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Static-to-dynamic field conversion with time-varying media
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We theoretically demonstrate that a uniform static electric field distribution can be partially converted to
radiation fields when a portion of the medium undergoes a temporal change of its permittivity. An in-depth
theoretical investigation of this phenomenon is developed for a dielectric block with a steplike temporal change
located inside a waveguide charged with a DC voltage source. Closed analytical expressions are derived for the
radiated electric and magnetic fields. The exchange of energy between the electrostatic and electromagnetic fields
is discussed. The reconciliation between the seemingly contradictory temporal and spatial boundary conditions
for the electric and magnetic fields at the interface of the time-varying dielectric block is analyzed and elucidated.
Our findings may provide an alternative solution for generating electromagnetic radiation based on time-varying
media.
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I. INTRODUCTION

Investigations on the electrodynamics of time-varying
media, which possess temporal-dependent electromagnetic
parameters (permittivity and/or permeability), date back to
the middle of the last century. The first investigation be-
longs to Morgenthaler [1], who published pioneering work
on the dynamics of plane waves propagating in an un-
bounded homogeneous medium with a temporal-dependent
refractive index. It was demonstrated that an abrupt temporal
change in the medium refractive index leads to backward-
and forward-propagating waves, showing the temporal ana-
log of the spatial interface between two media with different
electromagnetic parameters. Since then, other aspects of
wave propagation in time-varying media, including source-
dependent phenomena [2] and reflection (transmission) from
(into) a semi-infinite temporal slab [3], have been ex-
plored [4]. In recent years there has been an increasing
interest in time-varying media from both the engineering
and the physics communities, driven primarily by the fact
that they have opened the door to various interesting wave
phenomena such as nonreciprocal transmission [5], virtual
absorption [6,7], and temporal aiming [8], to name a few.

One particularly interesting effect in time-modulated me-
dia is conversion of static energy to radiation. In the past
decades, this phenomenon, named transition scattering, was
introduced by Ginzburg [9], who investigated the electro-
magnetic radiation generated by a stationary electron in a
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material modulated in time by a monochromatic acoustic
wave. Subsequent works have explored a related phenomenon
in plasma physics [10–14], providing an alternative method
for the design of high-power sources. Demonstrating similar
effects in dielectric media may open exciting opportunities for
new types of sources, antennas, and energy converters.

Here, we revisit this stationary approach by treating the
transient case. We demonstrate that applying an abrupt change
in the electric permittivity of a dielectric slab immersed
in an electrostatic field leads to controllable conversion of
electrostatic energy to radiation. In contrast to previous stud-
ies [9–14], we investigate this effect through an in-depth
theoretical analysis, shedding light on several aspects related
to the physics of the problem such as causality and power flow.
Moreover, we discuss the roles of the continuity conditions of
the electric and magnetic fields’ tangential components at the
interface of a stationary (no time-varying) medium and a time-
dependent medium, and show how they can be reconciled,
overcoming a contradiction that seems to exist between them.

A conceptual representation of a time-varying dielectric
structure for converting electrostatic to radiation fields is
displayed in Fig. 1. Let us assume a dielectric block with
permittivity ε1 is immersed in a uniform static electric field
(e0), as shown in Fig. 1(a). Then, we assume that the dielectric
block, after it has been fully polarized by e0 and the system has
reached the steady state, undergoes a change of its permittivity
in time in a rapid-step fashion from ε1 to ε2, as shown in
Fig. 1(b). The permittivity is assumed to be dispersionless,
and both values are taken to be real positive larger than unity.
The dispersionless assumption is justified assuming that the
resonance frequency of the material is very high [15]. This
change of the permittivity perturbs the electrostatic field dis-
tribution inside the dielectric block established by e0. Such
perturbation results from the condition of temporal continuity
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FIG. 1. Conceptual representation of static-to-radiative field conversion based on time-varying media. (a) A time-varying dielectric block
embedded in a uniform static electrostatic field e0. (b) Temporal profile of permittivity, which changes from a positive value ε1 to another
positive value ε2 at t = t0. (c) Sketch of the wave phenomenon generated by the change of the permittivity of the dielectric block.

of the electric displacement d [16] at the time instant (t = t0)
of changing the permittivity value. The material parameters
of the region outside the dielectric are assumed to be tempo-
rally stationary, and thus no temporal boundary conditions are
applied there. It might appear that the tangential components
of the electrostatic field are discontinuous across the spatial
boundary of the dielectric block in Fig. 1(a) when the per-
mittivity experiences a temporal change. However, in the
analysis that follows, we prove that this is not the case and
the condition of spatial continuity of the tangential electric
field components across the spatial boundary of a dielectric
block undergoing a stepwise temporal change of permittivity
is indeed satisfied through the generation of electromagnetic
pulses on the boundary, which propagate on either side of the
boundary and lead to partial conversion of the electrostatic
field to radiation fields, as shown schematically in Fig. 1(a).

II. TIME-VARYING DIELECTRIC BLOCK IN A
PARALLEL-PLATE METALLIC WAVEGUIDE
CHARGED WITH A DC VOLTAGE SOURCE

We now study analytically the time-dependent feature in-
troduced above. Without loss of generality and for the sake
of simplicity, instead of considering a time-varying dielectric
block standing in an open space as in Fig. 1, we focus on
the parallel waveguide scenario in Fig. 2(a). The structure
is assumed to be invariant along the y direction, infinite in
the z direction, and bounded in the x direction. The struc-
ture consists of a time-varying dielectric rectangular block
of size 2L × d sandwiched between two horizontal, impene-
trable [e.g., perfectly electric conducting (PEC)] walls. The
regions outside the time-varying dielectric block are filled
with air. In order to create a static electric field distribution
inside this structure, we can imagine connecting the metallic
plates to a constant (DC) voltage source (i.e., battery). After
the initial transient has passed, the voltage source establishes
an x-directed uniform static electric field inside the structure
given by es

x = V/d , with V and d the voltage across the PEC
plates and the separation between them, respectively. Once es

x

has been established inside the whole structure and the system
has reached a steady state, the permittivity of the dielectric
block is made to vary in time rapidly. We assume that the
relative permittivity (εr) rapidly switches from one value εr1

to a different one εr2 (both positive values greater than unity)
at t = 0, as shown in the inset of Fig. 2(a).

Due to the symmetry of the structure in Fig. 2(a) with
respect to the plane z = 0 and the distribution of es

x, we can
analyze the response of the system by solving the reduced
structure in Fig. 2(b). It consists of half of the structure to the
right of the symmetry plane (z = 0) and a perfectly magnetic
conducting (PMC) wall on that plane. The field distribution on
the left side of the symmetry plane will be the mirror image of
that on the right side. A suitable way of solving the problem
under study is to formulate it as an initial value problem
of Maxwell equations for transverse electromagnetic (TEM)
waves propagating in the z direction. As initial values we
consider the value of the electric field at t = 0+, i.e., just after
the change of the permittivity, in the air and dielectric regions,
given by esa

x (z, 0+) = es
x and esd

x (z, 0+) = εr1
εr2

es
x, respectively.

FIG. 2. Parallel waveguide scenario under study. (a) A time-
varying dielectric rectangular block of size 2L × d is placed at the
center of a waveguide filled with air. The PEC walls of the waveguide
are connected to a DC voltage source establishing uniform static
electric field inside the waveguiding structure. The time-dependent
relative permittivity [εr (t )] of the dielectric is shown in the inset.
(b) The waveguide is terminated with a PMC wall.

