Te � ω0, TL lin, (29) lin, (D14) lin, (29)

Acoustic phonon relaxation
Low density: Te � TL, μ exp, (32) 1/ 3

√
t , (D19) [21] 1/

√
t , (E5) [16]

Low density: Te � TL, (μ = 0) exp, (32) exp, (D19) [21] exp, (E5) [16]
High density: μ � Te � TL lin, (33) lin, (D21) [21] lin, (E6) [16]
High density: μ � Te � TL exp, (33) exp, (D21) [21] exp, (E6) [16]

much lower than that of Weyl SMs or graphene (see Fig. 5
below), and (b) at low temperatures it gives the exponential
temperature relaxation, which is different from a power-law
relaxation obtained in Weyl SMs and graphene. To understand
this, we write the relaxation equation as

dTe

dt
∼ −Pa

C ∼ −T p−c
e , (1)

where C = dE/dTe is the heat capacity and Pa is the phonon
cooling power. As can be seen from Table I, p − c = 1 for
NLSMs, p − c = 3 for graphene, and p − c = 4 for Weyl
SMs.

In a typical pump-probe experiment with an initial temper-
ature T0 ∼ 100 meV, Fermi level εF ∼ 300 meV, and optical
modes around h̄ω0 ∼ 30 meV, the predicted relaxation is
linear in both the acoustic and optical phonon regimes (see
Table II). The density dependence is different in each case
(see Secs. III and IV). In fact, linear temperature relaxation is
common to all Dirac materials in this regime. To obtain these
results we use a simple two-band model consisting of a ring
(nodal line) in momentum space [23]. Our main assumptions
are: (a) the electrons are in equilibrium among themselves
at temperature Te, (b) the phonons are in equilibrium among
themselves at a fixed temperature TL, and (c) the temperature
is higher than the Bloch-Grüneisen temperature.

This paper is organized as follows. We first consider optical
and acoustic phonon branches separately, obtaining analytic
solutions in various limits (Secs. II, III, and IV). The solutions
are then used to give expressions for the crossover temperature
between the optical- and acoustic-phonon regimes in Sec. V.
In Sec. VI we give numerical solutions including both phonon
branches. A simple scaling argument is given in Sec. VII to
intuitively understand temperature relaxation due to acoustic
phonons, and we conclude in Sec. VIII. The Appendixes in-
clude some calculation details.

II. PHONON COOLING POWER

A simple mathematical model of the electron’s energy loss
is

dE
dt

= −P, (2)

where E (t ) is the energy of the ensemble assumed to depend
on temperature and chemical potential E (t ) = E (μ(t ), Te(t ))
and P is the rate of energy transfer from the electrons to the
lattice, i.e., cooling power [1],

E = 1

V

∑
nk

εnk fnk, (3)

P = 1

V

∑
nk

εnk
dfnk

dt
. (4)

Importantly, P depends on μ(t ) and Te(t ) via the collision
integral. εnk is the quasiparticle energy. This hydrodynamic
approach [39,40] assumes that the chemical potential and
temperature are well defined at all times, a reasonable assump-
tion if electron-electron interactions thermalize the electron
ensemble much faster than phonons. The collision integral for
phonon scattering is

dfnk

dt
=

∑
mp

[ fnk(1− fmp)Wnk,mp−(nk ↔ mp)], (5)

with scattering rate

Wnk,mp = 2π

h̄

∑
q

Mq[(NL+1)δk,p+qδ(εnk−εmp−h̄ωq)

+ NLδk,p−qδ(εnk−εmp+h̄ωq)]. (6)

Here fnk ≡ f (εnk ) = [e(εnk−μ)/kBTe + 1]−1 is the Fermi dis-
tribution function, NL ≡ NL(h̄ωq) = [eh̄ωq/kBTL − 1]−1 is the
Bose distribution function evaluated at the lattice tempera-
ture TL, Te is the electron temperature, Mq = h̄2D2q2(1 +
snm cos θ )/4ρV h̄ωq is the amplitude of electron-phonon scat-
tering, q is the phonon momentum, ωq is the phonon
dispersion relation, D is the deformation potential of acoustic
phonons, ρ is the ion mass density, V is the volume, θ is the
angle between k and p, and snm = 1(−1) is intraband (inter-
band) scattering. The quasiparticle dispersion of the NLSM
near the ring is

εnk = nvh̄
[
k2

z + (k − Q)2
]1/2

, (7)

where n = 1 (−1) denotes the conduction (valence) band, v

is the velocity of nodal quasiparticles, and Q is the radius of
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FIG. 1. (a) Nodal line (red ring) in a nodal-line semimetal
(NLSM) model. (b) Quasiparticles have linear dispersion near points
(k, φk, kz ) = (Q, φk, 0), 0 � φk < 2π . In the plane k-kz the states
within radius k̃F are occupied, and the Fermi surface is a torus in
momentum space. (c) and (d) Two limiting cases considered ana-
lytically. The low-density regime is defined by μ � kBTe, and the
high-density regime is defined by μ � kBTe.

the nodal ring [see Fig. 1(a)]. We consider spinless fermions.
From Eqs. (5) and (6), we write Eq. (4) as [16,17]

P = 2π

V

∑
nkmp

ωq( fnk − fmp)(NL − Ne)Mq

× δ(εnk − εmp − h̄ωq), (8)

(see also Appendix A). We define q = p − k. We assume
Eq. (5) does not vanish even when we have equilibrium
distributions of bosons and fermions. The nonvanishing equa-
tion (8) for Te 	= TL is consistent with this assumption [3]. The
radius of the nodal line Q is assumed to be the largest momen-
tum scale in the system, i.e., Q � |kF − Q|, kBTe/vh̄, ω0/v.
We also assume phonons with momenta 2Q are always ther-
mally excited. This requires a minimum temperature, the
Bloch-Grüneisen temperature TBG; that is, we require kBTe >

kBTBG = h̄c2Q, where c is the speed of sound.

