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Modern XAFS (x-ray absorption fine structure) data analysis is based on accurate multiple-scattering (MS)
calculations of the x-ray absorption cross section, usually carried out solving the nonrelativistic Schrödinger
equation for complex effective optical muffin-tin potentials describing the scattering of the atoms. The intro-
duction of relativistic effects in extended XAFS (EXAFS) multiple-scattering calculations has been described in
several papers and shown to be important for heavy atoms. However, few examples of applications and detailed
studies of relativistic effects were given so far. In this work, we have performed a systematic investigation of
relativistic corrections in systems of increasing atomic number, using a reliable simulation scheme recently
developed and based on the incorporation of a pseudo-Schrödinger equation effectively replacing the Dirac
relativistic form. Calculations have been put to a test in 12 different pure-element condensed-state systems, with
the atomic number ranging from Z = 10 for crystalline Ne to Z = 90 for crystalline Th. The importance of
accounting for relativistic effects has been highlighted for elements with Z � 60, as ones for which relativistic
corrections for amplitudes of calculated XAFS MS signals exceed 10%. The size of relativistic effects for
calculated higher-order XAFS signal (with respect to the dominant single-scattering first-neighbor signal) has
been shown, taking as example the L3-edge spectra of crystalline Au and Pb. The size of relativistic effects for
the K and L3 edges has been also evaluated, showing a slight increase of relativistic corrections for the L3 edge.
The improvement in the accuracy of XAFS simulations has been demonstrated comparing the results obtained
for structural refinements of the L3 edge of crystalline Au at 300 K.

DOI: 10.1103/PhysRevB.105.144109

I. INTRODUCTION

The x-ray absorption spectroscopy (XAS) is a modern
experimental technique allowing fine analysis of structural
and electronic properties of a given atomic, molecular, or
condensed system [1,2]. Information about the electronic and
local structure is mainly associated with the oscillations of the
x-ray absorption cross section following selected core-level
edges. This technique became very popular in the last 30 years
due to the increasing availability of synchrotron radiation
sources, and the interpretation of the so-called XAFS (x-ray
absorption fine structure) or EXAFS (extended XAFS) pat-
terns were continuously improved by progresses in theoretical
and computational tools.

In fact, the interpretation of the measured XAS signals
required the development of suitable advances in theoretical
approaches and complex calculation schemes based mostly
on the multiple-scattering (MS) theory. In this approach, the
absorption cross section can be calculated as a one-electron
photoexcitation process in which the photoelectron interacts
with a collection of (spherical) potentials. The model cal-
culations can be performed using atomic clusters of limited
size, due to the strong interaction of the photoelectron with
the surrounding matter at the typical kinetic energies under
consideration, leading to a finite mean-free path of the elec-
tron probe. The XAFS technique, especially for high kinetic
energies, is thus sensitive to the local structure of the given
atomic system.

Several MS methods have been developed for performing
XAFS data analysis [1]. In particular, the GNXAS package
implements state-of-the-art methods for the computation of
XAFS signal [2–4] in the framework of the multiple-scattering
(MS) theory, using a complex effective optical potential for
the photoelectron moving in a cluster of atoms modeling the
system under study. The XAFS signal so obtained consti-
tutes the input for a rigorous fitting procedure to the raw
experimental data in order to derive structural information on
the system. The underlying theory, basic methodology, and
practical applications have been widely discussed elsewhere
(see, for example, [3–6] and references therein).

One of the present limitations of many XAFS data-analysis
methods is the use of the nonrelativistic Schrödinger equa-
tion which may prevent accurate XAFS data analysis when
atoms with high atomic number Z are involved in the system
under study. The importance and possible introduction of
relativistic effects in XAFS multiple-scattering calculations
has been described in some previous works (see [7,8] for
example). Relativistic effects are included in the current dis-
tributions of the FEFF XAFS data-analysis software [9], but
to our knowledge no detailed studies of the relevance of rel-
ativistic corrections in different systems have been published
so far.

The purpose of this work is to present a systematic study on
the relevance of relativistic effects for different atomic struc-
tures. This task has been carried out introducing relativistic
corrections within the GNXAS suite of programs. As briefly
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described in a recent work [10], the introduction of relativistic
corrections is realized by modifying the program (PHAGEN,
part of the GNXAS suite [4,11]) that generates atomic absorp-
tion cross sections and scattering t matrices for the selected
cluster defining the phase shifts for each angular momentum.
This goal is made possible by deriving a pseudo-Schrödinger
equation from the Dirac equations that takes into account all
the relevant relativistic corrections.

Here, model XAFS relativistic and nonrelativistic MS cal-
culations are performed for different systems changing the
involved core levels by increasing the atomic number of the
photoabsorbing species (typically from Z = 10 to 90). The
scattering t matrices defining the phase shifts’ δl functions,
as well as the amplitude and phase of typical MS signals
associated with the selected atomic systems, are calculated
with the aim of comparing nonrelativistic and relativistic
approximations in a wide range. The final goal is obtain-
ing accurate information about the magnitude of relativistic
effects for increasing atomic numbers, determining the con-
ditions for which XAFS data analysis should be performed
accounting for those effects. A practical example showing the
application of relativistic and nonrelativistic calculations to
the XAFS data analysis of crystalline gold is here reported as
well.

This paper is organized as follows: In Sec. II we present a
summary of the theory and methods used for the relativistic
calculations. In Sec. III we discuss the results of our sim-
ulations for different atoms and structure covering atomic
numbers in the range Z = 10–90; the results of relativistic
phase-shift calculations and of amplitude and phase of the
corresponding MS XAFS signals are presented, respectively,
in Secs. III A and III B. An example of XAFS data analysis

of crystalline gold is discussed in Sec. III C. Section IV is
devoted to the conclusions.

II. CALCULATION METHOD

A relativistic version of the XAS formalism restricted
to nonmagnetic materials has been originally developed by
Tyson [7]. The construction of the multiple-scattering (MS)
series, adopting the one-electron and muffin-tin approxi-
mations, leads to the standard interpretation of XAS as
convergent superposition of contributions from closed paths
traveled by the ejected photoelectron, probing the local envi-
ronment and returning to the photoexcitation site. The choice
of the complex Hedin-Lundqvist [12] potential is a standard
choice for nonmagnetic materials, which efficiently accounts
for inelastic losses during the photoelectron propagation.