144301-2



STATIC-TO-DYNAMIC FIELD CONVERSION WITH … PHYSICAL REVIEW B 105, 144301 (2022)

FIG. 3. Spatial distribution of the electric field (a)–(d), and the Poynting vector (e)–(h), at time instants t = 0.1T , 0.7T , 1.3T , and 2.2T
inside the waveguide of Fig. 2(b). The arrows in the top panels (a)–(d) and in the bottom panels (e)–(h) indicate the direction of propagation
of the plane waves presenting into the waveguide at the considered time instants and of the corresponding Poynting vectors, respectively.

These fields are obtained by considering that across the in-
stant t = 0, esa

x remains continuous while esd
x is discontinuous,

modeling the disturbance caused by the permittivity change,
and its value at t = 0+ is obtained by imposing the tem-
poral continuity of d. Solution of Maxwell equations with

these initial conditions can be achieved through the Laplace
transform (a complete derivation of the fields is given in
Appendixes A, B, and C), leading to the following expressions
for the time-dependent electric fields in the dielectric and air
regions for t > 0:

ea
x (z, t ) = es

x
√

εr2

1 − √
εr2

(
εr1

εr2
− 1

){
−γ u

[
t − 1

ca
(z − L)

]
+ (1 − γ )

∞∑
n=1

γ nu

[
t − 1

ca
(z − L) + 2nT

]}
+ u(t )es

x, z � L, (1)

ed
x (z, t ) = es

x√
εr2 + 1

(
1 − εr1

εr2

) ∞∑
n=0

γ n

{
u

[
t − 1

cd
(L − z) − 2nT

]
+ u

[
t − 1

cd
(z + L) + 2nT

]}
+ u(t )

εr1

εr2
es

x, 0 � z < L,

(2)

with ca the speed of light in air, cd = ca/
√

εr2, γ =
(
√

εr2 − 1)/(
√

εr2 + 1) (reflection coefficient at section z = L
assuming the incident wave coming from the dielectric re-
gion), u(α) is the Heaviside unit function, which equals 1
for α > 0 and zero for α < 0, and T = L/cd is the time
of propagation between the air-dielectric interface and the
magnetic wall. Equations (1) and (2) can be viewed as a
superposition of static and dynamic electric fields. The term
u(t ) represents the static electric field with amplitude equal to
the corresponding region’s initial value. The dynamic elec-
tric field consists of an infinite number of waves traveling
along the z axis with different amplitudes and a time delay
2T from each other, equal to the time it takes a wave to
propagate through the dielectric slab. As expected, Eq. (1),
describing the air region’s electric field, contains plane waves
of the form u[t − 1

cair
(z − L) + 2nT ], which propagate out-

ward from the air-dielectric interface (z = L). On the other
hand, Eq. (2), describing the dielectric region’s electric field,
contains an infinite number of plane waves of the form
u[t − 1

cd
(L ± z) ± 2nT ], which propagate both inward and

outward from the same interface, as a result of reflection on
the two boundaries of the dielectric slab (the air-dielectric
interface and the PMC wall). Using Eqs. (1) and (2), and
the time-dependent Maxwell equations, it is straightforward
to also calculate the magnetic field in the dielectric and air re-
gions. As shown in Appendix B, in both regions, the magnetic

field, as expected, is directed along the y axis and is dynamic
only [its expression does not contain terms with u(t )]. The
analytical expressions for both the electric and magnetic fields
have been validated through comparison against numerical
solutions (Appendix B).

To get a better understanding of the temporal evolution
of this wave phenomenon and the associated energy flow,
we now look into the spatial distribution of the electric field
and the instantaneous Poynting vector inside the waveguide
at four different time instants (t = 0.1T, 0.7T, 1.3T, 2.2T ).
Hereafter, we assume that the length of the dielectric block is
L and its relative permittivity changes from εr1 = 8 to εr2 =
4. The spacing and the DC voltage between the waveguide
metallic plates are d = 1 mm and V = 1 V, respectively. With
this spacing and voltage, at the steady state the electrostatic
field inside the waveguide is uniform and equal to 1 V/mm.
As mentioned earlier, the change of the dielectric-block per-
mittivity occurs at t = 0. According to the temporal boundary
conditions, this change perturbs the electrostatic field distri-
bution in the dielectric region, transforming its value from
1 to 2 V/mm, while the value of the electrostatic field in
the air region is still equal to 1 V/mm. Now, observing the
spatial distribution of the electric field a bit after t = 0, say
t = t1 = 0.1T , shown in Fig. 3(a), we notice that there is a
region across the air-dielectric interface where the electric
field is between 1 and 2 V/mm. Quite importantly, the electric
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field is continuous across the spatial boundary, as required by
the spatial boundary conditions. From Eqs. (1) and (2), we can
identify this field with the plane waves 2/3u[t1 − (z − L)/ca]
and −1/3u[t1 − (L − z)/cd ], propagating in opposite direc-
tions off the dielectric-air interface with velocities equal to
the wave velocities in the two media. Figure 3(e) displays
the z component of the instantaneous Poynting vector (Sz)
at the same time instance (t = t1) as Fig. 3(a). The other
components of the Poynting vector are equal to zero as we
are considering TEM plane waves with respect to the z axis.
By comparing Figs. 3(a) and 3(e), one can observe that, as
expected, Sz is different than zero only in the region between
the two wavefronts and points in the positive z direction,
showing power flow from the dielectric medium to air. Hence,
the right-going plane wave, propagating in the air region along
the positive z axis, is a standard forward wave. On the other
hand, the left-going plane wave, propagating in the dielectric
region along the negative z axis, is a backward wave. At t =
t2 = 0.7T > t1, the two plane waves (2/3u[t2 − (z − L)/ca]
and −1/3u[t2 − (L − z)/cd ]) have propagated even further
from the air-dielectric interface as highlighted by the po-
sition of their wavefronts [see Fig. 3(b)], and a greater
presence of electromagnetic energy movement is observed
in the waveguide [see Fig. 3(f)]. At t = T (T the time
delay introduced by the dielectric block), the plane wave,
−1/3u[T − (L − z)/cd ], propagating inside the dielectric, hits
the perfect magnetic wall located at z = 0, generating a sec-
ond plane wave, represented by −1/3u[t − (z + L)/cd ] in
Eq. (2), which is added to the electric field established by
the first wave −1/3u[t2 − (L − z)/cd ], resulting in a field
distribution as in Fig. 3(c). On the other hand, in the air re-
gion there is still the same plane wave (2/3u[t3 − (z − L)/ca])
that was propagating in it during the previous time interval
(0 < t < T ), which is perturbing the electrostatic field dis-
tribution established by the voltage source. From Fig. 3(g),
which displays the distribution of Sz into the waveguide
at the same time instant (t = t3) of the electric field in
Fig. 3(c), we notice that Sz is positive also at this time in-
stant, showing flow of energy from the dielectric to air. At
t = 2T , the plane wave −1/3u[t − (z + L)/cd ] propagating
in the dielectric reaches the air-dielectric interface (section
z = L) and experiences a reflection, resulting in a pulse again
propagating toward the PMC wall in the dielectric region
(−1/9u[t − (L − z)/cd − 2T ]) and another pulse that per-
turbs the field in the air region (−4/9u[t − (z − L)/ca + 2T ]),
as can be seen in Fig. 3(d). At the same time, the direc-
tion of power flow is still from the dielectric to air region
[see Fig. 3(h)]. As time passes, due to the spatial bound-
aries located at z = 0 (perfect magnetic wall) and z = L
(air-dielectric interface), the number of plane waves prop-
agating into the waveguide increases as described by the
summations in Eqs. (1) and (2). However, all waves in both
regions always carry power from the dielectric to air re-
gion. At t → ∞, the amplitudes of the plane waves, given
by |γ |n, decay to zero, since |γ | < 1, and the electric field
converges to the uniform static electric field (es

x) established
inside the waveguide by the DC voltage source. This point
highlights the transitory nature of the wave phenomenon
induced by the change of the dielectric-block permittivity,
which generates a series of plane waves whose amplitude

vanishes after some time and the system returns to its
steady state (see Appendix C). The Fourier transform of
the electric field in the air region [Eq. (1)] assumes the
shape of a sinclike function, and is derived and discussed in
Appendix G.

