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Exploring quantum quasicrystal patterns: A variational study
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We study the emergence of quasicrystal configurations in the ground-state phase diagram of bosonic systems
interacting through pair potentials of Lifshitz’s type. By using a variational mean-field approach, we determine
the relevant features of the corresponding potential interaction kind stabilizing such quasicrystalline states in two
dimensions. Unlike their classical counterpart, in which the interplay between only two wave vectors determines
the resulting symmetries of the solutions, the quantum picture relates in a more complex way to the instabilities
of the excitation spectrum. Moreover, the quantum quasicrystal patterns are found to emerge as the ground
state with no need of moderate thermal fluctuations. The study extends to the exploration of the excitation
properties and the possible existence of superquasicrystals, i.e., supersolidlike quasicrystalline states in which
the long-range nonperiodic density profile coexists with a nonzero superfluid fraction. Our calculations suggest
that, in an intermediate region between the homogeneous superfluid and the normal quasicrystal phases, these
exotic states indeed exist at zero temperature. Comparison with full numerical simulations provides a solid
verification of the variational approach adopted in this paper.

DOI: 10.1103/PhysRevB.105.134521

I. INTRODUCTION

The exploration of patterns with peculiar symmetries such
as stripe phases, smectic liquid crystals, cluster crystals, and
quasicrystals is a leading research direction in many-body
physics, unveiling a large amount of fascinating phenomena
in soft matter [1,2], superconductivity [3,4], nonlinear optical
systems [5–7], and long-range interacting systems in general
[8–15]. In this context, quasicrystals are one of the most
intriguing examples, as particles self-assemble in a long-range
ordered pattern which is at the same time nonperiodic, thus
being able to exhibit forbidden crystalline ordering such as 5-,
10-, and 12-fold rotational symmetry in two dimensions (2D).

For classical systems it has been shown that quasicrys-
talline phases may be originated thanks to the interplay
between two specific length scales in the interaction poten-
tial of particle ensembles [16–19]. Many studies, based on
mean-field and molecular dynamics approaches, have actu-
ally observed the stabilization of decagonal and dodecagonal
cluster quasicrystals in soft macromolecular systems at finite
temperatures by using this type of interactions [20–22]. While
a recent theoretical work has surprisingly revealed the stability
of those structures also at zero temperature for a particular
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case [23], the extent to which classical cluster quasicrystals
can be stable in the absence of thermal fluctuations is a matter
of debate.

On the other hand, quantum cluster quasicrystals have
been studied by imposing external quasiperiodic potentials
on bosonic systems, so creating quasicrystalline structures in,
e.g., two-dimensional optical lattices [24,25]. Interestingly,
the competition of interactions and quasiperiodicity generates
a wide range of significant phases, such as supersolidity and
Bose glasses [26–32].

In the absence of external potentials and for small temper-
atures, superfluidity was also investigated in a model relevant
to the quantum cluster quasicrystal [33,34]. By using quan-
tum Monte Carlo approaches, it was found that moderate
quantum fluctuations make dodecagonal structures persist,
leading to a small but finite local superfluid phase. Yet, by
increasing fluctuations, a structural transition from quasicrys-
tal to cluster triangular crystal takes place. In this scenario a
natural question to ask is whether it is possible to produce
cluster quasicrystal phases solely as a joined effect of quan-
tum fluctuations and a properly designed interaction potential
between particles. To our knowledge, the stabilization of self-
assembled cluster quasicrystal states at zero temperature is a
completely open question for generic interactions.

From the experimental standpoint, important steps have
been taken to produce interactions with the necessary ingredi-
ents for the eventual stabilization of self-assembled quantum
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FIG. 1. (a)–(c) Real-space density for representative Ansätze resulting from the minimization of the energy of Eq. (1) for an ensemble of
bosons interacting via the potential of Eq. (2). (a) Quasiperiodic pattern with 12-fold dodecagonal symmetry, (b) periodic pattern with sixfold
hexagonal symmetry, and (c) periodic pattern with fourfold square symmetry. The parameters of the potential are as follows: v̂(0) = 20,

v̂(
√

2k0 ) = 5, v̂(
√

3k0 ) = −0.9, v̂(
√

2 − √
3k0 ) = 0.3, σ = 1.2, and ρλ2U = 1.0 (see Sec. III). (d) Bogoliubov excitation spectrum ε(k) in

units of h̄2/(mλ2) for different values of the product ρλ2U for the model considered in Sec. IV, selecting v̂(
√

2 − √
3k0 ) = 0.3 (k0 = 1). The

Fourier transform of the potential v̂(k) for the same parameters is also plotted (black dashed curve) for comparison with the energy excitation
spectrum. (e) Phase diagram and noncondensed fraction fnc computed self-consistently from Eq. (24). The blue dashed curve represents
the phase boundary between the homogeneous and the dodecagonal cluster quasicrystal phase resulting from mean-field calculations. The
color scale corresponds to the noncondensed fraction only within the region of stability of the homogeneous phase. Notice that Bogoliubov
approximation holds when the noncondensed fraction fnc � 1.

cluster quasicrystals. Current technology already allows us to
produce effective oscillatory interactions with several length
scales in multimode cavity QED. This kind of experimental
setup give us the possibility of tuning the range of interactions
providing means for the formation of various exotic phases as
superfluid liquid-crystal-like states [35–37]. Another interest-
ing direction in the production of effective interactions with
various length scales was provided by Zhang et al. [38]. In that
paper, the authors showed how a nonlocal sign-changing in-
teraction between particles can be induced in a Bose-Einstein
condensate (BEC) optically driven via a retroreflecting mirror.
Additionally, they discussed how the sign of the underlying
interaction potential can be controlled by additional optical
elements and external fields. The kind of interaction induced
by Zhang et al.’s [38] proposed setup is able to stabilize var-
ious nontrivial modulated phases, even nontrivial decorated
lattices.

