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Resonance-induced growth of number entropy in strongly disordered systems
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We study the growth of the number entropy SN in one-dimensional number-conserving interacting systems
with strong disorder, which are believed to display many-body localization. Recently a slow and small growth
of SN has been numerically reported, which, if holding at asymptotically long times in the thermodynamic
limit, would imply ergodicity and therefore the absence of true localization. By numerically studying SN in the
disordered isotropic Heisenberg model we first reconfirm that, indeed, there is a small growth of SN. However, we
show that such growth is fully compatible with localization. To be specific, using a simple model that accounts
for expected rare resonances we can analytically predict several main features of numerically obtained SN: trivial
initial growth at short times, a slow power-law growth at intermediate times, and the scaling of the saturation
value of SN with the disorder strength. Because resonances crucially depend on individual disorder realizations,
the growth of SN also heavily varies depending on the initial state, and therefore SN and von Neumann entropy
can behave rather differently.
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I. INTRODUCTION

Noninteracting disordered systems in one dimension are
known to exhibit localization at any disorder strength—the
famous Anderson localization [1]. Localization in inter-
acting models [2,3]—the so-called many-body localization
(MBL)—has been the topic of intense research in recent years
[4–6]. The current understanding, based on numerics and an
almost rigorous proof for a particular model [7], is that there
is a critical disorder strength beyond which the interacting
systems do localize, which should then by definition of local-
ization be reflected in lack of transport of conserved quantities
such as energy and particles.

One of the surprising properties of the MBL phase is that
despite the lack of transport one nevertheless does get the
spreading of quantum information as indicated for instance by
a logarithmically slow growth [8,9] of bipartite von Neumann
entropy S(t ), which one computes by dividing the system
into two subsystems A and B. Simply put, in a many-body
localized system nonconserved degrees of freedom can still
exhibit nontrivial dynamics which is reflected in the growth of
S(t ) that in a finite system eventually saturates to a subergodic
volume law value [9]. The logarithmic growth S(t ) ∼ ln t can
be explained by the so-called local integrals of motion model
[10–13], expected to hold for MBL systems, where it is due
to dephasing from exponentially decaying coupling [14–16].
The entanglement entropy S(t ) is quite difficult to directly
measure in experiments; however, in systems that conserve
the total number of particles there is a much more accessible
number entropy SN. In such systems, starting with an initial
state |ψ〉 that is an eigenstate of the total number operator,
the reduced density operator ρA(t ) will at all times have a
block structure in the number (i.e., computational) basis (see
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Fig. 1). Writing each block matrix containing nA particles
as pnAρnA , with trρnA = 1, we can write the von Neumann
entropy S(ρA) = −tr[ρA ln ρA] as a sum of two terms,

S = SN + Sconf , (1)

where SN = −∑
nA

pnA ln pnA is the number entropy, while
Sconf = ∑

nA
pnA S(ρnA ) is called the configurational entropy.

The number entropy SN is much easier to measure because
it requires only probabilities pnA to find nA particles in the
subsystem A. Experimental measurement of number entropy
in Ref. [17] stimulated a flurry of numerical studies [18–21]
of SN in the Heisenberg model at strong disorder (considered
to be deep in the MBL phase), fitting the numerical data by
a slow growth of SN ∼ ln ln t (this growth of SN is unrelated
to a subleading [22] ∼ ln ln t growth of von Neumann entropy
in a dephasing model of MBL) and arguing that this growth
is unbounded which would challenge the established MBL
phenomenology [23], specifically no particle transport in the
localized phase. A subsequent study focusing on the steady
state saturation value of SN on the other hand concluded [24]
that there are no signs of ergodicity and that SN is compatible
with MBL.

In the present paper we resolve the issue by explaining that,
in fact, all the above numerical observations are compatible
and explainable by properties of the MBL phase. Taking into
account rare resonances [25–30] present in MBL systems
we explain how this affects growth of SN in single disorder
configurations and how these combine to give the slow growth
after disorder averaging. With a simple resonance model we
shall predict a slow power-law growth (instead of reported
ln ln t) of SN(t ) at intermediate timescales and an eventual
saturation of SN to a nonergodic finite value whose scaling
with disorder strength perfectly agrees with numerics. We
remark that while our results do not resolve the recently hotly
debated issue [26,30–36] of whether a true MBL phase at all
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exists in the Heisenberg model, as our numerics is also limited
to small systems of length L � 18 (which is not sufficient to
resolve the question [33]), it does show that all observable
phenomenology of SN(t ) at these sizes is fully compatible
with MBL.

II. MODEL

We consider the spin-1/2 isotropic Heisenberg model with
random magnetic field in the z direction,

H = −J
L−1∑
i=1

Si · Si+1 +
L∑

i=1

hiS
z
i , (2)

where S denotes a vector of spin operators and hi are random
variables uniformly drawn from [−W,W ], with W being the
disorder strength. Using the Jordan-Wigner transformation
one can equivalently write this Hamiltonian in terms of spin-
less fermions,

H = −J

2

∑
j

(c†
j c j+1 + H.c.) +

∑
j

h jc
†
j c j + J

∑
j

n jn j+1,

(3)

where c j [c†
j ] are the annihilation [creation] operators of the

fermion and n j = c†
j c j [37]. Without loss of generality we

shall set J = 1 throughout our work. Although one often
refers to [38,39] Wc ≈ 3.7 as the MBL transition point in
this model, recent results [34,40–46] indicate that there may
be a significant shift toward larger disorders with increasing
system size, perhaps to Wc ≈ 5 or even higher. To avoid any
possible effects at Wc, where one needs large systems [33],
we will focus on W � 10 that is supposed to be in the MBL
phase.

As the Hamiltonian conserves particle number we shall
confine ourselves to the half-filled sector of the system. Unless
otherwise mentioned, the initial states are chosen randomly
from computational basis states, i.e., product states that are
eigenstates of all n j . We consider a half-half bipartition of the
system throughout our work, and denote the two halves by A
and B. The reduced density operator and the von Neumann
entropy S are

ρ = |ψ〉〈ψ | , ρA = trB[ρ], S = −tr[ρA ln ρA], (4)

where |ψ〉 is the state of the full system (in numerical data
we use natural logarithm). As we have outlined in Eq. (1), in
number-conserving systems one can split the von Neumann
entropy into two terms; one is the number entropy SN which
is just the Shannon entropy of the probability distribution
pnA to find nA particles in the subsystem A, and the other
is configurational entropy that measures correlations between
arrangements of particles of the subsystem and the environ-
ment. Physically speaking, the number entropy is a measure of
entanglement generated by actual transport of particles across
the boundary of the subsystem. Configurational entropy is
more subtle. It takes into account all configurational corre-
lations and thus unlike number entropy grows as the system
undergoes dephasing to reach a steady state, even if there is no
change in nA. Probabilities pnA needed for the number entropy
SN = −∑LA

nA=0 pnA ln pnA , where LA is the length of subsystem

FIG. 1. A schematic diagram of the reduced density matrix ρA.

A, are equal to the trace of the corresponding block of the
block diagonal matrix ρA (see Fig. 1). Explicitly

pnA (t ) =
∑

〈k|NA|k〉=nA

〈k|ψ (t )〉 〈ψ (t )|k〉 , (5)

where NA = ∑LA
j=1 n j . In the MBL phase, due to localiza-

tion, there is no particle transport at long times. Therefore
SN should saturate to a nonergodic value. In Fig. 2 we have
plotted mean SN for different disorder strengths W . Data for
L = 8, 12, 16 have been averaged over 5 × 105, 105, and 104

configurations, respectively (a configuration means an inde-
pendent disorder realization and an independent half-filling
product initial state). We notice that there is a clear but small
growth of SN for all the system sizes.

Before jumping to speculation that this indicates ergodicity
and therefore the absence of MBL a few observations are in
order. (i) Growth is in all cases rather small. (ii) The case
of W = 5, where it is the largest, is close to Wc (or even in
the ergodic phase). (iii) While one can fit SN ∼ ln ln t to data
[18–20] the agreement is limited to a rather tiny window of
SN [23]. Many other functions could be fitted with similar
significance; in fact, as we will see, a power-law predicted
theoretically gives a better fit over wider range. (iv) Satura-
tion values of SN are in all cases small and far from being
ergodic. For example, a random half-filled state to which
one would converge at long times in an ergodic system has
SN � 1

2 ln (eπL/8), i.e., SN ≈ 1.45 at L = 16 and SN ≈ 1.14
at L = 8. Therefore, saturation values are already at W = 10
more than 10 times smaller than the ergodic ones. (v) The
saturation value of SN shows no significant increase with L; if
anything, at large W it decreases with L.

