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The high computational cost of first-principles electronic structure methods together with the successful
applications of machine learning (ML) techniques in atomistic simulations resulted in a surge of interest in
ML-based interatomic potentials. Despite great progress in the field, there remain some challenges to be solved
such as the best way of incorporating long-range interactions, as well as nonlocal charge transfer. The first
generation of the charge equilibration via neural network technique (CENT) was a major step forward in
concurrently taking into account both aforementioned points. Within structure prediction methods, it turned
out to be a powerful tool in discovering novel polymorphs of ionic systems. On the other hand, the method is not
expected to be appropriate for multicomponent systems with reference data sets in which some or all elements are
subject to varying oxidation states. Here, we present the second generation of CENT, with multiple improvements
to the original variant that lead to a more accurate treatment of electrostatic interactions. To do this, it aims at
reproducing the electric potential function, which is directly related to the charge distribution, rather than only
considering total energies. In addition, a charge-free term is added to correct for the difference between the
reference energies and those obtained with the energy functional of CENT. Moreover, the Green’s function within
the Hartree energy is modified to substantially shield interactions from charges in the neighborhood of each point.
Also, the charge density is split into ionic and electronic parts, which allows for a better approximation of the
electron density. The utility of this method is examined for magnesium oxide clusters, and multiple comparisons
with the first generation are made, demonstrating that much more physical electrostatic interactions can be
expected from the second generation of CENT.
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I. INTRODUCTION

Nowadays, atomistic modeling is routinely applied to ma-
terials of various types in order to understand microscopic
processes or to calculate specific physical and chemical quan-
tities [1]. Atomistic simulations of systems containing many
particles or necessitating many calls to energy and/or force
evaluations are not feasible with ab initio methods [2,3].
This applies even for the most popular approximation method
among quantum mechanical approaches, i.e., Kohn-Sham
density functional theory (KS-DFT) [4], which is currently the
best trade-off between accuracy and efficiency among first-
principles methods. Empirical potentials [5,6], tight-binding
schemes [7], and force fields (FFs) for organic molecules and
ions [8] have been successfully employed in specific applica-
tions. More sophisticated FFs have also been developed such
as reactive FFs, which not only have been helpful in modeling
a broader variety of compounds, but also can capture nonlocal
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charge transfer in the system [9–11]. While fixed-charge FFs
[5] are more efficient [8,12], reactive FFs such as ReaxFF [10]
and charge-optimized potentials [11] provide higher accuracy,
though at the price of higher computational cost. Despite
successes with the aforementioned methods, highly accurate
alternatives to achieve chemical accuracy at low cost have
been desired for decades.

Recently, there has been a surge of interest in employing
machine learning (ML) techniques in atomistic simulations.
In particular, the use of ML techniques in constructing in-
teratomic potentials has become a prominent alternative to
standard FFs in computational chemistry and materials sci-
ence [13,14]. Due to the availability of advanced and powerful
computers, generating large data sets has become feasible
and ML-based methods have already made a profound im-
pact on different areas of materials science [15–23]. In recent
years, methods and computer programs have been introduced
that enable automatic generation of reference data points to
construct an ML interatomic potential (MLIP) with minimal
human intervention [24]. The key difference between the
original MLIPs and FFs is the fact that the former do not
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make any prior assumption about the shape of the interac-
tion of constituent particles in the system [25]. The MLIPs
became applicable to systems of arbitrary size through the
development of high-dimensional MLIPs [26,27]. An essen-
tial ingredient of MLIPs is the way they provide details of
atomic environments to the machine learning engine, such
that this information remains invariant under permutation,
rotation, and translation. This is typically accomplished by
local environment descriptors [28–30]. Even though MLIPs
are relatively new, most of the aforementioned ingredients are
included in a number of software packages, or libraries such
as RuNNer by J. Behler, QUIP [31], aenet [32], Amp [33],
DeePMD-kit [34], library-based LAMMPS [35], and FLAME
[36].

