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Anomalous acoustoelectric effect induced by clapping modes in chiral superconductors
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Clapping modes, which are relative amplitude and phase modes between two chiral components of Cooper
pairs, are bosonic collective modes inherent to chiral superconductors. These modes behave as long-lived bosons
with masses smaller than the threshold energy, 2A, for decay into unbound fermion pairs. Here, we clarify
that the real/imaginary clapping modes in chiral superconductors directly couple to acoustic wave propagation
when the weak particle-hole asymmetry of the normal state quasiparticle dispersion is taken into account. The
clapping modes driven by an acoustic wave generate an alternating electric current, that is, the acoustoelectric
effect in superconductors. Significantly, the clapping modes give rise to a transverse electric current. When the
sound velocity is comparable to the Fermi velocity, as in heavy fermion compounds, the transverse current is
resonantly enhanced at energy below the threshold for continuum excitations. This resonance provides smoking-

gun evidence of chiral superconductivity.
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I. INTRODUCTION

Spontaneous breaking of the time-reversal symmetry
(TRS) is an important concept in modern condensed mat-
ter physics. The chiral superconducting state is an example
of such an ordered state with spontaneously broken TRS,
where electrons in the ground state form Cooper pairs with a
fixed orbital angular momentum, A (k) o (ky + iky)" (v € Z)
[1-3]. The integer, v, in the chiral superconducting order
is the chirality of Cooper pairs associated with the orbital
angular momentum. This additional symmetry breaking en-
riches topological properties and transport phenomena in
chiral superconductors [4]. For instance, such systems have
been recognized as TRS-broken topological (Weyl) supercon-
ductors, where the chirality of the Cooper pairs is a source
of nontrivial topology [5]. In turn, TRS-broken topological
superconductors can give rise to chiral Majorana fermion
modes, which are essential to the field of fault-tolerant
topological quantum computation [6—10]. Consequently, un-
equivocal identification of chiral superconducting order in
candidate materials remains a high priority.

Over the last decade, chiral superconductivity has been
considered in many heavy fermion compounds, such as
URu,Si,, UPt;, U;_,Th,Be;3, UCoGe, URhGe, and UGe,
[11-24]. In URu,Si,, chiral d-wave pairing was supported
by the colossal fluctuation-induced Nernst effect above T,
which stems from with scatterings of normal electrons
through preformed chiral Copper pairs [25,26]. Moreover,
UPt; and U;_,Th,Be;; are spin-triplet superconductors
with multiple superconducting phases [27-34]. The TRS-
broken superconducting state appears at low temperatures
and low magnetic fields for UPt;, and at low tempera-
tures and in the range 0.019 < x < 0.045 for U;_,Th,Bes
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[14,22,35-40]. The ferromagnetic materials, UCoGe, URhGe,
and UGe;, are also candidates for chiral superconductors [41].
These materials have strong magnetic Ising anisotropy and
nonunitary spin-triplet Cooper pairing compatible with fer-
romagnetism [42—-46]. The angle-resolved nuclear magnetic
resonance (NMR) measurements in UCoGe suggest nonuni-
tary chiral order with the d-vector represented by d(k) ~
(ark, + iaxky, asky, + iask,, 0), where a; (i =1,2,3,4) are
real coefficients [47,48]. Recently, nonunitary chiral super-
conductivity was also proposed in UTe,, where the normal
state is paramagnetic but superconductivity survives even at
extremely high magnetic fields over 40 T [49-52]. The super-
conducting state from the paramagnetic normal state shares
many common features with ferromagnetic superconductors,
including strong magnetic Ising anisotropy and the reentrant
superconducting transition [53,54].