III. OPTICAL PHONON RELAXATION

In this section, we analytically calculate the temperature
relaxation of a NLSM due to optical phonons. We consider a
single optical phonon branch with constant energy dispersion
ωq = ω0 and constant electron-phonon matrix element Mq ≡
g2/V . From Eq. (8), we obtain

dE
dt

= −Po, (9)

where

Po = g2Q2ω4
0

2πv4h̄
F (μ, Te)(Ne − NL ) (10)

F (μ, Te) ≡
∫ ∞

−∞
dx|x(x − 1)|[ f (h̄ω0x−h̄ω0)− f (h̄ω0x)].

(11)

(a)

�

kBTe

ħ��0
(b)

(c)

(d)

�nk�

low density high density

FIG. 2. Instantaneous electron distribution f (εnk ) (blue curve) as
a function of energy in various limits. In (a), μ (dashed line) is at the
nodal line or slightly above it; that is, the system is half filled. The
width of the distribution kBTe and the optical mode energy (red line)
are indicated. In (b), h̄ω0 is of the order of μ but smaller than kBTe.
(a) and (b) are low-density regimes in the sense that μ � kBTe. In
(c), μ is large and of the order of h̄ω0. Both μ and kBTe are larger
than kBTe. (d) is similar to (c), but h̄ω0 ∼ 0. (c) and (d) are called
high-density regimes in the sense that μ � kBTe. kBTL is assumed to
be zero or close to zero.

Ne = Ne(h̄ω0), and NL = NL(h̄ω0) (see Appendix B). As seen
from the factor in parentheses in Eq. (10), P0 is exponen-
tially suppressed at temperatures kBTe � h̄ω0, and hence, in
this regime, we expect acoustic phonon scattering to domi-
nate. The energy is a function of μ (assumed to be positive)
and Te, which, in turn, are functionally related due to the
constant-density condition. In our NLSM model the energy
and electron density are

E = 1

V

∑
nk

εnk fnk = vh̄Q

2π
I2+, (12)

n = 1

V

∑
nk

fnk = Q

2π
I1−, (13)

where

In± ≡
∫ ∞

0
k̃ndk̃ [ fck̃ ± (1 − fvk̃ )], (14)

fnk̃ = [eβ(nvh̄k̃−μ) + 1]−1, and β ≡ 1/kBTe. The density is
measured with respect to the nodal line.

A. Low-density limit

By low density we mean μ � kBTe and μ � 0; that is, the
system is half filled. kBTL is assumed to be zero or close to
zero. However, the relative sizes of kBTe and h̄ω0 give various
relaxation behaviors which we now consider in detail.

Case 1: h̄ω0 � kBTe � kBTL, μ. Figure 2(a) illustrates this
situation. The dashed line indicates the position of μ, and the
red line shows the position of h̄ω0; 0 indicates the position
of the nodal line. In this scenario, high-energy electrons at
the tail of the distribution lower their energy by emitting
optical phonons and dropping to unoccupied states. A rapid
thermalization among electrons (not included here) creates
a new Fermi distribution at lower temperature. If the en-
ergy of the optical phonon is too large, the cooling becomes
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inefficient. Interestingly, the temperature at which optical
phonon cooling stops is not of the order h̄ω0 but could be an
order of magnitude smaller (see Sec. V).

To begin, we note that if μ = 0, Eq. (11) is a function of
only β̄ ≡ h̄ω0/kBTe and can be integrated analytically in terms
of polylogarithm functions. The first two terms for large β̄ are

F (0, Te) ∼ 1

6
+ 6ζ (3)

β̄3
+ · · · , β̄ � 1. (15)

The total time derivative of the energy (3) has two contribu-
tions: one from the density ∂E/∂μ = 2n and one from the heat
capacity ∂E/∂Te. Now, the energy and chemical potential in
the limit of low density μ � kBTe are

E = Qk3
BT 3

e 3ζ (3)

2πv2h̄2 +QkBTe log (2)

πv2h̄2 μ2+· · · μ � kBTe, (16)

n = QkBTe log (2)

πv2h̄2 μ + · · · . μ � kBTe. (17)

From Eq. (17), we see that the contribution from the density
vanishes in the limit μ → 0, and hence, Eq. (9) becomes
(∂E/∂Te)(∂Te/∂t ) = −Po. In the variable β̄, it takes the form

dβ̄

dt
∼ γon1(β̄4 + 36ζ (3)β̄ + · · · )e−β̄ , (18)

where we assume Te � TL. The initial condition is β̄0 =
h̄ω0/kBT0 � 1 and γon1 = g2Qω0/v

2 h̄254ζ (3). The right-
hand side of Eq. (18) has a local maximum at β̄ ∼ 1 and an
exponential tail for large β̄. In the limit β̄ � 1, Eq. (18) gives

β̄ ∼ log
(
γon1β̄

4
0 t + eβ̄0

) + 4 log
T0

Te
(19)

or the inverse log

kBTe ∼ h̄ω0

log
(
γon1β̄

4
0 t + eβ̄0

) . (20)

In the last expression, we drop a small (for Te � T0) logarith-
mic correction. The relaxation timescale is eβ̄0/γon1β̄

4
0 . Note

that β̄ increases monotonically with time (as Te decreases),
and hence, it is enough to require β̄0 � 1. Figure 3(a) shows
a numerical (see Sec. VI) example of optical phonon re-
laxation in the low-density regime (brown curve) with β̄0 =
3 � 1. The temperature relaxation is approximately given by
Eq. (20).