The calculation of the total energy in standard high-
dimensional MLIPs involves certain short-range (SR) as-
sumptions. A different strategy in employing ML techniques
for the construction of interatomic potentials was introduced
in 2015 by Ghasemi and Goedecker [37]. They proposed the
use of an artificial neural network (ANN) to obtain an inter-
mediate quantity, namely the atomic electronegativity, instead
of considering the output of a ML method as some sort of
atomic [26] or bond energy [38]. They considered a form of
functional for the total energy that has in common certain
features with reactive FFs [9–11]. The method employs the
charge equilibration process (CEP) to obtain atomic charges
based on which the electrostatic interaction of the system
is calculated. An ANN was employed for each element of
the system to obtain the environment-dependent atomic elec-
tronegativities required as an input of the CEP. The method
was later named charge equilibration via neural network tech-
nique (CENT) [39]. Indeed, the method not only includes
the description of long-range electrostatic interactions, but
also allows for a nonlocal redistribution of charge density ac-
cording to environment-dependent atomic electronegativities.
The method has been successfully applied to several ionic
materials with a broad range of ionicity [40–47]. Inclusion of
electrostatic interactions in an MLIP, e.g., via the use of the
Hartree energy functional, makes the model more compliant
with basic physical laws, but can also limit its range of appli-
cation. In the case of CENT, one can expect that the model is
best suited for ionic systems, since the charge density of the
method in the Hartree term is a rough approximation of its
counterpart within an electronic structure calculation.

The first attempt to incorporate long-range (LR) interac-
tions in MLIPs was made by Artrith and Behler [48], where
they proposed to split the total energy into Coulombic and
SR terms, each having an independent ANN, for each com-
ponent in the system. The ANN of the Coulombic term was
supposed to reproduce atomic charges obtained by the Hir-
shfeld method. The ANN of the SR term was applied to the
energy difference between the reference value and that of
the Coulombic term in the same way as the standard high-
dimensional ML potentials. Even though the method is a
progressive step towards incorporating LR interactions into
MLIPs, it retains two shortcomings: (i) atomic charges are
determined via a SR process that implies only local charge
transfer and (ii) the net charge is not preserved unless rescal-
ing of the atomic charges is performed. Recently, the method
was enhanced by replacing the Coulombic term by the Hartree

energy of CENT, while still determining the atomic charges
via CEP. The method is known as a 4th-generation high-
dimensional neural network potential (4G-HDNNP) [49]. The
reference atomic charges were obtained in the same way as in
the previous scheme, i.e., from the Hirshfeld method, and they
remained the target quantities in the training process. Since
the atomic charges obtained from the CEP are used as inputs
to the NNs expressing the short-range energy, the calculation
of forces is not straightforward [49,50]. This problem can
be more severe if one attempts to improve the method by
employing more complex charge density approximations.

In this paper, we present the second generation of CENT,
which splits the total energy into two terms, but differently
from that of a 4G-HDNNP. The new variant has three major
improvements in comparison to the original CENT: (i) an SR
term in the form of a high-dimensional ANN is added to the
energy functional of the original CENT, which can be thought
of as allowing the constant atomic energies in the original
CENT to become environment-dependent quantities through
the use of an ANN for each one, (ii) the total charge density
is split into ionic and electronic distributions, and (iii) the
CENT part is trained to reproduce a modified electric potential
in which SR electrostatic interactions are shielded by means
of modifying the Green’s function. In the next section, we
describe the method in detail. In the following, we will refer
to the first generation of CENT as CENT1 and the new variant
as CENT2.

II. METHODS

In this new scheme, the CENT energy is not intended to
account for the entire total energy, but only part of it. Rather,
we demand that the form of the CENT functional be able
to accurately reproduce LR contributions of the electrostatic
interactions. In pursuit of this objective, we split the total
energy as follows:

U = USR + UCENT. (1)

Therein, USR is a solely SR and charge-free contribution to
the total energy. The second term includes charge-dependent
components, and it is expected to provide an approximate
treatment of the electrostatic interactions. For a system of N
atoms, this is given by

UCENT =
N∑

i=1

[
(qi + zi )χi + 1

2
Ji (qi + zi )

2

]
+ USLR, (2)

where Ji is the hardness and qi and zi are the electronic and
ionic charges of atom i, respectively. Moreover, USLR is the
shielded long-range (SLR) electrostatic energy that does not
contain short-range interactions. Similar to CENT1, χi is the
atomic environment-dependent electronegativity of atom i.
Atomic charges are obtained by the minimization of the total
energy, i.e., by the CEP. The role of UCENT in CENT2 differs
from that in CENT1 conceptually. In CENT1, χi values are
predicted by an ANN such that the CENT energy reproduces
the reference total energies. In the new variant, χi values
are supposed to result in a charge density, which reproduces,
accurately, only the LR portion of the electric potential. This
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is done by introducing a Utrial quantity, defined as