In the following sections we will analyze the cause of the
growth and show it is compatible with localization. First in
Sec. III, we will talk about special resonant configurations
where one sees a sharp rise in SN at a particular time, and
which can be held accountable for a small increase visible in
the mean SN. Then in Sec. IV we shall investigate the steady
state behavior of the system, and show how several observed
features can be well explained by a two-state resonant model.
This is followed by Sec. V, where we shall discuss the short-
time behavior of the system and how choice of initial states
affects the growth of mean SN. After that in Sec. VI we shall
show how one can kill the growth of SN by filtering out a
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FIG. 2. Plots of SN(t ) for different system sizes (L = 8, 12, 16, with green, red, and blue, respectively) for the isotropic Heisenberg chain
[Eq. (3)], with a random magnetic field of strength W . The insets zoom in on the region of small growth at long times.

few special resonant configurations. We will also discuss the
nature of growth of SN at intermediate times in this section.

III. RESONANT CONFIGURATIONS

In Fig. 3 we plot SN for two specific configurations where
one can see an interesting behavior of SN: up to potentially
long time SN exhibits a plateau, like it would already saturate
to its long-time value, but then jumps to new larger saturation
value. Such configurations exhibiting a plateau with a jump
are rare (at large W ), with the time of the jump very much
depending on the configuration. As we shall explain in the
following, it is resonances that are responsible for such jumps
and they will form the core of our theory of SN growth. For
instance, after averaging over different configurations with
different jump times they will result in the slow growth of SN

visible in Fig. 2.
To understand why these resonances occur we first con-

sider the simpler case of very large W . In such a case, one
would expect the eigenfunctions to be localized strongly at
the corresponding computational states, and eigenvalues equal
to the diagonal elements of the Hamiltonian. The resonances
occur when two computational states which are very close
to each other in unperturbed energy, hybridize with each
other. In such a scenario, if one starts from any one of the
computational states, it mixes strongly with the other over
time. Crucially for SN, if these computational states possess
a different particle number for subsystem A, then this hy-
bridization shows up as a “jump” in SN. The time of the jump
is on the order of 1/(E0

1 − E0
2 ), where E0

1 = 〈1| H |1〉 and
E0

2 = 〈2| H |2〉; |1〉 and |2〉 denote the computational states
involved in the hybridization.

As we reduce W the localization becomes weaker and one
needs to examine the true eigenenergies instead of just the
diagonal matrix elements. Additionally, the resonant eigen-

FIG. 3. Plots of SN(t ) for two resonant configurations starting
from the domain wall initial state at W = 15 and L = 12. The red
lines are from exact numerics; the blue lines are the result we get
from the m-state problem [with m = 3 for (a) and m = 5 for (b)].
The green line denotes the time 1/(E1 − E2) at which the resonance
is resolved and SN exhibits a jump. The insets show the numerically
obtained SN vs t in the main plot for a shorter time span on a linear
scale, to make the Rabi-like oscillations visible.
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vectors also have significant overlaps with more than one
computational state. In this situation, hybridization can occur
when the eigenvectors associated with eigenenergies close to
each other have a large overlap with two computational states
having different nA. Then if the initial state is one of the two
computational states involved, the time of the jump can be
approximately given by 1/(E1 − E2), where E1 and E2 are
eigenenergies of the relevant states.

We can show an easy demonstration of the above in some
special cases, where one can approximate such a situation
via an m × m block of the Hamiltonian, when m is small
enough and is similar to the range of hybridization. The range
of hybridization is given by the number of “hops” required
to go from the initial state to the final. In Figs. 3(a) and
3(b) we plot SN vs t for two distinct disorder realizations
with the same initial state |1〉. The states involved in hy-
bridization in Fig. 3(a) are |1〉 = |111111; 000000〉 and |2〉 =
|111110; 010000〉, which have a range of hybridization 2 (a
semicolon is used to show the separation between systems A
and B). The disorder configuration in this scenario was such
that one had a resonance. Specifically h6 = 5.08 and h8 =
6.07 were resonant so that the 0th-order energies of states
|1〉 and |2〉, in which a particle jumped from the 6th to 8th
site, were resonant, |h6 − h8 + 1| � 1. The analytical curve in
blue is found from taking a 3-state model with these two states
and the intermediate |3〉 = |111110; 100000〉, and calculating
SN for evolution on this 3-dimensional subspace. It shows a
very good match with the numerical plot in red. Since the two
states involved differ in number of fermions in subsystem A,
there would be an increase in SN when one starts from any one
such state initially in the Hamiltonian. In the plot we also show
the timescale of such a jump indicated by the green line. Since
SN grows with time as ∼ sin2[(E1 − E2)t], where E1 and E2

are eigenenergies of the eigenstates involved in hybridization,
the rise can be seen around time t ∼ 1/(E1 − E2).

In Fig. 3(b) we start from the same state but look at
a resonance with range of 3; i.e., the final state is given
by |111110; 001000〉. This corresponds to a longer-range
hybridization. Here we need the two intermediate states
and another state |111110; 000100〉, i.e., a total of 5 states,
to obtain SN accurate to what we get for the full sys-
tem. This is because in the configuration chosen |5〉 =
|111110; 000100〉 is resonant to |3〉 = |111110; 100000〉
alongside |1〉 = |111111; 000000〉 being resonant to |4〉 =
|111110; 001000〉, and this double resonance allows a strong
hybridization between |1〉 and |4〉 even when they are sep-
arated by 3 lattice hops in a strong-disorder regime. In this
case the 0th-order resonance condition reads |h6 − h9 + 1| ∼
|h7 − h10| � 1, which triggered the double resonance.

While the domain wall state was chosen for easy demon-
stration of the phenomenon, behavior of other generic initial
states at strong disorder can also be approximated by such
an effective low-dimensional model, resulting in qualitatively
same observation. When we calculate mean SN we average
over many configurations showing the resonant behavior in
different timescales. This shows up as a slow growth in mean
SN. For growth at late times one requires presence of resonant
cases at times t � 1, and this is possible when two resonant
states have E1 − E2 � 1. We have noticed that cases of long-
range resonances are more abundant in the disorder strength

range W ∼ 5–10 in agreement with what has also been re-
ported in Ref. [30]. Consequently, from Fig. 2 we can also
clearly see that the increase in SN is more visible in this region,
where larger system sizes clearly show larger values of SN. At
disorder strengths larger than this such strong resonances are
very rare and the growth is stifled. These longer-range reso-
nances cause SN to rise at later times and thus they are the ones
to drive the later-time growths. The reason is that long-range
resonances are driven by comparatively smaller eigenenergy
differences. Since the approximate time of growth is inversely
proportional to it, the rise occurs at later times, a feature seen
when one compares Figs. 3(a) and 3(b).

Additionally, since only a few states are involved in the
hybridization and contribute to growth of SN one can expect
Rabi-like oscillation to be visible in its growth with time. This
feature is shown in the insets of Fig. 3. It is interesting to note
that the more the number of states involved in the hybridiza-
tion, the more complicated the oscillations are, which is what
one expects.

The initial state in the demonstration was chosen such that
it had a very low connectivity locally in the Hilbert space.
This allowed us to approximate the effective low-dimensional
model directly from a block in the Hamiltonian. However, if
one starts from a general computational initial state and not so
strong disorders, one would need to take into account a large
number of intermediate states between the two resonant states
to obtain a reasonable approximation of SN. The strength
of hybridization also depends strongly on the intermediate
states involved. Due to the energy difference between the
states being very small, a perturbative approach to calculate
the effective Hamiltonian to show the hybridization is very
difficult and one needs to go to very high orders of pertur-
bation to obtain a sensible result. In such more complicated
single-resonance cases, the technique described by Ref. [30]
to find the effective 2-state Hamiltonian between the resonant
states is a better approach to visualize it semianalytically. This
is discussed in Appendix A.