The chirality of Cooper pairs, v, is reflected in the anoma-
lous transverse transport coefficients. It is responsible for
the anomalous thermal Hall effect and the fluctuation-driven
Nernst effect [1,25,26]. The mechanisms of the anomalous
thermal Hall effect are classified into (i) intrinsic, which arises
from the Berry curvature, and (ii) extrinsic, via asymmet-
ric impurity scattering [55-60]. In chiral superconductors,
the fluctuation-driven Nernst effect stems from skew scatter-
ing via preformed chiral Cooper pairs, qualitatively different
from the conventional fluctuation-induced Nernst effect in
superconductors [61]. Here, we propose transport phenom-
ena mediated by long-lived massive bosonic collective modes
(CMs) of the superconducting order parameter to identify
chiral superconductors. We show that the coupling of the
acoustic waves traveling through a chiral superconductor to
these modes generates a transverse alternating (ac) current.
This is reminiscent of the acoustoelectric effect (AEE), a

©2022 American Physical Society


https://orcid.org/0000-0002-9401-4862
https://orcid.org/0000-0001-9277-2531
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.134520&domain=pdf&date_stamp=2022-04-25
https://doi.org/10.1103/PhysRevB.105.134520

TAIKI MATSUSHITA et al.

PHYSICAL REVIEW B 105, 134520 (2022)

generation of an ac electric current by propagating acoustic
waves in metals that was extensively studied since the 1950s
[62-66]. Since the transverse current we find is due solely to
the chirality of the superconducting order, with no applied
magnetic field, we refer to this effect as anomalous acous-
toelectric effect (AAEE). This effect is enhanced at resonant
frequencies in heavy fermion materials, where the sound ve-
locity is comparable to the Fermi velocity.

Bosonic CMs directly reflect the symmetry of the order
parameter, providing another probe of chiral superconductiv-
ity [67]. In chiral superconductors, the characteristic modes
are relative amplitude and phase oscillations between the
two chiral components. In analogy with superfluid *He-A,
these are referred to as real and imaginary clapping modes,
respectively [67]. In the weak coupling limit, the clapping
modes always exist in any chiral superconductors with orbital
angular momentum |v| > 1. Coupling of CMs to external
fields depends on the symmetry of the order parameter. In
chiral superconductors, electromagnetic waves directly couple
to the clapping mode, providing high resolution spectroscopy
of bosonic excitation spectra in chiral ground states [68—75].

Here we consider the response of clapping modes to an
acoustic wave, which is a dynamical crystal deformation, and
study the resulting transport phenomena inherent to chiral su-
perconductors. The advantages of acoustic waves are twofold:
(i) the acoustic wave is free from the screening effect by the
Meissner current and hence can be utilized as a bulk probe,
and (ii) linear coupling to the clapping modes depends on the
effective mass of normal electrons. Indeed, coupling of the
sound waves to clapping modes was studied in Refs. [70,76]
in the context of Sr,RuQy,, with the conclusion that the effects
are weak due to the mismatch between the speed of sound,
vy, and the Fermi velocity, vg. Large effective mass in heavy
fermion materials makes the two velocities comparable. We
show that in this limit the clapping modes are resonantly
excited by the acoustic waves.

Using the augmented quasiclassical transport theory incor-
porating the weak particle-hole asymmetry (PHA) of normal
electrons, we demonstrate that the acoustic waves propagating
in chiral superconductors linearly couple to clapping modes
through the PHA, and the clapping modes generate a trans-
verse electric current characteristic of the AAEE, see Fig. |
[77]. The AAEE is a direct consequence of the formation
of chiral Cooper pairs in the superconducting ground state,
and the resonant behavior of the transverse current provides a
direct bulk spectroscopy of chiral superconductivity in heavy
fermion systems.

The organization of this paper is as follows. In Sec. II,
we introduce a model of chiral superconductors and clapping
modes as the low-lying collective excitations. In Sec. III,
we present the quasiclassical transport theory incorporating
the weak PHA, which is a powerful tool for studying trans-
port phenomena in superconductors. In Sec. B, the linear
response theory for acoustic waves is described on the basis
of the Keldysh Green’s function, and the acoustoelectric con-
ductivity tensor is given in terms of the contributions from
Bogoliubov quasiparticles (QPs) and CMs. In Sec. IV B, we
present the numerical results on the dispersions of bosonic
CMs and the acoustelectric conductivity tensor in chiral p-
wave superconductors. We demonstrate that the acoustic wave
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FIG. 1. Schematic image of the AAEE in chiral superconductors:
Clapping excitations of chiral Cooper pairs are driven by propagating
acoustic waves, leading to transverse electric current.

propagation linearly couples to the clapping modes through
the PHA of the density of states (DOS), giving rise to anoma-
lous transverse current. We summarize our results in Sec. VI.
We describe the technical details on how to incorporate the
weak PHA of the QP DOS into the quasiclassical Green’s
function and how to obtain the CMs and physical observables
in Appendices A and C.