III. ENERGY EXCHANGE BETWEEN THE
TIME-VARYING DIELECTRIC BLOCK

AND THE RADIATED WAVES

We now turn to the discussion of energy exchange hap-
pening in the system as a consequence of the permittivity
change of the dielectric block. To this end, we consider
W = |d|2L/(2ε)[J/m2], which is the electric energy density
stored in an electrostatic field distribution in a dispersionless
dielectric medium with permittivity ε and length L. By means
of the previous equation, it is straightforward to derive the
electric energy densities associated to the electrostatic field
in the dielectric block before (t = 0−) and after (t = 0+)
the permittivity change. These energy densities are W0− =
1
2ε0εr1L(V

d )2 and W0+ = 1
2ε0

ε2
r1

εr2
L(V

d )2 at t = 0− and t = 0+,
respectively, with the latter derived from the continuity of d
across the temporal boundary at t = 0. Taking the difference
between W0+ and W0− , we find �W0 = 1

2ε0εr1L( εr1
εr2

− 1)(V
d )2,

which gives the energy supplied to or taken from the system
upon the change of the permittivity by an external agent
performing this change. For εr1 > εr2, which is the case dis-
cussed so far with εr1 = 8 and εr2 = 4, �W0 > 0 implying
that the permittivity change increases the electric energy den-
sity inside the dielectric block. This means that the external
agent provides energy to the dielectric block when changing
its permittivity. The second mechanism of energy exchange
occurs between the electrostatic energy in the dielectric block
and the electromagnetic energy propagating in the system.
The energy balance of this mechanism can be expressed as the
difference between the electric energy density in the dielectric
block at t = 0+ and after the transient time, that is, at t → ∞.
As discussed earlier, at t → ∞ the system has returned to a
steady state with a uniform static field distribution (V/d) and,
as a result, the electric energy density in the dielectric block
is given by W∞ = 1

2ε0εr2L(V
d )2. Therefore, the energy bal-

ance is �W∞ = 1
2

ε0
εr2

L(ε2
r2 − ε2

r1)(V
d )2. For εr1 > εr2, �W∞ <

0 meaning that the dielectric block loses part of its energy,
which is released in the form of electromagnetic energy travel-
ing away from the dielectric block. Indeed, as discussed above
and shown in Figs. 3(e)–3(h), the plane waves, produced by
the permittivity change, propagating in the waveguide have
a Poynting vector along the positive z axis and, therefore,
carry energy from the dielectric to the air region. The total
radiated energy density, given by the infinite set of plane
waves, is equal to −�W∞ (Appendix F), highlighting that the
difference between the electrostatic energy in the dielectric
block at t = 0+ and t → ∞ is fully released in the form of
electromagnetic energy in the air region.

So far, the discussion has focused on the case εr1 > εr2.
As for the case with εr1 < εr2, quite interestingly, the energy
flows in the opposite direction: from the air region to the
dielectric region. The plane waves traveling in the air region
carry energy to the dielectric block until the system reaches
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FIG. 4. Temporal evolution of the electric field, (a), (c), and the
magnetic field, (b), (d), at the observation points z = 0.9L, z = 1.1L
and z = 0.999 99L, z = 1.0001L, respectively.

the steady state, which is the same as the initial state. A com-
plete and detailed discussion of the case εr1 < εr2 is provided
in Appendix E.

IV. SPATIAL BOUNDARY CONDITIONS AT THE
INTERFACE OF A TIME-VARYING DIELECTRIC BLOCK
EMBEDDED IN A UNIFORM STATIC ELECTRIC FIELD

In the last part of this work, we will focus on the spatial-
continuity condition of the tangential components of electric
and magnetic fields across the air-dielectric interface in the
waveguide in Fig. 2(a) after the change of the permittivity
of the dielectric block (t > 0) from εr1 = 8 to εr2 = 4. To
this end, we plot ex [from Eqs. (1) and (2)] and hy [from
Eqs. (B17) and (B18) in Appendix B] as a function of time
at different observation points before and after the section
z = L. Figures 4(a) and 4(b) show the temporal evolution of
ex and hy, respectively, evaluated at the locations z = 0.9L and
z = 1.1L. As discussed before, the amplitude of ex decays
as time passes and after the transient time its value returns
to 1. Analogous behavior is observed for hy [Fig. 4(b)]; its
amplitude converges to zero after the transient time. As can
be seen from Fig. 4(a) [Fig. 4(b)], the temporal profiles of
ex (hy) evaluated at z = 0.9L and z = 1.1L do not overlap
with each other. Therefore, ex and hy seem to be discon-
tinuous across the air-dielectric interface (z = L). However,
moving the observation points even closer to z = L, such as
z = 0.999 99L and z = 1.000 01L, the temporal profiles of
ex (hy) at these two locations overlap with each other as
shown in Fig. 4(c) [Fig. 4(d)]. More rigorously, it can be
mathematically shown (Appendix D) that for time instants
very close to t = 0, yet with finite values, there is always
a region around the air-dielectric interface within which the
fields are continuous, as they should be. These results show
that that the condition of the spatial continuity of the tangen-
tial components of the fields across a time-varying dielectric
block embedded in a uniform static electric field is satisfied as
expected.

We emphasize that the phenomenon of static-to-dynamic
field conversion with time-varying media described in this
manuscript essentially remains even for slow permittivity

changes if the permittivity transition time is much smaller
than T. Additional results in this regard and a discussion on
potential pathways for experimental verifications are provided
in Appendixes H and I.