In this paper we address the problem of the stabilization
of self-assembled quantum cluster quasicrystals through a
variational mean-field (VMF) approach [39,40]. Our study
allows us to identify the ingredients of the pair interaction
potential needed for the stabilization of cluster quasicrystal
states at zero temperature. As a result we present a systematic
study of the mean-field phase diagrams for a class of bosonic
models displaying quasicrystalline phases as well as other

more common periodic and homogeneous superfluid phases.
As an illustrative example, Fig. 1 depicts some stable density
profiles for pattern configurations with 12-fold dodecagonal
symmetry [Fig. 1(a)], sixfold hexagonal symmetry [Fig. 1(b)],
and fourfold square symmetry [Fig. 1(c)] decorated with
12 smaller clusters. Here, we denote as triangular crystal
phase (TCP) and square crystal phase (SqCP) any phase with
the hexagonal and square symmetries, respectively, indepen-
dent of the detailed structure of the unitary cell of the pattern.
We highlight that the methodology developed in this paper
is general and it can be used to design different types of
potentials capable of stabilizing other modulated patterns. Ad-
ditionally, we also probe the stability of the quasicrystal phase
against generic perturbations of the pair interaction potential,
showing that such a phase is not a result of a fine adjustment
of the form of the potential.

Finally, we investigate the low-energy excitations in the
homogeneous phase. The main result illustrated in Fig. 1(d)
shows the Bogoliubov excitation spectrum for different val-
ues of ρλ2U properly tuning quasicrystal potentials, whereas
Fig. 1(e) illustrates the phase diagram for the Bose-Einstein
condensate fraction. The existence of superfluidity within
quasicrystalline phases is also discussed. Our findings indicate
the existence of supersolidlike quasicrystalline states in an in-
termediate phase between the homogeneous superfluid phase
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and a normal cluster quasicrystal phase. Results obtained from
our variational calculations are compared with its analogs ob-
tained from the numerical integration of the Gross-Pitaevskii
equation showing an excellent agreement.

The paper is organized as follows: Sec. II introduces
the microscopic model specifying the methodology that was
applied. Section III aims to present some important consid-
erations by means of a first single-mode approximation. A
characterization of a phase diagram varying the interaction
strength and fixing the parametric potentials is proposed in
Sec. IV. Furthermore, in Sec. V, we study the stability of the
quantum quasicrystal phase against variations of the pair in-
teraction potential. Section VI examines the chance to observe
supersolid features in the system. Also within this section, we
followed the Bogoliubov approach to discuss the excitation
properties of the models considered. Finally, Sec. VII delivers
some conclusions and remarks.

II. MODEL AND METHODOLOGY

We examine an ensemble of interacting bosons confined in
2D with mass m and position qi. The dynamics is described
by the Hamiltonian

Ĥ = − h̄2

2m

∑
i

∇2
i + V0

∑
i< j

v(|qi − q j |), (1)

where V0 is the interaction strength of the two-body potential
v(r). We introduce the energy scale of the problem as ε0 =
h̄2/(mλ2), λ being the corresponding characteristic length.
In doing so, we get the dimensionless term U = V0mλ2/h̄2

which controls the zero-temperature physics at a fixed density
ρλ2. Likewise, the dimensionless single-particle coordinate
results as ri = qi/λ.

Our main goal is to study the possible stabilization of a
12-fold symmetric dodecagonal quasicrystal phase (QCP) at
zero temperature. We choose nonlocal interaction potentials
v(r) of Lifshitz’s type [21], whose Fourier transforms have
the generic form

v̂(k) = exp(−k2σ 2)
nmax∑
n=0

Dnk2n. (2)

The free parameters Dn and σ can be tuned to guarantee a
structure with several local minima at the desired wave vector;
see Fig. 2. The high tunability of this class of potential allowed
it to be established in the classical case that the stabilization of
QCPs depends on the existence of a competition of different
length scales [21,23,41,42].

Our study of the ground-state phase diagram is performed
using the VMF approach [22,39,40,43–45]. Within the VMF
approach the ground-state wave function, ψ ({x}), where
{x} = {x1, . . . , xN }, is first chosen as the product of identical
single-particle wave functions

ψ ({x}) =
∏

i

φ0(xi ). (3)

Then, the normalized single-particle wave function φ0(x) is
written as a Fourier expansion using a specific set of modes
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FIG. 2. Examples of Lifshitz’s potentials able to stabilize the
QCP as predicted from our variational development. The full form
of v̂(k) in each case is obtained by imposing the following condi-

tions: (a) nmax = 10, v̂(0) = 20, v̂(
√

3 − √
2k0 ) = 0.3, v̂(k0) = −1,

v̂(
√

2k0 ) = −0.9, v̂(
√

3k0 ) = 5, and v̂(
√

3 + √
2k0 ) = −1 [in units

of |v̂(k0)|] while σ = 1.2; and (b) nmax = 8, v̂(0) = 70, v̂(k0) = −1,
v̂(

√
2k0 ) = −0.9, and v̂(

√
3k0) = 5 [in units of |v̂(k0)|] while σ = 1.

