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p-wave superconductivity in Luttinger semimetals
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We consider the three-dimensional spin-orbit-coupled Luttinger semimetal of “spin” 3/2 particles in presence
of weak attractive interaction in the l = 1 (p-wave) channel, and determine the low-temperature phase diagram
for both particle- and hole dopings. The phase diagram depends crucially on the sign of the chemical potential,
with two different states (with total angular momentum j = 0 and j = 3) competing on the hole-doped side,
and three (one j = 1 and two different j = 2) states on the particle-doped side. The ground-state condensates of
Cooper pairs with the total angular momentum j = 1, 2, 3 are selected by the quartic, and even sextic terms in
the Ginzburg-Landau free energy. Interestingly, we find that all the p-wave ground states appearing in the phase
diagram, while displaying different patterns of reduction of the rotational symmetry, preserve time reversal. The
resulting quasiparticle spectrum is either fully gapped or with point nodes, with nodal lines being absent.
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I. INTRODUCTION

Luttinger semimetals are three-dimensional materials,
which due to their strong spin-orbit coupling exhibit band
inversion and the concomitant parabolic dispersion at the
Fermi level [1]. When undoped, the vanishing density of states
leaves the Coulomb interaction unscreened, and the system
is expected to exhibit a non-Fermi liquid ground state [2–6].
When the density of carriers is even slightly finite, on the
other hand, many Luttinger semimetals become superconduc-
tors with sizable critical temperatures [7–9]. The resulting
superconducting phases appear to be unconventional, and the
pairing interaction, the pattern of broken symmetry, quasipar-
ticle spectrum, topological characteristics, and the behavior in
the magnetic field have all been recently under investigation
[10–14]. The main conceptual novelty arises from the fact
that the effective spin of the Luttinger fermions is 3/2. The
total spin of the Cooper pair can therefore assume unusually
large values, and be s = 0, 1, 2, 3. Depending on the angular
momentum l of the attractive pairing channel, Fermi statistics
then constrains the Cooper pairs to assume quantum numbers
(l, s) with l + s even. Whereas the s-wave state (0,0) would be
quite conventional and fully gapped, the d-wave states (0,2)
[10,12,13] and (2,0) [15,16], due to their multicomponent
nature already are not. In the latter case, for example, one
can show that there are two nearly degenerate BCS ground
state that both break time-reversal symmetry, but have rather
different average magnetization [17]. Competition between
various d-wave states in related systems has also been studied
in the distant [18,19] and recent past [20,21].

In this paper we study the superconductivity of Luttinger
fermions with simplest non-local BCS pairing interaction,
with the attraction in the channel with l = 1. The relevant
p-wave superconducting states then can have the Cooper
pairs with spin s either s = 1 or s = 3, and allowing for
the possibility that the pairing interaction may be spin

dependent, we parametrize the interaction in these two chan-
nels with two phenomenological parameters V1 and V3,
respectively. We assume the SO(3) rotational invariance, for
reasons of simplicity, but also since we expect that the effect
of long-range Coulomb interaction is in general to make the
parabolic dispersion isotropic at low dopings [2,22]. Total an-
gular momentum of the Cooper pairs with (l, s) = (1, 1) can
therefore be j = 0, 1, 2, and with (l, s) = (1, 3), j = 2, 3, 4.
In the weak-coupling approach two immediate questions then
emerge: (1) what is the value of j of the superconducting
ground state at a given V1 and V3, and then, (2) for that value
of j, which state in the 2 j + 1-dimensional Hilbert space is
the actual ground state? The answer, surprisingly, strongly
depends on the sign of the chemical potential, as already noted
in Ref. [15]; for μ < 0 (hole doping) the electrons at the
Fermi level have the magnetic quantum number ±3/2, and the
computation of the superconducting susceptibility of the nor-
mal state in different superconducting channels shows that the
competition is between the rotationally invariant j = 0 state,
and the j = 3 states, with the phase boundary between the two
at V3/V1 = 7/5. Computing the coefficients of the four inde-
pendent fourth-order terms in the Ginzburg-Landau (GL) free
energy [23] shows then that among the j = 3 states the lowest
free energy right below the transition temperature belongs
to the time-reversal-invariant state (|3,+2〉 − |3,−2〉)/

√
2

(Fig. 1), in the standard notation | j, mj〉, with mj = − j, ... j.
The phase diagram of the j = 3 superfluid is quite intricate
[23] and exhibits eleven different phases. The ground state
that we obtained is symmetric under the cubic group, which
happens to be the largest discrete subgroup of the SO(3) that is
available in its seven-dimensional irreducible representation.
The j = 3 ground state exhibits six point nodes in the quasi-
particle spectrum.

When the system is particle doped and the chemical po-
tential is positive the Fermi level intersects the single-particle
states with the magnetic quantum number ±1/2. The main
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FIG. 1. The low-temperature phase diagram for negative chem-
ical potential, when the Fermi level intersects the states with the
magnetic quantum number ±3/2. There is a phase transition between
the |0, 0〉 state, which exhibits a fully gapped isotropic quasi-
particle spectrum, and the cubic-symmetric, real state (|3,+2〉 −
|3, −2)/

√
2, which exhibits six point nodes.

competition then turns out to be between the j = 1 and the
j = 2 states. The interesting new element is that when the
interaction is attractive in both s = 1 and s = 3 channels, and
the parameters V1 and V3 are both negative, j = 2 state be-
comes a superposition of (1,1) and (1,3) pairing states [15,24].
From the susceptibility of the normal state one finds that the
T = 0 phase transition between j = 1 and j = 2 states is at
V3/V1 = 7/27. Considering the two independent fourth-order
terms in the GL free energy, we find that the lowest energy
j = 1 state is the time-reversal-invariant state |1, 0〉, which
breaks the SO(3) rotational symmetry down to SO(2), with
the quasiparticle spectrum showing two point nodes located
at the axis of symmetry. On the j = 2 side of the transition
the superposition depends on the ratio V3/V1, and therefore
the coefficients of the three independent fourth-order terms
that determine the lowest energy state [13,18] become func-
tions of this ratio as well. The detailed computation of the
coefficients of the fourth-order terms implies however that
the ground state always preserves the time-reversal symmetry,
but leaves the well-known degeneracy of such “real” states,
which is resolved only by taking the sixth-order terms in the
GL free energy into the account. This finally yields the phase
diagram in Fig. 2, where two time-reversal-symmetric states
emerge: the uniaxal SO(2)-symmetric state |2, 0〉 with the
full but anisotropic gap, and the biaxial, D4-symmetric state
(|2, 2〉 + |2,−2〉)/

√
2, with the point nodes along the D4 axis.

The paper is organized as follows. In the Sec. II we define
the Kohn-Luttinger Hamiltonian. In Sec. III the pairing inter-
action in the p-wave channel is introduced, and in Sec. IV
the GL free energy for j = 0, 1, 2, 3 is presented. In Sec. V
we set up the one-loop computation of the GL coefficients,
and present the results on the second-order terms in Sec. VI.
The main calculation of the fourth-order terms for j = 1, 2, 3
and the sixth-order terms for j = 2 is given in the Sec. VII.
Section VIII is the summary and brief discussion of the main
results. Calculational details are presented in the Appendices.
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FIG. 2. The low-temperature phase diagram for positive chem-
ical potential, when the Fermi level intersects the states with the
magnetic quantum number ±1/2. The two possible values of the total
angular momentum of the condensate j is either one or two. If the
interaction parameters V1 and V3 are such that the j = 1 condensate
forms, the superconducting state is the time-reversal-invariant state
|1, 0〉. When the condensate has j = 2, two superconducting ground
state are possible: the uniaxial nematic state, |2, 0〉, and the biaxial
nematic state, (|2,−2〉 + |2, +2〉)/

√
2.

II. KOHN-LUTTINGER HAMILTONIAN

The single-particle Hamiltonian for the electrons in the
normal state is given by the Kohn-Luttinger Hamiltonian [1],
which exhibits doubly (Kramers) degenerate, parabolic en-
ergy bands that touch each other at the � point of the Brillouin
zone:

H0 = 1

2m

(
5

4
p2 − (p · �)2

)
+ p2

2m0
− p2

a�
2
a

2m1
− μ, (1)

where the summation over index a runs over a = x, y, z,
μ is the chemical potential, and the three matrices � =
(�x, �y, �z ) is the spin–3/2 representation of the Lie algebra
of SO(3). (The explicit form of the �-matrices can be found
in the Appendix A.) The first term of the Hamiltonian is
particle-hole and SO(3) rotationally symmetric. The second
term breaks the particle-hole symmetry, and the third term
reduces the SO(3) symmetry down to the discrete cubic sym-
metry. We will assume a particle-hole and fully rotationally
symmetric dispersion, and set m0 = m1 = ∞. We will also
set the mass m = 1/2 hereafter, for simplicity. The Luttinger
Hamiltonian also has the time-reversal and inversion symme-
tries. We suppress the terms, which are of the first or the third
order in � that would break inversion symmetry, and which
are believed to be small perturbation [9].