II. MODEL AND BASICS OF CHIRALITY FLUCTUATIONS

Let us introduce a simple model of chiral superconductors
and the clapping modes as low-lying bosonic excitations. In
this paper, we consider the two-dimensional spinless chiral
p-wave state on the cylindrical Fermi surface in equilibrium,

Aeq (ky + iky)

Ak) = o

ey

where without loss of generality, we choose the equilibrium
gap amplitude to be real, Ay € R by the gauge transfor-
mation. The pairing state in Eq. (1) has a definite chirality
v = +1 associated with the orbital angular momentum. For
the cylindrical Fermi surface, the formation of the chi-
ral Cooper pairs opens an isotropic excitation gap in the
fermionic energy spectrum and generates the nontrivial Berry
flux in the momentum space [5,7,78,79]. This is a simple
model of TRS-broken topological superconductors with a
nontrivial Chern number.

The chiral ground state is degenerate with respect to
chiralities v = £1, and there exists another ground state,
A(k) o< (ky — iky) with v = —1. We assume here that in
equilibrium a uniform chiral state of Eq. (1) without chi-
ral domains is realized. Then, the linear fluctuations of
the order parameter around equilibrium are represented by
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SAk, Q) = Ak, Q) — A(k),

A Q) + k) SACNQ)(K, — iky)
+ )
kp kF

SAk, Q) =
2

where Q = (w, q) is the frequency (@) and the center-of-mass
momentum (gq) of Cooper pairs. The subscript of the order pa-
rameter fluctuations, § A (4, represents the chirality of Cooper
pairs. Note that § A corresponds to the amplitude and phase
fluctuations in the equilibrium order with chirality v = +1,
and 8 A(_) has the opposite chirality to the equilibrium order
and can be understood as a Berry phase fluctuation.

The CMs in homogeneous superconductors are classified
in terms of parity under the particle-hole exchange, C = +1.
This classification gives four modes in the chiral superconduc-
tors:

8Dc(Q) = 6A+)(Q) + CSAL(Q), 3

8E6c(Q) = SA((Q) + COAL_(Q). )

The 6D+ modes are CMs of Cooper pairs with chirality
v = +1, corresponding to the conventional amplitude and
the phase modes, respectively. These modes appear due to
the broken U (1) gauge symmetry and exist even in conven-
tional superconductors. The odd-parity D~ mode, the phase
mode, is the Nambu-Goldstone mode associated with the
broken U (1) gauge symmetry, which is gapped out by the
Anderson-Higgs mechanism [80,81]. The even-parity 6Dy
mode, the amplitude mode, is known as the Higgs mode
with the mass gap, 2|A¢q|. The mass gap corresponds to the
fermionic continuum edge, beyond which Cooper pairs decay
into two fermions. The depairing of Cooper pairs introduces
an intrinsic lifetime of the bosonic modes. The §&4. modes are
CMs of Cooper pairs with opposite chirality v = —1, inherent
to chiral superconductors. The & and &< modes in chiral
superconductors are known as real and imaginary clapping
modes, respectively, in analogy with the A phase of superfluid
3He. The mass gaps of two modes are degenerate at «/§|Aeq|,
in the cylindrical Fermi surface and the weak coupling limit,
and this degeneracy is lifted by applying the anisotropy of the
superconducting gap [75]. Note that the mass gaps of two §&1
modes are always smaller than the depairing energy 2|A.q|
and thus these modes behave as long-lived bosons. The long
lifetime of the &1 modes enables one to capture the signal of
the &, modes by spectroscopies or transport measurements.
As the two clapping modes are inherent to chiral superconduc-
tors, a direct probe of the §&+ modes provides a fingerprint of
chiral Cooper pairs.