Utrial =
∫

ρtrial(r; Rp)VSLR(r) d3r, (3)

where ρtrial is a trial charge density with which the potential is
probed in the vicinity of a probing point Rp. In our implemen-
tation, the trial charge density is considered to be a normalized
Gaussian function with exponent length equal to one Bohr. We
consider probing points on a uniform hexahedral mesh cover-
ing the interior points of the structure and partially its exterior
points, i.e., points close to the surface of the structure. Lastly,
VSLR is a modified electric potential in which the electrostatic
interaction of points arising from charges in its neighborhood
is substantially shielded. A systematic way of shielding can
be done by modifying the kernel (Green’s function) in the
Coulomb integral, i.e.,

VSLR =
∫

κ (r − r′)ρ(r′) d3r′, (4)

where κ is a shielded Coulombic Green’s function, and it is
given by

κ (r) = 1

r
− e−λnrn

r︸ ︷︷ ︸
κs (r)

. (5)

Therein, λ is a shielding factor, and n is an integer greater
than or equal to one. All numerical results presented in this
study are computed with n = 4. The Green’s function in
Eq. (5) shields the SR contributions of electrostatic interac-
tions, while keeping all long-range contributions intact. Once
the method is implemented for a given n, the degree of the
shielding can be controlled systematically by adjusting only a
single parameter, namely λ. The smaller the value we consider
for λ, the stronger the shielding of SR contributions will be.
Currently, we do not have a very efficient implementation of
Eq. (4) that obtains VSLR for free boundary conditions. Instead,
we treat the Coulombic and shielding terms separately and
then add them together. The former term can be calculated
using the Poisson solvers available in almost every DFT pack-
age, and some are very well modularized as a library, like
the BigDFT PSolver [51]. The latter term can be computed
in Fourier space on an expanded cell, since it decays rapidly,
especially if n >= 2 is employed, as we have done in our
study. A detailed derivation is presented in Appendix. Finally,
Eq. (4) can be very efficiently calculated with a similar imple-
mentation to that in Ref. [52].

Similar to CENT1, we consider the total charge density as
a superposition of atom-centered functions with finite range.
In contrast to CENT1, we separate the charge density into
ionic and electronic parts as is customary in ab initio methods,
i.e., ρ(r) = ρn(r) + ρe(r). This allows us to search for more
flexible forms of the electron density that can expectantly
resemble the reference DFT counterpart to a better degree
without changing ionic atomic charge densities. We consider
ρn(r) as the superposition of atom centered spherically sym-
metric Gaussian functions with narrow width β. The electron
density is expanded in terms of spherically symmetric Gaus-
sian functions, that is to say multiple functions with different
widths αi, on each atom. In this study, we consider three and
two Gaussian functions for oxygen and magnesium atoms,

respectively. The splitting of charge density into ionic and
electronic terms is not only a step towards grasping electro-
static interaction in atomistic systems, it is also an avenue by
which better approximations for the electron density that can
account for atomic-scale polarizations might be developed in
the future. Therefore, we have

ρn
i (r) = zi Gi(r; β ),

ρe
i (r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q′
i

2∑
j=1

c jGi(r; α j ) for Mg

q′
i

2∑
j=1

c jGi(r; α j ) + 2Gi(r; β ) for O,

2∑
j=1

c j = 1 and i = 1, . . . , N, (6)

where q′
i = qi for Mg atoms and q′

i = qi − 2 for O atoms. Fur-
thermore, Gi(w) is a Gaussian function with width w centered
on atom i at ri given by

Gi(r; w) = 1

w3 π
3
2

e− |r−ri |2
w2 . (7)

