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Local integrals of motion detection of localization-protected topological order
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Many-body-localized (MBL) phases can be topologically distinct, but distinguishing these phases using order
parameters can be challenging. Here we show how topologically distinct local integrals of motion, variationally
parametrized by quantum circuits, can be used to numerically demonstrate the topological inequivalence of
MBL phases. We illustrate our approach on a fermionic chain where both topologically distinct MBL phases and
benchmark comparisons to order parameters are possible. We also use our approach, augmented by the excited
state density-matrix renormalization group algorithm, to extract high-energy topological doublets. We describe
applying our methods to higher dimensions to identify MBL topological order and topological multiplets hidden
by the dense many-body spectrum.
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I. INTRODUCTION

Many-body localization (MBL) [1–12] has attracted a
wealth of interest in the last 15 years. One of the most striking
features of MBL is the violation of the eigenstate thermaliza-
tion hypothesis [13,14]: MBL systems do not thermalize, but
instead retain some memory of their initial state. As a result,
some MBL systems are able to protect quantum information
[15–18].

MBL systems are characterized by local integrals of mo-
tion (LIOMs) [12,19–22]: exponentially localized operators
commuting with the Hamiltonian and each other. As a re-
sult, all eigenstates of MBL systems obey the entanglement
area law [23]. Therefore, topological order [24–26], normally
present only in ground states, can also occur in high-energy
MBL eigenstates [15–17,27–32]. Nonetheless, owing to the
lack of local order parameter, and due to the overlap (in
energy) of topological multiplets away from the strongly MBL
regime or beyond one dimension (1D), numerically detecting
the topology of MBL phases remains challenging for reasons
beyond the mere exponential scaling of the Hilbert space [33].

In this work, we show how a topological LIOM frame-
work [32] (with LIOMs and tLIOMS for topologically trivial
and nontrivial cases, respectively), combined with quantum
circuits for MBL [34], can be used to numerically detect
topological MBL. Furthermore, as we also show, when used
in conjunction with the excited-state density-matrix renor-
malization group (DMRG-X) [35,36], this approach can also
identify topological multiplets provided the system is deep in
a topological MBL phase.

Due to its polynomial scaling with system size, and the
generality of tLIOMs, our approach is a general way to cap-
ture topological MBL, including beyond 1D. Nonetheless, to
demonstrate its use, we focus on 1D: we study the disordered
interacting Kitaev chain, displaying two topologically distinct
MBL phases [16,37]. Studying this system is useful not only

due to the exact diagonalization (ED) benchmark available in
1D, but also due to a local order parameter benchmark avail-
able thanks to a duality to a system displaying conventional
symmetry breaking.

II. (TOPOLOGICAL) LIOMS FROM QUANTUM CIRCUITS

LIOMs are typically assumed to be related to Pauli-z oper-
ators σ z

i acting on site i via a local unitary transformation U ,
τ z

i = Uσ z
i U †. The τ z

i are thus exponentially localized. They
define a complete set of quantum numbers since [H, τ z

i ] =
[τ z

i , τ
z
j ] = 0 ∀ i, j = 1, . . . , N , with N the system size. The

locality of U implies that the eigenstates of H are local-unitary
related to local product states: H cannot display topological
order [38,39]. Hence, for topological MBL systems the notion
of LIOMs has to be extended [32]: One must use tLIOMs,
given by τi = USiU †, where U is again a local unitary, but {Si}
is now a set of mutually commuting local stabilizers [40,41]
whose common eigenstates all display (the same) topological
order. On a topologically nontrivial manifold, to get a com-
plete set of quantum numbers one augments tLIOMs by the
nonlocal τ nl

i = USnl
i U †, where Snl

i are noncontractible Wilson
loops (i.e., logical operators) [32].