In Sec. VI we shall discuss more on the role of resonances
to increase mean SN and predict the law of growth to follow a
power law, using statistics of the resonant configurations. This
will be shown to agree very well with the numerical results.

IV. STEADY STATES

In this section we shall describe the statistics of the long-
time saturation values of SN (steady state values) for different
disorder strengths and system sizes. We shall discuss the
power-law decrease of mean and median steady state SN with
disorder strength, which we obtain numerically and provide an
analytical basis for the same. We will also show how steady
state SN decreases with system size for large W , confirming
lack of ergodicity.

A. Statistics of steady state quantities

There are two comparable quantities one usually looks at
while studying long-time steady state properties of a system.
One is the long-time average of SN, denoted by S̃N, which
we calculate [47] by averaging the data between t ∼ 106–107.
The other quantity, which we denote by S̄N, is calculated by
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FIG. 4. Plot showing long-time saturation values (steady state)
of SN (S̄N) for different W and L (denoted by different colors).
(a) Maximum, mean, and median of the distribution. The dotted
line shows the fit to W −1.07 and the solid line shows fit to W −2.2.
(b) Zoomed-in plot of the median ({S̄N}) from the top plot.

first calculating p̄nA , the steady state probability of having
nA particles in the subsystem A, and then calculating S̄N =
−∑LA

nA=0 p̄nA ln p̄nA . We know from Jensen’s inequality that
S̃N � S̄N for any set of parameters since SN is a concave
function of pnA . Hence, in what follows we shall concentrate
on the properties of S̄N. Some results for S̃N are presented
in Appendix C. In Fig. 4 we plot the maximum, mean, and
median of S̄N for different system sizes and disorder strengths.
We use 5 × 105, 5 × 105, 105, 105, and 104 configurations for
L = 8, 10, 12, 14, and 16, respectively. The maximum value
obtained from the distribution remains more or less constant
with increase in disorder and system size and is ∼1. Con-
sidering how both mean and median deviate from this value
one can say that the maxima occur via the rare resonant
cases which we talked about in the last section. Clearly they
become rarer as W increases and mean and median show a
power-law decrease with increasing W . Furthermore we see
that the mean is significantly larger than the median and falls
much slower with W than the median does. This is generally
expected for a distribution which is skewed toward 0. We also
see that the change of both mean and median with W can
be fitted by a power law with exponents very close to −1
and −2, respectively. Comparable features are also seen in
Anderson-localized systems; see Appendix F for details.

We also want to point out that additionally, the trend of
mean and median S̄N with increasing L is nonmonotonic with

FIG. 5. Disorder-averaged distribution of probability of subsys-
tem A having δn change in number of particles from its initial state,
when it reaches long-time steady state. That is, δn = |n − nI |, where
nI is initial number of particles present in subsystem A, averaged
over 106 configurations for L = 12. The black line denotes fit to
exp(−δn/0.24).

increasing W . Figure 4(b) shows the median where the feature
is prominent. Initially, for around W = 5 it seems larger sys-
tem sizes have a slightly larger value of both mean and median
S̄N. But there is a reversal of this trend around W ∼ 6, where
beyond that, the larger system sizes show a lower mean and
median S̄N than smaller ones. This suggests that the exponents
of the power-law fits show a slight drift in value with increase
in system size (see Appendix C). However, it is to be noted
that this behavior with increasing L supports the notion of
lack of particle transport since distributions are further skewed
toward SN = 0 for larger system size. This feature was also
reported in Refs. [19,24]. The trend while a bit surprising
is actually caused due to the choice of initial states. This is
discussed in the next section and in Appendix C.

In Fig. 5 we show the disorder-averaged distribution of the
change in number of particles in subsystem A from what was
present initially, to at the steady state, for different disorder
strengths and L = 12. Clearly the disorder-averaged value of
the quantity δn = |n − nI |, where nI is the number of particles
initially present at the subsystem, fall off at least exponentially
fast with distance. In fact for W � 10 clearly the fall is even
faster than exponential. This observation further confirms lack
of particle transport in the system as a whole, as if the particles
indeed spread throughout the system, p(δn) should not show
such a fast decrease. It also suggests that if any distribution
which falls off slower than the exponential is indeed found in
intermediate times, it is transient.

Henceforth, unless otherwise mentioned, we shall use S̄N to
denote the ensemble mean of the steady state number entropy
and {S̄N} to denote median.

While finding an analytical explanation for the power-law
decrease of S̄N with W from the many-body setup is difficult,
one can still extract the trends at W � J from a two-state
model which we describe below.

B. Analysis via two-state model

At large enough disorders the localization length is ζ <

1, and the distribution of change of particles in system A,
δn, is very narrow around δn = 0. This justifies an effective
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two-state model we are going to use. We group the proba-
bilities into two, p̄ and 1 − p̄, where p̄ denotes the steady
state probability of the subsystem having different number
of particles than in the initial state, |1〉. Due to the skewness
of the distribution, the value of p̄ is very close to 0 for most
cases, and hence one can approximate the statistics of S̄N by
the statistics of p̄.

We note that such simple two-dimensional description of
resonances has appeared before in the context of MBL, for
instance in describing hybridization probability [27], contri-
bution to 2-point level correlations due to resonances [29],
thermalization of a 2-level system coupled to a bath [28], or to
describe critical behavior observed in finite systems [26,30].
We consider a two-state model whose Hamiltonian is given by

(
E0

1 − j
− j E0

2

)
. (6)

For nearest-neighbor resonant states, this is a 2 × 2 block of
the original Hamiltonian, which was also the low-dimensional
model used in Sec. III. Then j = J/2. However for more com-
plicated and longer-range resonances, we require an effective
two-dimensional model to describe them (for instance, see
Appendix A). Then E0

1 and E0
2 will deviate from the corre-

sponding diagonal elements of the Hamiltonian and j � J/2.
But, as we shall see in what follows it is not necessary to ex-
actly formulate the effective low-dimensional model to extract
the power laws. The wave function evolves with time un-
der action of this Hamiltonian as |ψ (t )〉 =

√
1 − [d (t )]2 |1〉 +

d (t ) |2〉, where

d (t ) = A sin(�t/2). (7)

The amplitude of oscillation is given by

A = 2 j

�
, (8)

and the frequency is given by

� =
√(

E0
1 − E0

2

)2 + 4 j2. (9)

The simplification in analysis arises from the fact that this
two-state model simulates the jump of one particle from
one site to another and we require only E0

1 − E0
2 in our ex-

pressions. Hence, one can just take into account the on-site
random numbers involved in the process, plus the interaction
if necessary. For this model, one can write down the evolution
of SN with time as

SN(t ) = H(p(t )), (10)

where H(x) = −x ln x − (1 − x) ln(1 − x) and p(t ) =
[d (t )]2. The long-time average of SN denoted by S̃N is
equal to H̄(p). However as discussed before, we are going
to focus on the quantity S̄N = H( p̄), the steady state value,
which due to concavity of the function is larger than H̄(p).
p̄ is the long-time average of p(t ). Due to skewness of the
distribution, one can approximate S̄N to be a linear function
of p̄ and hence expect S̄N to show a similar behavior to that of
p̄. We can hence focus on calculating statistics of p̄ which is
easier to compute and consequently understand the behavior

FIG. 6. Plot showing probability distribution of long-time steady
state probability p̄ for L = 12. The blue line is the distribution ob-
tained from Eq. (B1) in Appendix B where we use the approximation
j = J/2 = 1/2. The red bars are from exact numerics.

of S̄N. From Eqs. (7), (8), and (9), we have

p̄ = 2 j2

(
E0

1 − E0
2

)2 + 4 j2
. (11)

We will analyze the mean 〈p̄〉 and median { p̄} of this quantity.
We work in the large-disorder region where we have W � j.
From an analysis outlined in Appendix B, where using the
fact that E0

1 and E0
2 are two random real numbers taken from

a uniform distribution, one can find the distribution of p̄ using
two successive variable transformations, and hence see that
for j/W � 1,

〈p̄〉 = π j

2W
+ O(1/W 2),

{ p̄} =
(

j

W

)2

(3 + 2
√

2) + O(1/W 4). (12)

Due to the presence of the higher-order correction terms, one
expects the observed powers to be slightly larger than 1 and 2
respectively for the mean and median [48]. Different scaling
of the mean and median has been observed also in the distri-
bution of eigenstate entanglement of a two-level spin coupled
to a bath and which can also be described by a 2-level resonant
model [28] resulting in a bimodal distribution, similarly to
our case.