However, 2Gi(r; β ) applies only for O atoms, where the 2s
orbital has been considered to be as localized as the ionic
charges. This choice is made for the simplicity of imple-
mentation and does not influence the results, since the strong
shielding causes the ionic and electronic contributions of the
2s orbital to the electric potential to cancel out at points for
which the interaction is not shielded. We use the same value of
β = 0.5 a0 both for oxygen and for magnesium atoms where
a0 is the Bohr radius. If the shielding of the interaction is
strong enough, as we suggest in this paper, widths well below
one bohr, which are suitable for ion densities, lead to nearly
identical shielded electric potentials. In principle, one can let
c j values vary independently for each atom, which would re-
quire employing a different χ for each c j and an independent
ANN accordingly. To do this, one would need to modify the
first term of Eq. (2). In this study, however, we keep this
fixed and allow only qi to vary. As a result, we consider
only one environment-dependent atomic electronegativity for
each atom. The values of α j and c j are different for different
elements in the system. We obtained them by fitting to the
reference electron density of the magnesium oxide (MgO)
dimer. We used the coefficients c2 = 7.011 and c3 = −6.011
both for Mg and O atoms. Two Gaussian functions of width
α1 = 1.93 a0 and α2 = 1.8335 a0 for Mg atoms and α1 =
1.05 a0 and α2 = 0.9975 a0 for O atoms, respectively, lead to
an optimal fit for the electron density of the dimer. It is worth
mentioning that the reference electron density based on the
aforementioned pseudopotentials calculations has no peak on
atoms and our choice of approximate atomic charges imitates
this behavior. Once qi values are obtained via the CEP, i.e., by
minimization of the energy with respect to the charges so that
∂U
∂qi

= 0, the modified electrostatic energy is calculated via

USLR = 1

2

∫
ρ(r)VSLR(r) d3r. (8)
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It is worth mentioning that in our implementation USLR is not
the target quantity during the training process.

A. Training

In order to train the ANN of atomic electronegativities,
we generate reference trial energies based on the ground-
state electron density of reference structures. Since we have
not implemented our procedure in a DFT code, we save the
ground-state electron density of each reference structure into
a file, which is subsequently read by the FLAME code [36].
The program generates a large number of trial energies at
probing points on a regular mesh with grid spacing of 1.5 a0

that extends beyond the structure on each side by 2 a0. The
reference trial energies are obtained using Eq. (3), where VSLR

is based on the ground-state electron density of the reference
structure plus the ion density, as described in Sec. II.

We define the cost function as follows:

cost function =
Ns∑
i

(
Ui,trial − U ref

i,trial

)2
, (9)

where Ns is the number of reference training data points,
namely the total number of trial energies of reference struc-
tures. Direct training of the ANN associated with the cost
function above is computationally impractical due to the huge
number of trial energies. Instead, we split the cost function
into groups, each one consisting of the trial energies of one
structure. In this way, not only can we perform the calculations
in parallel, we can also obtain qi for a given structure and
then perform the inverse CEP to obtain the reference χi. The
latter allows us to bypass multiple execution of the CEP for
each structure during the training process. Indeed, obtaining
qi from trial energies is similar to obtaining atomic charges
from the electrostatic potential, which is known to be ill
conditioned. In our method, this is not a serious problem for
two reasons: (i) we have a better approximation of the charge
density than that from the typical choice of point particles, and
(ii) we employ the Green’s function given in Eq. (5), which
allows us to probe the interior points of the structure, whereas
typically only exterior points sufficiently far from the structure
are probed in the standard approaches so that the Coulomb
potential is a good approximation. Nevertheless, we employed
a regularization scheme with a control parameter whose value
is adjusted according to the second derivative matrix and is
equal to one thousandth of the largest eigenvalue. Once qi are
obtained for each structure and the reverse CEP is applied,
the resulting environment-dependent atomic electronegativi-
ties can be used to train an ANN for the UCENT term.

Then, for each structure, UCENT is calculated and subtracted
from the DFT total energies to obtain reference USR values.
In the second step, the standard high-dimensional ANN [26]
was employed to treat the USR term. For this step, the ANN
used in the first step, i.e., ANN in UCENT, was kept fixed. The
components of the training process in CENT2 are depicted in
Fig. 1.

B. Reference Training Data

The reference total energies and forces of all structures
were calculated using the BigDFT code [53] with the PBE

FIG. 1. Workflow of the CENT2 training procedure.

exchange-correlation functional [54]. The Mg 3s and O 2s
and 2p orbitals were treated as valence within the framework
of the norm-conserving pseudopotentials [55]. Grid spacing
of 0.4 a0 was used in all BigDFT calculations, where the
electron density was on a finer mesh with a grid spacing of
0.2 a0. Reference structures were generated using the minima
hopping algorithm [56] based on the CENT1 potential, whose
performance was illustrated in Refs. [36] and [46], respec-
tively. The reference set consisting of 8038 charge-neutral
MgO clusters with sizes ranging from 26 to 120 atoms was
used to train the ANN potential. The reference data set was
split into the training and validation data sets, containing 6430
and 1608 structures, respectively. The same architecture was
used for all four ANNs, two per element, one for USR and the
other for atomic electronegativities in UCENT. Each ANN had
two hidden layers of 15 nodes, and the output layer had one
node. We employed atom-centered symmetry functions [28],
both radial and angular, which were 70 in total and determined
the number of nodes in the input layer.