The energy dispersion is shown in Fig. 3. When the chem-
ical potential lies in the particle band with μ > 0, i.e., the
system is electron doped, the states crossing the Fermi level
have the magnetic quantum number ±1/2. If the system is
hole doped and μ < 0, the states at the Fermi level are with
the magnetic quantum number ±3/2. The nature of the single-
particle states that are being paired will become important for
the superconducting phase diagram, as was already shown by
Savary et al. [15].
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FIG. 3. The energy dispersion of the Kohn-Luttinger Hamilto-
nian. The states at the Fermi level are either with the magnetic
quantum number ±1/2 or with ±3/2, depending on the sign of the
chemical potential.

III. p-WAVE PAIRING

We define next the general rotationally invariant Hamil-
tonian with the BCS pairing interaction between Luttinger
(spin = 3/2) four-components fermions ψ :

H =
∑

p

ψ†(p)H0ψ (p) +
∑
p,q

V (θp,q)
3∑

s=0

λs

×
s∑

m=−s

[ψ†(p)Ss,mUψ∗(−p)][ψT(q)U †Ss,mψ (−q)],

(2)

where U is the unitary part of the time-reversal opera-
tor T , and its explicit form can be found in Appendix A.
For a fixed spin quantum number s, Ss,m are the (2s + 1)
four-dimensional Hermitian matrices, which under SO(3)
transform as an irreducible tensor of rank s. λs are coupling
constants. (The precise form of the matrices Ss,m can be found
in Appendix B.) θp,q is the angle between the momenta p and
q, and the interaction can be decomposed as

V (θ ) =
∞∑

l=0

vlPl (cos θ ), (3)

where Pl (x) are the Legendre polynomials. The interaction is
symmetric under SOL(3) × SOS (3), i.e., under separate rota-
tions in the orbital and in the spin space.

The Fermi statistics implies that for even l only the terms
with s = 0 and s = 2 in the above sum are finite. The l =
0 and l = 2 channels were studied earlier [13,17,24]. In this
paper we are interested in terms with odd l , and in particular
with l = 1. Only the terms with the first rank (s = 1) and third
rank (s = 3) tensors then contribute. One can then rewrite the
Hamiltonian in terms of the pairing matrices that describe the

total angular momentum of the Cooper pair:

H =
∑

p

ψ†(p)H0ψ (p) +
∑
p,q

∑
s=1,3

s+1∑
j=s−1

j∑
mj=− j

Vs

×
∑

p

[
ψ†(p)J (s)

j,mj
(p)Uψ∗(−p)

]

×
∑

q

[
ψT(q)U †J (s)

j,mj
(q)ψ (−q)

]
, (4)

where Vs = v1λs, and J (s)
j,mj

(p) denotes the pairing matrix of
the total angular momentum j, which consists of the orbital
angular momentum l = 1 and the spin s. The pairing matrix
is defined as

J (s)
j,mj

(p) =
∑

m1+ms=mj

〈l =1, m1, s, ms| j, mj〉Y1,m1 (p)Ss,ms , (5)

where 〈l = 1, m1, s, ms| j, mj〉 are the standard Clebsch-
Gordan coefficients and Y1,m1 (p) are the three l = 1 spherical
harmonics. We choose the normalization of the pairing matri-
ces so that when the angular integration is performed, we find

∫
dp̂Tr

[
J (s)

j,mj
(p)J (s)†

j,mj
(p)

] = 4π

3
, (6)

where no summation over the indices is implied and
∫

dp̂ =∫ 2π

0 dϕ
∫ π

0 sin(τ )dτ [25]. The explicit form of the spher-
ical harmonics and the pairing matrices can be found in
Appendix B.

IV. GINZBURG-LANDAU FREE ENERGY

The interaction term introduced in Hamiltonian (4) leads to
the development of the following order parameters:



(s)
j,mj

=
∑

q

〈
ψT(q)U †J (s)

j,mj
(q)ψ (−q)

〉
. (7)



(s)
j,mj

form a complete set of p-wave superconducting orders.
Although the pairing interaction has the enlarged SOL(3) ×
SOS (3) symmetry, the kinetic energy (Luttinger) term has
only the SOL+S (3) symmetry, and therefore the order parame-
ters with different values of total angular momentum j do not
mix in the ordered phase. We can therefore study the GL free
energy for each value of the angular momentum j separately.
The expansion of the GL free energy for the order parameter
with given j has the form:

F j (
) = F j
2 (
) + F j

4 (
) + F j
6 (
) + O(
8), (8)

where the quadratic term is defined as

F j
2 (
) = r (s1s2 )

j

∑
mj



(s1 )∗
j,mj



(s2 )
j,mj

. (9)

In general the coefficient r (s1s2 )
j is a single number, except for

j = 2 when it becomes a two-dimensional matrix. In the later
case we diagonalize this “mixing matrix” and monitor the
lower eigenvalue as a function of temperature. The winning
superconducting order sets in at the highest temperature at
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which some quadratic coefficient, including the lower eigen-
value for j = 2, r (s1s2 )

j becomes negative. This determines the
total angular momentum of the ground state j = j(V1,V2, μ).

For each specific j of the Cooper pair, there is 2 j + 1-
dimensional Hilbert space of states with different residual
symmetries competing for the ground state. To determine the
ultimate superconducting state one needs to study the higher-
order terms in the GL free energy. The structure of these and
even their number, however, depends on the value of j. The
quartic terms may be written as [23]

F j=1
4 = λ1|〈
|
〉|2 + λ2〈
| �j=1|
〉2, (10)

F j=2
4 = q1|〈
|
〉|2 + q2〈
| �j=2|
〉2 + q3|〈
|T |
〉|2,

(11)

F j=3
4 = c1|〈
|
〉|2 + c2〈
| �j=3|
〉2 + c3|〈
|T |
〉|2

+ c4

∑
MJ

∣∣〈
|T T MJ
J=2|
〉∣∣2

, (12)

with

〈
|
〉 =
∑
mj


∗
j,mj


 j,mj , (13)

〈
| �j|
〉 =
∑
mj m j̃


∗
j,mj

�jmj m j̃

 j,mj̃

, (14)

〈
|T |
〉 =
∑
mj m j̃

〈 j, mj, j, mj̃ |0, 0〉
 j,mj 
 j,mj̃
, (15)

〈
|T T
Mj

J=2|
〉 =
∑
mj m j̃

〈 j, mj, j, mj̃ |2, MJ〉
 j,mj 
 j,mj̃
. (16)

The coefficients a1 with a ∈ {λ, q, c} multiply the square
of the absolute value of the norm of the superconducting
condensate. The coefficients a1 are positive, so that the free
energy is bounded from bellow. The signs of other coeffi-
cients can vary. The coefficients a2 multiply the square of
the average magnetization of the superconducting state: if
a2 < 0, the coexistence of the superconductivity and magne-
tization is preferred, whereas if a2 > 0 it is not. Similarly, the
term with a3 that appears when j � 2 governs the preference
for time-reversal symmetry breaking of the superconduct-
ing ground state: if a3 < 0, a “real” state, which preserves
time-reversal symmetry is preferred, whereas for a3 > 0 time-
reversal symmetry breaking is advantageous. Note that for
j � 2 time-reversal symmetry breaking is not synonymous
with magnetization, and states, which are orthogonal to their
time-reversed copies but nevertheless have zero average mag-
netization also exist [13,18,23]. The term that multiplies c4

describes the “nematicity” of the j = 3 state [23]. The signs
and magnitudes of the coefficients a2,3,4 together determine
the superconducting ground state of the condensate with the
total angular momentum j. The phase diagram for j = 2 in
terms of the quartic coefficients of the GL free energy was first
obtained by Mermin [13,18], and for j = 3 by Kawaguchi and
Ueda [23].