In both panels the values of v̂(k) contributing to r(k0) and u1(k0 )
are indicated. The latter functions are discussed throughout the main
text.

{c j, k j} in the form [46,47]

φ0(x) = c0 + ∑
j �=0 c j cos(k j · x)/2√

A
(
c2

0 + 1
4

∑
j �=0 c2

j

) , (4)

where A is the area of the system. The set of Fourier modes
considered in φ0(x) defines the modulated pattern of the solu-
tion, as well as its symmetries.

In this paper we consider several Ansätze for φ0(x) to min-
imize the Hamiltonian equation (1). More precisely, we take
into account the homogeneous solution, a generic dodecago-
nal quasicrystal, and all possible periodic and symmetric
patterns in two dimensions. For the special case of the ho-
mogeneous solution all c j’s vanish except for c0. In the case
of modulated patterns the number of independent Fourier
amplitudes c j can be significantly reduced by setting equal
those Fourier amplitudes corresponding to wave vectors k j

equivalent by symmetry operations of the corresponding crys-
talline pattern. The set {k j} is constructed considering all
possible combinations of a predetermined finite number of
wave vectors, taken as the basis of {k j}, which are specific for
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TABLE I. Modulated patterns studied in this paper and the corre-
sponding basis vectors used to generate the solutions φ(x). 12-QCP,
12-fold symmetric QCP.

Pattern Basis vector k0, j Index range

TCP k0(cos 2π j
6 , sin 2π j

6 ) j = 0, 1

SqCP k0(cos 2π j
4 , sin 2π j

4 ) j = 0, 1

Stripes k0(1, 0)

12-QCP k0(cos 2π j
12 , sin 2π j

12 ) j = 0, 1, . . . , 3

each modulated solution. In this way, by fixing the number
of vectors of the basis that can be combined to form {k j},
we can establish the order of the Ansätze. The Ansätze are
summarized in Table I.

In all considered solutions the quantity k0 represents the
modulus of the wave vectors of the basis, which give us
the scale of the modulation length of the respective pattern
[48,49]. Fourier amplitudes c j and k0 are the variational pa-
rameters in the energy minimization process for each kind of
solution.

The total energy per particle E/N of the model then reads

E

N
= 〈ψ |T̂1|ψ〉 + (N − 1)

2
〈ψ |V̂12|ψ〉 (5)

= 1

4

∑
j �=0 c2

j k
2
j(

1 + 1
2

∑
j �=0 c2

j

)
+ ρλ2U

(
v̂(0)b2

0 + ∑
j �=0 v̂(k j )b2

j/2
)

2
(
1 + 1

2

∑
j �=0 c2

j

)2 , (6)

where T̂1 = − 1
2∇2

1 is the usual single-particle kinetic energy
operator while V̂12 = V (r1 − r2) is the two-body interaction
operator in coordinate representation. In the above expression,
we used the fact that k j and −k j have the same Fourier
amplitude c j . In addition, the coefficients b j are defined as
the Fourier amplitudes of (

∑
j=0 c j cos(k j · x))2; in this way

the coefficients b j can be written in terms of c j using the
relation (

∑
j=0 c j cos(k j · x))2 = ∑

j=0 b j cos(k j · x), where
the sum in both cases is considered over the whole set of
vectors consistent with the symmetries of the considered
modulated pattern. This energy is then compared with the en-
ergy of the homogeneous superfluid solution εs f = Es f /N =
ρλ2U v̂(0)/2 [50].

III. SINGLE-MODE APPROXIMATION

We now identify the conditions to be satisfied by v̂(k)
to stabilize the QCP over all other symmetric and periodic
possible phases in two dimensions. We begin by performing
a simple analysis of the necessary conditions to guarantee
that the QCP has a lower energy than the sixfold symmetric
TCP. The TCP configuration is selected as a benchmark for
comparison with the QCP, since the triangular lattice corre-
sponds to the optimal packing arrangement in two dimensions
[29,51,52].

Within the single-mode approximation, i.e., considering
solutions with Fourier modes corresponding only to the first

shell of equivalent wave vectors, whose Fourier amplitudes
are all equal to c1, the energy per particle defined in Eq. (6)
for the TCP is given by

εt = 1

4

3c2
1k2

0(
1 + 3

2 c2
1

) + ρλ2U v̂(0)

2

+ρλ2U

(
3c2

1(2 + c1)2v̂(k0) + u1(k0)c4
1

)
4
(
1 + 1

2 3c2
1

)2 , (7)

where u1(k) = (3/4v̂(2k) + 3v̂(
√

3k)). Modulated phases
can usually be stabilized if the absolute minimum of v̂(k) is
lower than zero and it simultaneously occurs at some finite
wave vector modulus km [43]. In general, the variational treat-
ment of the modulation wave vector k0 produces nontrivial
results which depend on the detailed form of v̂(k), even within
the single-mode approximation. In principle one might expect
k0 to be close to km if the minimum of v̂(k) at km is strong
enough and we are close to the boundary between the homo-
geneous and the modulated phases, where we expect c1 � 1.
Nevertheless, establishing rigorous conditions for v̂(k), under
which the single mode is in fact a good approximation, is a
very difficult task.