To utilize tLIOMs numerically, we use that owing to its
locality, we can efficiently approximate U by a fixed-depth
quantum circuit USR [34]. We employ USR variationally: we
aim for [H, τ z

i ] = 0 by minimizing

f = 1

2

N∑
i=1

tr([τi, H ][τi, H ]†), (1)

where τi = USRSiU
†
SR and Si are topological stabilizers for

a tLIOM Ansatz, while Si = σ z
i for a conventional LIOM

Ansatz. The lower f , the better the approximate (t)LIOMs
describe the system. In the topological case, the nonlocal
τ nl

i enter only for multiplet splittings. Hence, they almost
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FIG. 1. (a) Couplings in the Hamiltonian, Eq. (2), with
(t)LIOMs. Black dots denote Majorana fermions and blue disks the
stabilizers underlying the two types of LIOMs. The stabilizers for
conventional LIOMs involve Majorana pairs on physical sites; those
for topological LIOMs have Majorana pairs straddling physical sites.
(b),(c) Possible phase diagrams.

commute with H if all tLIOMs are optimized and thus can
be omitted in Eq. (1). To minimize f , we proceed similarly
to Ref. [34]: We expand H as a sum of local terms and
identify which combination of local terms contributes to f
(which is quadratic in H). Each of the contributions is then
represented as a tensor network contraction, which we evalu-
ate efficiently using common numerical methods [34,42,43].
While developed for nontopological systems, this approach
directly applies also to the topological case: by using topolog-
ical Si (which act on multiple sites) we merely increase the
number of tensors in each contraction. In the nontopological
phase, we expect the conventional LIOM Ansatz to perform
better. In the topological phase, however, the tLIOM Ansatz
will minimize f .

III. MODEL

The disordered interacting Kitaev chain [37] is a system of
Majorana fermions γn = γ †

n with {γm, γn} = 2δmn; the Hamil-
tonian is [cf. Fig. 1(a)]

H =
N−1∑
j=1

it jγ2 jγ2 j+1 +
N∑

j=1

iμ jγ2 j−1γ2 j

+
N−1∑
j=1

Vjγ2 j−1γ2 jγ2 j+1γ2 j+2, (2)

where the tunnel amplitude t j , the on-site potential μ j , and
the interaction strength Vj are Gaussian distributed random
variables with zero mean and standard deviation σt = 1, σμ,
and σV , respectively. The Hamiltonian commutes with the
fermion parity operator Z = ∏2N

n=1 γn, which splits the Hilbert
space into two parity sectors.

For σμ, σV � 1, the system is in the trivial phase with
commuting projector representative

H triv =
N∑

j=1

iμ jγ2 j−1γ2 j +
N−1∑
j=1

Vjγ2 j−1γ2 jγ2 j+1γ2 j+2. (3)

H triv may be expressed in terms of the stabilizers Striv
j =

iγ2 j−1γ2 j , j = 1, . . . , N ; consequently, its eigenstates corre-
spond to the occupation of fermionic modes associated to
physical sites [cf. Fig. 1(a)].

For σμ = σV = 0 the system is in the topological phase.

H topo =
N−1∑
j=1

it jγ2 jγ2 j+1, (4)

with Stopo
j = iγ2 jγ2 j+1, j = 1, . . . , N − 1, gives the commut-

ing projector representative of this phase. The eigenstates
again correspond to the occupation of fermionic modes, but
now they come from pairs of Majorana modes straddling
physical sites [cf. Fig. 1(a)]. Snl = iγ2Nγ1 forms a zero-energy
fermion mode, resulting in a twofold degenerate energy spec-
trum.

The phases are also known along the axes of the phase
diagram: For σV = 0 the model is noninteracting and is in
the topological (trivial) phase for σμ < 1 (σμ > 1) [44–46].
Similarly, for σμ = 0, there is a phase transition point at
σV = 1 [47,48]. The two MBL phases can either be separated
by a critical line or a delocalized phase [30,49] [cf. Figs. 1(b)
and 1(c)].

IV. ED AND ORDER PARAMETER BENCHMARKS

To provide a benchmark for our subsequent tLIOM anal-
ysis, we use ED to locate the MBL phases. We first analyze
the level spacing for N = 14. In Fig. 2(a) we show the gap
ratio rn = min(sn−1, sn)/ max(sn−1, sn) with sn = En − En−1

the level spacing in a given parity sector. For each data
point we average over the mid-third of energies (as those best
reflect whether the system is thermalizing [27,49,50]) and 100
disorder realizations. In an MBL phase we expect rP = 0.386
[5] (Poisson distribution) due to the lack of level repulsion;
in a thermal phase we expect rWD = 0.530 (Wigner-Dyson
distribution). Figure 2(a) indicates that there are two MBL
phases (with r ≈ rP): one for σμ + σV � 1 and another one
for σμ � 1 or σV � 1. Although the gap ratio never gets as
large as rWD, between these regions our results are consistent
with an extended delocalized phase [49,51,52].