Case 2: kBTe � h̄ω0, kBTL, μ. Figure 2(b) illustrates this
situation. In this regime, many electrons have energy above
the optical phonon mode, and hence, we expect enhanced
optical phonon emission and subsequent fast relaxation. In-
deed, we find an exponential relaxation in this regime. To
see this, note that for kBTe � h̄ω0 (or β̄ � 1), Eq. (11) is
approximated by

F (0, Te) = π2

3β̄2
− 1

6
+ β̄

12
− β̄3

360
+ · · · , β̄ � 1. (21)

If, in addition, Te � TL, then Ne(h̄ω0) − NL(h̄ω0) ∼
kBTe/h̄ω0 − kBTL/h̄ω0 ∼ 1/β̄, and to leading order the
relaxation is exponential,

dTe

dt
= −γon2Te. (22)
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optical
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T0=

FIG. 3. Numerical solution for the electron temperature relax-
ation in a NLSM with acoustic and optical phonon modes. (a) and
(b) differ only by the time resolution of the horizontal axis. Various
electronic densities are considered. The initial temperature is T0 =
100 meV, and the lattice temperature is TL = 1 meV. The optical
phonon mode is at h̄ω0 = 300 meV, which corresponds to the regime
h̄ω0 � kBTe. The rest of the parameters are given in Table III. From
(a) we see a timescale of τo = 1 − 4 ps for optical phonon relaxation,
and from (b) τa = 50 − 400 ps, for acoustic phonon relaxation. The
brown curve exhibits inverse log → exponential behaviors as Te

decreases. The orange curve exhibits inverse log → linear → ex-
ponential behaviors as Te decreases. T ∗

1 is the crossover temperature
separating the optical- and the acoustic-phonon regimes. T ∗

2 marks
the transition from linear to exponential.

Here, γon2 = g2Qω0π
2/v2h̄227ζ (3), and the relaxation

timescale is 1/γon2. Figure 4(a) shows the relaxation of a
NLSM with the optical phonon mode energy half of the initial
temperature of the electron ensemble, β̄0 = 1/2 (brown and
green curves). The temperature relaxation is approximately
exponential, in agreement with Eq. (22).

B. High-density limit

By high density we mean μ � kBTe. Since μ is bounded
from above by Fermi energy εF = μ(Te = 0), high density
means εF � kBTe. However, the relative sizes of kBTe and h̄ω0

give various relaxation behaviors which we now consider in
detail.

Case 1: μ, h̄ω0 � kBTe � kBTL. Figure 2(c) illustrates this
situation. To start, note that for μ � kBTe, Eq. (11) becomes

F (μ, Te) ∼
(

1

6
+ 2μ̄3

3

)
+ 2π2μ̄

3β̄2
+ · · · , μ � kBTe, (23)

which is obtained from the Sommerfeld expansion in variables
μ̄ ≡ μ/h̄ω0 and β̄ ≡ h̄ω0/kBTe and is valid for μ̄β̄ � 1 (or,
equivalently, μ � kBTe). In this limit, the energy and electron
density become

E = Q

6πv2h̄2

(
μ3 + π2μ

β2
+ · · ·

)
, μ � kBTe, (24)

n = Q

4πv2 h̄2

(
μ2 + π2

3β2
+ · · ·

)
, μ � kBTe, (25)
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FIG. 4. Same as in Fig. 3, but with h̄ω0 = 50 meV, i.e., h̄ω0 <

kBT0. The timescales are τa = 10–50 ps and τo = 0.5–1 ps for acous-
tic and optical phonon relaxations, respectively. The low density
green curve exhibits transition from exponential → exponential as
Te decreases. The high density blue curve exhibits transitions linear
→ linear → exponential as Te decreases.

and hence, μ(Te) = εF − π2k2
BT 2

e /6εF + · · · . Also, if β̄ � 1,
then Ne − NL ∼ e−h̄ω0/kBTe − e−h̄ω0/kBTL ∼ e−β̄ , and Eq. (9) be-
comes

∂β̄

∂t
= γ̃od1β̄

3

(
1

6
+ 2μ̄3

3
+ 2π2μ̄

3β̄2
+ · · ·

)
e−β̄ . (26)

Now, if μ̄β̄ � π , the leading behavior is an inverse log func-
tion,

kBTe = h̄ω0

log
(
γod1β̄

3
0 t + eβ̄0

) , (27)

where γod1 = 3g2Qω2
0(1/6 + 2μ̄3/3)/π2v2μh̄. The relax-

ation timescale eβ̄0/γod1β̄
3
0 is ∼n1/2 for μ̄ � 1 and ∼n−1

for μ̄ � 1; n is the electron density. Note that the timescale
increases or decreases with increasing electron density. Fig-
ure 3(a) illustrates the high-density regime with parameters
β̄0 = 3, μ̄ ∼ εF /h̄ω0 ∼ 1 (blue curve). The relaxation is ap-
proximately given by Eq. (27).

Case 2: μ � kBTe � h̄ω0, kBTL. Figure 2(d) illustrates this
situation. Since μ � kBTe, we can use Eq. (23). In addition,
if β̄ � 1 and Te � TL, then Ne − NL ∼ 1/β̄, and Eq. (9) be-
comes

dβ̄

dt
= γ̃od2β̄

2

(
1

6
+ 2μ̄3

3
+ 2π2μ̄

3β̄2
· · ·

)
. (28)

Now, if μ̄β̄ � π , the leading behavior is linear,

kBTe = kBT0 − h̄ω0γod2t, (29)

where γod2 = 3g2Qω2
0(1/6 + 2μ̄3/3)/π2v2h̄μ is ∼n−1/2 for

μ̄ � 1 and ∼n for μ̄ � 1. The rate can increase or de-
crease with increasing electron density. Figure 4(a) illustrates
the high-density regime with parameters β̄0 = 1/2 (blue or
orange curve). The relaxation is approximately linear for tem-
peratures above ∼40 meV.