V. ONE-LOOP COMPUTATION

The GL free energy is obtained by integrating out the
fermionic degrees of freedom for a constant superconducting-
order parameter, and then by expanding the resulting expres-
sion in powers of the order parameter to the fourth (or, if
necessary, the sixth) order. At the second order in expansion
the following expression is found:

r (s1s2 )
j = δabδs1s2∣∣Vs1

∣∣ − 2K (s1s2 )
j,ab , (17)

where we consider the case of attractive interaction Vs < 0.
K (s1s2 )

j,ab is given by the expression

K (s1s2 )
j,ab = Tr

∫ �

Q
G0(−ω,−p)J (s1 )†

j,ma
(p)G0(ω, p)J (s2 )

j,mb
(p),

(18)

where G0(ω, p) = (iω − H0)−1 is the Green’s function with
the fermionic Matsubara frequency ω = (2n + 1)πT and the
temperature T . Its exact form can be found in Appendix A.
The measure of the integral is given by∫ �

Q
:= T

∑
n∈Z

∫ �

p
:= T

∑
n∈Z

∫
p��

d3 p

(2π )3
, (19)

with the ultraviolet cutoff � 	 μ, T .
Similarly, the one-loop integral that defines the quartic

order of the Ginzburg-Landau free energy is given by

F j
4 (
) = 4K (s1s2s3s4 )

abcd 

(s1 )∗
j,a 


(s2 )
j,b 


(s3 )∗
j,c 


(s4 )
j,d , (20)

with

K (s1s2s3s4 )
abcd = Tr

∫ �

Q
G0(−ω,−p)J (s1 )†

j,ma
(p)G0(ω, p)J (s2 )

j,mb
(p)

× G0(−ω,−p)J (s3 )†
j,mc

(p)G0(ω, p)J (s4 )
j,md

(p). (21)

By inserting different superconducting states in Eq. (20) we
find matching conditions to extract the coefficients ai [13,20]
(see also Appendices C and D).

VI. SECOND-ORDER TERMS OF GL FREE ENERGY

In this section we determine the coefficients of the
quadratic terms of the Ginzburg-Landau free energy, r (s1s2 )

j ,
and the critical temperature for all possible condensates with
j = 0, 1, 2, 3, 4.

After performing the finite-temperature Matsubara sum
one can expand the integrand around the Fermi surface of
the normal state, [13] and find the following result for K (s1s2 )

j,ab
(Appendix C):

K (s1s2 )
j,ab = c(s1s2 )

j,ab

π2

(
1

Vc
+

√
|μ| log

|μ|
T

)
, (22)

where c(s1s2 )
j,ab = c(s1s2 )

j δab are numerical coefficients corre-
sponding to different superconducting channels. One finds
the standard Cooper log-divergence with temperature, with
the finite value of the one-loop integral at μ = 0 defining the
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TABLE I. The channel-dependent coefficients c j that multiply
Cooper-log.

c j c j

(l,s,j) 3/2-bands 1/2-bands

(1,1,0) 3
40

1
120

(1,1,1) 0 1
30

(1,3,3) 3
56

1
280

(1,3,4) 13
840

9
280

nonuniversal critical interaction Vc. For the condensates with
j 
= 2 when c(s1s2 )

j = c jδs1s2 the critical temperature is given
by

Tc, j = |μ| exp

[
− π2

2|Vs|c j
√|μ|

(
1 − c j |Vs|

π2Vc

)]
. (23)

The order parameter with the largest value of the coefficient
c j will therefore have the highest critical temperature, and
will be the one that would form below at T < Tc, j . The list
of the different values of c j is shown in Table I, which is in
full accordance with the Ref. [15]. For the condensate with
the quantum number j the value of the critical temperature
crucially depends on the sign of the chemical potential μ.
Consequently, completely different superconducting phases
are found for positive and negative chemical potentials.

In the special case of j = 2 there exists a mixing of two
different pairing channels, since both spin values s = 1 and
s = 3 can yield a Cooper pair with j = 2. The quadratic
coefficient of the GL free energy then becomes a matrix. For
the 3/2-energy band we find

r (s1s2 )
2 =

( 1
|V1| − 3

50 x + 3
50

√
14

x

+ 3
50

√
14

x 1
|V3| − 3

700 x

)
(24)

with x = (
√|μ|/π2) log(|μ|/T ). For the 1/2-energy band

r (s1s2 )
2 =

( 1
|V1| − 7

150 x − 11
50

√
14

x

− 11
50

√
14

x 1
|V3| − 59

700 x

)
, (25)

where we neglected the finite part of the loop integral. The
critical temperature Tc for j = 2 is determined by the highest
temperature for which det (r (s1s2 )

2 ) = 0.
Let us now compare the different critical temperatures for

the 3/2-energy bands, i.e., when μ < 0. We find that the two
channels (1,1,0) and (1,3,3) have the largest coefficients c j and
therefore compete in the phase diagram. The phase boundary

between the condensate with j = 0 and j = 3 is at

V3 = 7
5V1. (26)

This phase boundary can be seen in Fig. 1.
In the case of positive chemical potential, μ > 0, the two

condensates with the highest critical temperatures have a total
angular momentum of j = 1 and j = 2. The critical tempera-
ture of the j = 2 condensate depends both on V1 and V3 and is
given by

Tc, j=2 = |μ| exp

[
π2

2|V1||V3|√μ
(98|V1| + 177|V3|

−
√

9604|V1|2 + 26292|V1||V3| + 31329|V3|2)

]
.

By comparing Tc, j=2 with the critical temperature of the j = 1
condensate defined in Eq. (23) we find the phase boundary
between the two phases to be at

V3 = 7
27V1, (27)

as can be seen in Fig. 2.

VII. FOURTH-ORDER TERMS OF GL FREE ENERGY

In the previous section we found that when μ < 0, de-
pending on the values of V1 and V3 either the condensate
with the quantum number j = 0 or with j = 3 forms at low
temperatures. In contrast, when μ > 0, we find either the
superconducting phase with j = 1 or with j = 2.

For all the superconducting phases with j > 0 there is a
2 j + 1-dimensional Hilbert space of macroscopic quantum
states that compete for the minimum of the GL free energy.
The winner depends strongly on quartic terms order in the GL
free energy, i.e., on the coefficients ai defined in Eqs. (10),
(11), and (12).

A. j = 1

The fourth-order term in the GL free energy is defined in
Eq. (10), where the term multiplying λ1 denotes the norm
and the term multiplying λ2 describes the average magneti-
zation of the condensate. For j = 1, there exist two (modulo
rotations) possible states that minimize the free energy [23];
when λ2 > 0, the state | j, mj〉 = |1, 0〉 with minimal (zero)
average magnetization is the minimum, whereas if λ2 < 0 the
state | j, mj〉 = |1,+1〉 with maximal (unity) average mag-
netization minimizes the free energy. Both states break the
normal state’s symmetry SOL+S (3) down to SO(2). The for-
mer state preserves the time-reversal symmetry, whereas the
latter breaks it maximally.

We find the following one-loop expressions for the coeffi-
cients λ1 and λ2 (Appendix C):

λ1 = T
∑

n

∫ �

0
d p

p2
( − 7p8 − 16p6μ + p4

(
30μ2 − 38ω2

n

) + 80p2μ
(
μ2 + ω2

n

) + 41
(
μ2 + ω2

n

)2)
375π2

(
p8 − 2p4

(
μ2 − ω2

n

) + (
μ2 + ω2

n

)2)2 (28)

and

λ2 = T
∑

n

∫ �

0
d p

p2
(

53p8 + 104p6μ + p4
(
30μ2 − 38ω2

n

) − 40p2μ
(
μ2 + ω2

n

) − 19
(
μ2 + ω2

n

)2
)

750π2
(
p8 − 2p4

(
μ2 − ω2

n

) + (μ2 + ω2
n )2)2 . (29)
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FIG. 4. The phase diagram and the actual values of the coefficients of the fourth-order terms in the j = 2 GL free energy q2 and q3, for
various values of the interactions V1 < 0 and V3 < 7V1/27, and for μ > 0. The coefficients were calculated assuming μ = 1 and Tc = 0.1.

Since the j = 1 states appear in the phase diagram only when
the chemical potential intersects ±1/2-band, we evaluate the
above one-loop integrals for μ > 0. In the weak-coupling
limit, to the leading order in small parameter Tc/μ we
find [26]

λ1 = 2λ2 = 4

375

0.10657
√

μ

π2T 2
c

, (30)

and both coefficients therefore positive. In the portion of the
phase diagram at μ > 0 with the j = 1 state, the actual super-
conducting ground state is the time-reversal-preserving state
|1, 0〉. The energy spectrum of the Bogoliubov-de Gennes
quasiparticles exhibits two point nodes at the axis of the
residual SO(2) symmetry of the state.

B. j = 2

In this section, we determine the superconducting ground
state when j = 2, which appears in the phase diagram when
μ > 0. The quartic terms in the GL free energy are given by
Eq. (11), and the signs and the magnitudes of the coefficients
q2 and q3 determine the minimum of the free energy as in
Fig. 4 [18,20,23].

The general phase diagram for j = 2 condensate can be
understood in the following way. If q3 > 0 and q2 = 0, a state
that breaks time-reversal symmetry maximally, i.e., a state that
is orthogonal to its time-reversed copy, is favored. There are
then two candidate superconducting ground states, namely the
ferromagnetic state |2,±2〉 and the cyclic state 1

2 (|2,−2〉 +

|2,+2〉) + i 1√
2
|2, 0〉. Since the coefficient q2 multiplies the

average magnetization of the state, for q3 > 0 and q2 < 0
the ferromagnetic state with maximal average magnetization
(two) wins, whereas for q3 > 0 and q2 > 0 the cyclic state
with minimal average magnetization (of zero) wins.