These expressions show how the mean and median of p̄
follow power laws with exponents close to what was shown
in Fig. 4. Additionally in Fig. 6 we compare the probability
distribution of p̄ for disorder strength W = 10 and W = 20,
for a system size of L = 12 obtained from exact numerics (red
histograms) with the probability distribution of p̄ [Eq. (B1) in
Appendix B] used to compute the quantities in Eq. (12) (blue
line). We see a very good agreement between the two, which
gets better with increasing W as expected. This strengthens
the validity of our two-state model, as not only the mean and
median but the entire distribution can be approximated very
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FIG. 7. Plot showing different behavior of SN(t ) for different
groups of initial states. (a) Plots of SN(t ) for a randomly chosen disor-
der realization for W = 10 and L = 12 for all allowed computational
initial states. (b) Plot of configuration averaged SN (t ) for groupings
of different q states taken from an ensemble of 105 configuration of
disorder and initial states for L = 12 and W = 10.

well by the model. Some more finer aspects of the quantities
in focus in this section are discussed in Appendix C.

To summarize, analysis of steady state SN points toward
the absence of any ergodicity at these disorder strengths in the
model. We have shown how mean and median steady state SN

follow power-law decay with increasing W , with analytical
support from a two-state model which almost correctly pre-
dicts the value of the exponent. Furthermore the probability
of change in particles in the subsystem at the steady state falls
at least exponentially with the change in the number. Also,
for comparatively larger disorder strengths mean and median
steady state SN shows a trend of decrease with system size
rather than an increase. All of these features point to localiza-
tion and we see no signature of any long-range transport in the
system.

V. INITIAL STATES AND SHORT-TIME BEHAVIOR

In this section we shall discuss the short-time behavior
of SN, which is approximately until t ∼ 1. In this timescale
very few states are involved in the dynamics and the behavior
of SN can again be approximated by two-state models which
we shall discuss in this section. Alongside this we shall also
discuss how the behavior of SN depends on the choice of initial
states. The choice of initial states plays a major role in the
growth of SN at all timescales, but this effect is easiest to
understand at such low timescales.

A. Growth at small timescale

First in Fig. 7(a), we take one disorder realization and
all possible computational initial states for L = 12 and plot
the growth in SN on the short timescales. One sees a clear

grouping of initial states during the timescales t < 1. Initially,
we see that there are four groups of initial states each with a
different power-law growth of SN. We label each group by an
index q, where q = 1 . . . 4. These groupings are done based
on the number of consecutive 0′s or 1′s present around the
subsystem cut. Let us label the sites in A and B by their
distance from the cut. If one starts the labeling from 1, q de-
notes the smallest label where either the fermion occupancies
in A and B do not match or have a different value from the
occupancy at smaller labels.

To illustrate, let us describe in detail the situation for
L = 12. The q = 1 group consists of two kinds of states
|. . . 0; 1 . . .〉 and |. . . 1; 0 . . .〉. Then the second group de-
noted by q = 2 comprises four kinds of states |. . . 10; 0 . . .〉,
|. . . 0; 01 . . .〉 and their spin-flipped versions. The third one
q = 3 has another four kinds of states |. . . 100; 00 . . .〉,
|. . . 00; 001 . . .〉 and their spin-flipped versions, and finally
in the last group labeled by q = 4 one has the remain-
ing two states, viz., |000111; 111000〉 and |111000; 000111〉.
For larger L one will have more types of initial states. It
can be shown that, for the half-filled sector, the number
of available types of initial states is m + 1 for L = 4m or
L = 4m + 2. However, when one picks any initial state ran-
domly, different types of states have different probability of
being picked. In the thermodynamic limit one would ex-
pect the probability of q = 1 states to be around 50% with
the rest of the types having a progressively decreasing
probability.

The four groups of states seen in Fig. 7(a) are the groups
labeled by q = 1, 2, 3, 4 from top to bottom. States labeled
by q = 1 generally show maximum growth in SN, followed
by q = 2, 3, etc. Clearly, if we choose a value of SN in the
plot and study when each group of states reaches that value,
different groups do so in different times, if they reach at all.
The reason for this is based on the number of intermediate
states in the available Hilbert space an initial state needs to
cross to reach the first state with a different particle num-
ber in subsystem A (nA). The larger this number, less is the
probability and longer the time taken by an initial state to
reach a significant value of SN. With increasing q this number
increases monotonically. Since we are discussing the MBL
phase, where particle movement is suppressed exponentially,
this feature is quite prominent. Additionally after the initial
rise we also see the groups of states q = 2 and q = 3 splitting
into two subgroups. This is due to the presence of interactions
in the model. The energy cost is different for a particle hop-
ping to a site depending on whether it has an unoccupied or
occupied site next to it.

In Fig. 7(b) we take the numerical data for different con-
figurations for L = 12 and W = 10 and find their average
after grouping them according to the initial state type. The
different colors correspond to different q values. The mean
values of SN at all times show a clear difference with type of
initial state at this disorder strength. This points to a strong
suppression of any effective long-range processes, as higher
q values show lower mean SN. In fact the mean values show
an almost exponential suppression in the value of long-time
SN with increasing q, which is what one would expect in the
MBL phase.
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FIG. 8. Plots showing agreement of results from two-state model
[Eq. (6)] with exact numerics for W = 15 and L = 12. (a) Com-
parison of analytical results (red line) from Eq. (10) with exact
numerics (blue line) for one single configuration. (b) Plot showing
the agreement of numerical (blue dots) with analytical (red dots) data
obtained from Eq. (13) for tmax. The inset shows agreement of data
for Smax.

Seeing how q = 1 states make up for the bulk of mean
SN we will try to analytically predict short-time behavior for
these states using a 2-state model. Note that states with higher
q values need at least a q + 1 state model to explain their
behavior in short times.

B. Analysis via two-state model

The rise of SN in the q = 1 set of states can be approx-
imated via a two-state model from initial state |1〉 (with
diagonal term E0

1 in the Hamiltonian) to a state with one
hop across the boundary |2〉 (with diagonal term E0

2 ) with a
Hamiltonian again given by Eq. (6). Recall the amplitude and
frequency of oscillation in the two-state problem is given by
Eqs. (8) and (9) discussed in the previous section with j = J/2
in this case. To be noted here E0

1 and E0
2 will differ by position

of one particle so it generally takes the form |E0
1 − E0

2 | =
|hL/2 − hL/2+1 ± J| or just |hL/2 − hL/2+1| depending on the
states |1〉 and |2〉. One can extract the position of the first
maximum of each of the realizations of SN(t ) from Eqs. (7)
and (10), which turns out to be at

tmax =
{

cos−1( A−1
A )/�, A > 1

2 ,

π/�, otherwise.
(13)

Hence the value of first maxima is given by Smax = SN(tmax).
In Fig. 8(a) we focus on a single random configuration and
show how well our 2-state model approximates SN at initial
times. We clearly see that tmax and Smax from the numerical
data and that calculated from the two-state model agree very
closely. It is to be noted that the timescales for which our
approximation gives very good results is different for different

configurations, and usually is inversely proportional to �E =
(E0

1 − E0
2 ). In Fig. 8(b) we show how well the analytically

calculated values of tmax and Smax match with the numerical
data for L = 12 and W = 15.

If �E is small it causes a nearest-neighbor resonance, and
A, the amplitude of oscillation, becomes large which in turn
causes Smax to have a value close to ln 2. This feature is clearly
visible in the inset of Fig. 8(b). There is a steady growth in
Smax with decreasing �E peaking at ln 2 ∼ 0.693. In the same
plot we show a comparison of the times (tmax) at which the
first peak occurs, obtained from exact numerics (red points)
and the two-state model (blue points). In both of the plots
we find a very good agreement of the analytical prediction
with actual numerical data. For large �E , � is large and
A < 1

2 , hence tmax = π/�, but when �E becomes smaller
and makes A become greater than 1

2 the function changes.
From Eqs. (8) and (13) one can see that the change occurs
when |�E | = √

3J ∼ 1.72 with our parameters. This is ap-
proximately where we see a sharp change in the nature of the
blue curve in Fig. 8(b). The small deviation between analytical
and numerical results at the tails for tmax is because for the
numerical data the smallest time step taken was dt = 0.2.