IV. ACOUSTIC PHONON RELAXATION

We now calculate the temperature relaxation due to acous-
tic phonons in the low- and high-density regimes. To obtain
analytical expressions, we evaluate Eq. (8) to lowest order
in c/v � 1, where c is the speed of sound, assumed to be
isotropic. In this limit, acoustic phonon scattering is quasielas-
tic, and we obtain (see Appendix C)

dE
dt

= −Pa, (30)

where

Pa = D2Q4kB

4πρv2 h̄
I1+(Te − TL ). (31)

A. Low-density limit

Setting μ = 0 and using Eqs. (16), (17), and (31), we
obtain

dTe

dt
= −γan(Te − TL ), (32)

where γan = π2D2Q3/ρv2 h̄108ζ (3). Hence, the temperature
relaxes exponentially with timescale 1/γan. This should be
compared with the slower ∼1/

√
t power law found in

graphene [16], which has nodal points instead of nodal lines,
and the even slower ∼1/ 3

√
t power law found in Weyl nodes

[21]. Figure 3(b) shows an example of the low-density relax-
ation in a NLSM (brown curve). The exponential dependence
is more evident in the log plot inset.

B. High-density limit

In this limit, we can use Eqs. (24), (25), and (31) to obtain

d

dt
(kBTe) = −γad

1

Te
(Te − TL ), (33)

where γad = 3D2Q3εF /4π2ρ h̄v2. We find linear relaxation
for Te � TL with a relaxation rate that scales as γad ∼ n1/2

with electron density. This is different from graphene, where
the relaxation rate scales as ∼ n3/2 [16]. Finally, the relaxation
is exponential for Te � TL with timescale TL/γad .

Figure 3(b) shows the temperature relaxation in the high-
density regime of a NLSM (orange or blue curve). The
appearance of a linear relaxation in the temperature range
T ∗

1 > T > T ∗
2 is evident and is in agreement with Eq. (33).

T ∗
1 is the crossover temperature between optical relaxation

and acoustic relaxation (see Sec. V). T ∗
2 marks the regime

transition from linear to exponential relaxation. There is an
exponential relaxation for T < T ∗

2 .

V. CROSSOVER TEMPERATURE

The temperature T ∗
1 at which

Pa(T ∗
1 ) = Po(T ∗

1 ) (34)

defines the boundary between the regime dominated by op-
tical phonons (> T ∗

1 ) and the regime dominated by acoustic
phonons (<T ∗

1 ). If the initial temperature is T0 > T ∗
1 , the

decay is initially fast, followed by a slower decay. If T0 < T ∗
1 ,

the decay is slower, and the electron plasma is longer lived.

144304-5



FREGOSO, NEUPANE, AND SAKHYA PHYSICAL REVIEW B 105, 144304 (2022)

1 5 10 50 100

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NLSM

Graphene
Weyl

Te  (meV)

1 10 100
10-4

0.01

1

100

Pa

Po

Te (meV)

Pa=Po

P a/(
P a+

P o)

T*
1

FIG. 5. Percentage of acoustic phonon cooling power as a func-
tion of electron temperatures for a NLSM, graphene, and a Weyl SM.
Parameters are given in Table III.

Hence, an estimate of the crossover temperature is important
for experimental design, device design, and as a control knob
in probing microscopic mechanisms in materials. We consider
two limiting cases in detail.

A. Low-density limit

Case 1: h̄ω0 � kBTe � kBTL, μ. From Eqs. (10), (15), and
(31) we find that β̄∗ = h̄ω0/kBT ∗

1 satisfies

α1 ≡ π2D2Q2h̄

2ρg2ω0
= [(β̄∗)3 + 36ζ (3)]e−β̄∗

. (35)

The left-hand side is a constant that depends on materials’
properties. The right-hand side depends on β̄∗. The intersec-
tion of the two gives the solution. Note that if α1 < 36ζ (3)
and β̄∗ � 1, there is a solution.

Case 2: kBTe � h̄ω0, kBTL, μ. From Eqs. (10), (21), and
(31), we find that β̄∗ = h̄ω0/kBT ∗

1 satisfies

α1 = 2π2 − β̄∗2 + β̄∗3

2
+ · · · . (36)

There is a solution when α1 < 2π2 and β̄∗ � 1.

B. High-density limit

Case 1: μ, h̄ω0 � kBTe � kBTL. From Eqs. (10), (23), and
(31), we find that β̄∗ = h̄ω0/kBT ∗

1 satisfies

α2 ≡ 3D2Q2μ2

2ρg2ω3
0 h̄

=
[
β̄∗(1 + 4μ̄3) + 4π2 μ̄

β̄∗

]
e−β̄∗

. (37)

Using the parameters in Table III, α2 = 0.0042, and the in-
tersection with the term on the right is at kBT ∗

1 = h̄ω0/β̄
∗ =

34 meV, which is close to the full numerical solution kBT ∗
1 =

35 meV shown in Fig. 5.

TABLE III. Parameters of a prototypical NLSM from Ref. [41],
a Weyl SM, and doped graphene. The electron-phonon coupling
constants for NLSMs are unknown. For a Weyl SM, we take the
known parameters of TaAs [10].