Similarly, if q2 > 0 and q3 = 0, a state with minimal (zero)
average magnetization minimizes the quartic term. For small
q3 > 0 such a state should also exhibit maximal breaking of
the time-reversal, and the cyclic state therefore minimizes the
free energy for all q2 > 0 and q3 > 0. For q3 < 0, on the other
hand, the state should be invariant under time reversal, so that
the term that multiplies q3 is maximized. There is a multitude
of such “real” states, and to determine which of the real states
is the ground state the sixth-order terms in the GL free energy
need to be invoked. Finally, when both coefficients q3 < 0 and
q2 < 0 there is a phase transition at q3 = 20q2 between the
ferromagnetic state and the (sixth-order-term-selected) real
state.

We calculate the coefficients q1,2,3 by evaluating the appro-
priate one-loop integrals defined in Eq. (20). Special attention
has to be given to the pairing matrices J2,mj , since when
the condensate with j = 2 is the ground state, the pairing
matrices J2,mj is a superposition of two different channels
(l, s, j) = (1, 1, 2) and (l, s, j) = (1, 3, 2):

J2,mj = zJ (1)
2,mj

+ yJ (3)
2,mj

, (31)

where the coefficient (z, y)T is the zero eigenstate of the
mixing matrix in Eq. (25) at T = Tc. One finds that

y = 66|V3|√(
14|V1| − 177

7 |V3|
)√

9604|V1|2 + 26292|V1||V3| + 31329|V3|2 + 1372|V1|2 − 600|V1||V3| + 61821
7 |V3|2

, (32)
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and z =
√

1 − y2. In the special case where |V1| = |V3|, for example, we find that J2,mj = 0.59J (1)
2,mj

+ 0.81J (3)
2,mj

[15]. Using the
pairing matrices in Eq. (31), we find the following expressions for the coefficients q1, q2, and q3:

q1 = T
∑

n

∫ �

0
d p

p2

385875π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)2

[
2p4(μ2(45251y4 + 42936

√
14y3z + 149604y2z2

+ 21924
√

14yz3 + 36456z4) − 5ω2
n(2283y4 − 6696

√
14y3z + 3780y2z2 − 3276

√
14yz3 + 392z4))

+ 8μp2(9858y4 + 7623
√

14y3z + 24262y2z2 + 6762
√

14yz3 − 1862z4)
(
μ2 + ω2

n

)
+ 7(4393y4 + 1248

√
14y3z + 17122y2z2 − 168

√
14yz3 + 4508z4)

(
μ2 + ω2

n

)
2 + 5p8(3335y4 + 1968

√
14y3z

+ 11074y2z2 + 336
√

14yz3 + 1372z4) + 8μp6(7302y4 + 5757
√

14y3z + 28238y2z2 + 3318
√

14yz3 − 98z4)
]
, (33)

q2 = T
∑

n

∫ �

0
d p

p2

771750π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2

)
2

[
2p4

(
8y4

(
1337μ2 + 717ω2

n

)
+ 16

√
14y3z

(
761μ2 − 129ω2

n

) + 14y2z2
(
2171μ2 + 1701ω2

n

) + 1344
√

14yz3
(
μ2 + ω2

n

) + 49z4
(
69μ2 − ω2

n

))
+ 40μp2(1172y4 + 338

√
14y3z + 196y2z2 + 105

√
14yz3 − 49z4)

(
μ2 + ω2

n

)
+ 35(628y4 + 32

√
14y3z − 56y2z2 + 49z4)

(
μ2 + ω2

n

)2 + p8(−5996y4 + 384
√

14y3z + 27636y2z2

+ 5376
√

14yz3 − 5341z4) + 8μp6(−1188y4 + 1542
√

14y3z + 9828y2z2 + 483
√

14yz3 + 637z4)
]
, (34)

q3 = T
∑

n

∫ �

0
d p

p2

154350π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)2

[
y4

(
13321μ4 + 2ω2

n(13321μ2 + 20013p4 + 8256μp2)

+ 13321ω4
n − 31823p8 − 77376μp6 − 41714μ2 p4 + 16512μ3 p2

)− 48
√

14y3z
(
133μ4 + 2ω2

n(133μ2 + 654p4 + 363μp2)

+ 133ω4
n + 71p8 + 452μp6 + 1028μ2 p4 + 726μ3 p2

) − 14y2z2
(
9149μ4 + 2ω2

n(9149μ2 − 1023p4 + 7964μp2)

+ 9149ω4
n + 1813p8 + 4856μp6 + 5934μ2 p4 + 15928μ3 p2

) − 168
√

14yz3
(
7μ4 + 2ω2

n(7μ2 + 56p4 + 27μp2)

+ 7ω4
n + 9p8 + 58μp6 + 312μ2 p4 + 54μ3 p2

) − 98z4
( − 217μ4 − 2ω2

n(217μ2 + 181p4 − 88μp2) − 217ω4
n + 71p8

+ 752μp6 − 222μ2 p4 + 176μ3 p2
)]

. (35)

At low temperatures we then find q1 > 0 and

qi = 0.106 fi(y)

1543500π2

√
μ

T 2
c

(36)

with the functions fi(y) of the mixing as

f1(y) = 34401y4 + 26436
√

14y3z + 111804y2z2

+ 15624
√

14yz3 + 11956z4, (37)

f2(y) = 8(584y4 + 404
√

14y3z + 1351y2z2

+ 126
√

14yz3 + 49z4), (38)

f3(y) = −25

2
(3027y4 + 2892

√
14y3z + 13188y2z2

+ 1848
√

14yz3 + 1372z4). (39)

Evidently, q2 > 0 and q3 < 0, and the real states minimize the
free energy for any mixing. This is also illustrated in Fig. 4,
where we vary the interactions in the range V1 < 0 and V3 <

7V1/27 and plot the representative points, only to find them
always in the lower right quadrant.

In search for the time-reversal-preserving j = 2 ground
state we may first note that all real states can be rotated into a

superposition of the biaxial and uniaxial states as


1√
2

(|2,+2〉 + |2,−2〉) + 
2|2, 0〉, (40)

where 
1 and 
2 are both real, and 
2
1 + 
2

2 = 1 [13]. To
determine the real superconducting ground state we study the
sixth-order terms in the GL free energy. Restricting ourselves
to the real states we find it to be a sum of two terms:

F j=2,real
6 = v1|〈
|
〉|3 + v2

4
3
2

2

(

2

2 − 3
2
1

)2
. (41)

The sign of the coefficient v2 decides on the real supercon-
ducting ground state. If v2 > 0, the biaxial nematic state with

1 = 1 and 
2 = 0 has the lowest free energy. If v2 < 0,
on the other hand, the uniaxial nematic state with 
1 = 0
and 
2 = 1 minimizes the free energy. These two states also
differ in their quasiparticle energy spectrum: in the case of the
uniaxial nematic state we find point nodes along the z axis,
while the biaxial nematic state is fully gapped.

To establish the sign of v2 one needs to calculate the sixth-
order term

F6(
) = − 32
3 Kabcde f 


∗
a
b


∗
c
d


∗
e
 f , (42)
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with the one-loop integral as

Kabcde f = Tr
∫ �

Q
G0(−ω,−p)J†

2,ma
G0(ω, p)J2,mbG0(−ω,−p)J†

2,mc
G0(ω, p)J2,md G0(−ω,−p)J†

2,me
G0(ω, p)J2,m f . (43)

At low temperature we find (see Appendix C)

v2 = 0.00773 fv (y)
√

μ

2π2T 4
c

, (44)

with

fv (y) = −4595157y6 + 3369438
√

14y5z + 12731670y4z2 + 1076040
√

14y3z3 − 2081520y2z4 − 508032
√

14yz5 − 406112z6

5793913125
.

(45)

Unlike the functions fi(y) in Eqs. (37)–(39), the function fv (y) changes sign. The change of sign occurs at y = 0.4547, which
corresponds to the ratio of the interaction parameters |V3|/|V1| = 0.38445 > 7/27, at which therefore there is a further transition
between the uniaxial and biaxial nematic states (see Fig. 2).

C. j = 3

In this section we assume μ < 0, and determine the superconducting ground state when j = 3 by using the previously derived
general phase diagram for j = 3 GL free energy of Ref. [23].