Topological properties can be detected by the spin-glass
order parameter [16,27,53] χSG

n = 1
N

∑N
i, j=1〈n|σ x

i σ x
j |n〉2 in

eigenstates |n〉 of the quantum Ising chain linked to our
system via Jordan-Wigner transformation (cf. Appendix A).
While this is a two-point correlator of local operators in
the spin language, it is a nonlocal order parameter (with
γ j strings), as befits one detecting topological features, for
the fermionic system. We also use a “dual order parame-
ter” χdSG

n = 1
N

∑N
i, j=1〈n|σ̃ x

i σ̃ x
j |n〉2 where σ̃ x

j are analogous to
disorder operators [54] in the Ising chain (cf. Appendix A).
χSG

n ∝ N for N � 1 in the topological phase, while χSG
n → 1

in the trivial phase. Conversely, χdSG
n ∝ N for N � 1 in the

trivial phase, while χdSG
n → 1 in the topological phase. Our

144205-2



LOCAL INTEGRALS OF MOTION DETECTION OF … PHYSICAL REVIEW B 105, 144205 (2022)

FIG. 2. Exact diagonalization results. In all panels, we show
averages over p disorder realizations, both parity sectors, and the
mid-third energies. (a) Gap ratio and (b) average spin-glass order
parameter χSG, both for p = 100 and system size N = 14. The max-
imal standard error of the mean (taken across disorder realizations
in all panels) for any value of σV , σμ is 0.005 in (a) and 0.22 in
(b). (c) χSG for different N and p along the diagonal σV = σμ. The
error bars mark the standard error of the mean. A scaling collapse
[27] with xN = (σμ − σc )N0.6, yN = χSG/N0.1 is shown in the inset.
The extracted critical point σc = 0.3 and the one for the dual order
parameter, σ ′

c = 0.9 (see Appendix B), are marked by crosses in (b).

results for χ (d)SG
n [see Figs. 2(b) and 2(c) and the Appendix B]

suggest that the σμ + σV � 1 phase is topological, while the
other MBL phase is trivial.

V. PHASE DIAGRAM FROM tLIOMS

We now apply the tLIOM approach to the model. We op-
timize, using the algorithm of Ref. [34], the quantum circuits
USR and U (t )

SR (for approximate LIOMs and tLIOMs, respec-
tively) over the space of fermion parity conserving unitaries.
We use two-layer quantum circuits with gates acting on �

sites each. In Fig. 3(a), we show the resulting normalized
figure of merit f ( f (t )) for conventional (topological) LIOMs,
for system size N = 48, gate lengths � = 2, 4, 6, and focusing
on σV = σμ. We also show f (t )/ f for � = 6 in the entire
two-parameter phase diagram. As a function of �, we see a
roughly exponential improvement deep in the MBL phases for
the corresponding set of LIOMs.

Another way to map out the phase diagram using (t)LIOMs
is entanglement entropy fluctuations [27,34]. We cut the
approximate matrix product eigenstates, obtained from the
optimized (t)LIOM Ansätze, at a point at least 3�/2 sites
away from the boundary and apply the algorithm of Ref. [34]
to compute the average entanglement entropy. (Here, we av-
eraged over all approximate eigenstates, as their entropies
depend only on the expectation values of the tLIOMs near

FIG. 3. (a) Figure of merit f /tr(H2) for topological (conven-
tional) LIOMs, shown with solid (dotted) lines, for N = 48, averaged
over 40 disorder realizations. The error bars mark the standard er-
ror of the average across the different disorder realizations. The
inset shows the ratio f (t )/ f for N = 48, averaged over 20 disorder
realizations and using � = 6. The contour ( f (t ) = f ) separates the
topological and trivial MBL phase, but is agnostic about the extent of
the delocalized phase. (b) Standard deviation σS of the approximate-
eigenstate-averaged entanglement entropy with respect to disorder
realizations and subsequent averaging over entanglement cuts [34]
using the same data as in (a). The error bars mark the standard error
of 〈σS〉cuts across the cut positions.

the cut [34], which are not directly linked to overall energies.)
We repeat this step for all disorder realizations and calculate
the standard deviation σS of these averages. Finally, to reduce
statistical fluctuations, we average σS over all cut positions to
obtain 〈σS〉cuts.