NLSM Weyl Graphene

ρ (kg/m3, kg/m2) 4.86 12.03 3.7 × 10−7

n (cm−3, cm−2) 5 × 1019 1014 1013

εF (meV) 300 6 370
Q (1/Å) 0.3
h̄ω0 (meV) 300 31 196
D (eV) 5 4 20
v (106 m/s) 1 0.5 1
a (Å) 4 6.3 1.42
g (vh̄2/a2

√
ρ h̄ω0) 56.6 4.2 1.4

TL (meV) 1 1 1

Case 2: μ � kBTe � h̄ω0, kBTL. From Eqs. (10), (23), and
(31) and Ne − NL ∼ 1/β̄, we find

kBT ∗
1 = DQh̄

2πg

(
3μ

2ρ

)1/2

∼ n1/4. (38)

VI. ACOUSTIC AND OPTICAL PHONON RELAXATION:
NUMERICAL SOLUTION

In this section, we solve numerically for Te(t ) and μ(t )
in the presence of acoustic and optical phonons. The basic
equations are

dE
dt

= −Pa − Po, (39)

n = 1

V

∑
nk

fnk. (40)

The first equation gives the energy dynamics, and the second
gives the constant electron density condition. Pa and Po are
the acoustic and optical phonon cooling power in Eqs. (10)
and (31), and E is the energy,

E = 1

V

∑
nk

εnk fnk. (41)

More explicitly, Eq. (39) becomes

− 3QTevh̄

(
∂

∂t

1

Te

)
I2+ + 2QTe

(
∂

∂t

μ

Te

)
I1−

= − D2Q4kB

4πρv2 h̄
I1+(Te − TL ) − g2Q2ω4

0

2πv4h̄
F (Ne − NL ), (42)

and the constant-density condition

n = Q

2π
I1−. (43)

The initial conditions are μ(t = 0) = μ0, which is given by
the electron density and Te(t = 0) = T0. Figure 3 shows the
electron temperature as a function of time for a NLSM with
parameters given in Table III. The initial temperature is T0 =
100 meV = 1200 K. Note the sharp change in behavior at
temperature T ∗

1 . For Te > T ∗
1 ∼ 35 meV, there is a fast relax-

ation associated with optical phonons. At these temperatures,
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Pa � Po (see Fig. 5). For Te < T ∗
1 , acoustic phonons saturate

the cooling power and dominate the relaxation process. In
the optical phonon regime, the relaxation timescale is pi-
coseconds, but in the acoustic phonon regime, the relaxation
timescale is nanoseconds. As expected, the optical phonon
relaxation is faster than acoustic phonon relaxation [1].

Note that the higher the density is, the faster the relaxation
is. In the optical phonon regime at any density, the relax-
ation is of the inverse log form, as indicated in Eq. (20) or
Eq. (27), even though β̄0 is only 3. In the acoustic phonon,
low-density regime, the relaxation is exponential for Te < T ∗

1
[brown curve; Eq. (32)] and linear-exponential (orange curve)
in the high-density regime [Eq. (33)]. The relaxation timescale
depends weakly on density in the optical phonon regime and
strongly in the acoustic phonon regime. Although not shown,
the chemical potential increases monotonically towards εF as
time increases.

In the optical phonon regime, Pa is expected to be low.
What is interesting is that Pa in NLSMs is lower than in
Weyl SMs and graphene (see Fig. 5). In fact, in NLSMs,
there is a clean separation of scattering processes at T ∗

1 , which
justifies considering optical and phonon scattering separately
in Secs. III and IV.

Figure 4 shows the relaxation of a NLSM in the regime
kBTe � h̄ω0. Since emission of optical phonons is readily
available, we expect a faster relaxation, as shown.

VII. ACOUSTIC PHONON RELAXATION IN DIRAC
MATERIALS

The role of the nodal line is most critical in the acoustic
phonon, low-density regime. This is expected because at low
density (μ = 0) acoustic phonons probe quasiparticles near
the nodal line in NLSMs or nodal points in Weyl SMs or
graphene. In this regime, the NLSM has exponential relax-
ation, Weyl SMs have ∼1/ 3

√
t relaxation, and graphene has

∼1/ 2
√

t . To understand this, we write the energy relaxation
equation as CdTe/dt = −Pa, where the heat capacity C =
dE (μ(Te), Te)/dTe. By power counting, we can write

dTe

dt
∼ −T κ

e (Te − TL ), (44)

with κ = dim (Pa − 1) − dim C or

κ = {2(D − d ) − 1 + 2[q] − 1} − (D − d + a − 1). (45)

To obtain dim C, we can inspect Eq. (12). We first subtract d
nodal (frozen) directions from D spatial dimensions and add
the power of the quasiparticle dispersion ka (1 in this case).
The temperature derivative of the energy gives the last −1.
The electronic heat capacity scales as Te with a power of 3 in
Weyl nodes and with a power of 2 in graphene and NLSMs.
In this sense, NLSMs and graphene are similar.

To obtain dimPa − 1, we can inspect Eq. (8). We have
2(D − d ) powers from the integrals, subtract 1 from the en-
ergy conservation, and add 2 if momentum transfer [q] is not
constrained, i.e., in Weyl nodes and graphene. Finally, we sub-
tract 1 from the Fermi function differences. The last two steps
occur because we expanded the integrals to lowest order in
c/v. The role of the nodal line is now explicit. From Eq. (45),
dimPa − 1 = 6 for Weyl SMs, dimPa − 1 = 4 for graphene,

TABLE IV. Cooling power and heat capacity scaling with tem-
perature for Dirac materials (see Sec. VIII). D is the spatial
dimension, d is the nodal manifold dimension, dim C is the scale
dimension of the heat capacity, and dimPa is the scale dimension of
acoustic phonon cooling power.

NLSM Weyl Graphene

D 3 3 2
d 1 0 0
2[q] 0 2 2
dim C 2 3 2
dimPa − 1 2 6 4
κ 0a 3b 2c

aEquation (32).
bEquation (D19).
cEquation (E5).

and dimPa − 1 = 2 for NLSMs (see Table IV). It is lowest
in NLSMs. There are two consequences: (a) a large decrease
in Pa in a NLSM at high temperature compared with Weyl
SMs and graphene (see Fig. 5), and (b) at low temperatures, it
gives the exponential temperature relaxation in NLSMs and a
slower power law in graphene and Weyl SMs.