The fourth-order terms in the GL free energy for j = 3 are given by Eq. (12). The coefficients ci are given by the following
one-loop expressions (Appendix D):

c1 = T
∑

n

∫ �

0
d p

4p2(194p8 − 1677p6μ + 715p4(5μ2 − ω2) − 3003p2μ(μ2 + ω2) + 1001(μ2 + ω2)2)

75075π2(p8 − 2p4(μ2 − ω2) + (μ2 + ω2)2)2
, (46)

c2 = T
∑

n

∫ �

0
d p

p2(10337p8 − 45006p6μ + 11440p4(7μ2 + 3ω2) − 68354p2μ(μ2 + ω2) + 23023(μ2 + ω2)2)

900900π2(p8 − 2p4(μ2 − ω2) + (μ2 + ω2)2)2
, (47)

c3

7
= T

∑
n

∫ �

0
d p

8p2(479p8 − 2067p6μ + 715p4(5μ2 + 3ω2) − 3003p2μ(μ2 + ω2) + 1001(μ2 + ω2)2)

225225π2(p8 − 2p4(μ2 − ω2) + (μ2 + ω2)2)2
, (48)

c4

7
= T

∑
n

∫ �

0
d p

p2(9977p8 − 38454p6μ + 13156p4(5μ2 + 3ω2) − 55770p2μ(μ2 + ω2) + 19019(μ2 + ω2)2)

750750π2(p8 − 2p4(μ2 − ω2) + (μ2 + ω2)2)2
. (49)

As before, after performing the sum over Matsubara frequen-
cies and the momentum integral, at low temperatures we find

c1 = 72

143

0.10657

32π2

√|μ|
T 2

c

= 2c2 = c3

5
= 2c4

7
. (50)

We find therefore that c1 > 0, and c3/c1 = 5, c4/c1 = 7/2,
and c3/c4 = 10/7. As can be seen in Fig. 6(a) of Ref. [23],
for example, these numbers place the system a bit below the
phase boundary between the phases “E” and “D”, which lies
at c3/c4 = 5/3 in our notation. The j = 3 ground state is
therefore the phase “D”, i.e.,

1√
2

(|3,+2〉 − |3,−2〉). (51)

This superconducting condensate is symmetric under cubic
transformations, and respects time reversal. The quasiparticle
energy spectrum of this state exhibits six gapless points at
(μ2 + (
2/12))

1
4 {(0, 0,±1), (0,±1, 0), (±1, 0, 0)}.

VIII. SUMMARY AND DISCUSSION

In conclusion, we obtained the phase diagram of the rota-
tionally invariant Luttinger semimetal with weak attraction in

the l = 1 (p-wave) channel. The total angular momentum of
the superconducting phases that appear at low temperatures
depends on the sign of the chemical potential, with the further
selection of the ground state provided by the fourth-order and
the sixth-order terms in the GL free energy. While the residual
spatial symmetry of the five possible ground-state condensates
varies, the feature common to all is the preservation of the
time-reversal symmetry, and the absence of nodal lines in the
quasiparticle spectrum.

When the pairing interaction is spin independent, the two
interaction parameters are equal; V1 = V3, and the supercon-
ducting ground state is |0, 0〉 on the hole-doped, and |2, 0〉
on the particle-doped side. In either case the quasiparticle
spectrum features the full gap, albeit an anisotropic one in the
latter case. This may be contrasted with the condensate with
s = 2 that results from the attraction in the l = 0 channel [13],
which at μ = 0 at least has the same quantum numbers j = 2
and mj = 0, and the same symmetry, but as all other real states
in that case exhibits lines of gapless excitations. Furthermore,
when the weak attraction is in the l = 0 (or l = 2) channel,
the phase diagram is independent of the sign of chemical po-
tential, and the s = 2 (s = 0) ground state at a finite chemical
potential breaks time-reversal symmetry [13,17]. All of these
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features stand in stark contrast to the p-wave ground states we
discussed in this paper. On the other hand, the preservation of
the time reversal and the concomitant full gap in the excitation
spectrum was found before in the SOL(3) × SOS (3) - symmet-
ric GL free energy for the l = 1, s = 1 matrix-order parameter
that pertains to 3He, when the order parameter is restricted to
j = 2 [19]. This result resembles what we find quite generally
for the p-wave states in the Luttinger semimetal.

While we find the quasiparticle spectra to be either gapless
or with a full gap, depending on the particular p-wave ground
state, no ground state showed a line of gapless points. Our ex-
plicit computation of the energy spectra is in agreement with
general arguments of the Ref. [16]. At weak coupling there is
in general always just one particular value of j that becomes
favored below the critical temperature, i.e., the condensate is
never a linear combination of states with different j, unless
the system is accidentally right at the boundary between two
different phases. We have not checked the quasiparticle spec-
trum at such special cases of attractive interaction. It is not
inconceivable that some such linear combinations may yield
lines of gapless points, as suggested by the penetration depth
data in YPtBi [9] for example, but this would seem to require
special tuning. Generic minima of the weak-coupling GL free
energy, both in the cases (l = 0, s = 2, j = 2) and (l = 2, s =
0, j = 2) (d-wave) studied earlier, and in the present case of
general attraction in the l = 1 case (p-wave) do not show this
feature, however.

We expect our results for the competition between states
with different j to be typically in agreement with the weak-
coupling RG flows, as it is the case with many other
weak-coupling mean-field treatments of competing instabil-
ities. There could be exemptions, however, such as in the case
of mixing of two j = 2 channels, for example.
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APPENDIX A: THE LUTTINGER HAMILTONIAN AND
THE GREEN’S FUNCTION

The celebrated Luttinger-Kohn Hamiltonian is [1]:

H0 = 1

2m

(
5

4
p2 − (p · �)2

)
+ p2

2m0
− p2

a�
2
a

2m1
− μ, (A1)

where the � = (�x, �y, �z )T-matrices are the spin–3/2 rep-
resentation of the Lie algebra of SO(3) and have the form

�x =

⎛
⎜⎜⎝

0
√

3/2 0 0√
3/2 0 1 0
0 1 0

√
3/2

0 0
√

3/2 0

⎞
⎟⎟⎠, (A2)

�y = i

2

⎛
⎜⎜⎝

0 −√
3 0 0√

3 0 −2 0
0 2 0 −√

3
0 0

√
3 0

⎞
⎟⎟⎠, (A3)

�z = 1

2

⎛
⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎠. (A4)

This Hamiltonian can be rewritten in terms of the real � = 2
spherical harmonics da(p), and the Dirac matrices γa, which
obey the Clifford algebra {γa, γb} = 2δab [2]:

H0 =
5∑

a=1

da(p)γa

2m
+ p2

2m0
+ d1(p)γ1 + d2(p)γ2

2m1
− μ. (A5)

The spherical harmonics are given by

d1(p) =
√

3

2

(
p2

x − p2
y

)
, d2(p) = 1

2

(
2p2

z − p2
x − p2

y

)
,

d3(p) =
√

3px pz, d4(p) =
√

3py pz, d5(p) =
√

3px py,

while the corresponding Dirac matrices are

γ1 =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, γ2 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠,

(A6)

γ3 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎠, γ4 =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

⎞
⎟⎠,

γ5 =

⎛
⎜⎝

0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

⎞
⎟⎠. (A7)

One advantage of expressing the Hamiltonian in terms of the
Dirac matrices and spherical harmonics is that the Green’s
function has a simple analytic expression, which is

G0(ω, p) = (iω − H0)−1 = iω − da(p)γa + μ

(iω + μ)2 − p4
. (A8)

where we set m0 = m1 = ∞, and 2m = 1.
Kohn-Luttinger Hamiltonian commutes with the antiuni-

tary time-reversal operator T = UK, which consists of the
unitary matrix U and complex conjugation K. The unitary
part of the time-reversal operator in the above representation
is defined as [10]

U = iγ4γ5. (A9)

Evidently, T 2 = −1, and the Kohn-Luttinger Hamiltonian de-
scribes a fermion with half-integer spin.

APPENDIX B: PAIRING MATRICES

In this section we provide explicit expressions of the pair-
ing matrices J (k)

j,mj
. The pairing matrices are defined as

J (k)
j,mj

(p) =
∑

ml +mk=mj

〈L1ml , Skmk| jm j〉L1,ml (p)Sk,mk , (B1)
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where 〈L1ml , Skmk| jm j〉 are the Clebsch-Gordan coefficients
and L1,ml are the spherical harmonics of L = 1. The spherical
harmonics are given by

L1,+1 = − 1√
2

px + ipy

p
, (B2)

L1,0 = pz

p
, (B3)

L1,−1 = 1√
2

px − ipy

p
. (B4)

The matrices Sk,mk denoting the spin s = 1 or s = 3 of the
Cooper pair are defined in the following subsection.

1. s = 1 and s = 3 matrices

To find the matrices for s = 1 and s = 3 spin, we define
first the ladder operators [27]:

S+ = (�x + i�y), (B5)

S− = (�x − i�y). (B6)

With the help of the ladder operators, the three matrices for
s = 1 can be defined as

S1,1 = − 1√
2

S+, (B7)

S1,0 = �z, (B8)

S1,−1 = 1√
2

S−. (B9)

The seven matrices for s = 3 can be then obtained by using
the fact that they transform as a third-rank irreducible tensor
under SO(3):

[S−, S j,m] =
√

( j + m)( j − m + 1)Sj,m−1, (B10)

which yields

S3,+3 =
√

2

3
(S1,1)3, (B11)

S3,+2 = 1√
6

[S−, S3,+3], (B12)

S3,+1 = 1√
10

[S−, S3,+2], (B13)

S3,0 = 1

2
√

3
[S−, S3,+1], (B14)

S3,−1 = −S†
3,+1, (B15)

S3,−2 = −S†
3,+2, (B16)

S3,−3 = −S†
3,+3. (B17)

We then find the following expressions for the pairing
matrices.