C. Néel and domain wall state

Next, we are going to discuss two very special initial states
which are important in experiments, whose behaviors are
known to be very different from each other and are worthy
to be shown separately [49,50]. Both fall under the group
of initial states q = 1. One of them is the Néel state, which
for example is |10101010〉 for L = 8. One expects the ln t
behavior of von Neumann entropy S to be prominent when
the initial state is this state [51]. A comparison between the
behavior of mean von Neumann entropy S and mean number
entropy SN for this state presented in Fig. 9(a) shows that
while mean S clearly grows logarithmically with time, SN

saturates after the initial growth. In fact SN never exceeds the
first peak at around t ∼ 1 throughout the entire period. The
medians {S} and {SN} also show the same behavior.

This result is exactly what one would expect in the MBL
phase, where after an initial growth of SN which follows the
growth of S, SN will saturate. Since in the MBL phase one
expects transport of particles to be heavily suppressed, one
expects no growth of SN after initial rise within localization
length. However configuration entropy, which forms the other
part of von Neumann entropy, can still grow due to dephasing,
which does not require actual particle transport across the
boundary. This growth requires interactions which can entan-
gle pairs of particles and thus entangles particle configurations
across the boundary. Hence one expects SN to saturate but
Sconf to grow indefinitely in the thermodynamic limit which
in turn causes S to grow. The small amount of growth in SN

seen in the plot at times t < 103 is due to the resonant disorder
cases which will be further elaborated in the next section. Fur-
thermore, the fact that SN does not cross the maximum of the
first oscillation, which has been shown to be described by one
particle crossing the subsystem boundary to the neighboring
site, indicates that the particles do not travel much farther in
the lattice than that, and the rest of the entropy S is given by
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FIG. 9. Plot showing mean and median growth of entropy for two
special states for L = 12. (a) Comparison of growth of mean (S and
SN) and median ({S} and {SN}) of von Neumann entropy and number
entropy, respectively, vs t at W = 10 for Néel initial state. (b) Growth
of SN(t ) for domain wall state.

configurational correlations between the subsystem and the
environment.

The other state which is important is the domain wall state,
which for example is |11110000〉 for an L = 8 system. By
choosing this state we drastically reduce the local connectivity
of the relevant region of Hilbert space, and thus one would
expect very few resonant cases to be present if one starts
from this state. If the particle transport at long distances is
indeed being exponentially suppressed by localization, the
resonances will only occur near the boundary of the subsys-
tem. Lack of long-range resonances mean the growth of SN

should occur only during short times before saturation. In
Fig. 9(b) we see exactly this expected result. The value of SN

saturates pretty quickly (t < 100) for W = 5 and increasingly
faster with increasing W . As in the Néel state, in this range
of disorders, SN never goes beyond the first peak meaning
there are almost no cases where resonance with more than two
states are involved. Reduction in Hilbert space connectivity
for the domain wall state also causes SN to reach a saturation
value much earlier for this state than the Néel state which is
also visible in Fig. 9.

D. Contrasting behavior of different initial states

At high disorder strengths we have seen in Figs. 2 and 4
that SN shows a tendency of decrease with increasing system
size. In Fig. 2 this trend already shows up at W = 10 where
the mean SN for L = 16 is lower than for L = 8. We have also
discussed in Sec. IV that the behavior of steady state SN with
system size shows a reversal of trend beyond a certain disorder

strength, when it actually decreases with increasing L. This
puzzling behavior, also reported in Ref. [19], has its source
in the way we choose our initial states. Since different initial
states show markedly different growth of SN, averaging over
all of them results in this behavior.

To elaborate our point, in Fig. 10 we separate out q = 1
and other types of initial states for disorders of strength W =
5 and W = 10, two strengths which show opposing trends.
One clearly sees if one uses only q = 1 initial states, as in
Figs. 10(a) and 10(c), SN shows an increase with system size
for both W = 5 and W = 10, with significant suppression
of growth at W = 10. It is also important to note how the
increase of long-time SN for W = 5 when one goes from
L = 8 to L = 12 is significantly greater than when one goes
from L = 12 to L = 16, which hints at nonergodicity. At
W = 10 this growth is even smaller. In Figs. 10(b) and 10(d)
we then show that when we take the mean over all the
other kinds of states (which still make up for approximately
50% of the initial states), one sees a clear decrease at W =
10 with increasing system size, while for W = 5 there is
small increase.

To explain this observation, recall from Fig. 7(b) and
Sec. III that larger disorder strengths around W � 10 in-
hibit long-range resonances and long-range particle transport.
Hence mean SN at long times shows a progressive decrease
in magnitude with increasing q. As we increase L, the types
of computational states available in the pool of initial state
increases. The presence of states with higher q value in the
pool in turn means increase in number of configurations where
SN has a lower value. Hence when one takes the mean over all
such configurations, redistribution of weights toward lower
values of SN for q �= 1 states with increasing L will cause
a decrease in mean SN. Since at W ∼ 5, some long-range
processes are still allowed, one can still see significant growth
of SN for initial states with larger q values. This in turn shows
up as an increase in SN with system size at W = 5 for both
q = 1 and q �= 1 states as seen in Figs. 10(a) and 10(b). But
as expected this feature disappears for larger disorder as seen
in the W = 10 case presented in Figs. 10(c) and 10(d).

This analysis also explain the reversals of trend of {S̄N}
with system size as we increase disorder shown in Fig. 4(b).
Beyond a disorder strength, due to suppression of long-range
resonance, configurations with low value of steady state SN

increase with increasing L. Taking mean and median over
such distributions results in the behaviors seen.

VI. DYNAMICS AT INTERMEDIATE TIMES

In this section we shall discuss the dynamics of the system
at intermediate times. First, we shall show that resonant con-
figurations, discussed previously in Sec. III, account for most
of the growth seen in SN. Then we shall show how we can fit
the growth of SN in a power-law fit and provide an explanation
for it from the resonance picture.

A. Filtering out resonant configurations

In Sec. II we discussed how averaging over time evolution
of SN containing “resonant” configurations, with resonance
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FIG. 10. Plot showing how q = 1 states [(a) and (c)] and q �= 1 states [(b) and (d)] show different growth of mean SN(t ) for different L
(indicated by different colors in the plot).

occurring at varying t , shows up as a slow growth in mean
or median SN. To show that the resonant cases are indeed
responsible for the slow growth in SN, ideally one should be
able to filter out these cases and obtain a perfectly nongrow-
ing curve. In practice however detecting all the resonances
is notoriously difficult because they have a wide variety of
strengths which all contribute to the small growth in SN.
Hence, we will filter out the considerably large jump cases,
where we consider any sudden rise of height of SN denoted
by δS > 0.1 as a “resonance.” For a pictorial description
of identification of resonances refer to Appendix D. More
exotic filtering procedures can be developed but we have
verified that they do not make any qualitative change to the
results presented here. With this tolerance, Fig. 11(a) shows
the difference between mean SN in situations where we filter
out the jumps vs the full data. We do see a marked decrease
in the difference between SN at initial times and late times for
the two sets of data denoted by blue and red. However since
the tolerance chosen is arbitrary one cannot expect plots to
become completely flattened out after filtering. The filtering
improves as we increase disorder. This is expected as at lower
disorder where localization length is larger, the eigenvectors
have longer tails which adds to particle transport beyond one
site but with exponential suppression with distance, and there
are weak resonances connecting large distances in the system.
These result in jumps which are smaller than the tolerance
value chosen but many in number, which are difficult to filter
out due to the oscillatory nature of SN.