VIII. DISCUSSION AND CONCLUSIONS

We calculated the electron temperature relaxation as a
function of time after a sudden excitation. We used a two-
band model of a NLSM with a single acoustic branch and a
single optical branch. Among our findings, we point out that
acoustic phonon relaxation is exponential, which is similar
to standard 3D metals [3] but different from Weyl SMs and
graphene. This is because a particular combination of FS
volume and topology in NLSMs. Other relaxation behaviors
were obtained depending on initial conditions and density and
were summarized in Table II . Our results point to possible
ways to engineer thermalization timescales, e.g., by tuning
either density, spatial dimension, or the shape of the FS.

We assumed that phonons of large momenta ∼2Q can be
thermally excited, and this puts a lower bound on Te, kBTe >

h̄c2Q ≡ kBTBG. For ZrSiS [41] with c = 4.3–6.8 km/s and
Q ∼ 0.3 Å−1 we obtain kBTBG = 17–26 meV = 197–300 K.
For PbTaSe2 [26,42] with roughly the same sound speed and
half of the Q we obtain kBTBG = 98 − 150 K.

We have assumed particle-hole symmetry, time rever-
sal symmetry, and a highly symmetric nodal line. Our
conclusions will not change for small deviations of these
symmetries. If there is more than one ring or if we consider
the spin of the electrons, the total cooling power is multiplied
by the number of equivalent rings and by the spin degeneracy,
but Te(t ) will not change. In this work we assumed a clean
system; future work is needed to understand impurity effects.
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APPENDIX A: PHONON COOLING POWER

From Eqs. (4), (5), and (6) we obtain

P = 1

V

∑
nk

∑
mp

(εnk − εmp) fnk(1 − fmp)Wnk,mp (A1)

= P1 + P2, (A2)

where

P1 = 2π

h̄

1

V

∑
nk

∑
mp

(εnk − εmp)( fnk − fmp)MqNL

× δ(εnk − εmp − h̄ωq), (A3)

P2 = 2π

h̄

1

V

∑
nk

∑
mp

(εnk − εmp) fnk(1 − fmp)Mq

× δ(εnk − εmp − h̄ωq). (A4)

In obtaining Eqs. (A3) and (A4), we assumed ω−q = ωq,
which holds for time reversal symmetric systems or inversion
symmetric systems. Using the identity

fnk(1 − fmp)δ(εnk − εmp − h̄ωq)

= −( fnk − fmp)Ne(h̄ωq)δ(εnk − εmp − h̄ωq), (A5)

P2 becomes

P2 = −2π

h̄

1

V

∑
nk

∑
mp

(εnk − εmp)( fnk − fmp)MqNe

× δ(εnk − εmp − h̄ωq)

≡ −P1(L → e). (A6)

This relation (noted in Ref. [17]) means Eq. (4) in the main
text becomes

P = 2π

V h̄

∑
nkmp

(εnk − εmp)( fnk − fmp)(NL − Ne)Mq

× δ(εnk − εmp − h̄ωq), (A7)

which is Eq. (8) in the main text.

APPENDIX B: OPTICAL PHONON COOLING IN NLSMs

We start from Eqs. (A3) and set Mq = g2/V , ωq = ω0 to
obtain

Po1 =2πg2NLω0
1

V 2

∑
nk

∑
mp

( fnk− fnp)δ(εnk−εnp−h̄ω0).

(B1)
Now, we write the sums over momenta as integrals in cylin-
drical coordinates. Then we define a new variable k′ ≡ k − Q.
The integral over k′ is now from −Q to ∞. Next, we extend
the integration of k′ to the whole real line and parametrize the

plane k′-kz in polar coordinates k̃, φk̃ to obtain

Po1 = g2NLω0
1

(2π )3

∑
nm

∫
k̃dk̃dφk̃

∫
p̃d p̃dφ p̃

× (k̃ sin φk̃ + Q)( p̃ sin φ p̃ + Q)[ f (nvh̄k̃) − f (mvh̄ p̃)]

× δ(εnk̃ − εnp̃ − h̄ω0) (B2)

= g2NLω0
Q2

2πvh̄

∑
nm

∫
k̃dk̃

∫
p̃d p̃

×[
f (nvh̄k̃) − f (mvh̄ p̃)

]
δ(nk̃ − mp̃ − ω0/v), (B3)

where in the last equality we use the fact that the δ function
fixes mp̃ = nk̃ + ω0/v and that the Fermi function differ-
ence is very small for k̃ � ω0/v. This justifies extending the
limits of integrals to the whole real line as long as Q �
ω0/v, kBTe/vh̄. After some algebra

Po1 = −g2ω4
0Q2

2πv4h̄
FNL, (B4)

where F is given by Eq. (11). Finally, Po = Po1(L) −
Po1(L → e) gives Eq. (10) in the main text.