We expect 〈σS〉cuts → 0 for σV = σμ → ∞, because there
the LIOMs are simply the trivial stabilizers (exact LIOM
Ansatz with USR = 1): the eigenstates are independently pop-
ulated local fermion modes. Similarly, σV = σμ = 0 is the
topological MBL limit with tLIOMs simply the topological
stabilizers (exact tLIOM Ansatz with U (t )

SR = 1), indepen-
dently of the disorder realizations, which again implies
〈σS〉cuts = 0. Away from these limits, but still in an MBL
phase, i.e., with all eigenstates MBL, the entanglement and
its fluctuation are low due to the area law. In an ergodic
phase, where all eigenstates are volume-law entangled, the
equivalence of spectral and ensemble (i.e., over disorder) av-
erages [55] implies suppressed entanglement fluctuations. In
a thermal but not ergodic phase, with a 0 < ν < 1 fraction
of volume-law states, we expect entanglement fluctuations to
diverge in the thermodynamic limit due to ν being sensitive to
small changes in the disorder [27].

The maximum amount of entanglement allowed by our
approximation is proportional to �; hence, we expect 〈σS〉cuts
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to acquire a maximum, increasing with � [34], where entan-
glement fluctuations would diverge. (This is analogous to the
finite-size scaling in Ref. [27].) This is consistent with Fig. 3
if one combines the LIOM and tLIOM data in the regimes
where they are reliable.

Based on the comparison between the optimized figures of
merit for σμ = σV , we expect the topological MBL phase to
extend at most up to σμ = σV � 0.5 and the trivial MBL phase
to start above σμ = σV � 0.5. But the broad maxima of the
entanglement entropy fluctuation of U (t )

SR at σμ = σV ≈ 0.5
can indicate an interstitial thermal phase.1 This is also con-
sistent with conventional and topological LIOMs performing
comparably in a window around σμ = σV ≈ 0.5. Outside of
this window, however, the performance difference between
conventional and topological LIOM Ansätze allows us to
clearly detect the topology of the MBL phase.

The picture obtained from our (t)LIOM approach is thus
consistent with the (dual) spin-glass order parameter and the
gap ratio from ED. While meeting this benchmark, using
(t)LIOMs we could probe system sizes well beyond the reach
of ED. This suggests that our method can generalize well for
detecting topological MBL phases beyond 1D.

VI. TOPOLOGICAL DOUBLETS

Another topological MBL feature is the presence of topo-
logical multiplets across the entire energy spectrum [15,16].
(The multiplet splitting is exponentially small in system size.)
In the Kitaev chain, one has topological doublets [16,37].
Here we show how these can be detected using tLIOMs.
A key ingredient is the access to the approximate nonlocal
τ nl

i = U (t )
SR Snl

i U (t )†
SR and the corresponding flip operator (an

MBL strong zero mode [56]) τ nl,x = U (t )
SRγ1U

(t )†
SR : the approx-

imate eigenstate |ψα〉 forms a doublet with τ nl,x|ψα〉. The
goal is to show that these two states have approximately
the same energy. To enhance energy accuracy, and to get a
method that can access spatial features beyond � (which is
required for studying multiplet splittings in large systems; see
Appendix C), we couple the tLIOM Ansatz with DMRG-X
[35]: we write |ψα〉 and τ nl,x|ψα〉 as matrix product states to
use as inputs to DMRG-X. We denote the resulting outputs by
|�α〉 and |�τ

α〉, respectively. As DMRG-X is biased towards
low-entanglement states [57], we must prevent convergence
to |� (τ )

α 〉 with different tLIOM expectation values than |ψα〉
but with lower entanglement. To control for this, a convenient
proxy is to require high N

√|〈�α|ψα〉| and
N
√

|〈�τ
α |τ nl,x|ψα〉|

which for tensor network states are broadly interpretable as
geometric mean “per-site overlaps.”

We now turn to demonstrating this approach. To be able
to compare to ED, we work with N = 15 and deep in the
topological MBL phase so that ED can assign almost all dou-
blets correctly due to their small level splitting. We optimize
tLIOMs for ten disorder realizations and for each realization

1To definitively establish whether this interstitial thermal phase is
present, one may seek clearer maxima using larger �. However, this is
beyond the scope of this work; our focus is on detecting topological
MBL.