V. CONCLUSIONS

In conclusion, we have shown, using an analytical ap-
proach, how the static-to-dynamic field conversion can be
achieved through a time-varying dielectric block embedded
in an electrostatic field distribution. Such dielectric block ex-
periencing a change of its permittivity in time gives rise to
radiation fields. These fields start propagating into the sys-
tem from the spatial boundary of the time-varying material
enforced by the continuity of the electric and magnetic fields’
tangential components at such boundary. The radiation fields
carry the energy away from (into) the time-varying dielec-
tric block when decreasing (increasing) its permittivity. The
results presented here might find applications in the design
of electromagnetic sources in integrated systems, similar to
sources that have been demonstrated in the past in plasmas.
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APPENDIX A: INITIAL VALUE PROBLEM
FOR PLANE WAVES

This Appendix shows an analytical solution to the Maxwell
equations for TEM waves constrained by an initial value
defining the electric field’s value at the initial time instant, say,
t = 0+. Let ex(t, z) and hy(t, z) be the electric and magnetic
fields of a z-propagating TEM wave. For t < 0, the electric
field is equal to the DC field and the magnetic field is zero.
The fields satisfy the Maxwell equations,

∂ex(t, z)

∂z
+ μ

∂hy(t, z)

∂t
= 0, (A1)

∂hy(t, z)

∂z
+ ε

∂ex(t, z)

∂t
= 0, (A2)

with ε and μ the permittivity and the permeability of
the medium, respectively. The aim now is to solve these
coupled differential equations for t > 0 by taking into
account the electric field’s initial value at t = 0+. A suit-
able way to solve this problem is with the use of the
Laplace transform of ex(t, z) and hy(t, z) with respect to
t : Ex(s, z) = ∫ ∞

0 ex(t, z)e−st dt , Hy(s, z) = ∫ ∞
0 hy(t, z)e−st dt .

Applying these transformations to Eqs. (A1) and (A2), and us-
ing the differentiation properties of the Laplace transform [17]
we get

∂Ex(s, z)

∂z
+ sμHy(s, z) = 0, (A3)

∂Hy(s, z)

∂z
+ εsEx(s, z) − εex(0+, z) = 0, (A4)
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with ex(0+, z) the electric field’s value at t = 0+. Eliminating
Hy(s, z) from the previous equations, an ordinary, inhomoge-
neous, differential equation for Ex(s, z) is obtained, in which
s is treated as a parameter,

∂2Ex(z, s)

∂z2
− k2Ex(z, s) = ξ (z, s), (A5)

with k = s/c, c = 1/
√

εμ, and ξ (s, z) = − k2

s ex(0+, z). The
solution of Eq. (A5) is [17]

Ex(s, z) = c1ekz + c2e−kz + ekz

2k

∫
e−kzξ (z, s)dz

− e−kz

2k

∫
ekzξ (z, s)dz, (A6)

with c1 and c2 constants that are to be determined from the
spatial boundary conditions. Equation (A6) represents the
electric field of a plane wave in the Laplace domain con-
strained by the initial value ex(z, 0+).

APPENDIX B: ANALYTICAL SOLUTION

Here, building on the discussion of the previous Appendix,
we provide an analytical solution of the transient electric and
magnetic fields resulting from the abrupt temporal change of
the relative permittivity [εr (t )] of the dielectric block in the
waveguiding system of Fig. 2(b). As discussed in the main
text, it is assumed that εr (t ) suddenly varies between two
positive values at t = 0, once the DC voltage source, con-
nected to the metallic plates, has already established a uniform
static electric field (es

x) inside the waveguide. The change of
permittivity results in a jump of the electrostatic field inside
the dielectric block, which can be derived by applying the
continuity of d at t = 0, as d−δ = dδ in the limit when δ → 0.
Based on this, the electrostatic field inside the dielectric block

at t = 0+ (right after the permittivity change) is found:

esd
x = εr1

εr2
es

x. (B1)

On the other hand, the permittivity in the air region does
not change, and the electrostatic field stays continuous across
t = 0 and its value at t = 0+ reads

esa
x = es

x. (B2)

These initial values (esd
x and esa

x ), which model the dis-
turbance caused by the permittivity change of a portion of
the medium inside the waveguide, can be used in the initial
value problem discussed in the previous Appendix to study
the temporal evolution of the system for t > 0.

1. Laplace domain

Plugging the initial values of Eqs. (B1) and (B2) into
Eq. (A6), we can readily derive the electric field in the di-
electric and air regions in the Laplace domain,

Ed
x (s, z) = Aekd z + Be−hd z + 1

s

εr1

εr2
es

x 0 � z � L, (B3)

Ea
x (s, z) = Cekaz + De−kaz + 1

s
es

x z � L, (B4)

with ca the speed of light in free space, ka,d = s/ca,d , and
cd = ca/

√
εr2. The magnetic field in both regions (Hd

y and
Ha

y ) can be derived from Eqs. (A3) and (A4). The four un-
known constants (A, B,C, D) can be obtained by applying
the conservation of the transverse components of the electric
and magnetic fields at the interface z = L [see Fig. 2(b)],
zeroing the tangential components of the magnetic field at
the interface z = 0, and the radiation condition at z → ∞. In
doing so, we obtain the following expressions for the electric
and magnetic fields in the two regions:

Electric field:

Ed
x (s, z) = es

x

1

s

(
1 − εr1

εr2

)[
ka(ekd z + e−kd z )

ka(ekd L + e−kd L ) + kd (ekd L − e−kd L )

]
+ 1

s

εr1

εr2
es

x 0 � z � L, (B5)

Ea
x (s, z) = es

x

eka(L−z)

s

(
−1 + εr1

εr2

)[
kd (ekd L − e−kd L )

ka(ekd L + e−kd L ) + kd (ekd L − e−kd L )

]
+ 1

s
es

x z > L. (B6)

Magnetic field:

Hd
y (s, z) = es

x

ka

μ0s2

(
−1 + εr1

εr2

)[
kd (ekd z − e−kd z )

ka(ekd L + e−kd L ) + kd (ekd L − e−kd L )

]
0 � z � L, (B7)

Ha
y (s, z) = es

x

eka (L−z)

μ0s2

(
−1 + εr1

εr2

)[
kakd (ekd L − e−kd L )

ka(ekd L + e−kd L ) + kd (ekd L − e−kd L )

]
z > L, (B8)

with μ0 the free space permeability. The remaining difficulty
is transforming the expressions of the derived fields in the
Laplace domain to the time domain, which is the subject of
the next section.

2. Time domain

The most common technique for performing the inverse
Laplace transform of complex functions consists of evaluating
a contour integral with the residue theorem [18]. Although

such technique can be applied to Eqs. (B5)–(B8), we have
followed a different way: reducing such equations into a
composition of functions whose inverse Laplace transform is
known. Let us begin with the electric field in the dielectric
region [Eq. (B5)]. The right-hand side of Eq. (B5) exhibits
a singular behavior in the complex s plane at s = 0 and
sm = cd

2L (ln γ + 2imπ ) with m = 0, ±1, ±2, . . . , i = √−1,

and γ =
√

εr2−1√
εr2+1 (the reflection coefficient at the air-dielectric

interface). It is straightforward to show that these singular-
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ities are poles of Ed
x and, as 0 � |γ | < 1, they lie in the

open left half of the complex s plane including the imaginary
axis. Therefore, expressing s = σ + iω (σ and ω are two real
numbers), the existence region of Ed

x , which defines the set
of s values where the integral in the definition of Laplace
transform converges [18], is given by σ > 0. Since this region
does not include the imaginary axis of the s plane (σ = 0),
one can state that the inverse Laplace transform of Ed

x , corre-
sponding to the time-domain electric field [ed

x (t, z)], is only
marginally stable. Nevertheless, ed

x (t, z) asymptotically (for
t → ∞) converges to a finite value, as will be shown later.