Upper and lower Dirac components relative to the ra-
dial Dirac equations (see Appendix) are treated on the
same footing in [7], and following [13,14] one gets the
fully relativistic polarization-averaged XAS cross section for
transitions to a dipole-selected final state of angular momen-
tum jκ = |κ| − 1/2, κ being the eigenvalue of the operator
(1 + 2s · l ) relative to the spin-spherical harmonic χμ

κ (r̂) ≡∑
ν=±1 〈lκ , μ − ν, 1/2, ν/2| jκ , μ〉Ylκ ,μ−ν (r̂)χν [15].
In this work the contribution of lower Dirac components

has been neglected, following [16], who have shown in the
context of Dirac-Hartree-Fock calculations for an atom, that
the small Dirac components vnκ account to less than 1%
of the total radial electronic charge density [even in many-
electron atoms for which relativistic effects are important, as
the uranium (Z = 92) one]. The total polarization-averaged
XAS cross section then becomes

σ (ω) = −4παω

3

(
2 jκc + 1

) ∑
κ

[
2 jκc + 3
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(
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[
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Gcc
κμ,κμ(ε − εF + i�h)

]
, (1)

where the angular part describes photoexcitation channels compatible with the electric dipole selection rules, namely, jκc −
jκ = |κc| − |κ| = 0,±1 and lκc + lκ + 1 = (even integer), where lκ = |κ| + (sign{κ} − 1)/2. gκc (r) is the radial upper Dirac
component of the core initial state (denoted by the subscript c). gR,H

κ (r) are regular (superscript R) and singular (superscript
H) scattering solutions (relative to the muffin-tin potential of the photoabsorber atom with a core hole) of the second-order
pseudo-Schrödinger equation for the upper Dirac component, obtained from the first-order coupled radial Dirac equations [16]
(see Appendix A)

0 =
[
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Here

uκ (r) = rgκ (r), B(r, ε) =
(

1 + α2

4
(ε − V (r)

)−1

(2)

and terms have been explicitly grouped as follows:
(i) (nr): These are the terms of the usual nonrelativistic radial Schrödinger equation. Indeed, − κ (κ+1)

r2 is the centrifugal term
because of κ (κ + 1) = l (l + 1) ∀ κ .

(ii) (sr): The first and the second terms under the label (sr) in Eq. (2) are, respectively, the mass and Darwin terms, and they
constitute the scalar-relativistic correction.

(iii) (so): If one adds the spin-orbit term, which is the only one that depends explicitly on spin through the quantum number
κ [see Eq. (3)], one gets the fully relativistic description

κ =
{−l − 1 if j = l + 1/2, sojp

l if j = l − 1/2, sojm.
(3)

If one neglects the spin-orbit term, the polarization-averaged XAS cross section takes a basically nonrelativistic form, while the
gross of relativistic effects (brought by the mass and Darwin terms) is taken into account [10]:

σ (ω) = −8παω

3
(2lc + 1)

∑
l

[
lc

2lc + 1
δl,lc−1 + lc + 1

2lc + 1
δl,lc+1

]

× k Im

[
2

∫ rc

0
dr glc (r)r3gH

l (kr)
∫ r

0
dr′gR

l (kr′)(r′)3glc (r′)

+
[ ∫ rc

0
dr glc (r)r3gR

l (kr)

]2 ∑
ml

Gcc
lml ,lml

(ε − εF + i�h)

2l + 1

]

= σat + σenv. (4)

Here the term represented by the first two lines of Eq. (4)
refers to the atomiclike absorption (of the scatterer placed at
site c) σat; the remaining addend [see the third line of Eq. (4)]
refers to the contribution of the environment (given by other
scatterers) σenv.

Gcc
lml ,lml

is the nonrelativistic full Green’s propagator which
describes (using perturbation theory, convergent in the EX-
AFS regime) all closed paths starting at the photoabsorber
atom with a core hole (placed in position c at the center of a
cluster) and finishing at the same site. This is a particular case
of the more general full Green’s propagator [with L = (lml )]

Gi j
LL′ (ε) = G0

i j
LL′ (1 − δi, j )

+
∑
q �=i, j

∑
L′′

G0
iq
LL′′ (ε)t q

l ′′ (ε)G0
q j
L′′L′ (ε) + · · · . (5)

Gi j
0 describes the free-electron propagation in the interstitial

region between muffin-tin potentials placed at sites i and j
(with k = p = √

ε) [14]:

G0
i j
LL′ (ε) = −4π i

∑
L′′

il−l ′−l ′′CL′
LL′′h+

L′′ (kRi j ),

CL′′
LL′ =

∫
dr̂ YL(r̂)YL′ (r̂)(YL′′ (r̂))∗ (6)

and t j
l are the components for given angular momentum l and

atom j of the atomic t matrix given by smooth matching at
the muffin-tin radius rs of the regular upper Dirac component
inside the muffin-tin sphere with the free solution outside the
sphere (notice that the t matrix is exactly determined by the

knowledge of the upper Dirac component even in the fully
relativistic description of [7])

tl (ε) = i
[gl (r) j′l (kr) − g′

l (r) jl (kr)]

[gl (r)(h+
l )′(kr) − g′

l (r)h+
l (kr)]

∣∣∣∣∣
r=rs

. (7)

In this work relativistic corrections are tested for atomic
phase shifts δl . These can be obtained from atomic t matrices
by means of the expression

t j
l = e(iδ j

l ) sin
(
δ

j
l

)
. (8)

Formulas from (4) to (7) are appropriate for the scalar-
relativistic description of Eq. (2) [omitting the (so) term].

In routine calculations, Eq. (2) can be numerically solved
by the Numerov procedure after elimination of the first-order
derivative, by applying the method of Gaussian elimination
[17]. The more flexible linear-logarithm mesh [18] should be
used instead of the usual Herman-Skillman mesh.

The scalar-relativistic corrections discussed above have
been implemented in the GNXAS suite of programs, by modify-
ing only the PHAGEN program which calculates the t matrices
(defining the phase-shift functions) through Eq. (7) and the
atomic absorption cross section [see the contribution σat to
Eq. (4)].

III. RESULTS OF THE SIMULATIONS

A. Phase-shift calculations

The mass and Darwin terms of Eq. (2) are known to
yield collectively a potential which is attractive, pulling in
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TABLE I. List of 12 representative elemental systems. For each atom type we report the atomic number Z , the structure (all elements
correspond to crystalline solids with the exception of Br, which is a diatomic molecular system in the gas phase); a, b, c (real-space lattice
parameters); R1 (nearest-neighbor separation); rMT (muffin-tin radius for the photoabsorbing atom); �h (HWHM core hole width for the
absorption edges shown in brackets [31]).