To capture the essence of the interplay of CMs and electric
charge transport, in this paper, we consider the simple model
for chiral p-wave superconductors. We would, however, like
to emphasize that the clapping modes, which are the key
ingredients responsible for the AAEE, exist in any chiral
superconductor with orbital angular momentum |v| > 1 and
their mass gaps are always degenerate at w = \/iAeq in the
weak coupling limit [82]. Hence, our theory on the AAEE
induced by the clapping modes is applicable to a variety of
chiral superconductors.

III. QUASICLASSICAL TRANSPORT THEORY

In our calculations, we employ the quasiclassical theory,
which provides a powerful tool for describing supercon-
ducting phenomena [77]. Typical length and energy scales
in the superconducting state are the coherence length, §, =
vp/2mkgT;, and the excitation gap, A.q ~ kgT.. At weak
coupling, both of these and other relevant parameters, such
as temperature 7', external potentials V, and characteristic
frequencies w, are very small relative to the atomic scales,
which are given by Fermi temperature 75, Fermi energy e,
and Fermi momentum kg. This difference in scales allows
one to perform an asymptotic expansion of full many-body
propagators in small parameters 7' /Tr, V/€g, w/€g, integrat-
ing out all quantities that vary rapidly on the atomic scales,
determining the envelope functions that contain information
about the observables. Similarly, for external fields varying
at wave vectors such that g~' > & > kg, the corresponding
quasiclassical theory is local.

Traditionally, quasiclassical methods ignored the PHA near
the Fermi surface. It is, however, essential for our analysis,
and below we show that the leading-order correction from the
weak PHA results in the linear coupling of the clapping modes
to acoustic waves, which drive the transverse electric current.

A. Quasiclassical transport theory

The central object of the quasiclassical theory is the qua-
siclassical Green’s function, g(e, kg, x,t). It can be thought
of as the envelope of the full Green’s function, which does
not account for the rapid oscillations at the Fermi wavelength
and timescales of the order of the inverse bandwidth, but
instead gives an effective low-energy description of transport
phenomena. Technically, it is obtained from the full Green’s
function, G(e, k,x,t), where x and ¢ are the center-of-mass
coordinate and time, and k and ¢ are the relative momentum
and frequency, respectively, by integrating G over a momen-
tum shell |&;| = vglk — kg| < €. K €F, SO

+e€c
g(e,kp,x,t)=/ dsk%@é(e,k,x,t). (5)

Since the Green’s function is strongly peaked near the Fermi
surface, its quasiclassical counterpart depends only weakly on
the cutoff energy, €., and the high-energy contribution simply
renormalizes the coupling constants (such as the effective
mass or the superconducting pairing) that enter the low-energy
description.

For superconductors, Eq. (5) is a matrix in the spin,
particle-hole (Nambu), and Keldysh (retarded/advanced)
space. Hereafter, we assume that the spin structure of the
superconducting order, described by the d vector, is fixed by
the spin-orbit interaction, and therefore does not explicitly
consider the spin degrees of freedom. We denote 4x4 (2x2)
matrices in Keldysh (Nambu) space as a (a). If a matrix a is
only defined in the Nambu space, the corresponding matrix
in the Keldysh space is assumed to be ¢ = ¢ ® 1. In Eq. (5),
t, is the z component of the Pauli matrix in the Nambu
(particle-hole) space. In the same equation, N(¢) is the DOS
in the normal state, and & is the kinetic energy of electrons
measured with respect to the Fermi energy.
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To take account of the leading-order correction to the qua-
siclassical limit, we expand the Green’s function in the small
quantity (kp&p)~! < 1:

o0
ge ke, x,1) =Y Zu (e, ke, x,1). (6)
n=0

At each order, we denote the Green’s function as

g & gn  fun
g(n)=<'(”> -<">), g§;)=< A )), ™)
0 g?") _f(n) gél)

where the superscript X = R, A, K represents the retarded,
advanced, and Keldysh functions, respectively.