APPENDIX C: ACOUSTIC PHONON COOLING IN NLSMs

Starting from Eq. (A3), we substitute Mq, ωq = cq =
c|k − p| and assume the lattice temperature is such that
kBTL � h̄ωq. This requires TL > TBG, as discussed in the main
text. We obtain

Pa1 = 2πD2kBTL

4ρV 2c2

∑
nk

∑
mp

ωq( fnk − fmp)

× (1 + snm cos θ )δ(εnk − εmp − h̄ωq). (C1)

Now, we write the sums over momenta as integrals in cylin-
drical coordinates and define k′ = k − Q. The integral over
k′ is now from −Q to ∞. The Fermi functions limit the size
of k′ to values near |kF − Q| � Q. Hence, we can extend the
limits of integration of the radial component k′ to the whole
real line with small error as long as Q � |kF − Q|, kBTe. Now
we transform the k′ and kz variables to polar coordinates
k̃, φk̃ . In terms of these variables, k′ = k̃ sin φk̃, kz = k̃ cos φk̃ ,
and the dispersion relation εnk is that of a Dirac cone in
two dimensions. The energy difference becomes εnk − εmp =
vh̄(nk̃ − mp̃), and the delta function

δ(εnk − εmp − h̄ωq) = 1

vh̄
δ(nk̃ − mp̃ − rq) (C2)

= 1

vh̄
δnmδ( p̃ − p̃0)[1 + O(r)], (C3)

fixes p̃ to p̃0 = k̃ − nr[q] p̃=k̃ (to first order in r ≡ c/v). [q] p̃=k̃
is the phonon momentum to zeroth order, i.e., equal to q =
|k − p| with p̃ = k̃. In the limit Q � k̃F

q2 ≈ 2Q2(1 − cos φ), (C4)

1 + snm cos θ ≈ 1 + snm cos φ, (C5)

where φ ≡ φk − φp. This means that the phonon momentum
is effectively 2D in the plane kx-ky. Finally, we note h̄ωq and
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the Fermi function difference are both O(r), and hence, we
can set p̃ = k̃ in the rest of the factors of Eq. (C1). Note that

fnk̃ − fnp̃ = nrq̃
∂ fnk̃

∂ k̃
+ O(r2) (C6)

is peaked at k̃ ∼ k̃F . As a result Eq. (C1) becomes

Pa1 = − D2Q4kB

4πρv2 h̄
I1,+TL, (C7)

where

In± ≡
∫ ∞

0
k̃ndk̃[ fck̃ ± (1 − fvk̃ )], (C8)

and fnk̃ = [e(nvh̄k̃−μ)β + 1]−1.

APPENDIX D: PHONON COOLING POWER
IN A WEYL NODE

The quasiparticle energy near a Weyl node is εnk = nvh̄k,
where k = |k| is the magnitude of a 3D momentum and n =
±1 denote the conduction (+1) and valence (−1) bands. The
FS is a sphere in momentum space.

1. Optical phonon relaxation

Following the steps outlined in Appendix B, the cooling
power of optical phonons in a Weyl node is

Pwo = ω6
0g2

v6h̄2π3
H (Ne − NL ), (D1)

where

H ≡
∫ ∞

−∞
dx x2(x − 1)2[ f (h̄ω0x − h̄ω0) − f (h̄ω0x)]

= 1

30
+ μ̄4 + 2π2μ̄2

β̄2
+ 7π4

15β̄4
, (D2)

has a simple closed form valid in all regimes of β̄ ≡ h̄ω0/kBTe

and μ̄ ≡ μ/h̄ω0.

a. Low-density limit

Case 1: h̄ω0 � kBTe � TL, μ. If β̄ � 1 and Te � TL, then
Ne − NL ∼ e−β̄ . The energy and density,

E = vh̄I3+
2π2

= k4
BT 4

e 7π2

120v3h̄3 + k2
BT 2

e μ2

4v3h̄3 + · · · μ � kBTe, (D3)

n = I2−
2π2

= k3
BT 3

e μ

6v3h̄3 + · · · μ � kBTe, (D4)

together with Eq. (D2) and dE/dt = −Pwo give

dβ̄

dt
= γ̃won1(β̄5 + 14π4β̄ )e−β̄ . (D5)

To leading order as β̄ � 1, the relaxation is an inverse log,

kBTe = h̄ω0

log(γwon1β̄
5
0 t + eβ̄0 )

, (D6)

where β̄0 ≡ h̄ω0/kBT0 � 1, γwon1 = g2ω2
0/14π5v3h̄2, and the

relaxation timescale is eβ̄0/γwon1β̄
5
0 .

Case 2: kBTe � h̄ω0, TL, μ. In this limit, Ne − NL ∼ 1/β̄,
and hence, to leading order

kBTe = h̄ω0

γwon2t + β̄0
, (D7)

where γwon2 = g2ω2
0/π

3v3h̄2.

b. High-density limit

Case 1: μ, h̄ω0 � kBTe � TL. In the limit of a large chem-
ical potential μ � kBTe the energy and density are

E = 1

8π2v3h̄3

(
μ4 + 2π2μ2

β2
+ · · ·

)
, μ � kBTe, (D8)

n = 1

6π2v3h̄3

(
μ3 + π2μ

β2
+ · · ·

)
, μ � kBTe. (D9)

The last equation implies μ(Te) = εF − π2k2
BT 2

e /3εF + · · ·
and together with Ne − NL ∼ e−β̄ and Eq. (D2) gives

∂β̄

∂t
= γ̃wod1β̄

3

(
1

30
+ μ̄4 + 2π2μ̄2

β̄2
+ 7π4

15β̄4

)
e−β̄ . (D10)

If μ̄β̄ � π
√

2, the leading behavior is given by the first two
terms on the right, and we obtain

kBTe = h̄ω0

log(γwod1β̄
3
0 t + eβ̄0 )

, (D11)

with γwod1 = 3g2ω4
0(1/30 + μ̄4)/π2v3μ2 and timescale

eβ̄0/γwod1β̄
3
0 . The timescale is ∼n2/3 for μ̄ � 1 and ∼n−2/3

for μ̄ � 1.
Case 2: μ � kBTe � h̄ω0, TL. In this case Ne − NL ∼ 1/β̄,

and from Eqs. (D2), (D8), and (D9) we obtain

dβ̄

dt
= γ̃wod2β̄

2

(
1

30
+ μ̄4 + 2π2μ̄2

β̄2
+ 7π4

15β̄4

)
. (D12)

If μ̄β̄ � π
√

2, the leading behavior is

dβ̄

dt
= γwod2β̄

2 (D13)

or

kBTe = kBT0 − h̄ω0γwod2t, (D14)

where the relaxation rate γwod2 = 3g2ω4
0(1/30 + μ̄4)/π2v3μ2

scales as ∼n−2/3 for μ̄ � 1 and as ∼n2/3 for μ̄ � 1.