With the aim of identifying general ingredients, indepen-
dent of the actual form of our v̂(k), we begin by considering
a single-mode analysis in which k0 is fixed to km. In a sub-
sequent step, we will perform a full variational analysis for
specific cases of v̂(k) considering solutions with many modes
to verify to what extent the conclusions about the stability
of the QCP, from this simplified study, remain valid in the
general case.

Without loss of generality we take advantage of the fact
that, in the appropriate units, the position of the main mini-
mum of v̂(k) can be located at k0 = 1, and its value can be set
to v̂(k0) = −1.

The other relevant phase in our simplified single-mode
analysis corresponds to the dodecagonal QCP. Considering
Eq. (6) and the proposed Ansätze for this phase, it is straight-
forward to conclude that the energy per particle for the QCP
is given by

εQCP = 1

4

6c2
1k2

0(
1 + 6

2 c2
1

) + ρλ2U v̂(0)

2

+ρλ2U

(
6c2

1(2 + c1)2v̂(k0) + u2(k0)c4
1

)

4
(
1 + 1

2 6c2
1

)2 , (8)

where u2(k) = 2u1(k) + r(k) and r(k) = 6(v̂(
√

2k) +
v̂(

√
2 − √

3k) + v̂(
√

2 + √
3k)).

It can be observed that the influence of v̂(k) on the en-
ergy per particle of the two relevant phases is encoded in
two independent parameters, r(k0) and u1(k0). Now we can
compare the energy per particle of the TCP and QCP after
minimizing with respect to the variable c1, fixing the value
of u1(k0) and varying the parameters ρλ2U and r(k0). We
observe in Fig. 3 that, for large enough ρλ2U values, the QCP
becomes stable if r(k0) is low enough. This result confirms our
initial expectation that if we decrease the value of the quartic
coefficient for the QCP [u2(k0)], while maintaining u1(k0) at
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FIG. 3. Boundary between the dodecagonal cluster quasicrystal
phase and the triangular cluster crystal in the r(k0)-ρλ2U plane for
u1(k0) = 10, 15, and 20, in units of |v̂(k0)|. For each case the region
below the curve corresponds to those cases in which the dodecagonal
solution has lower energy than the triangular lattice.

a moderate to high value, the relative stability of the QCP is
increased.

We can infer now that a sufficient condition for v̂(k) to
stabilize the QCP will be to have low enough local minima,

at
√

3 − √
2k0, k0,

√
2k0, and

√
3 + √

2k0, to decrease r(k0)
and to have local maxima or at least moderate values, at

√
3k0

and 2k0, in order to obtain “high” values of u1(k0). For future
reference we will denote the values of v̂(k) at these particular
points as characteristic values of the pair interaction potential.
Physically, this set of wave vectors is relevant in our anal-
ysis because they correspond to the second-order harmonic
of the Fourier representation of the dodecagonal solution.
Additionally, it is observed that, given the form of the Lifshitz
potential, a high value of v̂(2k0) is already guaranteed by the
sequence of maxima and minima of the potential. It can be
concluded that a potential with 11 Dn independent coefficients
(nmax = 10) is needed in order to build a v̂(k) for which all the
characteristic values can be tuned to produce a potential with
the desired features.

This discussion raises the question of what the actual mini-
mum value of nmax to maintain the stability of the QCP would
be once we abandon the single-mode approximation. We have
studied this problem numerically by means of a many-mode
variational treatment of Eq. (6), considering the 12-fold QCP
and all other periodic and rotationally symmetric solutions in
two dimensions. This constraint rules out the possibility of
stretched periodic lattices in our analysis. Our results indicate

that the secondary minimum at
√

2 − √
3k0 is in fact not a

necessary ingredient beyond the single-mode analysis. To the
best of our knowledge, the simplest Lifshitz’s model stabiliz-
ing the QCP is the one with nmax = 8; however, we cannot
rule out the possibility of stabilization of the QCP through a
two-body interaction with simpler structures than those we are
considering now.

IV. PHASE DIAGRAM CHARACTERIZATION

Before presenting the results of the numerical study, we
provide some details about the construction of the solutions

4 2 0 2 4
4

2

0

2

4

k
y
/k

0

kx/k0

FIG. 4. Wave vectors considered in the construction of the
fourth-order dodecagonal solution in units of the basis wave vector
k0. Red circles show the two degenerate minima of the Fourier
transform of the potential v̂(k).

in the case of the many-mode numerical analysis. Due to the
aperiodic nature of the dodecagonal pattern, the set of wave
vectors corresponding to the Fourier mode expansion of this
solution rapidly increase when even a moderate number of
possible combinations of wave vectors of the basis is con-
sidered. In the numerical analysis we consider a fourth-order
Ansatz for the QCP solution, which means that all vectors
resulting from the combinations of four vectors of the basis
and the null vector will be considered. The resulting set of
wave vectors considered in the construction of this solution is
shown in Fig. 4. This selection implies that the QCP solution
has 37 independent Fourier amplitudes [c’s in Eq. (4)], which
are then considered as variational parameters, jointly with the
scale of the main wave vector k0. The number of variational
Fourier amplitudes for each periodic solution is given by the
following: 34 for the TCP, 33 for the SqCP, and 10 for the
stripes solution.