Very small values for the shielding factor lead to large
shielding of electrostatic interaction, which is in principle
undesirable. In the next section, we will examine three values
and compare the impact of this parameter. However, it is worth
having an estimate of the contributions of the two terms to the
total energy, namely USR and UCENT, and their distributions.
Figure 2 illustrates the histogram of the total energy, as well
as its two component terms per atom for the structures in
the reference data set. The calculations were performed with
λ = 0.16 a−1

0 using the reference electron densities added to
the ion charge densities. The variation of the total energies is
comparable to those of its two constituents.

III. RESULTS AND DISCUSSION

A. Error estimates for all reference data

In this study, we present only results for n = 4 [see Eq. (5)],
which leads to nearly perfect shielding of small distances.
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FIG. 2. Histogram of the total energy USR and UCENT in the
reference dataset. Within each contribution, the minimum value is
subtracted from all other values.

Three shielding factors 0.20, 0.18, and 0.16 a0 were examined,
where 1

λ
for these three values approximately corresponds

to 1.35, 1.50, and 1.68 times the average nearest-neighbor
distance in the core of our large MgO clusters, respectively.
An estimate of the shielding strength can be found as the
value of e−λ4r4

at the nominal nearest-neighbor distance. For
the aforementioned λ values, it is about 0.74, 0.82, and
0.88, respectively. These values imply that the electrostatic
interaction between nearest-neighbor atoms is predominantly
suppressed.

Energy and force root mean square errors (RMSEs) of
training and validation data sets are listed for the three afore-
mentioned λ values in Table I. To avoid overfitting, we
consider early stopping, thus the RMSE values of the 25th
epoch are presented in the table. The results indicate that
one can obtain a smaller value of energy RMSE by con-
sidering a stronger shielding, e.g., λ = 0.18 a−1

0 rather than
λ = 0.20 a−1

0 . But, λ = 0.18 a−1
0 appears to be nearly optimal.

Nevertheless, we also consider λ = 0.16 a−1
0 , since it leads to

a non-negligible decrease in force RMSE. Fig. 3 depicts the
learning curves for λ = 0.16 a−1

0 . The energy and force RMSE
evolutions both indicate that the training process is saturated
at the 25th epoch, beyond which errors decrease marginally.

Reference USLR values can in principle be included in the
training process. However, we instead considered the quantity
as a test to assess the reliability and transferability of the
method. It is rather astonishing that reference USLR values

TABLE I. Energy and force RMSE values at the 25th epoch of
CENT2 training.

Energy RMSE Force RMSE
(mHa/atom) (mHa a−1

0 )
λ (a−1

0 ) Training Validation Training Validation

0.20 0.32 0.39 10.6 10.4
0.18 0.26 0.31 9.1 9.5
0.16 0.27 0.32 8.1 8.0
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FIG. 3. The convergence of the energy and force RMSE values
with respect to the training iterations for training and validation
datasets.

were reproduced within a small error when excluded in the
training process. Figure 4 illustrates a remarkably adequate
correlation between the reference USLR values and those pre-
dicted by CENT2, as obtained in our calculations for λ =
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FIG. 4. Comparison of reference USLR energies vs CENT2 USLR

values. There is a decent correlation although USLR is not a target
quantity of the training procedure.
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FIG. 5. Comparison of reference USLR energies versus CENT1
USLR values.

0.16 a−1
0 . Unfortunately, CENT1 USLR values do not correlate

with those of the reference USLR, as shown in Fig. 5. This is
due to the poor charge redistribution in that scheme. As shown
in Fig. 6, USLR values obtained from Hirshfeld charges do not
have a decent correlation with the reference values as well. It
is to be noted that the RMSE of 0.321 (mHa/atom) for the
USLR values is slightly larger than the total energy RMSE,
indicating that further improvements on electron density ap-
proximation are expected to lower the error of the total energy
as well as the long-range part. For example, adding p-type or-
bitals for the treatment of atomic-scale polarization may lead
to a more accurate electrostatic interaction and consequently
a smaller error within USLR.