2. Acoustic phonon relaxation

The cooling power of acoustic phonons in a Weyl SM was
studied in Ref. [21]. Here, we reproduce those results for
comparison. Following the same steps as in Appendix C, we
obtain

Pwa1 = − D2kB

h̄ρv2π3
I5+TL, (D15)

and hence, the cooling power of acoustic phonons is [21]

Pwa = Pwa1(L) − Pwa1(L → e) = D2kB

ρv2 h̄π3
I5+(Te − TL ),

(D16)
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where

In± ≡
∫ ∞

0
kndk [ fck ± (1 − fvk )], (D17)

and fnk = [eβ(nvh̄k−μ) + 1]−1.

a. Low-density limit

If μ = 0, we can integrate (D16) analytically to obtain

Pwa = D2k7
BT 6

e 31π3

ρv8h̄7126
(Te − TL ). (D18)

The energy and density of a Weyl node are given by Eqs. (D3)
and (D4), and with dE/dt = −Pwa we obtain

dTe

dt
= −γwanT 3

e (Te − TL ), (D19)

where γwan = 155πD2k3
B/147ρv5h̄4. If Te � TL, Te relaxes as

a power law [21],

Te = T0

(1 + 3γwanT 3
0 t )1/3

, (D20)

with timescale 1/3γwanT 3
0 , but if Te � TL, Te relaxes exponen-

tially with timescale 1/γwanT 3
L .

b. High-density limit

Using Eqs. (D8), (D9), and (D16), we have to leading order
[21]

d

dt
kBTe ∼ −γwad

1

Te
(Te − TL ), (D21)

where γwad = D2μ4/3π3ρv5h̄4. So for Te � TL the relaxation
is linear,

kBTe ∼ kBT0 − γwadt, (D22)

with a rate that scales as ∼n4/3 with the electron density. In
the limit Te � TL, the relaxation is exponential with timescale
TL/γwad ∼ n−4/3.

APPENDIX E: PHONON COOLING POWER
IN GRAPHENE

In this Appendix, we calculate the temperature relaxation
in graphene due to acoustic and optical phonons. The dis-
persion relation of quasiparticles near a nodal point is εnk =
nvh̄k, where k = |k| is a 2D wave vector.

1. Optical phonon relaxation

Following the same steps as in Appendix B and using ωq =
ω0 and Mq = g2/V , we obtain [16]

Pgo = g2ω4
0

2πv4h̄
F (μ, Te)(Ne − NL ), (E1)

where F is given in Eq. (11) and Eqs. (15) and (21) are valid
for graphene too.

a. Low-density limit

Case 1: h̄ω0 � kBTe � TL, μ. The energy and particle
density, E = vh̄I2+/2π and n = I1−/2π , are the same as for
NLSMs [Eqs. (16) and (17)] except for a trivial factor of Q,
which is absent in graphene. Defining as before β̄ ≡ h̄ω0/kBTe

and using (E1), we find

∂β̄

∂t
= γgon1(β̄4 + 36ζ (3)β̄ + · · · )e−β̄ , (E2)

where γgon1 = g2ω0/54ζ (3)v2h̄2 and to leading order in β̄ �
1 we obtain an inverse log form,

kBTe = h̄ω0

log(γgon1β̄
4
0 t + eβ̄0 )

. (E3)

Case 2: kBTe � h̄ω0, kBTL, μ. In the opposite regime
where kBTe � h̄ω0 the same considerations apply as in
NLSMs, and we obtain an exponential relaxation [see
Eq. (22)], but the factor of Q is absent in graphene.

b. High-density limit

The considerations in Sec. III B apply for graphene as well.
We obtain the same relaxation forms as in Eqs. (27) and (29),
but the factor of Q is absent in graphene.

2. Acoustic phonon relaxation

The temperature relaxations due to acoustic phonon scat-
tering in NLSMs and graphene are different because the nodal
line affects NLSMs in a nontrivial way (see Appendix C). The
temperature relaxation in graphene due to acoustic phonons
was presented by Bistritzer and MacDonald [16] and is in-
cluded here for comparison with NLSMs. From Eq. (8) we
obtain

Pga = D2kB

ρv2h̄2π
I3+(Te − TL ), (E4)

where I3+ is given in Eq. (C8) and in closed form in Ref. [17].

a. Low-density limit

Equations (16) and (17) in the limit μ � kBTe are also valid
for graphene if we omit the factor of Q. From the equation of
motion (∂E/∂Te)(∂Te/∂t ) = −Pga we obtain

dTe

dt
= −γganT 2

e (Te − TL ), (E5)

where γgan = D2k2
B7π4/540ζ (3)ρv4h̄3. This means Te =

T0/(1 + t/τgan)1/2 for Te � TL. Te is an exponential function
with timescale 1/γganT 2

L for Te � TL.

b. High-density limit

Equations (24) and (25) are also valid for graphene after
omitting the factor of Q, and we obtain

dTe

dt
= −γgad

1

Te
(Te − TL ), (E6)

where γgad = 3D2μ3/4π2kBρv4h̄3. This means the relaxation
is linear for Te � TL, and the rate scales as ∼n3/2 with electron
density. The relaxation is exponential for Te � TL.
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