The n = 0 component in Eq. (6) corresponds to the stan-
dard quasiclassical propagator,

gy (€, kg, x,1) = /dskfzé(e, k,x, 1), 8)

and describes the dynamics of QPs and condensates in the
quasiclassical limit, (kp&))~' = 0. This quasiclassical limit
propagator obeys the Eilenberger equation:

[€, — A — Gimp — Vex B0)]o + ivE - VE0) =0. (9
In Eq. (9), we introduced the short-hand notation, [A, B], =
Ao B — BoA, defined with the o product [83]:

i /
AoB=exp [5(3531/ - ae’at):|A(67 DB(e' 1 )e=er 1= (10)

In this paper, we set i = kg = e = 1. The Green’s function in
the quasiclassical limit is supplemented by the normalization
condition, Zf, = —m* since g, also satisfies Eq. (9). The
superconducting order parameter matrix, A, is defined as

é(kp,x,t)=<_AT(£F’x,t) A(kpdx,t)) (an

In the following, we assume a clean limit and set the impurity
self-energy, &imp = 0 since we focus on the (long wavelength)
CMs.

The external potential, Uex in Eq. (9), results from the
dynamical crystal deformation induced by an acoustic wave.
Crystal deformation changes the interatomic length and mod-
ifies the hopping integral of normal electrons and the electron
energy [62,84]. In the long-wavelength limit [typical wave-
length of the sound wave in crystals is 1.0x 1072 cm, much
longer than the lattice constants O(1 A)], the effects on the
electrons can be described by the effective one-particle defor-
mation potential, ve (x, t), proportional to the symmetrized
strain tensor, u;; = %(a,»u ; + 0ju;), where u is the displace-
ment vector [66]. The deformation potential induced by the
acoustic wave is given by

Ve (X, 1) = Vex (X, 1)T) = Vexo €Xp [i(q - X — wt)]z), (12)

where 7, is the 2x2 identity matrix in the Nambu space,
® = vy|q| is the frequency of the acoustic wave with the wave
vector ¢, and vy is the sound velocity.

B. Particle-hole asymmetry in the density of states

We described above the quasiclassical transport theory of
superconductors in the limit (kg&y)~' = 0. The quasiclassi-
cal limit, (kg&y)~! =0, postulates that the Fermi surface of
normal electrons is sufficiently large and thus the DOS in
Eq. (6) is replaced by N(eg), and the superconducting order
parameter, and all the potentials have been pinned to the Fermi
surface values. In this paper, we focus on the leading-order
correction from the PHA in the DOS of normal electrons to
the transport coefficients due to the CMs. This corresponds
to accounting for the slope of the DOS at the Fermi en-
ergy, N (E)|e —¢:» in evaluating the propagator, Eq. (6), which,
in turn, induces the weak PHA in superconducting states
[85-87]. Below, we demonstrate that the PHA drastically
changes the linear coupling between external fields and CMs.

While the PHA is very small in conventional superconduc-
tors, the large DOS peak in heavy fermion superconductors
means that the PHA becomes appreciable. In addition, we
emphasize that even small PHA may lead to appreciable ob-
servable consequences. Superfluid *He is a typical example.
The bulk normal *He has a large Fermi surface, and the PHA
contribution can be roughly estimated as A /eg ~ 1073, In the
B phase of superfluid *He, however, it has been predicted that
the PHA correction alters the coupling of the stress tensor
to the order parameter fluctuations, and the real squashing
mode significantly contributes to the attenuation of the lon-
gitudinal zero sound even though the linear coupling of such
mode to zero sound is suppressed by the approximate particle-
hole symmetry [88,89]. This mode has been detected as a
sharp resonant peak in the absorption spectrum of longitudinal
sound [90-93]. Hence, the PHA correction to the collective
dynamics of Cooper pairs makes a significant contribution in
clean superconductors and superfluids even when the factor
AJep ~ 1/(kg&p) is small.