In Fig. 11(b) we try to quantify the amount of growth
our filtering process takes away from SN. To do this we
consider the difference (�S) between SN averaged over late
times 106–107 (S̃N) and at initial times. Since SN is highly

oscillatory at initial times, we take the average value of SN

between the first two peaks of the data, i.e., in the orange
region in Fig. 18 in Appendix D. We plot this quantity for
the two sets of data, comparing the set with all configurations
with the set where we remove the resonant configurations.
Clearly we see with increasing disorder our filtering process
becomes more accurate in removing the �S seen, which itself
decays as a power law with W for intermediate disorder, and
faster for larger disorders. The fact that �S is such a small
quantity and can almost be completely removed when we
filter out the resonances clearly points to lack of ergodicity
in the system. In Fig. 11(c) we also see how the number of
cases to be filtered decreases quickly with increasing W thus
clearly showing how a very small fraction of cases contribute
to the slow growth in entropy seen. It shows that while the
ratio of unfiltered to total cases (η) quickly tends toward 1, the
ratio (R) between increase in SN for unfiltered and total cases
quickly tends toward 0, confirming a small number of resonant
cases are responsible for the increase (also see Appendix F
for a comparison with Anderson-localized systems). Finally
in Fig. 12 we see how many states get filtered out for different
disorder strengths at different system sizes using the same
filtering procedure. r denotes the ratio between number of res-
onant cases to the number of total configurations, considered
for different L and W . We observe that while with increasing
disorder the cases which need to be filtered out fall off sharply,
there is almost no change with system size. The fact that
there are no signatures of growth of fraction of resonant cases
with system size shows further that the system is not ergodic.
However, do note that we do not make any distinction between
short-range and long-range resonances for this result. It can
be interesting to do a closer comparative study of range of
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FIG. 11. Comparison of resonance filtered vs unfiltered data for SN(t ) at L = 12. (a) Plots of data before (red) and after (blue) resonance
filtering for different disorder strengths W . (b) Plot showing a comparison of the increase of SN denoted by �S from initial times to late times
for all data (red), and the data where resonant configurations are filtered out (blue). See text and Appendix D for details. Black line denotes fit
W −1.62. (c) The red dots show the fraction of realizations η which do not have a jump δS higher than the tolerance of 0.1, while the blue dots
denote the ratio R between the two sets of data on the above panel.

resonances in the framework of SN growth times, in a manner
similar to Ref. [30], and this is left for a future work.

B. Power-law growth of SN

We will end this section by showing the law of growth
of SN during intermediate times numerically, since SN in this
timescale is very difficult to treat analytically. However, we
can have an approximate idea of the growth from the distribu-
tion of times of the “jump.” Denoting the approximate time of
the jump by τ , from similar arguments discussed in Sec. IV,
one can find the probability distribution of τ from inverse
of the difference between two random numbers, h1 and h2,
picked from a uniform distribution. Denoting z = h1 − h2 and
approximating τ = 1/z, one can show via a simple variable
transformation that p(τ = 1/z) ∼ B/τ 2. Under the assump-
tion that all the jumps are of equal strength δS, one can

FIG. 12. Plot showing fraction of total number of cases (r) that
can be recognized as “jumps” for different system sizes and different
disorders.

approximate the growth of SN with time as

SN(t ) = δS
∫ t

t0

B/τ 2dτ = δS(B/t0 − B/t ), (14)

where t0 is the approximate lower cutoff timescale. It is chosen
approximately as the time after which the resonances which
occur are beyond nearest neighbor. Based on our analysis in
the last section we set it to be ∼1. We remark that a power-
law behavior coming from resonances is observed also in the
decay of correlation functions [26].

We verify our theory in Figs. 13 and 14. To do so we
use the initial state |I〉 = |α〉 ⊗ |β〉, where |α〉 is an equal
superposition of all computational states of subsystem A with
〈α|NA|α〉 = [L/4] and |β〉 is an equal superposition of all
computational states of B with 〈β|NB|β〉 = L/2 − [L/4]. [x]
denotes greatest integer less than or equal to x. This is a more

FIG. 13. Plot showing comparison of growth between S(t ) and
SN(t ) starting from state |I〉 for one typical disorder realization with
W = 10.
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FIG. 14. Analysis of behavior of SN(t ) for initial state |I〉 for W = 10. (a) Probability distribution of jump times τ showing how the power
law is very close to τ−2. (b) Plot showing approach of mean SN toward its long-time average value S̃N for two system sizes denoted by blue
and red. (c) A comparison of how mean von Neumann entropy S grows with time vs disorder-averaged SN. Inset: Plot zooming in on the area
marked by black rectangle in the main plot. The black line denotes the power-law fit of the form A − B/t0.7.

unbiased choice than random computational state and intro-
duces another layer of averaging which smoothens the plots.
This allows us to more accurately look at the law governing
growth of SN.

In Fig. 13 we first show a comparison of S and SN for a
typical disorder realization of strength W = 10 for this ini-
tial state. We clearly see that while von Neumann entropy S
shows a growth for a long time span, SN shows saturation at
extremely early times. This shows configurational changes to
entropy is what drives the ln t growth of S at late times. In
Fig. 14(a) we verify that the probability distribution of jumps
with δS greater than 0.1 for L = 14 and W = 10 indeed shows
the power law of ∼1/τ 2 as expected from our analysis of reso-
nant configurations [52]. In Fig. 14(b) we plot the approach of
SN toward its long-time-averaged value S̃N for two different
system sizes. We see the approach follows a power-law be-
havior given by 1/t0.7 for around 3–4 orders of magnitude of
t before statistical fluctuations becomes prominent. Note that
the agreement is for a longer range of t than if one fits via the
ln ln t function (also for W = 5; data not shown) reported in
Ref. [19]. We have averaged over 105 configurations for L =
12 and 2 × 104 configurations for L = 16 to obtain this plot.
In Fig. 14(c) we confirm that disorder-averaged SN saturates
much earlier than mean S for |I〉. This shows that in general
S(t ) and SN(t ) are not related (as opposed to noninteracting
systems [53]). In the inset of the same plot we show the
comparison of power-law fit to mean SN, using the exponent
obtained from Fig. 14(b), and we see that it agrees very well.

The fact that the power-law exponent by which SN ap-
proaches S̃N obtained from the fit is not exactly 1 is because
of several factors. The assumption of equal jump heights is
oversimplified as strength of hybridization is not the same for
all cases. Then, the integral approximates the jump via step
functions, while in reality these should be oscillatory, and
SN for individual configurations is also a highly oscillatory
function. Additionally, different categories of initial states
show different behavior of growth of SN, and while we have
managed to reduce this effect by taking a superposition of
many states, some signatures still remain. It is to be noted that
this choice of initial state allows the early saturation of SN to
be more clearly visible than for a random computational state.
This is because to obtain a significant resonance for state |I〉 a
large fraction of the superposing computational states have to
be resonant. For long-range resonances causing growth of SN

at later times this has a much lower probability than a single
computational state being long-range resonant. This makes

the choice the more generic one for study of growth of number
entropy.

VII. DISCUSSION

In this work we have discussed in detail the source of
the slow growth in number entropy SN in the MBL phase of
the disordered isotropic spin-1/2 Heisenberg chain. We have
shown that there are special initial configurations of disorder
realization and initial states, which causes a strong hybridiza-
tion between two (or more) computational states which differ
in number of particles in subsystem A. This shows up as a
sudden jump in SN at characteristic times given by the inverse
of the energy difference between these two states. When the
mean over different configurations is taken, such jumps at
different characteristic times are averaged over and show up
as a small growth in SN. Looking at the distribution of jump
times, the numerics agrees with theoretical prediction, which
also suggests a power-law growth of SN. A power law indeed
describes the growth of SN rather well, though with a power
that slightly differs from the one obtained from the simple
two-state resonance model.

Furthermore in the system sizes available to us we have
discussed the steady state behavior of SN showing how mean
and median of the quantity decrease with W approximately as
W −1 and W −2, respectively. We have then provided an ana-
lytical explanation of this behavior from the two-state model,
further solidifying our two-state hybridization hypothesis. We
have also shown how at lower disorder strengths one can
indeed see a slight increase in S̄N with system size L but
the trend is reversed for higher disorders, which rules out
long-range transport at larger disorder. We then discussed how
the initial computational states can be grouped on the basis of
their initial time growth and how this affects growth of SN

at all timescales. Finally, we show how by filtering out the
large resonances one indeed can get a nonincreasing SN at
intermediate times.