Cluster Z Structure a (Å) b (Å) c (Å) R1 (Å) rMT (Å) �h (eV)

Ne 10 fcc [19] 3.7860 2.677 1.018 0.12 (K)
Si 14 diam. c [20] 5.4309 2.352 1.120 0.24 (K)
Ca 20 fcc [21] 5.56 3.932 1.569 0.41 (K), 0.09 (L3)
Zn 30 hcp [22] 2.6648 4.9467 2.665 1.099 0.84 (K), 0.33 (L3)
Br 35 diat. mol [23] 2.286 1.085 1.26 (K), 0.54 (L3)
Zr 40 hcp [24] 3.232 5.147 3.179 1.282 1.92 (K), 0.79 (L3)
In 49 bct [25] 3.2523 4.9461 3.252 1.322 3.96 (K), 1.33 (L3)
Nd 60 hcp [26] 3.658 11.799 3.658 1.632 8.65 (K), 1.83 (L3)
Yb 70 fcc [27] 5.4847 3.879 1.541 15.96 (K), 2.30 (L3)
Au 79 fcc [28] 4.0782 2.884 1.136 26.01 (K), 2.71 (L3)
Pb 82 fcc [29] 4.9396 3.493 1.376 30.21 (K), 2.91 (L3)
Th 90 fcc [30] 5.0843 3.595 1.429 44.02 (K), 3.57 (L3)

scattered photoelectron waves and increasing the magnitude
of the real part of atomic phase shifts [7]. This effect has been
investigated for 12 elemental condensed systems, for atomic
numbers ranging from 10 (for Ne) to 90 (for Th). Mainly solid
crystalline systems (mostly face-centered-cubic, fcc) at room
temperature and normal pressure have been considered with
two notable exceptions. Face-centered-cubic crystalline Ne is
supposed to be at pressure P > 4.74 GPa and at room tem-
perature; diatomic molecular bromine considered in the gas
phase at normal pressure and room temperature. The relevant
information about the elements under study is summarized in
Table I.

For each system the CRYMOL and GNPEAK programs (of
the GNXAS package) have been used to define a fixed-atom
reference pattern, with particular attention to the structural
data reported in the literature, as specified in Table I.

Muffin-tin radii have been generated using the Norman
criterion [32], suitably rescaled as it is a standard choice for
XAFS calculations. The values rMT of these radii for the atoms
with a core hole are reported in Table I.

A complex Hedin-Lundqvist optical potential has been
chosen in all cases to account for energy-dependent exchange
effects and inelastic losses. Calculations have been made over
a wide range of wave-vector values above the edge, kmax ∼
18 Å−1.

Phase-shift calculations have been made for all the ele-
ments of Table I, typically up to lmax = kmax × rMT values,
and shown here for the lower partial waves l = 0, 1, 2, 3, as
a function of the photoelectron kinetic energy (see Fig. 1).
The examples shown in Fig. 1 are related to In (L3 edge)
and Au (L3 edge) and refer to the photoabsorbing atoms (i.e.,
with a core hole). No substantial differences have been found
considering neutral atoms, either surrounded by neutral atoms
or including also a neighboring excited photoabsorber atom.

The real part of the atomic phase shifts δl (l = 0, 1, 2, 3)
for In (upper figure) and Au (lower figure) are shown in the
left panels of Fig. 1. Nonrelativistic (nr) and scalar-relativistic
(sr) corrections are indicated, respectively, by blue and orange
(continuous) lines; spin-orbit relativistic (sojp, j = l + 1/2)

and (sojm, j = l − 1/2) are denoted, respectively, by green
and red (dashed) lines. The differences between nonrela-
tivistic (nr) and scalar-relativistic (sr) phase shifts (|Re{δsr

l −
δnr

l }|), averaged over five consecutive energy-mesh points, are
shown in the right-hand-side panels of Fig. 1. The overall
average energy difference is also represented as a green line.

Differences between scalar-relativistic and nonrelativistic
phase shifts have been found to be a smooth function over
the entire energy range of interest for XAFS. This deviation
reaches 0.5 radians for the s wave for Au (Z = 79), underlying
the importance of relativistic effects for this heavy element,
with respect to the lighter In (Z = 49) (for which the deviation
in the s wave amounts to 0.2). We have also verified that
present scalar-relativistic calculations of the phase shifts are
in good agreement with those calculated by FEFF [9] using
the same atomic coordinates.

The results of relativistic phase-shift calculations are sum-
marized in Fig. 2, where we show the differences between
(sr) and (nr) phase shifts for the various systems reported in
Table I as a function of the atomic number. The magnitude
of the correction is reported in Fig. 2 for the first four partial
waves l = 0 (pink line), l = 1 (green line), l = 2 (blue line),
l = 3 (brown line), and for both the K edge (points marked
by a star) and the L3 edge (points marked by a square). The
arithmetic average between the K-edge and the L3-edge points
is also reported as a dashed curve. The effect of the mass and
Darwin terms in pulling upwards the real part of atomic phase
shifts with respect to the nonrelativistic case goes roughly
as (αZ )2, as it is clear looking at the s- and p-wave curves
as compared with the (Z/137)2 curve. The importance of
relativistic effects rapidly diminishes with increasing l (and
increasing photoelectron wave vector or energy), because of
the screening provided by the centrifugal barrier in the region
close to the nuclei.

No substantial differences in phase-shift relativistic correc-
tions have been found between the K-edge and L3-edge cases.
This is also in line with the fact that the scattering power has
been found to be nearly the same, independently of the fact
that the atom is neutral or with a core hole.
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FIG. 1. Left panels: phase shifts δl (l = 0, l = 1, l = 2, l = 3)
(real part) for the photoabsorbing In (L3 edge) atom in a body-
centered-tetragonal crystalline system (upper figures) and of Au
(L3 edge) atoms in fcc crystalline gold (lower figures) calculated
by the new PHAGEN program as a function of the photoelectron
energy. Nonrelativistic (nr) and scalar-relativistic (sr) corrections
are indicated, respectively, by blue and orange (continuous) lines;
spin-orbit relativistic (sojp, j = l + 1/2) and (sojm, j = l − 1/2) are
denoted, respectively, by green and red (dashed) lines. Right-hand
panels: difference between nonrelativistic (nr) and scalar-relativistic
(sr) phase-shift calculations for In and Au. The importance of ac-
counting for relativistic effects in Au is evident. All phase shifts and
differences are shown in rads.