B. Analyses on VSLR for an in-plane distorted rocksalt-like
64-atom structure

CENT1 was successfully applied to multiple ionic systems
over a broad range of ionicity. Indeed, the method exhibited
the great ability of using ML to interpolate an intermediate
physical quantity with an unforeseeable degree of transferabil-
ity [39] and predictive power for novel crystalline structures
[40,41]. Nevertheless, it has a few drawbacks and limitations
such as the applicability exclusively to ionic systems. More-
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FIG. 6. Comparison of reference USLR energies versus Hirshfeld
USLR values.

over, the large variation of atomic charges is unavoidable if the
training process is carried on far enough to achieve a small
error in energy. This is attributed to the approximate charge
density used in CENT1 together with the presumably inappro-
priate distribution of charges imposed by CEP. Apparently, the
latter cannot be resolved as long as one aims at reproducing
the total energies. The former can be relieved to some extent
if a more genuine form of the charge density is adopted.
This cannot be done without separating the charge density
into ionic and electronic parts. As detailed in Sec. II, the
aforementioned problems are abundantly addressed through
the changes made in CENT2. The target training quantity of
the UCENT term is no longer the total energy, but the reference
Utrial values. Also, the charge density is improved by splitting
it into ionic and electronic densities, as well as employing
multiple Gaussian functions for each atomic energy. Here we
investigate the electric potential function within the CENT1
and CENT2 methods, and also that arising from Hirshfeld
atomic charges, in detail for a planar cluster structure. The
accurate electric potential is the key element to obtain both
electrostatic energy and forces.

The configuration for which the following tests were
carried out was generated by making random in-plane
displacements of atoms from equilibrium for an in-plane dis-
torted rocksalt-like 64-atom structure (see Fig. 7). We first
compare a vector quantity that is a term in the equation for
calculating atomic electrostatic forces. In fact, the quantity
probes the long-range electrostatic force exerted on ions aris-
ing from the total charge, i.e., the sum of ionic and electronic
charge densities. The quantity for the atom at position ri is
calculated with the following equation:

f̃i =
∫

VSLR(r)
∂ρn

i (r)

∂ri
d3r. (10)

Three methods are considered, namely via CENT1, CENT2,
and Hirshfeld charges. In each method, the resulting charge
density is supplied to Eq. (4), with which the atomic electro-
static forces are calculated. However, in the case of Hirshfeld
and CENT1 charges, the electron density is formed by the
superposition of Gaussian charges with qi = Q − q(Hirshfeld)

i ,
where Q is 2 for Mg and 6 for O atoms. Indeed, Q indicates the
number of valence electrons considered in the reference DFT
calculations. For an unbiased comparison, the ionic charges
are considered to be identical in all three methods. When
using atomic charges, one can envision that only long-range
contributions of electrostatic interactions are treated fairly
accurately. Therefore, we calculated forces in all of the afore-
mentioned methods with the same formula, namely Eq. (4).
The reference DFT atomic electrostatic forces, obtained by
BigDFT from the ground state density and the same formula
as in the other three methods, are presented in Fig. 7. DFT
forces are superimposed with those from each of the three
methods in the panels of Fig. 7 for a better comparison.
Apparently, CENT1 LR atomic forces [Fig. 7(a)] have a poor
agreement with those of DFT, whereas CENT2 and the results
from Hirshfeld are far more accurate. However, CENT2 LR
atomic forces [Fig. 7(b)] have lower error than those of Hirsh-
feld [Fig. 7(c)] at the periphery of the structure. The RMSE of
atomic forces for CENT1, CENT2, and Hirshfeld are 0.049,
0.013, and 0.022 (Ha a−1

0 ), respectively.
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(b) (c)

z

y

x 500 mHa/Angstrom

(a)

FIG. 7. Comparison of f̃ defined in Eq. (10) obtained with charge densities of different methods: (a) DFT (red arrows) vs CENT1 (blue
arrows), (b) DFT (red arrows) vs CENT2 (blue arrows), and (c) DFT (red arrows) vs Hirshfeld charges (blue arrows). Oxygen and magnesium
atoms are shown as blue and gold spheres, respectively. RMSE values of the CENT1, CENT2, and Hirshfeld f̃ vectors with respect to the DFT
vectors are 0.029, 0.008, and 0.022 (Ha a−1

0 ), respectively.