After discussing the existence region and the stability of
Ed

x , we proceed to carry out its inverse Laplace transform.
Substituting ka,d = s/ca,d in Eq. (B5) and simplifying, we
obtain

Ed
x (s, z) = es

x

s

(
1 − εr1

εr2

)(
e

s
cd

(z−L) + e− s
cd

(z+L))

× e2 s
cd

L

e2 s
cd

L(
√

εr2 + 1) + 1 − √
εr2

+ 1

s

εr1

εr2
es

x. (B9)

By inspecting the previous equation, with

Q ≡ e2 s
cd

L

e2 s
cd

L(
√

εr2 + 1) + 1 − √
εr2

, (B10)

one can notice that except for Q the other terms are in the form
for which the inverse Laplace transform is known. Replacing

e2 s
cd

L with 1/w in Eq. (B10) and rearranging, we get

Q = 1

1 + √
εr2

1

1 − γw
. (B11)

The second term in the previous equation can be expanded
as a geometric series with an argument (−γw). Therefore, Q
can be rewritten as

Q = 1

1 + √
εr2

(1 + γw + γ 2w2 + γ 3w3 + · · ·)

= 1

1 + √
εr2

∞∑
n=0

(γw)n. (B12)

As is well known, the geometric series converges when the
absolute value of its argument is smaller than 1. This condition
for the series in Eq. (B12) implies |γw| < 1. Substituting w =
e−2 s

cd
L, s = σ + iω, and γ =

√
εr2−1√
εr2+1 in the previous inequality

and solving for σ , we obtain

σ > − cd

2L
ln

(√
εr2 + 1√
εr2 − 1

)
, (B13)

which defines the region of convergence in the s plane for the
series in Eq. (B12). For εr2 � 1, which is the case considered
in this work, the right-hand side of the previous inequality will
always be a negative real number. As a result, the inequality
in (B13) holds for any complex value inside the existence
region of Ed

x , which, as discussed above, is given by σ > 0,
and Q in Eq. (B9) can be expressed as in Eq. (B12) to perform
the inverse Laplace transform of Ed

x [Eq. (B9)]. Substituting
Eq. (B12) in Eq. (B9) and rearranging, we obtain

Ed
x (s, z) = es

x√
εr2 + 1

(
1 − εr1

εr2

)
1

s

[ ∞∑
n=0

γ n
(
e

s
cd

[z−(2n+1)L] + e− s
cd

[z+(2n+1)L])] + 1

s

εr1

εr2
es

x. (B14)

Now, the time-domain expression of Ed
x can be easily carried out through the standard Laplace transform table. In doing so,

we obtain

ed
x (t, z) = es

x√
εr2 + 1

(
1 − εr1

εr2

) ∞∑
n=0

γ n

{
u

[
t − 1

cd
(L − z) − 2nT

]
+ u

[
t − 1

cd
(z + L) − 2nT

]}
+ u(t )

εr1

εr2
es

x 0 � z < L.

(B15)

Following the procedure discussed to derive ed
x (z, t ), we have carried out the inverse Laplace transform of the electric field in

the air region [Eq. (B6)], and its time-domain expression reads

ea
x (t, z) = es

x
√

εr2

1 − √
εr2

(
εr1

εr2
− 1

){
−γ u

[
t − 1

ca
(z − L)

]
+ (1 − γ )

∞∑
n=1

γ nu

[
t − 1

ca
(z − L) − 2nT

]}
+ u(t )es

x z � L. (B16)

Regarding the inverse Laplace transform of the magnetic field in the air and dielectric regions [Eqs. (B7) and (B8)], the
procedure adopted for the electric field can be followed. However, as we have already derived the time-domain electric field in
both regions, it is more convenient to go through the time-dependent Maxwell equations. Using Eqs. (B15) and (B16) with the
Maxwell equation (A1), one can derive the time-dependent magnetic field in both regions,

hd
y (t, z) = 1

μ0cd

es
x√

εr2 + 1

(
1 − εr1

εr2

) ∞∑
n=0

γ n

[
−u

(
t − L − z

cd
− 2nT

)
+ u

(
t − z + L

cd
− 2nT

)]
0 � z < L, (B17)

ha
y (t, z) = es

x

μ0ca

√
εr2

1 − √
εr2

(
εr1

εr2
− 1

)[
−γ u

(
t − z − L

ca

)
+ (1 − γ )

∞∑
n=1

γ nu

(
t − z − L

ca
− 2nT

)]
z � L, (B18)

with μ0 the free space permittivity.
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FIG. 5. Analytical and numerical distribution of the electric and magnetic fields at the location z = 1.5 mm (a) and z = 20 mm (b).

It is important to note that when the dielectric block is changed to free space (εr2 = 1), the spatial boundary at the section
z = L disappears, and as a result, the reflection coefficient (γ ) at the same section becomes zero. With this setup, Eqs. (B15)–
(B18) reduce to

ed
x (t, z) = es

x

2
(1 − εr1)

[
u

(
t − L − z

ca

)
+ u

(
t − z + L

ca

)]
+ εr1es

xu(t ) 0 � z < L, (B19)

ea
x (t, z) = es

x

2
(εr1 − 1)

[
u

(
t − z − L

ca

)
− u

(
t − z + L

ca

)]
+ es

xu(t ) z � L, (B20)

hd
y (t, z) = es

x

2μ0ca
(1 − εr1)

[
−u

(
t − L − z

ca

)
+ u

(
t − z + L

ca

)]
0 � z < L, (B21)

ha
y (t, z) = es

x

2μ0ca
(εr1 − 1)

[
u
(
t − z − L

ca

)
− u

(
t − z + L

ca

)]
z � L, (B22)

respectively. Comparing Eqs. (B15)–(B18) with Eqs. (B19)–
(B22), one can observe that, as expected, the multiple
reflection process, undergoing for εr2 > 1 (see discussion in
the main text), does not happen for εr2 = 1. For 0 < t <

L/ca, the dynamic electric field into the waveguiding system
can be identified with the plane waves, es

x
2 (1 − εr1)u(t − L−z

ca
)

and es
x

2 (εr1 − 1)u(t − z−L
ca

) [see Eqs. (B19) and (B20)], prop-
agating in opposite directions off z = L. The former wave,
hitting the PMC wall at t = L/ca, gives rise to another wave,
es

x
2 (εr1 − 1)u(t − z+L

ca
) [see Eq. (B19)], propagating in the

same region (0 � z � L) but in the opposite direction (along
the positive z axis). This wave reaches the boundary z = L at
t = 2L/ca, and as γ = 0, in contrast to the case with εr2 > 1,
it does not experience any reflections (no reflected waves)
and results in the wave es

x
2 (εr1 − 1)u(t − z+L

ca
) [see Eq. (B20)]

propagating in the region z � L for t > 2L/ca.

3. Analytical vs numerical solutions

A numerical simulation of the waveguiding system in
Fig. 2(b) has been carried out using the time-domain solver
of the commercial software COMSOL MULTIPHYSICS. A lumped
port, connected on the opposite side of the PMC wall, has been
used to establish an electrostatic field equal to es

x = 1 V/mm
between the PEC walls at a distance d = 1 mm apart. The
relative permittivity of the dielectric block, which is L= 3 mm
long, changes abruptly from εr1 = 8 to εr2 = 4. This sudden
change has been modeled through a steplike function with
two continuous derivatives to ensure the convergence of the
simulation. Figures 5(a) and 5(b) compare the analytical and
numerical distribution of the electric and magnetic fields as
a function of time at locations z = 1.5 mm and z = 20 mm,
respectively. The numerical solutions (continuous green lines)
agree well with the analytical solutions (continuous blue lines)
obtained from Eqs. (B15)–(B18). The numerical solutions
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are slightly oscillating compared to the analytical solutions.
This small difference between the two solutions can be at-
tributed to the intrinsic low-pass response of the numerical
solutions.