FIG. 4. Doublet splittings from DMRG-X-augmented tLIOMs,
tLIOMs [quantum circuit (QC)], and ED for N = 15 and ten disorder
realizations. The errors refer to the energy differences from the near-
est ED energies. The tLIOM + DMRG-X results are averaged over
ten randomly chosen approximate eigenstates, while all other data
are averaged over all eigenstates, for each disorder realization. The
green line shows the average per-site overlap between corresponding
QC and DMRG-X-optimized states. Apart from the mean level spac-
ing (dashed), all averages here use geometric means; this is due to
splittings varying by orders of magnitude between realizations, and
due to each per-site overlap being interpretable as a geometric mean.
The error bars mark the standard error of the geometric mean.

we randomly choose ten approximate eigenstates and their
doublet partners. In DMRG-X, we use bond dimensions up to
85. Our DMRG-X-augmented tLIOM results, direct tLIOM,
and ED data are shown in Fig. 4. The DMRG-X-augmented
tLIOM splittings are in quantitative agreement with ED up to
σV = σμ ≈ 0.13. Beyond this, the breakdown of the method
is signaled by the deteriorating per-site overlaps. (While we
demonstrated its use for system sizes where a comparison to
ED is available, the per-site overlap is expected to be a useful
and feasibly computable indicator for system sizes beyond the
reach of ED.)

Deep in the topological MBL phase, we expect this method
to correctly predict the splittings for N beyond the reach of
ED. The required bond dimensions will be larger, but still
scale polynomially with N due to having area-law eigen-
states. Beyond 1D, one could similarly take an approximate
eigenstate obtained from the tLIOM approach [58,59] in the
topological phase as a starting point for an approximation us-
ing projected entangled pair states (PEPS) [60] methods [61].
Although the mean level spacing is exponentially smaller than
the multiplet splitting [33], the locality of PEPS will allow one
to ensure convergence to the correct eigenstates.

VII. CONCLUSIONS

We showed how tLIOMs can detect topological MBL in
numerical simulations. Using (t)LIOM numerics for the in-
teracting disordered Kitaev chain (up to N = 48), we found
two topologically distinct MBL phases and features consistent
with an intervening thermal phase. We also showed how to
detect topological multiplets, using tLIOMs which, for strong
MBL and when augmented by DMRG-X, reached very high
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energy accuracy. It would be interesting to use tLIOMs above
1D (e.g., for the toric code) to detect MBL topological order
and to detect topological multiplets, which here have splitting
decaying slower with system size than the mean level spacing
even for strong MBL.
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APPENDIX A: ISING CHAINS VIA JORDAN-WIGNER
TRANSFORMATIONS

We rewrite the Hamiltonian H using a Jordan-
Wigner transformation, γ2 j−1 = ( ∏ j−1

k=1 σ z
k

)
σ x

j , γ2 j =
−( ∏ j−1

k=1 σ z
k

)
σ

y
j , j = 1, 2, . . . , N ,

H =
N−1∑
j=1

t jσ
x
j σ

x
j+1 +

N∑
j=1

μ jσ
z
j −

N−1∑
j=1

Vjσ
z
j σ

z
j+1, (A1)

with Pauli operator σα
i , α = x, y, z acting on site i. Due

to fermion parity conservation, the Hamiltonian is invari-
ant under the parity operator Z = ∏N

k=1 σ z
k . This generalized

quantum Ising Hamiltonian is the same as the “hJJ ′ model”
studied in Ref. [53]. Its authors introduced a real-space renor-
malization group method for exited states, predicting two
distinct MBL phases separated by a transition visible in the
entire energy spectrum.

An alternative Jordan-Wigner transformation γ2 j =
(
∏ j−1

k=1 σ̃ z
k )σ̃ x

j , γ2 j+1 = −(
∏ j−1

k=1 σ̃ z
k )σ̃ y

j [γ1 = −(
∏N−1

k=1 σ̃ z
k )σ̃ y

N ]
results in Kramers-Wannier-like duality, such that

H =
N−1∑
j=1

t j σ̃
z
j +

N∑
j=2

μ j σ̃
x
j−1σ̃

x
j −

N−1∑
j=2

Vj σ̃
x
j−1σ̃

x
j+1

− μ1Z̃σ̃ x
N σ̃ x

1 + V1Z̃σ̃ x
N σ̃ x

2 (A2)

with Z̃ = ∏N
j=1 σ̃ z

j = −Z and σ̃ α
j likewise Pauli operators, but

now acting on links. The two sets of Pauli operators are related
via the transformation