B. Calculated XAFS signals

The calculated nonrelativistic and scalar-relativistic atomic
phase shifts have been combined with a fixed-atom geomet-
rical arrangement to build up theoretical multiple-scattering
XAFS signals, by means of the GNXAS subprogram. Fig-
ures 3–5 show the example of the single-scattering (dominant)
contribution χ2 to the first-neighbor signal γ

(2)
1 [2], in the

case of, respectively, crystalline calcium, neodymium, and
gold. The panels report from top to bottom: the total single-
scattering signals χ (k) = A(k) sin(φ(k); amplitudes A(k); and
total phase functions �(k) = φ(k) − 2kR1 (R1 being the
nearest-neighbor separation specified in Table I). The lower
curves display the difference of (nr) and (sr) amplitudes,

FIG. 2. Differences between scalar-relativistic (sr) and nonrel-
ativistic (nr) phase shifts as a function of the atomic number Z ,
calculated by means of the new PHAGEN program; for the partial
waves l = 0 (pink color), l = 1 (green color), l = 2 (blue color),
l = 3 (brown color); and for both the K edge (points marked by a
star) and the L3 edge (points marked by a square). The importance of
accounting for relativistic effects in high-Z elements is evident. All
phase shifts and differences are shown in rads.

shown via normalized residuals |A(sr)−A(nr)

A(nr) |. This quantity has
been averaged over five consecutive points to avoid singular
points associated with nearly vanishing amplitudes.

In Figs. 3–5, nonrelativistic (nr) and scalar-relativistic (sr)
corrections are indicated, respectively, by blue and orange

FIG. 3. Results of calculations of the XAFS single-scattering
χ2(k) signals (first shell) for solid Ca (K edge: left panels, L3

edge: right-hand panels), using structural parameters reported in
Table I. From top to bottom, the total single-scattering signals
χ (k) = A(k) sin[φ(k)], amplitudes A(k), and total phase functions
�(k) = φ(k) − 2kR1 are reported. The panels at the bottom display
the difference of (nr) and (sr) amplitudes, reported as normalized
residuals | A(sr)−A(nr)

A(nr) | (averaged over five consecutive energy-mesh
points). Nonrelativistic (nr) and scalar-relativistic (sr) corrections
are indicated, respectively, by blue and orange (continuous) lines;
spin-orbit relativistic (sojp and sojm) are denoted, respectively, by
green and red (dashed) lines. The calculated average deviation in
| A(sr)−A(nr)

A(nr) | (over the entire energy range) is also displayed in the lower
panels.
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FIG. 4. XAFS calculations for solid Nd (K edge, left panels; L3

edge, right-hand panels). The same definitions as in Fig. 3 have been
used.

(continuous) lines; spin-orbit relativistic (sojp and sojm) are
denoted, respectively, by green and red (dashed) lines. The
calculated average deviation in |A(sr)−A(nr)

A(nr) | (over the entire
wave-vector range of interest for XAFS) is also displayed in
the lower panels. These values are also reported in the last
column of Table II.

Figure 3 displays the χ2 signals for solid Ca, comparing
the K-edge (left panels) with the L3-edge (right panels) re-
sults. No substantial differences between nonrelativistic and
relativistic curves have been observed for Ca (K edge), Ca
(L3 edge), as indicated by the average normalized residuals
amounting to ∼1% in both cases. The total phase function
�(k) has a general smoothly decreasing trend as a function
of the photoelectron wave vector k. This trend is subject,
however, to sudden changes by ∼±π in correspondence of
minima or A(k) (especially those which reach values close
to zero), a feature also noted previously [7]. In Fig. 3 this is
especially evident for Ca (L3) at k ∼ 3 Å−1.

FIG. 5. XAFS calculations for solid Au (K edge, left panels; L3

edge, right-hand panels). The same definitions as in Fig. 3 have been
used.

TABLE II. Results of the quantitative comparison of scalar-
relativistic (sr) and nonrelativistic (nr) calculations made by the new
PHAGEN program for the elements of Table I. Average differences
(over the entire energy range) between (sr) and (nr) phase shifts
(real parts) are reported for l = 0, 1, 2, 3 in the central columns (all
differences of phase shifts are expressed in rads). The last column on
the right-hand side collects the average (over the entire energy range)
relative difference between (nr) and (sr) amplitudes of calculated γ

(2)
1

(single-scattering) signals (all normalized differences are expressed
as percentage).

Re{δsr
l − δnr

l }| | Anr−Asr

Anr |
Cluster (edge) l = 0 l = 1 l = 2 l = 3 (%)

Ne (K) 0.0078 0.0050 0.0028 0.0023 0
Si (K) 0.0124 0.0075 0.0033 0.0024 0
Ca (K) 0.0261 0.0149 0.0062 0.0035 1
Ca (L3) 0.0255 0.0143 0.0060 0.0036 1
Zn (K) 0.0511 0.0314 0.0101 0.0034 3
Zn (L3) 0.0541 0.0304 0.0098 0.0034 3
Br (K) 0.0736 0.0401 0.0136 0.0040 5
Br (L3) 0.0720 0.0393 0.0134 0.0039 6
Zr (K) 0.1051 0.0543 0.0200 0.0053 4
Zr (L3) 0.1036 0.0529 0.0198 0.0053 10
In (K) 0.1514 0.0851 0.0293 0.0086 5
In (L3) 0.1500 0.0848 0.0289 0.0087 6
Nd (K) 0.2440 0.1350 0.0468 0.0169 12
Nd (L3) 0.2475 0.1288 0.0481 0.0176 19
Yb (K) 0.3249 0.1930 0.0660 0.0216 15
Yb (L3) 0.3438 0.1764 0.0686 0.0226 22
Au (K) 0.4343 0.2645 0.0885 0.0243 27
Au (L3) 0.4676 0.2247 0.0847 0.0256 54
Pb (K) 0.4715 0.2205 0.0915 0.0281 20
Pb (L3) 0.4730 0.2519 0.0921 0.0309 22
Th (K) 0.7603 0.3251 0.1003 0.0342 19
Th (L3) 0.6227 0.2925 0.1279 0.0479 15