2. (1,1,j)-channel

j = 0 :

J (1)
0,0 = 1√

15
(L1,−1S1,+1 + L1,+1S1,−1 − L1,0S1,0). (B18)

j = 1 :

J (1)
1,1 = 1√

2

1√
5

(L1,+1S1,0 − L1,0S1,+1), (B19)

J (1)
1,0 = 1√

2

1√
5

(L1,+1S1,−1 − L1,−1S1,+1), (B20)

J (1)
1,−1 = 1√

2

1√
5

(L1,0S1,−1 − L1,−1S1,0). (B21)

j = 2:

J (1)
2,+2 = 1√

5
L1,1S1,1, (B22)

J (1)
2,+1 = 1√

2

1√
5

(L1,0S1,1 + L1,+1S1,0), (B23)

J (1)
2,0 = 1√

30
(L1,1S1,−1+2L1,0S1,0+L1,−1S1,1 ), (B24)

J (1)
2,−1 = 1√

2

1√
5

(L1,0S1,−1 + L1,−1S1,0), (B25)

J (1)
2,−2 = 1√

5
L1,−1S1,−1. (B26)

3. (1, 3, j)-channel

j = 2:

J (3)
2,+2 =

√
5

7
L1,−1S3,+3 −

√
5

21
L1,0S3,+2 +

√
1

21
L1,+1S3,+1,

(B27)

J (3)
2,+1 =

√
10

21
L1,−1S3,+2 − 2

√
2

21
L1,0S3,+1 + 1√

7
L1,+1S3,0,

(B28)

J (3)
2,0 = 1√

7
(
√

2L1,−1S3,+1 −
√

3L1,0S3,0 +
√

2L1,+1S3,−1),

(B29)

J (3)
2,−1 =

√
10

21
L1,+1S3,−2 − 2

√
2

21
L1,0S3,−1 + 1√

7
L1,−1S3,0,

(B30)

J (3)
2,−2 =

√
5

7
L1,+1S3,−3 −

√
5

21
L1,0S3,−2 +

√
1

21
L1,−1S3,−1.

(B31)

j = 3 :

J (3)
3,+3 = 1

2
(L1,+1S3,+2 −

√
3L1,0S3,+3), (B32)

J (3)
3,+2 = 1

2

√
5

3
L1,+1S3,+1 − 1√

3
L1,0S3,+2 − 1

2
L1,−1S3,3,

(B33)

J (3)
3,+1 = −

√
5
3

2
L1,−1S3,+2 − 1

2
√

3
L1,0S3,+1 + 1√

2
L1,+1S3,0,

(B34)
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J (3)
3,0 = 1√

2
(L1,+1S3,−1 − L1,−1S3,+1), (B35)

J (3)
3,−1 =

√
5
3

2
L1,+1S3,−2 + 1

2
√

3
L1,0S3,−1 − 1√

2
L1,−1S3,0,

(B36)

J (3)
3,−2 = 1

2
L1,+1S3,−3 + 1√

3
L1,0S3,−2 −

√
5
3

2
L1,−1S3,−1,

(B37)

J (3)
3,−3 =

√
3

2
L1,0S3,−3 − 1

2
L1,−1S3,−2. (B38)

j = 4 :

J (3)
4,+4 = L1,+1S3,+3, (B39)

J (3)
4,+3 = 1

2
(L1,0S3,+3 +

√
3L1,+1S3,+2), (B40)

J (3)
4,+2 = 1√

7

(
1

2
L1,−1S3,+3 +

√
3L1,0S3,+2 +

√
15

2
L1,+1S3,+1

)
,

(B41)

J (3)
4,+1 =

√
3
7

2
L1,−1S3,+2 +

√
15
7

2
L1,0S3,+1 +

√
5

14
L1,+1S3,0,

(B42)

J (3)
4,0 =

√
3

14
L1,−1S3,+1 + 2√

7
L1,0S3,0 +

√
3

14
L1,+1S3,−1,

(B43)

J (3)
4,−1 =

√
3
7

2
L1,+1S3,−2 +

√
15
7

2
L1,0S3,−1 +

√
5

14
L1,−1S3,0,

(B44)

J (3)
4,−2 = 1√

7

(
1

2
L1,+1S3,−3 +

√
3L1,0S3,−2 +

√
15

2
L1,−1S3,−1

)
,

(B45)

J (3)
4,−3 = 1

2

(
L1,0S3,−3 +

√
3L1,−1S3,−2

)
, (B46)

J (3)
4,−4 = L1,−1S3,−3. (B47)

APPENDIX C: LEADING-ORDER-CALCULATION OF THE
COEFFICIENTS

1. Second-order coefficient

The one-loop integrals K (s1s2 )
j,ab defined in Eq. (18) have the

following structure:

Kj,ab = T
∑

n

∫ �

0
p2d p

f j,ab(p, ωn)[
(p2 − μ)2 + ω2

n

][
(p2 + μ)2 + ω2

n

] ,

(C1)

which can be approximated around p = √|μ| and ωn = 0 as

Kj,ab = f j,ab(
√|μ|, 0)

4μ2
T

∑
n

∫ �

0
p2d p

1[
(p2 − |μ|)2 + ω2

n

] .

(C2)
After performing the Matsubara sum, we obtain

Kj,ab = f j,ab(
√|μ|, 0)

8μ2

∫ �

0
d p

p2 tanh
∣∣ p2−|μ|

2T

∣∣
|p2 − |μ||

= f j,ab(
√|μ|, 0)

8μ2

[
� +

√
|μ|

∫ �/|μ|

0
d p

×
(

p2 tanh
∣∣ |μ|

T
p2−1

2

∣∣
|p2 − 1| − 1

)]
(C3)

and use∫ ∞

0

[
z2

|z2 − 1| tanh
y|z2 − 1|

2
− 1

]
→ log

(
8eγ−2

π
y

)
(C4)

for y → ∞. This leads to Eq. (22)

K (s1s2 )
j,ab = c(s1s2 )

j,ab

π2

(
1

Vc
+

√
|μ| log

|μ|
T

)
, (C5)

with the nonuniversal critical interaction

1

Vc
= � +

√
|μ| log

8eγ−2

π
(C6)

and the numerical coefficient

c(s1s2 )
j,ab = f j,ab(

√|μ|, 0)π2

8μ2
. (C7)

2. Fourth-order coefficients

All coefficients ai have the following structure:

ai = T
∑

n

∫ �

0
d p

fi(p, ωn)(
p8 − 2p4

(
μ2 − ω2

n

) + (
μ2 + ω2

n

)2)2

(C8)

≈ T
∑

n

∫ ε

−ε

dξ

2
√|μ|

fi
(
p = √|μ|, ωn = 0

)
16μ4

(
ξ 2 + ω2

n

)2 , (C9)

where the change of variable ξ = p2 − |μ| was made. After
performing the Matsubara sum for finite temperatures, we find

ai = fi(
√|μ|, 0)

32|μ|9/2

1

T 2

∫ ε/T

−ε/T
d ξ̂ g(ξ̂ ), (C10)

with ξ̂ = ξ/T and

g(z) = sinh z − z

8z3 cosh2(z/2)
. (C11)

At low temperatures the integral converges and one obtains

ai = fi(
√|μ|, 0)

32|μ|9/2

0.10657

T 2
c

. (C12)
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3. Sixth-order coefficients

The two coefficients v1 and v2 possess the following
structure:

vi = T
∑

n

∫ �

0

f̃i(p, ωn)(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)3

(C13)
In the weak-coupling limit, the leading-order result in small
parameter Tc/μ is determined by

vi ≈ f̃i(
√

μ, 0)T
∑

n

∫ ε

−ε

dξ

2
√

μ

1

64μ6
(
ξ 2 + ω2

n

)3 (C14)

= f̃i(
√

μ, 0)

64μ13/2

1

2T 5

∫ ε/T

−ε/T
d ξ̂ g̃(ξ̂ ) (C15)

with ξ̂ = ξ/T and

g̃(z) = 3 sinh(z) − z
(
z tanh

(
z
2

) + 3
)

16z5(cosh(z) + 1)
. (C16)

For small temperatures we therefore find

vi = f̃i(
√

μ, 0)

64μ13/2

0.00773

2T 5
c

. (C17)

APPENDIX D: MATCHING CONDITIONS

The quartic order of the Ginzburg-Landau free energy is
defined by the one-loop integral

FJ
4 (
) = 4K (s1s2s3s4 )

abcd 
(s1 )∗
a 


(s2 )
b 
(s3 )∗

c 

(s4 )
d (D1)

with

K (s1s2s3s4 )
abcd = Tr

∫ �

Q
G0(−ω,−p)J (s1 )†

j,ma
(p)G0(ω, p)J (s2 )

j,mb
(p)

× G0(−ω,−p)J (s3 )†
j,mc

(p)G0(ω, p)J (s4 )
j,md

(p). (D2)

In the next section we demonstrate how the above expres-
sion is related to Eqs. (10)–(12).