APPENDIX C: THE LIMIT t → ∞
In this section, we discuss the time evolution of the fields

for t → ∞. Recalling that limt→∞u(t − a) = 1 with a ∈ R,
Eqs. (B15) and (B16) for t → ∞ reduce to

ed
x (t → ∞, z) = 2es

x√
εr2 + 1

(
1 − εr1

εr2

) ∞∑
n=0

γ n

+ εr1

εr2
es

x 0 � z < L, (C1)

ea
x (t → ∞, z) = es

x

√
εr2

1 − √
εr2

(
εr1

εr2
− 1

)

×
[
−γ + (1 − γ )

∞∑
n=0

γ n − (1 − γ )

]

+ es
x z � L. (C2)

Substituting
∑∞

n=0 γ n = 1
1 − γ

(geometric series sum) and

γ =
√

εr2−1√
εr2+1 (reflection coefficient at z = L) in the previous

equations and simplifying, we obtain ed
x (t → ∞, z) =

ea
x (t → ∞, z) = es

x, showing that the electric field distribution
into the waveguide at t → ∞ converges to a finite value,
equal to the initial electrostatic field value (es

x). Following a
similar procedure for the magnetic field, it is straightforward
to show that hd

y (t, z) and ha
y (t, z) in Eqs. (B17) and (B18)

converge to zero for t → ∞. Thus, we conclude that after
the transient fields induced by the change of the dielectric-
block permittivity have passed, the system returns to its initial
steady state.

APPENDIX D: CONTINUITY OF ELECTRIC AND
MAGNETIC FIELDS AT THE INTERFACE OF A

TIME-VARYING DIELECTRIC BLOCK

Here, we examine the continuity of the total tangential
components of the electric and magnetic fields across the
interface of the time-varying dielectric block after the change
of its permittivity (t > 0). First, let us evaluate the derived
expressions of the electric and magnetic fields in the dielectric
and air regions at the location of the interface between the two
regions (z = L). Plugging z = L in Eqs. (B15) and (B16), we
get

ed
x (t, L) = es

x√
εr2 + 1

(
1 − εr1

εr2

) ∞∑
n=0

γ n{u(t − 2nT ) + u[t − 2T (1 + n)]} + εr1

εr2
es

xu(t ), (D1)

ea
x (t, L) = es

x

√
εr2

1 − √
εr2

(
εr1

εr2
− 1

)[
−γ u(t ) + (1 − γ )

∞∑
n=1

γ nu(t − 2nT )

]
+ es

xu(t ). (D2)

Subtracting Eq. (D1) from Eq. (D2) and rearranging, we obtain

ed
x (t, L) − ea

x (t, L) = es
x√

εr2 + 1

(
1 − εr1

εr2

){
(1 + √

εr2)u(t ) + [(1 + γ ) − √
εr2(1 − γ )]

∞∑
n=0

γ nu[t − 2(n + 1)T ]

}

+
(

εr1

εr2
− 1

)
es

xu(t ). (D3)

Substituting γ =
√

εr2−1√
εr2+1 in the previous equation, we can readily show that ed

x (L, t ) − ea
x (L, t ) = 0 for any t > 0. Repeating

the same procedure for the magnetic field expressions in Eqs. (B17) and (B18), we get hd
x (t, L) − ha

x (t, L) = 0 for any t > 0.
This proves that the electric and magnetic fields across the interface of a time-varying dielectric block immersed in a uniform
static electric field are expectedly continuous.

APPENDIX E: INCREASING THE PERMITTIVITY
OF THE TIME-VARYING DIELECTRIC BLOCK

In the main text, we have discussed the case when the initial
value of the dielectric-block permittivity (εr1) is suddenly
changed in time to a smaller value (εr2 < εr1). Here, we dis-
cuss the opposite case: The initial value of the dielectric-block
permittivity is changed in time to a larger value (εr2 > εr1).
To this end, we assume that the permittivity of the dielectric
block of length L changes abruptly from εr1 = 4 to εr2 = 8
at t = 0. This change occurs once a uniform static electric
field with intensity es

x = 1 V/mm has been established inside
the waveguide. With this setup, according to the temporal
boundary condition, the value of the electrostatic field in the

dielectric region at t = 0+ (right after the permittivity change)
is transformed from 1 to 0.5 V/mm, while in the air region it
is still equal to 1 V/mm. Analogously to the case discussed
in the main text, looking at the electric field distribution
inside the waveguide at t = t1 = 0.1T [see Fig. 6(a)], one
can observe a region across the air-dielectric interface where
the electric field is continuous and assumes a value between
0.5 and 1 V/mm. From Eqs. (B15) and (B16), we can asso-
ciate this field with two plane waves ( 1

2+4
√

2
u[t1 − (L − z)/cd ]

and −
√

2
1+2

√
2
u[t1 − (z − L)/ca]) propagating away from the

section z = L with velocities equal to the phase velocity of
the two media. Figure 6(b) shows the z component of the
instantaneous Poynting vector, Sz, at the same time instant
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FIG. 6. Spatial distribution of the electric field (a), (c), (e), and the Poynting vector (b), (d), (f), at time instants t = 0.1T , 1.2T , and 2.2T
when the dielectric block relative permittivity changes from εr1 = 4 to εr2 = 8.The arrows in the top panels (a), (c), (e) and in the bottom
panels (b), (d), (f) indicate the direction of propagation of the plane waves and of the corresponding Poynting vectors, respectively.

(t = t1). Sz is directed along the negative z axis revealing
that the energy flows from the air to the dielectric region,
conversely to the case with εr2 < εr1. This implies that the
right-going plane wave (−

√
2

1+2
√

2
u[t1 − (z − L)/ca]), traveling

in the air region, is a backward wave while the left-going
plane wave ( 1

2+4
√

2
u[t1 − (L − z)/cd ]), traveling in the di-

electric region, is a forward wave. At t = T , the left-going
plane wave hits the PMC wall generating a second plane
wave, 1

2+4
√

2
u[t − (z + L)/cd ] [see Eq. (B15)]. This wave,

adding to the electric field established by the previous wave,
1

2+4
√

2
u[t − (L − z)/cd ], results in the electric field distri-

bution shown in Fig. 6(c) at t = t2 = 1.2T . At this time
instant, the air region is still characterized by the same
wave −

√
2

1+2
√

2
u[t − (z − L)/ca] [see Eq. (B16)] and since

t2 > t1, one can observe it to have traveled further from
the air-dielectric interface, as expected. We can notice from
Fig. 6(d), displaying Sz at the same time instant (t = t2),
that the flow of energy continues having a direction from
the air to the dielectric region. At t = 2T , the wave travel-
ing in the dielectric region ( 1

2+4
√

2
u[t − (z + L)/cd ]) reaches

the spatial discontinuity at z = L and generates a reflected
wave, 2

√
2 − 1

18+8
√

2
u[t − (L − z)/cd − 2T ], and a transmitted wave,

2
√

2
9+4

√
2
u[t − (z − L)/ca − 2T ] [see Eqs. (B15) and (B16),

respectively]. These reflected and transmitted waves are added
to the electric field established by the previous waves in the
dielectric and air regions, respectively, resulting in the dis-
tribution at t = t3 = 2.2T shown in Fig. 6(e). The energy
continues flowing from the air to the dielectric region as
shown in Fig. 6(f). As time passes, the multiple reflection pro-
cess, due to the spatial boundary at z = 0 and z = L, continues
increasing the number of plane waves propagating into the
waveguiding system as described by Eqs. (B15) and (B16). In
contrast to the case with εr2 < εr1 discussed in the main text,
increasing the permittivity of the dielectric block (εr2 > εr1)
results in waves in both regions carrying energy from the
air to the dielectric region. The air region is temporarily de-
pleted from its energy by waves traveling away from the air
region toward the dielectric region. This energy is transferred
to the dielectric region and is restored to its original value
at t → ∞.