We will study the mean-field phase diagram of the kind
of Lifshitz’s models previously described using the canon-
ical ensemble. Since we are exclusively interested in the
ground-state properties, the phase diagrams will be calculated
after an energy minimization process considering the set of
possible solutions described in Table I. We further simplify
our analysis considering that only pure phases are possible.
Consequently, coexistence regions are not presented in our
simplified phase diagrams even when all the transitions ob-
tained are first order. This is a common simplification when
we are working with quantum gas models in which coexis-
tence regions are expected to be narrow.

In Fig. 5(a) the results of the minimization are shown
for a class of potentials given by the following set of
nmax = 10 characteristic values: v̂(0) = 20, v̂(

√
3k0) = −0.9,
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FIG. 5. Ground-state phase diagrams in the ρλ2U vs v̂(q0)
plane for the two families of potentials given by Eq. (2), using
nmax = 10 (a) and nmax = 8 (b). The parameters of the potential

are as follows. (a) σ = 1.2, q0 =
√

2 − √
3k0, while being sub-

jected to the constraints v̂(0) = 20, v̂(
√

2k0 ) = −0.9, v̂(
√

3k0) = 5,

v̂(
√

3 + √
2k0 ) = −1, in units of |v̂(k0)|. The insets display two

configurations referring to the TCP [ρλ2U = 1 v̂(q0)/|v̂(k0 )| = 0.1]
and QCP [ρλ2U = 1 v̂(q0)/|v̂(k0 )| = 0.4], respectively. Configura-
tions have been obtained solving numerically the Gross-Pitaevskii
equation (see Sec. VI). (b) σ = 1, q0 = 0, while being subjected to
the constraints v̂(

√
2k0 ) = −0.9, v̂(

√
3k0 ) = 5.0, in units of |v̂(k0)|.

v̂(
√

2k0) = 5, and σ = 1.2; v̂(
√

2 − √
3k0) ∈ [0, 1/2] is left

as a free parameter.

It can be observed that, for low values of v̂(
√

2 − √
3k0),

as the product ρλ2U is increased there is a transition from the
homogenous superfluid (SF) phase to the TCP. This means
that for such pair interaction potentials the TCP is favored
over the QCP [see Fig. 5(a)]. However, as this quantity is

increased up to some critical value of v̂(
√

2 − √
3k0), a region

of stability of the QCP at intermediate values of ρλ2U is
developed.

Interestingly enough, the previous results show that large

values of v̂(
√

2 − √
3k0) do not eliminate the stability of the

QCP. This fact suggests that a low value of v̂(
√

2 + √
3k0) is

not actually a necessary condition for the stability of the QCP
beyond the single-mode approximation. It implies that we can
further reduce the order of the polynomial considered in the
definition of Eq. (2). This is related to the fact that the dis-
tribution of modes forming the QCP solution is much denser
than the one we have for a periodic lattice. Consequently, there
is a greater number of modes with wave vectors close to the

optimal ones, which increase significantly the stability of the
solution.

Considering the discussion above, we analyze now the case
of a simpler model with nmax = 8. As in the previous case all
free parameters Dn will be determined from the characteristic
values of the potential: v̂(

√
2k0) = −0.9, v̂(

√
3k0) = 5.0, and

σ = 1, while v̂(0) ∈ [70, 120] was taken as the free param-
eter. The results of the minimization process are shown in
Fig. 5(b).

As in Fig. 5(a), the QCP corresponds to the most stable
phase over a wide ρλ2U region. However, it can be noticed
that there is not a direct transition from the homogeneous SF
phase to the QCP. Instead, there is a narrow region between
these two phases in which the TCP is the most stable phase.
Additionally, for large enough values of ρλ2U , there is always
a transition to the SqCP.

V. STABILITY OF THE QCP

To analyze the stability of the QCP with respect to small
perturbations of the form of the potential, we consider the
energy per particle given in Eq. (6) for arbitrary Ansätze of
the ground-state wave function, which can be recast as

E

N
= 〈φ| T̂ |φ〉 + u

2
A〈φ2|v(x)|φ2〉, (9)

where the brackets in the above equation are given
by 〈φ|T̂ |φ〉 = −1/2

∫
dxφ(x)∇2φ(x) and 〈φ2|v(x)|φ2〉 =∫

dxdx′φ2(x)v(x − x′)φ2(x′), respectively. We can notice
that the first and second terms on the right-hand side of Eq. (9)
correspond to the average kinetic and potential energy per
particle, while the parameter u is shorthand for the product
ρλ2U .

Let us assume that for a pair interaction potential v̂0(k),
the QCP is the lowest energy state per particle in the interval
u ∈ (u1, u2). As a consequence, in this interval, εq(u) < ε2(u),
where εq(u) and ε2(u) represent the energy per particle of the
QCP and that of a secondary phase, respectively.