σ x
j =

{
−(∏N−1

k=1 σ̃ z
k

)
σ̃

y
N if j < N

−σ̃
y
N if j = N,

(A3)

σ z
j =

{
σ̃ x

j−1σ̃
x
j if j > 1

−Z̃ σ̃ x
1 σ̃ x

N if j = 1,
(A4)

and inverse transformation

σ̃ x
j =

{
−σ

y
1

(∏ j
k=2 σ z

k

)
if j > 1

−σ
y
1 if j = 1,

(A5)

σ̃ z
j =

{
σ x

j σ
x
j+1 if j < N

−Zσ x
1 σ x

N if j = N.
(A6)

FIG. 5. Unitary mapping between the bases {σα
i } and {σ̃ α

i }.
(a) Constituting unitaries u acting on two sites, i.e., four Majorana
fermions. (b) The tensor network of the overall unitary is constructed
as a “staircase” of the small unitaries u (denoted by dashed boxes),
giving rise to the shown Majorana braid.

[An actual Kramers-Wannier transformation, where the −σ
y
1

in Eq. (A5) are replaced by σ z
1 and the second line in Eq. (A6)

by σ x
N , changes only the last two terms of Eq. (A2), which

become local boundary terms.] In each symmetry sector of Z̃
(even/odd parity) Eq. (A2) is a generalization of the quantum
Ising model with next-nearest neighbor coupling considered
in Ref. [27] (after an on-site unitary transformation sending
σ x

i ↔ σ z
i ). There, the authors likewise found two distinct

MBL phases as evidenced by spin-glass order. We note that for
μ j = 0 ∀ j = 1, . . . , N the Hamiltonian in Eq. (A2) decouples
in each parity sector into two noninteracting chains [cf. the
structure of Eq. (A1) for σV = 0 [47,48]]. Hence, there is a
phase transition point at (σV , σμ) = (1, 0).

The bases {σα
j } and {σ̃ α

j } are related via a deep quantum
circuit, namely, the one made up of a “staircase” of unitaries
acting on nearest neighbors. In the fermionic picture these
unitaries permute the Majorana fermions as (γ1, γ2, γ3, γ4) →
(γ2, γ3, γ1, γ4) (see Fig. 5).

APPENDIX B: ORDER PARAMETERS

The spin-glass order parameter [16,27,53] measures the
presence of regions with fixed σ x magnetization separated by
domain walls and thus detects the spin-glass phase. It is given
by

χSG
n = 1

N

N∑
j,k=1

〈n|σ x
j σ

x
k |n〉2 (B1)

for the eigenstate |n〉. In terms of Majorana fermions,

χSG
n = 1 + 2

N

N∑
k> j

(−1)k− j〈n|
k−1∏
i= j

γ2iγ2i+1|n〉2 (B2)

involves topological Majorana strings, i.e., contiguous prod-
ucts of topological stabilizers Sj = iγ2 jγ2 j+1 [cf. Fig. 1(a) of
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FIG. 6. ED results for χdSG for different system sizes N averaged
over p disorder realizations along the diagonal σV = σμ. We show a
scaling collapse with xN = (σμ − σ ′

c )N0.1 and yN = χ dSG/N1.0 in the
inset. The extracted critical point σ ′

c = 0.9 is marked by a cross in
Fig. 2(b). The error bars mark the standard error of the mean.

the main text]. The dual order parameter

χdSG
n = 1

N

N∑
j,k=1

〈n|σ̃ x
j σ̃

x
k |n〉2 (B3)

detects spin-glass order in terms of the dual variables σ̃ x
i in

Eq. (A2). In terms of Majorana fermions

χdSG
n = 1 + 2

N

N∑
k> j

(−1)k− j〈n|
k∏

i= j+1

γ2i−1γ2i|n〉2 (B4)

involves strings of trivial stabilizers S j = iγ2 j−1γ2 j [cf.
Fig. 1(a) of the main text]. Since the bases {σα

j } and {σ̃ α
j } are

related by a unitary transformation exchanging stabilizer sets
of complementary topological character (see Fig. 5), while
χSG

n ∝ N (for N � 1) for MBL with topological order (and
χSG

n → 1 otherwise), we have χdSG
n ∝ N (for N � 1) for

topologically trivial MBL (and χdSG
n → 1 otherwise). This

behavior can be seen in Fig. 6, where we plot the dual order
parameter as a function of σμ = σV .