LR atomic forces are related to VSLR, which in turn is as-
sociated with the charge density. We illustrate VSLR in Figs. 8
and 9. The latter shows VSLR along three lines, which are two
diagonals and one edge of the structure. Clearly, the CENT1
potential function and that of Hirshfeld charges correlate
weakly with that of DFT. It is to be noted that both methods
result in electric potential functions that do not correlate with
that of DFT, if the remaining valence electronic and ionic
densities are not added. Among all three methods, CENT2
has the best correlation along all three lines. The error of
CENT1 VSLR is as large as that of the reference method,
i.e., VSLR of DFT. This is can be seen both in the color map
plot (Fig. 8) and the potential along the three lines (Fig. 9).
The poor performance of the CENT1 method in reproducing
VSLR indeed pertains to the fact that in CENT1 one trains
the ANN such that UCENT gives accurate total energies, while
in the case of CENT2 one employs the term to reproduce a
physical quantity that the scheme is capable of reproducing.
In addition, the charge density in CENT2 is split into ionic
and electronic parts, which allows the employment of a better
approximation for the electronic term. In fact, CENT2 offers
a route to approximate the electron density more accurately,
as discussed earlier. In fact, it can even be improved in the
future with local charges, which can capture atomic-scale
polarization. For this, one must also add a term in Eq. (2) to
equilibrate atomic polarizations, in the same way as atomic
charges, through a new environment-dependent quantity.

Having a better approximation of the electron density would
result in a more accurate electrostatic interaction, which may
also ease the task of training for the short-range term, i.e.,
USR.

IV. CONCLUSION

In this paper, we presented the second generation of the
CENT scheme that, similar to the original variant, accounts
for nonlocal charge transfer. There has been several changes to
the method, which result in a more accurate treatment of long-
range interaction due to a more reliable charge redistribution.
The method can also ease further improvements that might be
possible by adding extra terms to the energy functional and
by employing more accurate approximations to the electronic
charge density. The second generation of CENT has three
major differences in comparison to the original CENT: (i)
an SR term in the form of high-dimensional ANN is added
to the original CENT energy functional, (ii) the total charge
density is split into ionic and electronic distributions, and
(iii) the CENT is trained to reproduce a modified electric
potential in which SR electrostatic interactions are shielded
by modifying the Green’s function. We applied the method to
MgO clusters of various size and diverse structural motifs. It is
worth noting that the calculation of forces does not require any
sophisticated trick and the same standard approach of the first
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FIG. 8. Color map of VSLR within the plane formed by atoms for the in-plane distorted rocksalt-like 64-atom structure. Left panel depicts
VSLR, as computed by DFT, and the other three panels (from left, CENT1, CENT2, and Hirshfeld) show the difference with respect to the DFT
values.
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FIG. 9. Comparison of VSLR within the plane formed by atoms as a function of distance as calculated with the charge densities of DFT,
CENT1, CENT2, and Hirshfeld along three lines, (a) x direction, (b) y = x direction, and (c) y = −x direction. The distance in each panel is
with respect to the corresponding point of a, b, and c shown in the left panel of Fig. 8.

generation is employed. We illustrated that the new variant
is superior to the first generation when electrostatic interac-
tions are concerned. We envisage that the new variant has the
capability of being utilized for nonionic systems, as well as
ionic materials of varying stoichiometry, where an element
has a variety of oxidation states. In addition, the method can
be improved upon in a more systematic and straightforward
way than is possible for its rivals. The method is expected to
have even better performance for extended systems. Imple-
mentation of the method for boundary conditions suitable for
surface problems and bulk materials will be presented in the
future.
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APPENDIX

1. Calculation of kernel in Fourier space with e−rn
hielding

In order to calculate the modified electrostatic energies of
Eq. (4) with the kernel in Eq. (5), we decided on a two-step
implementation in which the Coulombic contribution is as-
sumed to be computed using the standard methods available
in DFT packages. Therefore, we provide details for the im-
plementation of the second part, i.e., the screening term with
the Green’s function κs(r) = e−λnrn

r . The screening term is a
short-range one, whose extent of impact is determined by n
and λ. If these two parameters are chosen to make the range of
the screened potentials sufficiently small, then one can expand
the cell beyond the charge density to the extent where the
potential is nonzero. This allows one to calculate the potential
function arising from the screening part of the kernel in the

Fourier space as

Vs(r) = 1

(2π )3

∫
κ̃s(k) ρ̃(k)eik.r d3k, (A1)

where κ̃s and ρ̃ are the Fourier transform of the κs and the
charge density, respectively. To calculate κ̃ , we do as follows:

κ̃s(k) =
∫

κs(r′) e−ik.r′
d3r′

= 4π

k

∫ ∞

0
e−λn r′n

sin(k r′) dr′. (A2)

The κ̃s(k) function in Eq. (A2) has a compact form for n = 1,
given by

κ̃s(k) = 4π

k2 + λ2
. (A3)

Indeed, such a Green’s function results in the Yukawa poten-
tial. It neither decays sufficiently fast at mid-range and long
distances, unless for large shielding factors, nor does is shields
strongly the impact of charges in the vicinity of an observation
point. The method of expanding the cell is impractical, or
at least inefficient for n = 1, unless the screening factor is
large. Therefore, the method given in Ref. [52] should be used.
However, we do not recommend the use of n = 1 in CENT2,
since such screening does not enforce the exclusion of the SR
interaction to the extent that is required. For n = 2, the kernel
in Fourier space is given by

κ̃s(k) = 4π F ( k
2λ

)

kλ
, (A4)

where F is the Dawson function, also denoted as D+. For
n > 2, we take a numerical approach, because the kernel in
Fourier space is given by hypergeometric functions, whose
calculations are numerically inefficient. With change of vari-
able, Eq. (A2) yields

κ̃ (k) = 4π

k λ

∫ ∞

0
e−rn

sin(t r) dr, (A5)
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where t = k
λ

. Expanding the sine function, we have

G̃(k) = 4π

k λ

∞∑
m=0

(−1)m

(2m + 1)!

(
k

λ

)2m+1 ∫ ∞

0
e−rn

r2m+1 dr.

(A6)

Using the identity∫ ∞

0
e−rn

rm dr = 1

n



(
m + 1

n

)
(A7)

yields

κ̃ (k) = 4π

n k λ

∞∑
m=0

(−1)m
(

k
λ

)2m+1

( 2m+2

n )

(2m + 1)!
. (A8)

This series converges very rapidly if k
λ

is not large. Therefore,
we consider this solution only for k

λ
< 1, for which the series

certainly converge rapidly, and we need the first few terms.
For k

λ
> 1, we use the discrete Fourier transform. From inte-

gration by parts, we have∫ ∞

0
e−rn

sin(t r) dr = 1

t
− n

t

∫ ∞

0
rn−1 e−rn

cos(t r) dr.

(A9)

Therefore, we get

κ̃ (k) = 4π

k2
− 4π n

k2

∫ ∞

0
rn−1 e−rn

cos(t r) dr. (A10)

We define

g(t ) :=
∫ ∞

0
rn−1 e−rn

cos(t r) dr. (A11)

The Fourier transform of g(t ) is

g̃(ω) =
⎧⎨
⎩

0 ω = 0
πωn−1e−ωn

ω > 0
π (−ω)n−1e−ωn

ω < 0.

(A12)

Using the fast Fourier transform, we calculate κ̃ (k) on a
one-dimensional grid, and using cubic splines, we can thus
evaluate the function at the points in the reciprocal space.

2. Solution to a Gaussian charge density

Since the system of linear equations must be solved during
the training process, building and factorizing the matrix would
help make this efficient. To do this, we employ the solution of
the potential for the Gaussian charge density. For the charge
density, given in Eq. (7), normalized to q, we have

ρ̃(k) = q e− w2 k2

4 . (A13)

Therefore, the potential can be written as

Vs(r) = q

2π2

∫ ∞

0
e−λnr′n

dr′
∫

1

k
e− w2k2

4 sin(kr′)eik.rd3k.

It simplifies to

Vs(r) = q

π
1
2 wr

∫ ∞

0
e−λnr′n[

e− (r′−r)2

w2 − e− (r+r′ )2

w2
]
dr′,

and at the origin to

Vs(0) = 4 q

π
1
2 w3

∫ ∞

0
e−λn r′n

e− r′2
w2 r′ dr′.

For n = 1, it has a compact form of

Vs(r) =q e
w2λ2

4 −λ r

2 r

[
erf

(
r

w
− wλ

2

)

−e2λrerfc

(
wλ

2
+ r

w

)
+ 1

]
. (A14)

For n = 2, it has also a compact form, i.e.,

Vs(r) = q

r
√

w2λ2 + 1
e− λ2 r2

w2λ2+1 erf

(
r

w
√

w2λ2 + 1

)
. (A15)
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