APPENDIX F: TOTAL RADIATED ENERGY DENSITY

In this Appendix, we derive and discuss the total radiated
energy density carried by the infinite set of plane waves trav-
eling in the air region. First, we evaluate the instantaneous
Poynting vector, Sa

z (z, t ) = ea
x (z, t )ha

y (z, t ), which results in

Sa
z (z, t ) =

(
es

x

)2

μ0ca

εr2

(1 − √
εr2)2

(
εr1

εr2
− 1

)2 ∞∑
n=1

γ 2n

{
u

[
t − z − L

ca
− 2(n − 1)T

]
− u

(
t − z − L

ca
− 2nT

)}

+
(
es

x

)2

μ0ca

√
εr2

1 − √
εr2

(
1 − εr1

εr2

) ∞∑
n=1

γ n

{
u

[
t − z − L

ca
− 2(n − 1)T

]
− u

(
t − z − L

ca
− 2nT

)}
. (F1)

Integrating the previous equation from t = 0 to t → ∞, we
obtain the total radiated energy per unit area,

Wrad = 1

2

ε0

εr2
L
(
ε2

r1 − ε2
r2

)(V

d

)2

. (F2)

One can notice that Wrad + �W∞ = 0, with �W∞ de-
noting, as indicated in the main text, the difference of the
electrostatic energy per unit area stored in the dielectric block
at t = 0+ and t → ∞. The latter equation highlights that
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FIG. 7. Magnitude of the frequency spectrum of the dynamic electric field in the air region normalized to maximum (a) for different values
of L (εr1 = 8 and εr1 = 4) and (b) εr2 (εr1 = 8 and L = 4 mm).

the growth (reduction) of the electrostatic energy in the di-
electric block induced by the change of its permittivity is
fully released (restored) through the electromagnetic energy
propagating in the air region.

APPENDIX G: FOURIER SPECTRUM OF THE ELECTRIC
FIELD IN THE AIR REGION

The frequency spectrum of the electric field in the air
region can be easily obtained by applying a Fourier transform
to ea

x (z, t ) [Eq. (B20)], Ea
x (z, ω) = ∫ ∞

0 ea
x (z, t )e−iωt dt , which

gives

Ea
x (z, ω) = 2es

x
√

εr2

1 + √
εr2

(
εr1

εr2
− 1

)
sin(ωT )

ω

e
−iω(

z−L
ca

+T )

1 − γ e−i2ωT
+ es

x

iω
,

(G1)

with ω = 2π f and f is the frequency. Ea
x (z, ω), anal-

ogously to its time-domain counterpart, is given by the
superposition of two terms. The first one, Ea,dyn

x (z, ω) =
2es

x
√

εr2

1+√
εr2

( εr1
εr2

− 1) sin(ωT )
ω

e−iω( z − L
ca +T )

1 − γ e−i2ωT , represents the spectrum of

the dynamic field, while the second one, Ea,dc
x (z, ω) = es

x
iω ,

represents the spectrum of the static field. It is evident from the
expression of Ea,dyn

x (z, ω) that its magnitude follows the shape
of a sinc function and goes to zero whenever ω = pπ/T [ f =
p/(2T )] with p = 1, 2, 3, . . . . Thus, the frequency spectrum
of the dynamic electric field in the air region is maximum
at f = 0 and has nulls at equally spaced frequency intervals
of 1/(2T ). Since T = L/cd , the nulls move toward higher
frequencies for a smaller L or εr2, as shown in Fig. 7. In other
words, the spectrum of the field becomes broader as L or εr2

decrease.

APPENDIX H: SMOOTH TEMPORAL VARIATION
OF THE DIELECTRIC-BLOCK PERMITTIVITY

In this Appendix, we extend our investigation of static-to-
dynamic field conversion with suddenly changing dielectric
permittivity to the case of smoothly varying dielectric per-
mittivity in time. To this end, we assume that the relative

permittivity of the dielectric block in Fig. 2(b) varies from
εr1 = 8 to εr2 = 4 during a temporal interval τ > 0, as shown
in the inset of Fig. 8. With this setup, the numerical results
of the electric field inside the air region (z = 20 mm) for four
different values of τ are shown in Fig. 8. One can observe
that for τ much smaller than the propagation time between the
air-dielectric interface and the magnetic wall (T = 20 [ps] for
the case under consideration) the numerical solutions agree
pretty well with the analytical one (continuous black line)
derived in this manuscript assuming an abrupt change of the
dielectric-block permittivity. By increasing τ , the edges of
the rectangular pulses become less sharp, up to the point that
the temporal distribution of the electric field is a single pulse.
As expected, the analytical solution derived in this manuscript
for the sudden change of permittivity approximately applies
to smooth temporal variation of the permittivity, as long as
the transition time (τ ) is much smaller than T . However, the

FIG. 8. Numerically evaluated electric field as a function of time
at the location z = 20 mm inside the air region of the waveguiding
system of Fig. 2(b) assuming the relative permittivity of the dielectric
block changes from εr1 = 8 to εr1 = 4 with four different transition
times τ (blue, magenta, green, and red curves). The inset shows the
temporal function of the relative permittivity εr (t ). The black curve,
representing the temporal evolution of the electric field at the same
location (z = 20 mm), is obtained from Eq. (B16). The dielectric
block length (L) is assumed to be 3 mm.
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results shown in Fig. 8 reveal that the effect of static-to-
dynamic field conversion with time-varying media preserves
even for gradual variation of the permittivity.

APPENDIX I: POTENTIAL PATHWAY FOR FUTURE
EXPERIMENTAL VERIFICATIONS

Here, we briefly discuss the possibilities for future experi-
mental demonstrating of our theoretical proposal investigated
in this paper. Building upon the current state of the art exper-
iments related to the time-dependent media, we can suggest
three possible pathways to demonstrate such conversion of
electrostatic fields to dynamic fields with time-varying me-
dia. The first two are at low frequencies in a transmission
line scenario. The third one is at near-infrared (NIR) fre-
quencies based on materials operating at the epsilon near
zero (ENZ) regime. The first pathway is based on a vari-
able capacitor whose capacitance is controlled mechanically
such as Micro-electromechanical systems (MEMS) capaci-
tors [19]. By using these capacitors, one can envision the
possibility to experimentally test the phenomenon described
in this work in the following manner. One can connect such
a capacitor to a DC voltage source through a transmission
line. Once the DC source has fully charged the capacitor,
we change its capacitance in time. The voltage pulse in-
duced from the capacitance temporal variation and traveling
toward the DC source can be measured by connecting an
oscilloscope along the transmission line. The switching time
of standard MEMS capacitors is on the order of 10 [μs]
[19].