Figure 4 displays calculated χ2(k) signals for solid Nd.
K-edge (left panels) and L3-edge (right panels) signals are
similar in shape for k > 4 Å−1, but the former is a factor
of ∼2 lower in magnitude (being stronger damped by the
core-hole width: �h = 8.65 eV for the K edge, �h = 1.83 eV
for the L3 edge)). Large differences between the K-edge and
the L3-edge χ2(k) signals can be observed for k � 3 Å−1.
This region is also characterized by substantial modifications
between nonrelativistic and relativistic curves: around k ∼ 3
Å−1 and k ∼ 6 Å−1, where both K and L3 amplitudes show
a minimum, typical beats in the XAFS χ (k) signals can be
seen. Deviations between (nr) and (sr) amplitudes amount to
less than 10% in the typical XAFS range k > 4 Å−1 for both
the K and L3 edges. The situation is different for k < 4 Å−1

where the normalized residuals show a pronounced peak for
the L3 edge, and a smoother increase for the K edge (leading
to an average deviation of, respectively, 19% and 12%).

Figure 5 shows the interesting case of gold. The Au K-edge
χ2(k) signal (left-hand-side panels) is much more damped
with respect to the L3 signal (right-hand-side panels) because
of the much larger core-hole width, 26.01 eV (K edge) against
2.71 eV (L3 edge). The importance of accounting for rela-
tivistic effects in Au is evident in the whole XAFS range.
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FIG. 6. Normalized difference of nonrelativistic and scalar-
relativistic amplitudes (averaged over the entire energy range and
expressed as percentage) calculated by new PHAGEN and GNXAS

programs, as a function of the atomic number. Only elements of
Table I have been considered. Values for the K and L3 edges are
denoted, respectively, by blue and orange squares. All normalized
differences are expressed as percentage.

Relativistic deviations amount to ∼20% for k > 5 Å−1 for
both K and L3 edges. But for k < 5 Å−1 a large peak in the
residuals |A(sr)−A(nr)

A(nr) | occurs for the L3 edge in correspondence
of beats of (nr) and (sr) χ2(k) signals (at k ∼ 3 Å−1). A peak
in the normalized residuals can be seen also for the K edge
around k ∼ 3 Å−1, but much less pronounced with respect
to the L3 edge. The overall amount of relativistic effects,
evaluated by the average normalized residuals, is 54% (L3

edge) and 27% (K edge) for solid Au.
Figure 6 reports difference of nonrelativistic and scalar-

relativistic XAFS χ2(k) amplitudes (averaged over the energy
range of interest for XAFS) as a function of the atomic num-
ber, for all elements of Table I. Here blue and orange colors
refers to K-edge and L3-edge calculations, respectively.

While relativistic effects have been found to increase phase
shifts roughly as (Zα)2 (see Fig. 2, dotted and l = 0 points),
no analogous regular trend can be seen for the average ampli-
tudes of XAFS signals reported in Fig. 6. Indeed, the size of
relativistic effects in XAFS signals depends not only on the
atomic number and scattering power of the atoms, but also on
their geometrical arrangement and on the core-hole lifetime
(which contributes to the damping of the amplitude).

In any case, relativistic deviations in amplitudes have been
found to exceed 10% for Z � 60. Also in Fig. 6 one can
observe a clear peak of relativistic effects in the case of
Au (Z = 79), which is more pronounced with respect to the
heavier Pb (Z = 82) and Th (Z = 90). This is in line with
the literature [33,34], where gold is known to present partic-
ularly strong relativistic effects in its chemical and physical
properties, and appears to be related to the shorter interatomic
distances observed in crystalline Au as compared to Pb and
Th.

A summary of the results of the present calculations of
relativistic corrections for phase shifts and amplitudes is
presented in Table II. The importance of taking account of
relativistic corrections for large-Z atoms is clearly assessed
by the size of the average deviations in amplitudes observed

TABLE III. Averaged relativistic corrections obtained in two
typical fcc crystalline systems (Au and Pb) for the two-body and
three-body XAFS (γ (n)

m ) contributions related to first-neighbor dis-
tances R1. The first-shell distance was fixed to 2.884 and 3.493 Å
for Au and Pb, respectively. The columns indicate, from the first
to the last, the type of the structural configuration, shell number or
angle for the triangular arrangement, effective distance for the XAFS
signal (semi-perimeter of the two-leg or three-leg configuration),
type of XAFS signal, and average (over the entire energy range) of
the normalized residuals | A(sr)−A(nr)

A(nr) | of the amplitudes of the XAFS
signals calculated using the GNXAS and the new PHAGEN program,
for Au (L3 edge) and Pb (L3 edge). Those values are expressed in
percentages.

Struct. Shell no. Effective MS | A(nr)−A(sr)

A(nr) | (%)

config. (angle) distance signal Au (L3) Pb (L3)

Two-body 1 R1 γ
(2)

1 54 22
Three-body 60◦ 3

2 R1 γ
(3)

1 34 31
Two-body 2 R2 = √

2R1 γ
(2)

2 25 17
Three-body 90◦ 2+√

2
2 R1 γ

(3)
2 26 34

Two-body 3 R3 = √
3R1 γ

(2)
3 18 16

Three-body 120◦ 2+√
3

2 R1 γ
(3)

3 23 28
Two-body 4 R4 = 2R1 γ

(2)
4 17 16

Three-body 180◦ 2R1 γ
(3)

4 39 32

in the entire XAFS range reported in the last column. On the
other hand, the large deviations observed for the phase shifts
with low angular momenta suggest that relativistic calcula-
tions must be used for near-edge XAS calculations.

The effect of relativistic corrections has been also stud-
ied for n-body XAS signals related to atoms beyond the
first-neighbor coordination shells. We have thus calculated
higher-order MS XAFS signals related to the n body γ

(2)
2 ,

γ
(2)

3 , γ
(3)

1 , γ
(3)

2 , γ
(3)

3 , γ
(3)

4 [3] contributions up to the fourth
coordination shell, in the case of fcc crystalline gold (Au,
L3 edge) and lead (Pb, L3 edge). The γ

(2)
2 , γ

(2)
3 , γ

(2)
4 signals

are two-body contributions of the second, third, and fourth
shells. The γ

(3)
1 , γ

(3)
2 , γ

(3)
3 , and γ

(3)
4 contributions denote, for

a fcc crystalline system, three-body configurations with first
neighbors at given bond angles, respectively, 60◦, 90◦, 120◦,
and 180◦. Calculations follow the scheme reported in Ref. [3]
for fcc crystals and relevant data are reported in Table III.