1. j = 1

To find the sign and magnitude of λ1,2 defined in Eq. (10),
we evaluate Eq. (D2) for two different states. The first state
is the real state |1, 0〉 with the pairing matrix J (1)

1,0 , while the

second state is |1,+1〉 with the pairing matrix J (1)
1,+1. We find

F 1
4 (
|1,0〉) = T

∑
n

∫ �

0
d p

p2
(
ω2

n(82μ2 − 38p4 + 80μp2) + 41ω4
n − (μ + p2)2(−41μ2 + 7p4 + 2μp2)

)
375π2

(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)2

(D3)

and

F 1
4 (
|1,+1〉) = T

∑
n

∫ �

0
d p

p2
(
ω2

n(42μ2 − 38p4 + 40μp2) + 21ω4
n + (μ + p2)2(21μ2 + 13p4 − 2μp2)

)
450π2

(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)2

. (D4)

Upon inserting these two states into Eq. (10), we obtain the following matching conditions:

F 1
4 (
|1,0〉) = λ1 (D5)

F 1
4 (
|1,+1〉) = λ1 + λ2, (D6)

which yield the Eqs. (28) and (29).

2. j = 2

To determine the coefficients qi, we choose the states |2, 0〉, |2, 2〉 and |2, 1〉 and define the coefficient qα = q3/5. The
matching conditions of these states are given by

F 2
4 (
|2,0〉) = q1 + qα, (D7)

F 2
4 (
|2,2〉) = q1 + 4q2, (D8)

F 2
4 (
|2,1〉) = q1 + q2, (D9)

which yields

q1 = 1
3

(−F 2
4 (
|2,2〉) + 4F 2

4 (
|2,1〉)
)
, (D10)

q2 = 1
3

(
F 2

4 (
|2,2〉) − F 2
4 (
|2,1〉)

)
, (D11)

qα = 1
3

[
3F 2

4 (
|2,0〉) + F 2
4 (
|2,2〉) − 4F 2

4 (
|2,1〉)
]
, (D12)
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with

F 2
4 (
|2,0〉) = T

∑
n

∫ �

0
d p

p2

771750π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)2

[
6p4

(
ω2

n

( − 939y4 + 11856
√

14y3z

− 7826y2z2 + 7784
√

14yz3 + 4606z4
) + 5μ2

(
4643y4 + 4080

√
14y3z + 17178y2z2 + 1176

√
14yz3

+ 5586z4)) + 80μp2(2178y4 + 1089
√

14y3z + 2065y2z2 + 1239
√

14yz3 − 588z4)(μ2 + ω2
n

)
+ 7

(
10689y4 + 1584

√
14y3z + 15946y2z2 − 504

√
14yz3 + 12054z4

)(
μ2 + ω2

n

)
2 + p8

(
1527y4

+ 16272
√

14y3z + 85358y2z2 + 1848
√

14yz3 + 6762z4
) + 16μp6(2466y4 + 4401

√
14y3z

+ 23989y2z2 + 2709
√

14yz3 − 4704z4)
]
, (D13)

F 2
4 (
|2,2〉) = T

∑
n

∫ �

0
d p

−p2

385875π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)2

[ − 2p4
(
3ω2

n

(
19y4 + 9784

√
14y3z

+ 9576y2z2 + 6356
√

14yz3 − 686z4
) + μ2(66643y4 + 67288

√
14y3z + 210392y2z2 + 24612

√
14yz3

+ 43218z4)
) − 8μp2

(
21578y4 + 11003

√
14y3z + 26222y2z2 + 7812

√
14yz3 − 2352z4

)(
μ2 + ω2

n

)
− 7

(
10673y4 + 1568

√
14y3z + 16562y2z2 − 168

√
14yz3 + 4998z4

)(
μ2 + ω2

n

)
2 − p8

(
4683y4

+ 10608
√

14y3z + 110642y2z2 + 12432
√

14yz3 − 3822z4
) − 8μp6(4926y4 + 8841

√
14y3z

+ 47894y2z2 + 4284
√

14yz3 + 1176z4)
]
, (D14)

F 2
4 (
|2,1〉) = T

∑
n

∫ �

0
d p

p2

771750π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)2

[
2p4

(
μ2

(
101198y4 + 98048

√
14y3z

+ 329602y2z2 + 45192
√

14yz3 + 76293z4
) − 3ω2

n(5698y4 − 21632
√

14y3z + 4662y2z2

− 11368
√

14yz3 + 1323z4)
) + 8μp2(25576y4 + 16936

√
14y3z + 49504y2z2 + 14049

√
14yz3

− 3969z4)
(
μ2 + ω2

n

) + 7
(
11926y4 + 2656

√
14y3z + 33964y2z2 − 336

√
14yz3 + 9261z4

)
× (

μ2 + ω2
n

)
2 + p8

(
27354y4 + 20064

√
14y3z + 138376y2z2 + 8736

√
14yz3 + 8379z4

)
+ 8μp6

(
13416y4 + 13056

√
14y3z + 66304y2z2 + 7119

√
14yz3 + 441z4

)]
. (D15)

For the sextic order, we choose the real states 1√
2
(|2,+2〉 + |2,−2〉) and |2, 0〉, and find the following matching conditions:

F 2
6 (
1 = 1,
2 = 0) = v1, (D16)

F 2
6 (
1 = 0,
2 = 1) = v1 + 4

3v2, (D17)

with

F 2
6 (
1 = 1,
2 = 0) = T

∑
n

∫ �

0
d p

−p2

17381739375π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)3

[
3p8

(
65ω2

n

(
1322251y6

+ 1818672
√

14y5z + 24967565y4z2 + 98280
√

14y3z3 + 23374470y2z4 − 1353576
√

14yz5

+ 2302902z6
) + μ2

(
377751751y6 + 738633264

√
14y5z + 6372678585y4z2 + 1772998920

√
14y3z3

+ 3520792590y2z4 − 207035976
√

14yz5 + 865354014z6
)) + 24μp6

(
13ω2

n

(
3459534y6

+ 8171271
√

14y5z + 46236715y4z2 + 8805930
√

14y3z3 + 35585760y2z4 + 5678316
√

14yz5

− 9390654z6
) + 15μ2

(
7992198y6 + 10796899

√
14y5z + 70702135y4z2 + 18477410

√
14y3z3

+ 31885280y2z4 + 8335292
√

14yz5 − 11292246z6
)) + 195p4

(
μ2 + ω2

n

)(
11ω2

n

(
28165y6

+ 518688
√

14y5z + 36925y4z2 + 795480
√

14y3z3 − 186690y2z4 + 311640
√

14yz5 + 228438z6
)

+μ2
(
19893187y6 + 18064800

√
14y5z + 92444835y4z2 + 20433000

√
14y3z3 + 96783330y2z4
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− 1007832
√

14yz5 + 23677290z6
)) + 5148μp2

(
512558y6 + 293047

√
14y5z + 1153355y4z2

+ 479010
√

14y3z3 + 337120y2z4 + 377692
√

14yz5 − 187278z6
)(

μ2 + ω2
n

)
2 + 715

(
1009801y6

+ 244656
√

14y5z + 2270835y4z2 + 194040
√

14y3z3 + 2438730y2z4 − 95256
√

14yz5 + 1352106z6
)

× (
μ2 + ω2

n

)
3 + p12

(
27974687y6 + 55081728

√
14y5z + 1162083195y4z2 + 399538440

√
14y3z3

+ 162521730y2z4 − 104354712
√

14yz5 + 141674778z6
) + 36μp10

(
6703346y6 + 16793049

√
14y5z

+ 206611685y4z2 + 60932270
√

14y3z3 + 74879840y2z4 + 6595204
√

14yz5 − 29217426z6
)]

(D18)

and

F 2
6 (
1 = 0,
2 = 1) = T

∑
n

∫ �

0
d p

−p2

17381739375π2
((

μ2 + ω2
n

)
2 − 2p4

(
μ2 − ω2

n

) + p8
)