APPENDIX C: QUANTUM CIRCUIT SPLITTING FOR
LARGE SYSTEMS

In this section we demonstrate that the splittings cor-
responding to the quantum circuit Ansatz are zero for
sufficiently large systems; however, we note that the QC states
are a good starting point for the DMRG-X calculation regard-
less.

The eigenstates that the quantum circuit approximation of
tLIOMs predicts are given by

|ψ±〉 = USR|t±〉, (C1)

where |t±〉 is an eigenstate of the topological stabilizers
Stopo

j = iγ2 jγ2 j+1 with eigenvalues t j = ±1 and a ±1 eigen-
state of the bilocal stabilizer Snl = iγ2Nγ1. It may be written

FIG. 7. (a) Figure of merit f /tr(H2) and (b) standard deviation
of the entanglement entropy for topological (conventional) LIOMs,
shown with solid (dotted) lines, for ten disorder samples and N = 48
evaluated along a line away from the diagonal in the phase diagram
as indicated in the inset. For comparison we added the data from
Fig. 3 in gray. In (a) the error bars show the standard error of the
average across the different disorder realizations and in (b) the error
bars show the standard error of 〈σS〉cuts across the cut positions.

in terms of stabilizers as

|t±〉〈t±| =
(

1

2
± 1

2
Snl

) N−1∏
j=1

(
1

2
+ 1

2
t jS

topo
j

)
. (C2)

Using this representation, the expectation value for the energy
can be expressed as

〈ψ±|H |ψ±〉

= Tr

[(
1

2
± 1

2
Snl

) N−1∏
j=1

(
1

2
+ 1

2
t jS

topo
j

)
U †

SRHUSR

]
(C3)

and the corresponding splitting is given by

�E = 〈ψ+|H |ψ+〉 − 〈ψ−|H |ψ−〉

= Tr

[
Snl

N−1∏
j=1

(
1

2
+ 1

2
t jS

topo
j

)
U †

SRHUSR

]
. (C4)

To further analyze the expression, we can expand the Hamil-
tonian in local terms

H =
N∑

k=1

hk; (C5)
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with that the splitting is given by

�E =
N∑

k=1

Tr

[
Snl

N−1∏
j=1

(
1

2
+ 1

2
t jS

topo
j

)
U †

SRhkUSR

]
. (C6)

Since the quantum circuit acts locally, the causal cones [34] of
each term hk in the Hamiltonian will, for a sufficiently large
system size N , not cover both of the Majorana modes making
up Snl. Hence, either γ1 or γN (or both) will factor from the
trace, leading to �E = 0.

The true splitting is of the order exp(−N/ξL ), i.e., it is
due to the exponentially decaying coupling between the end
modes in the bilocal integral of motion τ nl. It is thus not sur-
prising that the QC approximation alone, which uses strictly
short-range gates, cannot reproduce the splitting. We can cap-
ture �E better once the accuracy of the approximation has
been improved, e.g., by feeding the QC approximate eigen-
states into the DMRG-X algorithm. As pairs of QC initial
states have the same configuration of approximate tLIOMs
(other than for τ nl) and the DMRG-X algorithm tries to
maintain a high overlap with the initial states, it will build
up additional entanglement around these and thus improve

their accuracy. This keeps the configuration of tLIOMs fixed
for sufficiently large bond dimensions. Since the DMRG-X
algorithm is based on matrix product states, it is able to build
entanglement across the entire chain and will thus reproduce
the energy splittings, including their dependence on system
size, even for large systems.

APPENDIX D: SENSITIVITY TO THE THERMAL PHASE

To further illustrate the predictive power of the tLIOM
approach, we have evaluated the (t)LIOMs along the σV /σμ =
tan(10◦) line, where we expect a smaller extent of the ther-
mal phase [cf. Fig 1(c)]. Along this line the figure of merit
[Fig. 7(a)] has a smaller transition region in which both
the LIOMs and tLIOMs poorly describe the system, consis-
tent with a larger regime being a part of an MBL phase.
Furthermore, focusing on the entanglement entropy fluctua-
tions [Fig. 7(b)], we find that the maxima they assume are
smaller. Since the thermal phase is responsible for gener-
ating those maxima, this is also consistent with a smaller
extent.
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