In the presence of a small perturbation δv̂(k) of the pair
interaction potential, the energy per particle of the QCP yields

εq = εq,0({c j}, k0) + u

(
δv̂(0)b2

0 + ∑
j �=0 δv̂(k j )b2

j/2
)

2
(
1 + 1

2

∑
j �=0 c2

j

)2 ,

(10)

where εq,0({c j}, k0) stands for the energy function of the QCP
in the absence of perturbation, {c j} is the set of Fourier co-
efficients of the QCP solution of the full problem, and k0 is
the corresponding modulation wave vector. We then expand
the energy per particle εq of Eq. (10) up to first order in
δv̂(k), considering first that the {c j} and k0 corresponding
to the optimal solution of the perturbed problem can be also
expanded in powers of δv̂(k). After some algebra we obtain

εq = εq,0({c j,0}, k0,0)

+u

(
δv̂(0)b2

0,0 + ∑
j �=0 δv̂(k j,0)b2

j,0/2
)

2
(
1 + 1

2

∑
j �=0 c2

j,0

)2 , (11)

where {c j,0} and k0,0 represent the optimal Fourier amplitudes
and modulation wave vector of the unperturbed problem,
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respectively. Here, we have already taken into account that
∂c j εq,0({c j,0}, k0,0) = 0 and ∂k0εq,0({c j,0}, k0,0) = 0, as well as
the fact that the lowest-order corrections to c j and k0, corre-
sponding to the optimal solution of the perturbed problem, are
linear in δv̂(k).

The unperturbed problem could admit, in principle, more
than one solution of the same kind. Considering that our
analysis relies on the stability of the solutions of the original
problem against perturbations, a required condition is the exis-
tence of a finite energy gap between the energy corresponding
to the optimal solution and those corresponding to any other
solutions of the same kind. If such a gap exists, then it is
always possible to use perturbation theory around the optimal
solution of the unperturbed problem for small enough δv̂(k).
The result obtained for the energy correction of the optimal
QCP solution is also valid for other phases, since at any point
we have taken advantage of the particular form of the QCP
solution. The corrected energy per particle as a function of the
parameter u will be then

εq(u) = ε0
q (u) + u

2
A
〈
φ2

q,0

∣∣δv(x)
∣∣φ2

q,0

〉
,

ε2(u) = ε0
2 (u) + u

2
A
〈
φ2

2,0

∣∣δv(x)
∣∣φ2

2,0

〉
. (12)

Now it is possible to compute, up to first order in δv(x),
the solution of the equation εq(u) = ε2(u), which gives us the
location of the phase boundary after perturbing the pair inter-
action potential. Considering that at u = u1, ε0

q (u1) = ε0
2 (u1)

holds, we conclude that up to first order in δv(x) the correction
to the phase boundary position reads

δu = u1

2

(
A
〈
φ2

2,0

∣∣δv(x)
∣∣φ2

2,0

〉 − A
〈
φ2

q,0

∣∣δv(x)
∣∣φ2

q,0

〉)
(
∂uε0

q (u1) − ∂uε
0
2 (u1)

) . (13)

This result shows that, if for a specific v̂(k) the QCP cor-
responds to the ground state of the system in a certain finite
region of the parameter ρλ2U , then arbitrary small enough
perturbations of v̂(k) will not destroy the stability of the QCP.

VI. SUPERSOLIDITY WITHIN THE QCP

The supersolid phase is a state of matter that breaks both
continuous translational and global U(1) symmetries, exhibit-
ing simultaneously a crystalline order and an off-diagonal
long-range order [29,53]. Many efforts from the theoretical
perspective [28,29,53–58] as well as several low-temperature
experiments with dipolar quantum gases [59–64] have been
realized in recent years to understand the properties and the
existence of these density-modulated superfluid systems.

In order to analyze whether a supersolidlike phase could be
stabilized within the QCP, we consider two parameters quan-
tifying both superfluid and quasicrystalline order. We employ
Leggett’s criterion [55,65], which allows us to compute an
upper bound for the superfluid fraction as

fs = Minθ

[∫
d2x
A

1∫ L
0

dx
L ρ(x′, y′)−1

]
, (14)

where the function ρ(x, y) = A|φ0(x, y)|2 and A and L stand
for the area and linear dimension of the system, respec-
tively. In this equation, we should take the minimum with

respect to all possible directions defined by the angle θ , tak-
ing x′ = x cos θ − y sin θ and y′ = x sin θ + y cos θ . Instead of
proceeding directly with the numerical calculation of fs it is
convenient first to discuss some mathematical properties of
the quantity defined in Eq. (14), which can lead to a simplifi-
cation of the numerical evaluation of fs.

Let us begin analyzing the quantity
∫

dx/Lρ−1(x′, y′) in
the limit L → ∞, which is in principle a function of y and θ .
If φ0(x) is a periodic or quasiperiodic function, then ρ−1(x)
will have the same symmetry properties of φ0(x), and con-
sequently the same full set of Fourier modes can be used in
general to expand ρ(x) and ρ−1(x).

Therefore, without loss of generality, for configurations for
which

∫
d2x
L2 ρ(x)−1 is finite, ρ−1(x) can be written as

ρ−1(x′, y′) = d0 +
∑
i �=0

di cos[(kix cos(θ ) + kiy sin(θ ))x

+ (kiy cos(θ ) − kix sin(θ ))y], (15)

where {kix, kiy} represent the Cartesian components of ki and
the di’s represent the Fourier amplitudes of ρ−1(x, y), defined
in the usual way. Proceeding with the formal integration along
the x variable, and taking L → ∞, we find∫ L

0

dx

L
ρ−1(x′, y′) = d0+

∑
i �=0

di cos[(kiy cos(θ )−kix sin(θ ))y]

× δ(kix cos(θ ) + kiy sin(θ ), 0), (16)

where δ(a, b) stands for the Kronecker delta function. This
result implies that, unless θ is selected to be one of the pos-
sible discrete values for which kix cos(θ ) + kiy sin(θ ) = 0, the
result of the integration is a constant equal to d0.