As an example, we show in Fig. 7 the results for the γ
(3)

4
contribution (the so-called linear-focusing one), calculated by
means of the new PHAGEN and GNXAS programs, for Au (L3)
and Pb (L3). The curves presented in Fig. 7 are defined as
in Figs. 3–5, but in this case the effective distance R used
to calculate �(k) = φ(k) − 2kR is the semiperimeter of the
shorter MS path (2R1 for 180◦ configurations). The difference
between calculations performed using scalar-relativistic and
nonrelativistic phase shifts is evident in the whole energy (k)
range.

The results for the average deviation of the amplitudes
|A(sr)−A(nr)

A(nr) | in γ
(2)

2 , γ
(2)

3 , γ
(3)

1 , γ
(3)

2 , γ
(3)

3 , γ
(3)

4 signals are pre-
sented in Table III. From Table III it is clear that relativistic
effects, in the two-body contributions γ (2), decrease as the
shell distance increases. Relativistic effects in the three-body
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FIG. 7. Total calculated γ
(3)

4 signal (first-neighbor three-body
contribution at angle 180◦) as a function of the photoelectron wave
vector k, for Au (L3 edge) (left panels) and Pb (L3 edge) (right
panels). From top to bottom, the total XAFS signals, amplitudes
A(k), and total phase functions �(k) = φ(k) − 2kR (see Table III for
the definition of the effective distance R) are reported. The panels at
the bottom display the difference of (nr) and (sr) amplitudes, reported
as normalized residuals | A(sr)−A(nr)

A(nr) | (averaged over five consecutive
energy-mesh points). Nonrelativistic (nr) and scalar-relativistic (sr)
corrections are indicated, respectively, by blue and orange (con-
tinuous) lines; spin-orbit relativistic (sojp and sojm) are denoted,
respectively, by green and red (dashed) lines. The calculated average
deviation in | A(sr)−A(nr)

A(nr) | (over the entire energy range) is also displayed
in the lower panels.

contributions γ
(3)

1 , γ
(3)

2 , γ
(3)

3 , γ
(3)

4 have been found to be
larger than the corresponding two-body signals γ

(2)
2 (second

shell), γ
(2)

3 (third shell), even though the overall path effec-
tive distances are larger for three-body MS contributions. A
possible explanation of this effect is that typically three-body
signals involve the product of one more t matrix effected
by relativistic corrections [7]. Relativistic corrections in the
linear focusing γ

(3)
4 signal have been found to be particu-

larly strong (even though the path effective distance is the
longest). Finally, comparing Au (L3 edge) and Pb (L3 edge)
cases, relativistic corrections in the two-body γ (2) and in the
linear-focusing term γ

(3)
4 have been found to be more pro-

nounced in the former case, while relativistic deviations in
the remaining γ

(3)
1 , γ 3

2 , γ
(3)

4 signals are very similar in both
cases.

C. Application to crystalline gold

As discussed in the preceding sections, L3 XAFS spectra
of solid Au are expected to contain important relativistic cor-
rections. As shown in Figs. 5 and 7 and Table II variations up
to 50% can be observed as compared to nonrelativistic calcu-
lations. We have performed a full structural refinement of the
Au L3-edge experimental signal of face-centered-cubic (fcc)
crystalline Au measured at room temperature (foil of nom-
inal thickness 4 μm). XAFS data were originally collected
using synchrotron radiation at the LURE (Orsay, France)
beamline D42-EXAFS 1 (bending magnet source) equipped

with a channel-cut Si(331) monochromator (bending magnet
source). Estimated noise-to-signal ratio of the raw XAFS data
was 2 × 10−4.

XAFS refinements were carried out using both scalar-
relativistic (sr) and nonrelativistic (nr) approximations, within
the GNXAS data-analysis method discussed above. The in-
dividual irreducible multiple-scattering signals related to a
typical fcc structure [2,3] were calculated up to the fourth
coordination shell as reported in Table III.

An important aspect of the XAFS data analysis is the
modeling of the atomic background that for the Au L3 edge
is particularly complex, being affected by the presence of
multielectron channels involving mainly the excitation of 4 f
electrons as discussed in previous papers [35,36]. The ab-
sorption background used in the present structural refinement
includes a smooth polynomial spline and the contribution of
double-electron excitation 2p4 f and 2p4d channels, respec-
tively, around 110 and 350 eV above the L3 edge.

The results of the XAFS structural refinements are reported
in Fig. 8, where scalar-relativistic and nonrelativistic best-fit
calculated signals are compared with the experimental L3

XAFS of crystalline Au measured at 300 K. The individual
MS signals related to the first four coordination shells are
also reported in Fig. 8, including the dominant γ

(2)
1 first-

shell contribution; the pure three-body γ
(3)

1 term associated
with first-neighbor equilateral configurations; the η

(3)
2 , η

(3)
3 ,

and η
(3)
4 terms associated with second, third, and fourth shell

atoms, respectively. The η(3) signals include both two-body
and three-body contributions due to 90◦, 120◦, and180◦ first-
neighbor configurations.

As shown in Fig. 8, a clear improvement in the agreement
is obtained using scalar-relativistic (sr) phase shifts. This is
shown by the marked decrease in the residual value (around
2.6 for sr calculations) and can be also appreciated looking
at the Fourier transform (FT) of both calculations reported in
the right-hand panel of Fig. 8. A significant increase in the
agreement between experimental and calculated MS signals
is obtained using (sr) calculations, especially in the 4–12 Å−1

wave-vector range. The FT of the nonrelativistic (nr) best-fit
signal does not accurately reproduce the first-shell contribu-
tion (double-peak structure in the 2–3 Å region) as it can be
seen looking both at the FT of the nr XAFS best-fit calcula-
tions and at the FT of the difference with the experimental
spectrum (respectively nr calc. blue dotted line in Fig. 8).
On the other hand, the FTs of experimental and calculated sr
signals are in good agreement and the residual curve shows
mainly random fluctuations.