Our results in this work agree with the current picture
of MBL. While we do not fully understand the change in
behavior of steady state SN with L when we go from W � 6 to
higher values, we note that it is consistent with arguments for
a rather rich finite-L physics due to resonances [26,30]. How-
ever to establish an exact connection one needs to do further
study. As we have shown, one can figure out what initial state
and what disorder configuration one needs to choose to get
a resonance from exact numerics; replicating a similar setup
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would provide a good test bed for verification. Alternatively,
if one excludes the configurations where one sees such sudden
jumps, one will be able to get a nongrowing SN curve for
MBL systems in experiments, which would also serve as a
validation to our theory.

Natural extensions of this work would include studying the
situation in quasiperiodic potentials and in a Floquet-MBL
setup [54,55]. In quasiperiodic systems since the disorder is
deterministic, it should be easier to predict the resonances
by studying the structure of potential itself. A careful study
then might shed light on the differences in the phenomenon
of localization in interacting quasiperiodic systems and
systems with random disorder. Since Floquet Hamiltonians
are long-ranged near the Floquet-MBL critical point (which
is the frequency of the external periodic drive at which the
ergodic to Floquet-MBL transition occurs) compared to short-
ranged Hamiltonians of ordinary MBL, one can naively expect
such resonant cases to be more prominent there and it warrants
a careful study.

As a final note, we remark that these results show that the
unitary transformation U rotating l-bits to a computational
basis (i.e., U that consists of eigenvectors) is the central object
that one needs to study in order to understand the localized
phase. Localization is not so much about properties of eigen-
values (which do not tell us anything about spatial extent of
eigenfunctions) but more about properties of U ; specifically,
U has to be quasilocal. This is explicit in proofs of MBL that
perturbatively start from the infinite-disorder limit [7], where
the central point is to have control over possible resonances
in U , as well as in our theory of the number entropy growth
where accounting for resonances is crucial. Indeed if one tried
to approach the problem using the local integrals of motion
(LIOMs) model [10–13] for MBL by replacing the exact
eigenvectors connecting the model-dependent LIOM basis to
the computational basis via a generic unitary matrix built up
by local quantum gates, one would not be able to replicate the
results (see Appendix E for details).

In this sense SN is also the more precise probe of
localization than the von Neumann entropy. The num-
ber entropy explicitly focuses on localization—it needs to
be bounded if one has localization—whereas in the von
Neumann entropy a constant contribution due to quasilocal
U is masked out by the (more trivial) logarithmic growth due
to dephasing.
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APPENDIX A: EFFECTIVE HAMILTONIANS FOR
RESONANCES

We analyzed how one can approximate growth of SN in
resonant configurations via few-state models in Sec. III for
special initial states. However, as we remarked there, for a
generic computational state, the method developed is not very
good due to involvement of many intermediate states. In this
Appendix we shall demonstrate two methods by which we can

FIG. 15. Plots showing how effective low-dimensional Hamilto-
nians capture the later rise in SN(t ) which is caused due to resonant
states. The red line denotes result from exact numerics, the black
line denotes the result from the effective 2-body Hamiltonian, and
the blue line denotes the result after projecting the initial state into
an effective s-dimensional subspace at W = 10 and L = 12. (a) Plot
showing a single-resonant case where s = 3 is enough. (b) Plot
showing a case which supports 2 resonances. s = 5 is needed in
this case.

approximate the growth in SN via a low-dimensional subspace
for any initial resonant state.

The first method we discuss is the one in Ref. [30]. In
this scenario, one needs to diagonalize the Hamiltonian to
identify the two relevant resonant eigenstates. To do so one
needs to look at two eigenstates having small energy differ-
ence but largest overlaps with the initial computational state.
Now after writing a 2 × 2 matrix in this subspace, with the
diagonal elements given by the eigenenergies, one rotates
back to a local basis using an optimization technique to create
an effective Hamiltonian which can describe the resonance. In
Fig. 15 we take two example cases and show what the effective
Hamiltonian gives us. This process is not fully analytical as
we still need to identify the relevant resonant eigenfunctions;
nevertheless it serves as a demonstration of how the system
can be described by an effective low-dimensional model. The
result from this method given by the black line in panel (a)
is extremely accurate at capturing the late rise of SN due to
the resonance. Since we have only two states involved in this
process one would see Rabi oscillations with the time period
inversely proportional to the eigenenergy difference.

One can also approach this problem in a different manner.
Since we are in the MBL phase, one can assume that the initial
computational state will show a significant overlap with very
few eigenstates. For resonant behavior we know the strength
of overlap has to be significant, so for these cases one can
work in the subspace of s eigenvectors where s � 5. Hence
we take the s largest overlaps of the initial state with the eigen-
vectors, and renormalize to get an effective initial state in this
subspace of s eigenvectors and proceed with the calculation.
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The advantage of this over the previous method is, since more
than 2 vectors are involved, the oscillations will show more
features and will be closer to the actual SN. Additionally, there
are some configurations where there are multiple resonances;
i.e., instead of a single jump, SN shows more than one jump
occurring at different timescales. This can happen if the initial
state has significantly large overlaps with several eigenvec-
tors with energies very close to each other. These are quite
rare and almost measure zero events deep inside the MBL
phase. For this rare multiple-resonance scenario, one will still
be able to capture the physics of SN within this small subspace.
However one should remember that analysis of the effective
Hamiltonian would be purely numerical for s > 4 and since
the effective initial state will not be a product state, the initial
SN will be a small nonzero value.

These features can clearly be seen in Fig. 15. In Fig. 15(a)
we show the situation for a configuration which has a single
resonance. While the effective 2-state model is able to approx-
imate the jump very well, the 3-eigenstate subspace correctly
captures the more intricate features of SN. In Fig. 15(b) we
choose to show a double-resonant configuration where the
2-state model cannot accurately capture the scenario, and
we require a subspace of 5 eigenstates to get an almost ac-
curate approximation of SN. Notice how for the eigenstate
subspace case SN starts from a small nonzero value at small
t as the initial state now slightly deviates from a product
state. This analysis further strengthens our claim of how these
rises occur due to resonances, which can be described by
an effective low-dimensional theory, removing any notion of
presence of ergodicity.

APPENDIX B: DISTRIBUTION OF p̄

In this Appendix we elaborate on how we obtain Eq. (12)
from Eq. (11) of Sec. IV of the main text. In principle, the
quantity, E0

1 − E0
2 can have three types of values, h1 − h2

and h1 − h2 ± J , where h1 and h2 are two random on-site
potentials and J is the strength of interaction, depending on
which states we are looking at. However we will work in the
regime where J � W , so just considering the case h1 − h2

is enough to obtain the leading behavior of the quantities we
are interested in. Taking random numbers h1 and h2 from a
uniform distribution, one can calculate the distribution of p̄ =

2 j2

z2+4 j2 , where z = h1 − h2, via variable transformations as

w( p̄) =
j
(√

2W
√

p̄
1−2 p̄ − j

)
2W 2 p̄2

, p̄ ∈
[

2 j2

4W 2 + 4 j2
,

1

2

]
.

(B1)

One can extract the mean of this distribution as

〈p̄〉 =
j
[
2W cos−1

( j√
j2+W 2

) − j ln
(

W 2

j2 + 1
)]

2W 2
. (B2)

Taking W � j and expanding the series in 1/W , we get

π j

2W
+ O(1/W 2), (B3)

where the leading term goes as 1/W . For the median one has

{ p̄} = 1
(3−2

√
2)W 2

j2 + 2
, (B4)

which again can be expanded in 1/W as

{ p̄} = (2
√

2 + 3) j2

W 2
+ O(1/W 4), (B5)

which goes as 1/W 2 for j � W .

APPENDIX C: ADDITIONAL RESULTS FOR THE
STEADY STATE

In Fig. 16(a) we show a comparison of scaling laws of var-
ious statistical quantities we have used to quantify the steady
state behavior of the system in Sec. IV. p̄ denotes mean steady
state probability of subsystem A having different number of
particles than the initial state, S̄N denotes mean steady state
SN, and S̃N denotes mean long-time average of SN . These
three quantities show extremely similar power-law decay with
W . We fit the quantities to a general form a1 − a2/W b, where
b is given by 1.1, 1.07, 1.13 for p̄, S̄N, and S̃N, respectively.
The median values denoted by { p̄}, {S̃N}, and {S̄N} again have
similar behavior, but they are not as close to each other as
the mean. { p̄} shows a faster decay with b = 2.6 while {S̄N}
and {S̃N} have slightly slower decay with b = 2.2 and 2.38,
respectively.