The leading-order correction due to the PHA appears in the
term gy in Eq. (6), and hence we keep this term but ignore
the higher-order corrections, g(,>2). A seeming problem with
expressing the quasiclassical propagator as

&= &0 + 8w, (13)

is that, generally, g(,>1) breaks the normalization condition,
and thus the correction to the Eilenberger equation for g¢,>1),
which is a homogeneous equation, cannot have a unique so-
lution. As shown in Appendix A, however, the leading-order
correction is obtained from the Green’s function in the quasi-
classical limit, g, as

v a v X v v
81 = — et — A — Ve, 8(0)]o+, (14)
261:
where we have introduced the dimensionless material pa-
rameter, a = N: 5 Mg(:” le=ex ~ O(1), and the anticommutator
[A B]OJr =AoB+BoA.

With the quasiclassical Green’s function, the electric cur-
rent is expressed as

_N(GF)/ <vF _Z(_(0)+g(1))]> . (15)

where Tr[- - - ] represents the trace in the Nambu space, the
bracket, (- - -)gs x,.» denotes the Fermi surface average [86,94].
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For the details on the derivation, see Appendix A. The effect
of the PHA is now included (to leading order) into the second
term of Eq. (15). We now calculate the quasiclassical Keldysh
Green’s function as the linear response to the deformation
potential, and obtain the electric current from Eq. (15). Then,
the acoustoelectric conductivity, x;;, is defined as

9 Vex
Ji=xij| — ox )
i

We note that, in addition to the correction considered
above, there also exists a quantum correction to the quasi-
classical transport, Eq. (9). It is obtained from the higher
order contribution of the gradient expansion, which brings
about QP transport phenomena mediated by nontrivial ge-
ometric structures in real and momentum spaces [95]. The
quantum correction is responsible, for example, for the in-
trinsic anomalous thermal Hall effect and negative thermal
magnetoresistivity [95]. However, the geometric phase is not
the primary for the collective dynamics of condensates. In this
paper, therefore, we focus on the effects arising from the weak
PHA.

(16)

IV. ELECTRIC CURRENT AND COLLECTIVE
EXCITATIONS INDUCED BY THE ACOUSTIC WAVE

A. Transverse electric current induced by the acoustic wave

We are now in the position to compute the linear response
of the electric current to the deformation potential, and the
anomalous electric conductivity tensor. We outline the calcu-
lation below, while giving the technical details in Appendix B.

Our starting point is the equilibrium version of the Eilen-
berger equation, Eq. (9), which reads

v

[Efz - Aeq: g(O)eq] =0, (17)

subject to g%o)eq = —m2. The solution of this equation is well-
known, and is given in Appendix B 1. This allows us to
compute the correction to the Green’s function due to the
normal state PHA from the equilibrium version of Eq. (14),
with the result given in Eq. (B6).

We now derive the acoustoelectric conductivity as the lin-
ear response to the deformation potential. Once again, we
separate the contribution without particle-hole anisotropy by
first solving the nonequilibrium equation

[et, — Aeq, 88(0)]o — [8A + Vex, B(0reqlo + ivF - V8Z(0) = 0,
(18)

which includes the dynamical fluctuations of the order param-
eter, §A, which have to be determined self-consistently by
solving the gap equation. We then use this solution to obtain
leading order corrections due to PHA. The details are given in
Appendix B 2.

Using this solution to evaluate Eq. (15), we obtain the elec-
tric current as the sum of two contributions, due to Bogoliubov
QPs and CMs, respectively,

J=Jopr +JcmM, (19)

where the first term is proportional to vexo explicitly, while the
second depends on the deformation potential via the order-
parameter fluctuations, A1 = §A + §A*, see Egs. (B28)-
(B29). In our model, without loss of generality, we consider

the acoustic wave propagating along the x direction, g =
(g, 0). Expressing the order parameter fluctuations via the
CMs using Egs. (2)-(4),

kpSA, = [8D, + 88, ke + i[8D_ — 8E_1ky,  (20)

kA =[8D_ +8E_Tky +i[6Dy — 8, Tky,  (21)

we connect the current to the CM propagators.