Of course, it is also important to verify that the results
XAFS structural refinements are consistent with literature
data. The most important structural parameters are those
related to the first-neighbor distribution, namely, the aver-
age nearest interatomic distance R, the mean-square relative
displacement σ 2 (bond variance appearing in the Debye-
Waller–type factor), and the skewness β (related directly to
the third cumulant of the distribution β = C3/σ

3). The last
parameter is different from zero for distributions departing
from a simple Gaussian for increasing lattice temperatures.
Even for moderate temperatures, departures from a simple
Gaussian behavior is observed in most metals, and this is
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FIG. 8. XAS Au L3-edge structural refinement (face-centered-
cubic crystal, 299 K) using the GNXAS data-analysis method using
scalar-relativistic (sr, orange) and nonrelativistic (nr, blue) approx-
imations. Left panel: comparison between the experimental (expt.,
black dotted line) and best-fit multiple-scattering total calculated sig-
nals using sr (orange) and nr (blue) approximations (upper curves).
The total signals include contributions up to the fourth shell. From
top to the bottom the individual irreducible multiple-scattering sig-
nals up to the fourth coordination shell are reported (first neighbors
γ

(2)
1 , equilateral configurations γ

(3)
1 , second η

(3)
2 , third η

(3)
3 , and fourth

η
(3)
4 shells corresponding to first-neighbor configurations at 90◦,

120◦, and 180◦. The improvement in XAFS refinement obtained
using sr calculations is evident and can be appreciated looking at the
decrease in the residual function (∼2.6). Visible differences in the
simulations can be observed especially in the 5–10 Å−1 range. Right-
hand panel: Fourier transform of the total signals reported in the
left panel (k range: 4–19 Å−1). The improvement in the agreement
obtained using relativistic calculations is evident. The characteristic
double peak in the 2–3 Å region, related to the first neighbors, is
correctly reproduced only by relativistic calculations (sr, orange).
The Fourier transforms of the residual spectra (difference between
experimental and calculated signals) show clearly deviations beyond
the noise level.

the case also of crystalline Au [37]. Coordination numbers
and average angles for the first four shells and three-body
configurations have been kept fixed to those of a standard fcc
lattice [3].

The best-fit parameters of the present XAFS refinements
are reported in the first two columns of Table IV (sr, nr),
and compared with results reported in the literature [37,38].
The first-neighbor average distance R, reported in the first
row of Table IV, is usually measured by XAFS with high
precision (typically 0.005 Å) and should be compared with
the interatomic distance resulting from the lattice parameter
R0=a/

√
2 = 2.884 Å measured by diffraction [39]. The val-

ues reported in the first row are all compatible with the lattice
distance R0 measured at 300 K with the possible exception
of that obtained by nonrelativistic phase shifts (nr). In fact,
the average interatomic distance measured by XAFS can be
approximated at the lowest order R ∼R0 + σ 2

⊥/R0 (see [40]
and references therein) where σ 2

⊥ is the vibrational bond vari-
ance projected on the plane orthogonal to the average bond
direction. In this way, R must be always slightly larger than

TABLE IV. Best-fit parameters obtained by present XAFS re-
finements of solid Au at 300 K, compared with results reported in
the literature. Relevant XAFS parameters related to the first-neighbor
Au-Au distribution (R, σ 2, and β) are listed in the first column and
discussed in the text, as well as the nonstructural parameters E0 and
S2

0 . The last row contains the final value of the residual function in-
dicating the agreement with the experimental data. From left to right
the columns report the results for the present XAFS refinements (sr
and nr); those of a previous XAFS work [38]; range of first-neighbor
structural parameters obtained by molecular-dynamics simulations
(MD) using different interatomic potentials [37]; estimate of the first-
shell bond variance σ 2 obtained by an Einstein vibrational model
[41] using a suitable range of Debye temperatures valid for Au [39]
(ED model).

Au XAFS XAFS ED [41]
(300 K) (sr) (nr) XAFS [38] MD [37] model

R (Å) 2.886 2.899 2.885 2.889–
2.904

σ 2 8.70 8.84 8.34 9.5–13.5 7.57–9.79
(10−3 × Å2)
β 0.35 0.49 0.05–0.4
E0 (eV) +7.79 +5.80 +7.3
S2

0 0.85 0.75 0.9
Residual 0.256 0.671
(10−6)

R0 as it is in Table IV. Another interesting parameter is the
bond variance σ 2 reported in the second row of the same
table. Present XAFS results match quite well previous XAFS
and molecular-dynamics (MD) results [37,38]. Moreover, the
bond variance can be estimated using an Einstein model for
vibrations [41] which takes into account the Debye temper-
ature of Au, for which accepted values are presently in the
TD = 165–188 K range [39]. The value reported in the last
column of Table IV reflects this range and is in agreement with
present XAFS results. On the other hand, the bond variance
calculated by MD using different interatomic force models
slightly overestimates the XAFS results. The skewness pa-
rameter β measured by XAFS (sr) is in good agreement with
previous MD results, as shown in the third row of Table IV.
The other typical XAFS nonstructural parameters like E0

(difference between the experimental and theoretical energy
scales) and S2

0 (amplitude reduction factor for calculations)
are reported in the successive rows of Table IV. The E0 values
reported in Table IV refer to the edge energy Ee of the first
inflection point of the Au L3 edge spectrum (Ee = 11 912.6 eV
for our data). We see that significant deviations are observed
for nonrelativistic (nr) best-fit refinements.

The residual values [3] of the XAFS refinement procedures
are reported in the bottom row of Table IV, to be compared
with the estimated expected value of the residual for the
present data set (0.229 × 10−6). The application of scalar-
relativistic calculations (sr) clearly improves the quality of the
refinement, as shown by a decrease of a factor ∼2.6 of the
residual.

The present XAFS refinements show clearly that scalar-
relativistic (sr) calculations improve both the agreement with
the experimental data and the accuracy in structural results.
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IV. CONCLUSIONS

In this work, we have described the inclusion of relativistic
corrections in multiple-scattering calculations used for XAFS
data analysis of nonmagnetic materials within the GNXAS

suite of programs. The validity and accuracy of these cal-
culations have been preliminarily put to a test in a recent
work [10] where we have shown a significant improvement
in the structural refinement of the XAFS experimental signal
of crystalline lead (Pb, L3 edge) with respect to the nonrela-
tivistic scheme.