Now we can take advantage of the Schwarz inequality,
which allows us to conclude directly that∫

dy

L

1∫
dx
L ρ−1(x′, y′)

� 1∫ dy
L

∫
dx
L ρ−1(x′, y′)

. (17)

Considering then the form of Eq. (16), or even Eq. (15), it is
straightforward to conclude that∫

dy

L

1∫
dx
L ρ−1(x′, y′)

� 1

d0
. (18)

Since this inequality holds for all θ and only becomes an
identity when θ corresponds to one of those values which
makes zero the oscillatory dependence in y of the right-hand
side of Eq. (16), we can conclude that

Minθ

[∫
dy

L

1∫
dx
L ρ−1(x′, y′)

]
= 1

d0
. (19)

This means that the superfluid fraction given by Eq. (14) is
fs = 1

d0
. As a consequence, from now on we will adopt this

expression as our definition of the superfluid fraction.
We observed that for large enough ρλ2U , numerical issues

in the variational minimization process eventually produce
spurious solutions with nodes, leading to a vanishing super-
fluid fraction. This effect is not present in the full numerical
solution of the Gross-Pitaevskii equation [50] (see the follow-
ing discussion).
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The crystalline order of the modulated patterns can be
characterized by using the so-called density contrast, defined
as [61–63]

C = max [ρ(x)] − min [ρ(x)]

max [ρ(x)] + min [ρ(x)]
. (20)

For states without density modulations, the parameter C van-
ishes. On the other hand, for strongly density-modulated
states, C is close to unity.

In the case of quasicrystalline patterns, the determination
of the contrast has the inherent complication related to the
fact that the maximum and minimum of the profile density are
not well-defined single values. Instead, in that case, there is
a distribution of local maxima and minima over the system,
and in general, the calculus of the absolute minimum and
maximum of the profile density is a difficult task.

In our case, given the form of the Ansätze for the single-
particle wave function, the absolute maximum is located at the
origin of the coordinate system. However, the determination
of the absolute minimum of the density profile is far from
trivial. Because of this, we adopt the simplifying criterion of
taking the minimum of the density profile as that of the local
minimum closest to the absolute maximum. Such a value can
be determined numerically by a simple minimization proce-
dure of ρ(x). In Fig. 6 the behavior of both the superfluid
fraction fs and the density contrast C is presented for the
model given by Eq. (2) with nmax = 10, considering two dif-

ferent inputs for the characteristic value v̂(
√

3 − √
2k0). The

obtained results confirm in both cases a sequence of super-
fluid and supersolidlike QCPs as ρλ2U is increased from low
values. A discontinuous phase transition is clearly observed
from the homogeneous SF phase to the supersolidlike QCP
at ρλ2U ∼ 0.23. As a test for the validity of the mean-field
(MF) variational observations presented in Fig. 6(a) we have
computed fs and C for this case from numerical simulations
of the Gross-Pitaevskii equation (GPE). We observe that the
first-order transition is slightly shifted with respect to the
variational value. After this transition region the agreement
obtained between analytical and numerical simulation results
is excellent giving in this way a strong validation of our
variational study.

For the numerical simulations, we considered the solution
of the GPE in imaginary time in order to project the ground
state from a given Ansatz. Written with the aforementioned
dimensionless quantities, the imaginary-time GPE is

∂φ(r, τ )

∂τ
=

[
1

2
∇2 − N

∫
dr′v(r − r′)|φ(r′, τ )|2

]
φ(r, τ ),

(21)

where φ is normalized to unity. The convolution integral re-
lated to the nonlocal interaction is carried out in Fourier space:

F
[∫

dr′v(r − r′)|φ(r′, τ )|2
]

= v̂(k) × n̂(k, τ ). (22)

The Fourier transform of the interaction potential v̂(k)is given
in Eq. (2), and we implement numerical fast Fourier trans-
forms (FFTs) of the density n̂ = F[|φ|2]. After computing
Eq. (22) we apply an inverse FFT to obtain the convolution in

b
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FIG. 6. Density contrast and superfluid fraction as a function of

ρλ2U , setting v̂(
√

3 − √
2k0 ) = 5 (a) and v̂(

√
3 − √

2k0) = 10 (b).
The rest of the characteristic parameters of the potential are the
same as in Fig. 2(a). Two different phases can be distinguished: the
superfluid phase in which C = 0 and fs = 1 and the supersolidlike
QCP in which C > 0 and 0 < fs < 1. In (a), squares and triangles in
green correspond to the superfluid fraction and to the density contrast
computed from the direct numerical solution of the Gross-Pitaevskii
equation, respectively. Additionally, the black arrow marks the tran-
sition from the superfluid to the supersolidlike QCP also obtained
from Gross-Pitaevskii simulations.