Similarly to the current, the acoustoelectric conductivity
tensor is decomposed into the contributions from the Bogoli-
ubov QPs ( XSP) and CMs ( XSM) as

xii=x0 + x5 (22)
where
gp _ iN(ep)v2(Xo + Xl)’ 23)
4w
Xy =0, (24)
oM _ iN(er)vEAeg
XX 8
- - & a 8&E
X [()»1 +A2) + (@0 + ¢1) +], (25)
Vex0  2€F Vex0
N(ep)ViA [ — — 88 a §E_
o DEED | (T — To) o — (g — o) |.
8 Vex0 2€F Vex0
(26)

Here A = |Aeq|2X is the generalized Tsuneto function,
Eq. (B17), the function ¢ is defined in Eq. (B26),
and we introduced the moments of those functions,

T = AR =R D) X = (R =R 2200 D)

as well as ¢, = ((l%f — 1%3)"(,0)FS e As above, angle brackets
denote the normalized Fermi surface average, and n = vr - q.
The second terms of Egs. (25) and (26) arise from the PHA
term of the Keldysh response function. The PHA effect is also
incorporated into the clapping modes (§&E.+).

Equation (23) shows that a propagating acoustic wave gen-
erates QP-mediated longitudinal current. This is an extension
of the AEE in normal metals to the superconducting state,
which always exists regardless of the symmetry of the super-
conducting order [62]. However, the Bogoliubov QPs carry
no transverse current in the clean limit. In addition to the
QP current, Egs. (25) and (26) show that the clapping modes
(864) carry the electric current. In particular, the clapping
modes (664) lead to a transverse electric current, flowing
perpendicular to the direction of propagation of the acoustic
wave. Hence, this anomalous transverse current provides a
direct probe of the clapping modes and carries a fingerprint
of chiral Cooper pairs.

B. Excitation of the collective modes by the acoustic waves

In Egs. (25) and (26), we expressed the acoustoelectric
conductivity tensor using the clapping modes induced by the
acoustic wave. These order-parameter fluctuations have to be
separately determined by solving the superconducting gap
equation under the perturbing potential.
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We now proceed to determine the dispersion of the CMs in
chiral superconductors and show that the clapping mode lin-
early couples to the acoustic wave in the presence of the PHA.

J

Substituting the nonequilibrium Keldysh pair amplitudes into
the gap equation, we obtain the matrix form of the equation for
the order parameter fluctuations as

@’ 44 XO _ VR Goth) i Xl _ g Outha) ﬂ[w2_4A§q xl _ v%qz(xl-i—Xz)]
2 4 2 g 2er 2 4 8D,
DP4AL — 22T PTo—4AETs Rt R PdAL — Rt
a3 _ V- (atha) 0~ 0eq*2 _ VEg~(otr1) aw a7y Vg Gotri) 5&
2 o 4 2 4 2€f [ 2 Ao 4 + )/] +
ggffﬂmax _z@ﬂx+nq gg[wL4Aéx _ %EGeth) | ] @ ho—4A% (o—R2)  viq (o) 3&_
2erl 2 M 3 2l 2 A0 7 4 2 7]

“%U (wAeqXO + 2Aeq(y - Xo))
Lt (@Aeght — 28eX1) |

2a)AeqX1 Vex0

where y =~ m = 21n(%). The details of the deriva-
tion of Eq. (27) are given in Appendix C. The kernel of
the matrix in Eq. (27) gives the eigenfrequencies of bosonic
excitations, a)g(q) (' =6D, §E), and the damping rates of
each mode [96]. The right-hand side of Eq. (27) represents
the driving force from external perturbations, such as acous-
tic waves. In Eq. (27), the phase mode (69D_) is neglected
since the phase mode is gapped out by the Anderson-Higgs
mechanism.