Here, this scheme for phase-shift calculations has been
put to a test in a wide range, as the atomic number Z varies
between 10 and 90, of known pure-element condensed-state
systems. Particular attention has been paid to the compar-
ison of relativistic effects for the K and the L3 absorption
edges. Nonrelativistic, scalar-relativistic, and fully relativistic
scattering t matrices (and phase shifts) have been calculated
for every system under study. Phase-shift corrections have
been found to be a smooth, nearly constant function of the
photoelectron wave vector; and to be more important for low
angular momenta (especially for the l = 0 partial wave, even
though in this case the spin-orbit splitting is absent). There-
fore, relativistic corrections are particularly important for low
photoelectron energies where a small number of low-l partial
waves are needed to describe the final state. This conclusion
is in line with the following:

(i) the larger size of relativistic effects in the low-wave-
vector region (near-edge and nearby structures) of calculated
XAFS signals;

(ii) the observed improvement in the agreement of scalar-
relativistic calculation with experimental data for fcc crys-
talline lead (Pb L3 edge) (with respect to the use of a
nonrelativistic fitting scheme), especially for k < 6 Å−1, as
shown in Ref. [10].

Relativistic effects, estimated by the average difference of
nonrelativistic and scalar-relativistic phase shifts (real parts),
have been found to increase gradually with the atomic number
Z , roughly as a power law ( Z

137 )2 for l = 0, and much slower
for higher-l partial waves. Relativistic corrections in atomic
phase-shift calculations have been found to be weakly affected
by the change of the absorption edge (comparing K- and L3-
edge signals).

Multiple-scattering calculations of the XAFS structural
two-body (γ (2)) contributions have been carried out system-
atically showing that amplitude minima are often associated
with beats in relativistic and nonrelativistic structure signals,
for which relativistic effects reach maximal levels.

Relativistic effects have been found to be particularly im-
portant for Z � 60, when amplitude deviations exceed the
value of 10% (and phase-shift deviations reach the value of
0.2 rads for the s wave). A slight predominance of relativistic
effects has been found for L3-edge amplitudes with respect
to K-edge amplitudes. This difference is found to increase
slightly as the atomic number increases, excluding some no-
table exceptions (In, Pb, Zn, see Fig. 6).

As also discussed previously [33,34], gold has been found
to be an element for which relativistic corrections are par-
ticularly important. The quality of the structural refinements
has been put to a test in the case of crystalline Au at ambient

temperature, showing that relativistic calculations clearly im-
prove the agreement with measured experimental XAFS data
providing accurate structural results.

We can summarize our observations as follows:
(i) The monotonic Z trend of relativistic corrections in

atomic phase shifts has shown a (shallow, but noticeable) local
maximum of relativistic effects in the case of Au (Z = 79)
(see Fig. 2).

(ii) The Z trend of relativistic corrections in the first-shell
two-body (calculated) structure signal has presented a clear
peak in the case of Au, much higher with respect to the heavier
Pb and Th (see Fig. 6). The same maximum of relativis-
tic effects has been found to persist in higher-order XAFS
signals, especially for the linear-focusing three-body contri-
bution. This can be easily appreciated comparing Au (L3) and
Pb (L3) cases (see Table III) and is largely associated with the
higher Au atomic density (shorter interatomic distances).

In view of these results, we can conclude that the scheme
implemented in GNXAS for relativistic MS calculations can be
safely used for XAFS structural refinements of systems con-
taining atoms for which relativistic corrections are important.
In particular, the use of relativistic calculations appears to be
necessary typically for large atomic numbers Z � 60, but sub-
stantial improvements may be obtained also in an intermediate
range Z � 30, both for K and L edges.
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APPENDIX

An electron with total energy E in a central-field potential
V (r) is described by the Dirac equation [42]

[σ · p]ψB = 1

c
[E − V (r) − mc2]ψA,

[σ · p]ψA = 1

c
[E − V (r) + mc2]ψB,

(A1)

where σ = (σx, σy, σz ) is the electron spin in terms of
Pauli matrices; p = −ih̄∇ is the electron relativistic three-
momentum. ψA and ψB are, respectively, the upper and lower
Dirac components, and a solution to equation (A1) can be
found of the form [15]

ψ =
(

ψA

ψB

)
=

(
g(r)χμ

κ (r̂)

i f (r)χμ
−κ (r̂)

)
. (A2)

Here, χμ
κ (r̂)≡∑

ν=±1 〈lκ , μ − ν, 1/2, ν/2| jκ , μ〉Ylκ ,μ−ν (r̂)χν

are spin-spherical harmonics, i.e., space-independent eigen-
states of the operators j2, jz, l2, (σ · l + h̄) with eigenvalues
(h̄2 jκ ( jκ + 1), h̄μ, h̄2lκ (lκ + 1),−h̄κ ). Once a value of κ is
fixed, both jκ and lκ are known to be [15]

lκ = |κ| + sign{κ} − 1

2
,

jκ = |κ| − 1

2
. (A3)
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If one substitutes the expression (A2) into the equa-
tion (A1), spin-spherical harmonics cancel out and only radial
differential equations remain:

−df (r)

dr
− 1 − κ

r
f (r) = 1

h̄c
[E − V (r) − mc2]g(r),

dg(r)

dr
+ 1 + κ

r
g(r) = 1

h̄c
[E − V (r) + mc2] f (r). (A4)

In terms of

u(r) = rg(r); v(r) = r f (r) (A5)

one finally gets the radial Dirac equations

uκ (r) = −
(

h̄c

ε − V (r)

)(
d

dr
− κ

r

)
vκ (r),

vκ (r) = h̄c

ε − V (r) + 2mc2

(
d

dr
+ κ

r

)
uκ (r),

(A6)

where ε = E − mc2 is the energy of an electron minus its rest
mass.

Adopting atomic units, namely, h̄ = 1, m = 1/2, e2 = 2,
c = 2/α ∼ 274.072, α ∼ 1/137.037 (so that lengths are mea-
sured in units of 0.529 Å and energies in units of 13.606 eV),
the radial Dirac equations (A6) take the form

uκ (r) = −
(

2

α[ε − V (r)]

)(
d

dr
− κ

r

)
vκ (r),

vκ (r) = α

2

1

1 + α2

4 [ε − V (r)]

(
d

dr
+ κ

r

)
uκ (r),

(A7)

where now the electron kinetic energy is ε = E − 2/α2.
uκ (r) [or gκ (r)] and vκ (r) [or fκ (r)] are called, respec-
tively, large and small Dirac components, because in the
nonrelativistic limit (c −→ ∞, α −→ 0) u tends to its non-
relativistic Schrödinger model counterpart, while v simply
vanishes.
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