3

[
3p8

(
117y6

(
4602891μ2

+ 574015ω2
n

) + 144
√

14y5z
(
5708537μ2 + 1092065ω2

n

) + 1365y4z2
(
4847253μ2 + 1309465ω2

n

)
+ 2520

√
14y3z3

(
692527μ2 + 8515ω2

n

) + 490y2z4
(
7566047μ2 + 2838355ω2

n

) − 2352
√

14yz5

× (
114811μ2 + 41015ω2

n

) + 686z6(1516423μ2 + 266435ω2
n

)) − 8μp6( − 54y6(7616157μ2

+ 2579083ω2
n

) − 459
√

14y5z
(
1107053μ2 + 736827ω2

n

) − 315y4z2
(
10222497μ2 + 6302023ω2

n

)
− 1890

√
14y3z3

(
462369μ2 + 186511ω2

n

) − 8820y2z4
(
151831μ2 + 141609ω2

n

) − 882
√

14yz5

× (
461771μ2 + 268749ω2

n

) + 686z6
(
875293μ2 + 605787ω2

n

)) + 195p4
(
μ2 + ω2

n

)(
27y6

× (
754569μ2 − 2651ω2

n

) + 576
√

14y5z
(
32194μ2 + 10659ω2

n

) + 105y4z2
(
921243μ2 + 9911ω2

n

)
+ 2520

√
14y3z3

(
8207μ2 + 3619ω2

n

) + 490y2z4
(
203135μ2 − 4301ω2

n

) − 2352
√

14yz5
(
1189μ2

− 1111ω2
n

) + 686z6
(
39089μ2 + 5269ω2

n

)) − 1716μp2
( − 1512378y6 − 906237

√
14y5z

− 3801105y4z2 − 1409310
√

14y3z3 − 792820y2z4 − 1223922
√

14yz5 + 811538z6
)(

μ2 + ω2
n

)
2

+ 715
(
985257y6 + 272592

√
14y5z + 2180115y4z2 + 264600

√
14y3z3 + 2450490y2z4

− 190512
√

14yz5 + 1452262z6
)(

μ2 + ω2
n

)
3 + 5p12

(
11635299y6 + 24002784

√
14y5z

+ 277481295y4z2 + 78238440
√

14y3z3 + 32570790y2z4 − 22431024
√

14yz5 + 32344214z6
)

− 12μp10
( − 38287782y6 − 67827123

√
14y5z − 673045695y4z2 − 180862290

√
14y3z3

− 183172780y2z4 − 25635918
√

14yz5 + 101429902z6
)]

, (D19)

which yields

v1 = T
∑

n

∫ �

0
d p

−p2

17381739375π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)3

[
3p8

(
65ω2

n

(
1322251y6 + 1818672

√
14y5z

+ 24967565y4z2 + 98280
√

14y3z3 + 23374470y2z4 − 1353576
√

14yz5 + 2302902z6
) + μ2

(
377751751y6

+ 738633264
√

14y5z + 6372678585y4z2 + 1772998920
√

14y3z3 + 3520792590y2z4 − 207035976
√

14yz5

+ 865354014z6
)) + 24μp6

(
13ω2

n

(
3459534y6 + 8171271

√
14y5z + 46236715y4z2 + 8805930

√
14y3z3

+ 35585760y2z4 + 5678316
√

14yz5 − 9390654z6
) + 15μ2

(
7992198y6 + 10796899

√
14y5z + 70702135y4z2

+ 18477410
√

14y3z3 + 31885280y2z4 + 8335292
√

14yz5 − 11292246z6
)) + 195p4

(
μ2 + ω2

n

)(
11ω2

n

(
28165y6

+ 518688
√

14y5z + 36925y4z2 + 795480
√

14y3z3 − 186690y2z4 + 311640
√

14yz5 + 228438z6
) + μ2

(
19893187y6

+ 18064800
√

14y5z + 92444835y4z2 + 20433000
√

14y3z3 + 96783330y2z4 − 1007832
√

14yz5 + 23677290z6
))
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+ 5148μp2
(
512558y6 + 293047

√
14y5z + 1153355y4z2 + 479010

√
14y3z3 + 337120y2z4 + 377692

√
14yz5 − 187278z6

)
× (

μ2 + ω2
n

)
2 + 715

(
1009801y6 + 244656

√
14y5z + 2270835y4z2 + 194040

√
14y3z3 + 2438730y2z4 − 95256

√
14yz5

+ 1352106z6
)(

μ2 + ω2
n

)
3 + p12

(
27974687y6 + 55081728

√
14y5z + 1162083195y4z2 + 399538440

√
14y3z3

+ 162521730y2z4 − 104354712
√

14yz5 + 141674778z6
) + 36μp10

(
6703346y6 + 16793049

√
14y5z + 206611685y4z2

+ 60932270
√

14y3z3 + 74879840y2z4 + 6595204
√

14yz5 − 29217426z6
)]

(D20)

and

v2 = T
∑

n

∫ �

0
d p

−p2

5793913125π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2)3

[
3p8

(
μ2

(
40196624y6 + 20849016

√
14y5z

+ 60955440y4z2 − 6957720
√

14y3z3 + 46642610y2z4 − 15749874
√

14yz5 + 43728041z6
) − 65ω2

n

(
72256y6

− 150168
√

14y5z − 632800y4z2 − 57960
√

14y3z3 + 494410y2z4 + 32634
√

14yz5 − 127253z6))
+ 4μp6

(
39ω2

n

(
55752y6 + 250308

√
14y5z + 2332120y4z2 + 116340

√
14y3z3 − 1780170y2z4 + 199773

√
14yz5

− 632492z6
) + μ2

(
25811784y6 + 11138436

√
14y5z + 19245240y4z2 + 21196980

√
14y3z3 − 47844090y2z4

+ 16096941
√

14yz5 − 46149964z6
)) + 195p4

(
μ2 + ω2

n

)(
4y6

(
30011μ2 − 23837ω2

n

) + 72
√

14y5z
(
1663μ2 + 1507ω2

n

)
+ 140y4z2

(
7653μ2 + 1133ω2

n

) + 1680
√

14y3z3
(
37μ2 + 55ω2

n

) + 245y2z4
(
2809μ2 − 55ω2

n

)
− 2646

√
14yz5

(
169μ2 + 77ω2

n

) + 343z6
(
2287μ2 + 803ω2

n

)) − 858μp2
(
12648y6 − 13548

√
14y5z − 170520y4z2

+ 13860
√

14y3z3 + 109270y2z4 − 45423
√

14yz5 + 124852z6
)(

μ2 + ω2
n

)
2 − 715(2y2 + 7z2)

(
3068y4 − 3492

√
14y3z

+ 602y2z2 + 3402
√

14yz3 − 3577z4
)(

μ2 + ω2
n

)
3 + p12

(
7550452y6 + 16233048

√
14y5z + 56330820y4z2

− 2086560
√

14y3z3 + 83055y2z4 − 1950102
√

14yz5 + 5011573z6
) + 6μp10

(
9088872y6 + 8723988

√
14y5z

+ 26605320y4z2 − 967260
√

14y3z3 − 20733370y2z4 + 2925153
√

14yz5 − 6888812z6
)]

. (D21)

3. j = 3

Using cα = c2/7 and cβ = c3/7, we find the following matching conditions:

F 3
4 (
|3,3〉) = c1 + 9c2, (D22)

F 3
4 (
|3,0〉) = c1 + cα + 4

3
cβ, (D23)

F 3
4

(

 1√

2
(|3,+3〉+|3,−3〉)

) = c1 + cα + 25

12
cβ, (D24)

F 3
4 (
|3,+2〉) = c1 + 4c2. (D25)

The functions are given by

F 3
4 (
|3,3〉) = T

∑
n

∫ �

0
d p

p2
[
17017

(
μ2 + ω2

n

)
2 + 4576p4

(
13μ2 + 4ω2

n

) − 50622μp2
(
μ2 + ω2

n

) + 6823p8 − 32370μp6
]

60060π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2

)
2

,

(D26)

F 3
4 (
|3,0〉) = T

∑
n

∫ �

0
d p

2p2
[
23023

(
μ2 + ω2

n

)
2 + 286p4

(
285μ2 + 71ω2

n

) − 68640μp2
(
μ2 + ω2

n

) + 8459p8 − 43368μp6
]

375375π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2

)
2

,

(D27)

F 3
4

(

 1√

2
(|3,+3〉+|3,−3〉)

)
= T

∑
n

∫ �

0
d p

p2
[
17017

(
μ2 + ω2

n

)
2 + 572p4

(
105μ2 + 31ω2

n

) − 50622μp2
(
μ2 + ω2

n

) + 6611p8 − 32370μp6
]

120120π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2

)
2

, (D28)
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F 3
4

(

|3,+2〉

) = T
∑

n

∫ �

0
d p

p2
[
7007

(
μ2 + ω2

n

)
2 + 572p4

(
43μ2 + 9ω2

n

) − 20878μp2
(
μ2 + ω2

n

) + 2533p8 − 13026μp6
]

45045π2
(
2ω2

n(μ2 + p4) + ω4
n + (p4 − μ2)2

)
2

.
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