Eq. (21). In all simulations the initial Ansätze were Gaussians
centered at the middle of the simulation box. The numerical
solution of the GPE using adaptive Runge-Kutta algorithms
and the FFTs were implemented in XMDS2 software [66]. The
sizes of the simulation box were chosen to fit the Ansatz that
minimizes the VMF energy for a given set of parameters.

Now we focus on the excitation properties of the homo-
geneous phase in the presence of potentials stabilizing the
QCP. Within the Bogoliubov theory, the low-energy excitation
spectrum within the superfluid phase can be written as [50,67]

ε(k, ρλ2U ) =
√

k2

2

(
k2

2
+ 2ρλ2U v̂(k)

)
. (23)

In Fig. 1(d) the excitation spectrum for several values of ρλ2U
is shown. For comparison, a plot of the v̂(k) used in these
calculations is also included.

The sequence of local minima in ε(k), for intermediate
values of ρλ2U , closely reproduces the sequence of local min-
ima in v̂(k). At large enough values of ρλ2U , the excitation
spectrum develops several roton minima corresponding to the
various minima of v̂(k). Due to the competition between the
kinetic energy term and the pair interaction potential in ε(k),

134521-8



EXPLORING QUANTUM QUASICRYSTAL PATTERNS: A … PHYSICAL REVIEW B 105, 134521 (2022)

the dominant roton minimum position changes from a value

close to
√

2 − √
3k0 to a value close to k0 as the density in-

creases, which leads to the destabilization of the homogeneous
phase at a wave vector which is essentially k0. As expected,
since the homogeneous-to-modulated transition is first order,
we already know that the limit of stability of the homogeneous
phase should be located at values of ρλ2U higher than those
corresponding to the boundary of the homogeneous phase
previously determined (see Fig. 1).

Another quantity of interest which is accessible from the
Bogoliubov theory is the so-called normalized condensate
depletion fnc characterizing the noncondensed fraction of the
system

fnc = 1

ρ

∫
d2k

(2π )2

1

2

[
k2

2 + ρ0U v̂(k)

ε(k, ρ0U )
− 1

]
, (24)

where ρ0 represent the particle density of the conden-
sate [68,69]. The noncondensed fraction can be determined
self-consistently from the relation ρ0 = ρ(1 − fnc), a con-
dition that guarantees the proper normalization of fnc, i.e.,
0 � fnc � 1.

In Fig. 1(e), a phase diagram of ρλ2 versus U is presented
describing the Bose-Einstein condensation in the homoge-
neous state for the model given by Eq. (2), using the same set
of characteristic values considered in Fig. 2(a). A crossover of
fnc from low to high values can be observed as U is increased.
We have highlighted with a green curve the boundary of the
region of the high noncondensed fraction ( fnc > 0.9). This
boundary is not monotonic, revealing a nontrivial interplay
between the density and the potential strength.

VII. CONCLUSIONS

In this paper we analyzed under which conditions a clus-
ter quasicrystal phase is self-stabilized in a 2D system of
interacting bosons at zero temperature. We used the VMF
approach firstly to identify the necessary ingredients to stabi-
lize a dodecagonal quasicrystal modulated pattern in a model
interacting through a Lifshitz-type potential and, in a second
stage, to systematically study the complete phase diagram of
these models varying the form of the pairwise potential. Our
numerical studies considered several Ansätze for the modu-
lated phases. We determined that, depending on the form of
the pair interaction potential, the cluster QCP can be stabilized
in a wide ρλ2U interval, ranging from the boundary of the
homogeneous phase to the classical regime at large ρλ2U
values.

This scenario suggests the possibility of the existence of
a supersolidlike QCP and a classical QCP in which the su-
perfluid fraction is finite and zero, respectively. The stability

of this QCP against small variations of v̂(k) was also con-
firmed. Additionally, we showed that, once the QCP is stable
for a given v̂(k) in a certain region of the parameter ρλ2U ,
small enough variations δv̂(k) in the pair interaction potential
smoothly change the ρλ2U region of stability of the QCP.

The excitation properties within the homogeneous phase
for models stabilizing the QCP were studied by monitoring
the Bogoliubov spectrum for a wide interval of ρλ2U . In
general, a structure of local minima was observed that closely
follows the one observed for the pair interaction potential.
For ρλ2U close to the limit of stability of the homogeneous
phase, a dominant roton minimum is developed at the wave
vector corresponding to the main minimum of the pair inter-
action potential (k = 1), signaling an instability towards the
formation of modulated patterns with this characteristic wave
vector. We found that the limit of Bogoliubov stability of the
homogeneous phase is rather close to the actual boundary of
the superfluid and homogeneous phases.

We studied simultaneously the superfluid fraction fs,
estimated using a well-established adaptation of Leggett’s cri-
terion [55,65], and the density contrast C. Our results suggest
that, close to the superfluid phase boundary (see Fig. 6), the
QCP hosts a supersolid state in which quasicrystalline order
and superfluidity simultaneously emerge [33]. The combina-
tion of a many-mode variational minimization and an accurate
calculation of the Leggett’s superfluid fraction allowed us
to distinguish also the phase boundary of this supersolidlike
QCP.

Finally, we notice that, although we focused on a selected
class of interactions, the methodology applied here is general
and can be used with other types of potentials. Our results
provide a solid basis for the search for physical systems where
tunable two-body interactions are capable of stabilizing many-
body quantum quasicrystal phases of the kind described in this
paper.
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