In Fig. 16(b) we show how b grows with system size for
four selected quantities from Fig. 16(a). With the power-law
fit of the quantities as described, b shows a very slow growth
with system size. The growth of b can be fitted into the form
c1 − c2/L, where c1 denotes the extrapolated value of b at
L → ∞. The values of c1 are 2.34,1.13,2.74, and 1.17 for
{S̄N}, S̄N, { p̄}, and p̄, respectively.

The slight rise in values of b with increasing L can be
attributed to the choice of initial states. We discussed in Sec. V
how different initial states can be grouped via a quantity we
denote as q. We have also elaborated on how states with
different q generally show markedly different number entropy
values at all timescales. Consequently, pooling the different
states together during steady state calculations has an effect on
the quantities we are interested in. For example, in the main
text we showed how one can get a 1/W 2 decay of { p̄} from
a two-state model. But in Fig. 16(a) we see a discrepancy of
0.6 with this result. However in Fig. 16(c) we plot the mean
and median of the respective steady state number entropy and
probability distributions for a system of size L = 12 when we
just consider q = 1 states. The fit values of b here are 0.99,
2.14, 0.92, and 1.79 for p̄, { p̄}, S̄N, and {S̄N}, respectively. We
clearly see the slope of { p̄} vs W to show a value closer to 2
than that in Fig. 16(a). In fact one can show the change in b
with system size is negligible if one takes into account only
q = 1 states.

Another takeaway from these plots is that the S̄N and {S̄N}
always show a power-law decrease with W with a slightly
lower value of b than p̄ and { p̄}. This is also to be expected
because SN is actually a nonlinear function of p, and a small
deviation is possible even with a skewed distribution of p. The
fact that the differences in values of b are very small between
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FIG. 16. Plot showing various fits of steady state quantities. (a) For L = 12 the plot shows the comparison of scaling laws for the various
measures of steady state values considered in the main text in Sec. IV. The solid lines are fits of the form a1 − a2/W b. (b) Plots showing how
b changes with system size L. Fits are of the form c1 − c2/L. See text for c1 and c2 in each case. (c) Similar fits to those in panel (a) but with
only q = 1 initial states. See text for details.

these two quantities validates the linear approximation used in
the main text.

APPENDIX D: FILTERING PROCEDURE AND
IDENTIFICATION OF TIMESCALES

In Fig. 17 we show how we approximate the data for SN

for individual configurations to quantify the jumps. We first
smoothen the plot by considering an envelope of the oscilla-
tory function, which is created by using the maximum value
of SN(t ) until the t under consideration. This approximates SN

via a series of step functions as shown in the plot with the
red line. We then calculate the difference between successive
plateaus of this envelope and denote the differences by δS;
we then look for cases where δS > 0.1. The green line denotes
the time t = 2, which is approximately the time from which
we start the filtering process. This is done as we intend to
ignore the short-time rise of SN caused due to the nearest-
neighbor resonances during the analysis in Sec. VI.

In the Fig. 18 we pictorially show the two timescales in-
volved in calculating the total increase in mean SN, denoted
by �S. Initially due to Rabi oscillations SN is oscillatory and
we quantify the short-time value of SN (which we roughly as-
sume occurring when one particle has crossed the subsystem
boundary), by taking the mean SN between the peaks of the
first two oscillations. This is denoted by the orange shaded
region. For long-time data we average between t ∼ 106–107

FIG. 17. Figure showing the approximation technique used to
determine the position and height δS of a jump using representative
data from a randomly selected configuration of disorder and initial
state.

where there is almost no change in SN. This is denoted by the
green shaded region.

APPENDIX E: CAN ONE GET THE GROWTH OF SN FROM
LIOM PICTURE?

While in this work we have studied the isotropic
Heisenberg model, one can approach this problem in a model-
independent manner, using the LIOMs picture of the MBL
phase [10–13]. However unlike the study of S via the dephas-
ing model, one needs to rotate back from the LIOMs basis to
the computational basis to extract the number entropy from
the model.

One way to approach this is to use a quantum circuit
model. One can start with a layer of two-site unitary quan-
tum gates, conserving particle number, parametrized by an
angle φ, and add several such layers to generate a unitary
matrix U replacing the eigenvectors which form the rotation
matrix connecting the two bases. In principle, the parameter
φ is free, but to simulate locality, one should use a small
value of φ = φ1 at the first layer and then use φl = φ1e−l/ζ

for the subsequent layers (ζ is the localization length taken
from the LIOM model), where l is used to denote the layer
index. Tuning φ1 and the maximum allowed value of l , it
might seem that localized systems of interest can be approxi-
mated.

FIG. 18. Plot of configuration-averaged SN (t ) for a representa-
tive data with L = 12 and W = 5 showing the region we identify
as short-time regime shaded in orange, and the region we identify
as long-time regime shaded in green, used while calculating �S in
Sec. VI.
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FIG. 19. The plot shows the statistics of mean and median of S̄N

for an Anderson model with system size L = 16 and L = 100. The
lines indicate fits to power laws. See text for exponents.

However we found that even for low W (but within MBL
phase) one cannot obtain the correct late-time growth of SN

reported. One does see a small growth in SN at low W for
this setup but it is driven by movement of particles within
the localization length. It is important to note that in such
a setup, the approximated eigenvectors are forcibly made to
show generic exponential decay with hamming distance, and
do not include the special resonant eigenvectors. This causes
the saturation of SN to occur earlier than what is seen from
the numerics, since the increase at later times driven by res-
onances are not captured by this setup. Upon increasing W
the small increase gradually vanishes, as localization length
becomes smaller and there are no resonances to drive the
growth of SN. Hence we note that the LIOMs model with
the aid of a generic quantum circuit cannot easily replicate
the results discussed in this work.

APPENDIX F: COMPARISON WITH ANDERSON
LOCALIZATION

In this Appendix we will show results of SN

obtained from noninteracting model which shows Anderson
localization in 1D. It is known that there is no particle
transport at distances much larger than the localization length
ζ in this system. We shall find that the steady state mean and
median SN behave quite similarly to the interacting case. How-
ever we will see that the number of resonant disorder cases
is significantly lower here, especially for long-range
resonances.

In Fig. 19, we plot the mean and median of the steady
state number entropy S̄N for the Anderson-localized system
at two different system sizes. For size 16, the fits denoted
by blue lines are W −1.04 for mean and W −2.23 for me-
dian. For size 100, fits denoted by red lines are W −1.04 and
W −2.34 for mean and median, respectively. These fits are
extremely close to what we have seen for the interacting

FIG. 20. Plots showing results for Anderson model for L = 16.
(a) Plot showing disorder-averaged SN vs t for an Anderson-localized
system. (b) Plot showing comparison of fraction (1 − η) of configu-
rations showing δS > 0.1 jumps for Anderson and MBL models at
two different timescales (τ ).

case, which further affirms our statement that there is no
particle transport over long distances in the interacting case
as well.

In Fig. 20(a), we first show how in an Anderson-localized
system, the slow growth in SN is not visible. Then in
Fig. 20(b) we compare the ratio of number of resonant dis-
order configurations to the total number of configurations in
the Anderson-localized case and the MBL case. We find that,
as expected, the MBL system shows a higher number of reso-
nances due to higher connectivity of Hilbert space. The more
interesting feature however is in the Anderson-localized case;
long-range resonances which drive the growth in SN at later
times are significantly lower in number. The possible cause
for this is the different selection rules in the Hamiltonian for
interacting and noninteracting systems. Denoting approximate
time of the jump by τ we quantify this by calculating the
fraction of total cases that are resonant cases at τ > 1000. We
see that this number is heavily suppressed for the Anderson-
localized case compared to the MBL case. For the timescales
less than 1000 the difference is not that large between the two.
This explains why one sees a much smaller growth of SN in
the Anderson-localized case at longer timescales compared to
MBL. Note that the number of long-time resonant configura-
tions at W = 4 for the Anderson case is almost the same as
the number of cases in W = 15 in the MBL case, where we
know that the rise of SN is very small (see Fig. 2 of the main
text).
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