As for the second pathway, a setup similar to the pre-
vious one can be explored. However, instead of using a
mechanically controlled capacitor, the transmission line can
be terminated with a set of shunt capacitors, which, charged
with the DC voltage source, mimic a dielectric slab with effec-
tive permittivity. The shunt capacitors can then be connected
to another set of parallel capacitors using electronic switches.
By turning the switches on and off, one can modulate the
capacitance of the shunt capacitors in time, resulting in a
temporal modulation of their effective permittivity. With this
approach, one can achieve faster temporal variation of the
effective permittivity (smaller than 0.1 [ns] [20]), so it will
be less challenging to experimentally realize the effect of
stepwise permittivity modulation.

The third pathway to demonstrate our proposal in a labo-
ratory relies on ENZ material [21,22]. It was recently shown
that the family of transparent conductive oxides (TCO) op-
erating close to the ENZ point (real part of the permittivity
near zero) represents a promising platform to experimen-
tally demonstrate new wave phenomena in the optical (or
near-infrared) regime enabled by time-varying media [23].
Specifically, this study has reported that, upon illuminating
with an ultrashort pulse, an Al-doped ZnO (AZO) film with
an ENZ region occurring around the wavelength λ = 1500 nm
can exhibit a large (order of unity) and fast (order of fem-
toseconds) variation of its refractive index. Building on this
work, one may envision the possibility to test the phenomenon
of static-to-dynamic field conversion with time-varying media
investigated in this paper in the IR regime.

[1] F. R. Morgenthaler, Velocity modulation of electromagnetic
waves, IEEE Trans. Microwave Theory Tech. 6, 167 (1958).

[2] L. B. Felsen and G. M. Whitman, Wave propagation in time-
varying media, IEEE Trans. Antennas Propag. 18, 242 (1970).

[3] R. Fante, Transmission of electromagnetic waves into time-
varying media, IEEE Trans. Antennas Propag. 19, 417 (1971).

[4] A. A. Oliner and A. Hessel, Wave propagation in a medium with
a progressive sinusoidal disturbance, IEEE Trans. Microwave
Theory Tech. 9, 337 (1961).

[5] N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, Magnetic-free
non-reciprocity and isolation based on parametrically modu-
lated coupled-resonator loops, Nat. Phys. 10, 923 (2014).

[6] D. G. Baranov, A. Krasnok, and A. Alù, Coherent virtual
absorption based on complex zero excitation for ideal light
capturing, Optica 4, 1457 (2017).

[7] D. L. Sounas, Virtual perfect absorption through modulation of
the radiative decay rate, Phys. Rev. B 101, 104303 (2020).

[8] V. Pacheco-Peña and N. Engheta, Temporal aiming, Light Sci.
Appl. 9, 129 (2020).

[9] V. L. Ginzburg, Transition radiation and transition scattering,
Phys. Scr. 1982, 182 (1982).

[10] W. B. Mori, T. Katsouleas, J. M. Dawson, and C. H. Lai,
Conversion of dc Fields in a Capacitor Array to Radiation by
a Relativistic Ionization Front, Phys. Rev. Lett. 74, 542 (1995).

[11] C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C.
Joshi, and W. B. Mori, Demonstration of Microwave Genera-

tion from a Static Field by a Relativistic Ionization Front in a
Capacitor Array, Phys. Rev. Lett. 77, 4764 (1996).

[12] E. Esarey, P. Sprangle, B. Hafizi, and P. Serafim, Radiation gen-
eration by photoswitched, periodically biased semiconductors,
Phys. Rev. E 53, 6419 (1996).

[13] S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and
M. E. Jones, Photon Accelerator, Phys. Rev. Lett. 62, 2600
(1989).

[14] C. D. Murphy, R. Trines, J. Vieira, A. J. W. Reitsma, R.
Bingham, J. L. Collier, E. J. Divall, P. S. Foster, C. J. Hooker,
A. J. Langley, P. A. Norreys, R. A. Fonseca, F. Fiuza, L. O.
Silva, J. T. Mendonça, W. B. Mori, J. G. Gallacher, R. Viskup,
D. A. Jaroszynski, S. P. D. Mangles et al., Evidence of photon
acceleration by laser wake fields, Phys. Plasmas 13, 033108
(2006).

[15] D. M. Solís, R. Kastner, and N. Engheta, Time-varying ma-
terials in presence of dispersion: Plane-wave propagation in a
Lorentzian medium with temporal discontinuity, Photonics Res.
9, 1842 (2021).

[16] Y. Xiao, D. N. Maywar, and G. P. Agrawal, Reflection and
transmission of electromagnetic waves at a temporal boundary,
Opt. Lett. 39, 574 (2014).

[17] J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New
York, 1940).

[18] M. R. Spiegel, Laplace Transforms (McGraw-Hill Education,
New York, 1986).

144301-12

https://doi.org/10.1109/TMTT.1958.1124533
https://doi.org/10.1109/TAP.1970.1139657
https://doi.org/10.1109/TAP.1971.1139931
https://doi.org/10.1109/TMTT.1961.1125340
https://doi.org/10.1038/nphys3134
https://doi.org/10.1364/OPTICA.4.001457
https://doi.org/10.1103/PhysRevB.101.104303
https://doi.org/10.1038/s41377-020-00360-1
https://doi.org/10.1088/0031-8949/1982/T2A/024
https://doi.org/10.1103/PhysRevLett.74.542
https://doi.org/10.1103/PhysRevLett.77.4764
https://doi.org/10.1103/PhysRevE.53.6419
https://doi.org/10.1103/PhysRevLett.62.2600
https://doi.org/10.1063/1.2178650
https://doi.org/10.1364/PRJ.427368
https://doi.org/10.1364/OL.39.000574


STATIC-TO-DYNAMIC FIELD CONVERSION WITH … PHYSICAL REVIEW B 105, 144301 (2022)

[19] J. Zou, C. Liu, J. Schutt-Aine, J. Chen, and S.-M. Kang, De-
velopment of a wide tuning range MEMS tunable capacitor
for wireless communication systems, in International Electron
Devices Meeting 2000, Technical Digest IEDM (IEEE, New
York, 2000).

[20] T. Dinc, M. Tymchenko, A. Nagulu, D. Sounas,
A. Alu, and H. Krishnaswamy, Synchronized con-
ductivity modulation to realize broadband lossless
magnetic-free non-reciprocity, Nat. Commun. 8, 795
(2017).

[21] N. Engheta, Pursuing near-zero response, Science 340, 286
(2013).

[22] I. Liberal and N. Engheta, The rise of near-zero-index technolo-
gies, Science 358, 1540 (2017).

[23] E. Lustig, S. Saha, E. Bordo, C. DeVault, S. N. Chowdhury, Y.
Sharabi, A. Boltasseva, O. Cohen, V. M. Shalaev, and M. Segev,
Towards photonic time-crystals: Observation of a femtosecond
time-boundary in the refractive index, in Conference on Lasers
and Electro-Optics, OSA Technical Digest (OSA, Washington,
DC, 2021).

144301-13

https://doi.org/10.1038/s41467-017-00798-9
https://doi.org/10.1126/science.1235589
https://doi.org/10.1126/science.aaq0459