It is instructive to first consider the CMs of the order
parameter in the absence of the driving potential vexo = 0. If
we ignore the PHA and set a = 0, the matrix in Eq. (27) is

block diagonalized to the C = + and C = — subsectors. In
the long wavelength limit, ¢ — 0, Eq. (27) reduces to
* — 4N, 0 0 8D, 0
0 w? =277 0 s&. =10/,
0 0 w? — 2A§q 8&_ 0
(28)

where we use the fact that in this limit the moments of
the Tsuneto functions become Ao = A, A; = 0 and A, = A/2
[97]. We therefore find that the eigenfrequency of the ampli-
tude Higgs mode is w},, = 2|A¢q|, while the real/imaginary
clapping modes are degenerate with w?}) =2 [Acql.

For g # 0 and a # 0, the matrix in Eq. (27) is not diagonal,
and therefore the amplitude and the clapping modes hybridize.
We denote the corresponding eigenmodes §D; and 6&; 2, and
define them as being smoothly connected to one of the original
modes, namely,

lim0 8D, =6D,, (29)
a,q—

lim 8&; = 8&., (30)
a,q—0

lim §&, =486E_. (€28
a,q—0

In principle, these modes can be described in the framework
of the time-dependent Ginzburg-Landau formalism [75].
Figure 2 shows the dispersions of the the 9D, and & »
eigenmodes in the quasiclassical limit, @ = 0, where the mix-
ing is solely due to finite . Note that, as is clear from Eq. (27),
in this limit &_ remains an eigenmode, while §&, hybridizes
with the amplitude Higgs mode §D. . The increased splitting

27

(

between the real and the imaginary clapping modes with in-
creased ¢ is due to this hybridization.

It is worth noting that the quasiclassical approximation is
most reliable for g&y < 1, and therefore we restrict our con-
sideration to this range. Since Eq. (27) and the acoustoelectric
conductivity tensor contain y, ¢,, and the bandwidth, e, we
need to choose the parameters consistent with the hierarchy of
the energy scales in superconductors, T, < €, < €g. For this
purpose, we introduce phenomenological material parame-
ters, b = ’Te—:‘(kpéo) andc = 5—;(k1:§0). In the simplest estimate,
where ep = kpvg, and &y ~ vp/2nT,, we have b ~ O(1) at
low temperatures. At the weak coupling, we have to choose
b < c, and then the parameter y ~ Inc/b.

V. ANOMALOUS ACOUSTOELECTRIC EFFECT

Let us now return to the analysis of the CMs under a driving
force on the right-hand side of Eq. (27). In the absence of the

o
o) !
4 ! /; 4
1 / y ’US/UF/Z 1
~ / ' K //,
—~ I . .
) / ! .‘/Us/UF — 2/3
S — | I/ ‘/
—~ il
3 s
s
[
0
0

qéo 1

FIG. 2. The dispersions of the D, and §&, , eigenmodes (thick
curves) and the phonon (dashed/dotted curve) in the quasiclassi-
cal limit, a = 0. The phonon dispersions are plotted for the sound
velocity vg/vg = 2/3, 1, 2, 3. The shaded area for @ > 2|Aq| cor-
responds to the continuum excitations of Bogoliubov quasiparticles,
where the collective modes may acquire a finite damping rate.
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PHA (a = 0), only the imaginary clapping mode, §&_, can
be driven by propagating acoustic waves. As discussed above,
this mode also decouples from the Higgs and the real clapping
modes. According to Egs. (25) and (26), the 86_ mode con-
tributes to both the longitudinal and transverse conductivities,
but the transverse current carried by the §&_ mode vanishes
when a = 0. Therefore, the CMs do not yield the anomalous,
transverse response when the PHA is neglected.

The situation is different when the PHA is included. Now
the other two modes are also driven by the deformation po-
tential, albeit with the coefficient that depends on the PHA
of the normal state, D, /6vex ~ O(T./er) and 6E, /6vex =
O(T./e€r). These modes also hybridize with the §&_ with coef-
ficients O(T,/er). Therefore, the last term in the longitudinal
conductivity, Eq. (25), is the second order in the PHA and does
not contribute significantly. On the other hand, as Eq. (26)
shows, the &_ mode also carries transverse electric current
when the PHA is included. The electric current carried by the
8&_ mode is the same order as that carried by the §& mode.
Therefore, we expect the transverse current to be linear in
the PHA.

Consequently, in most materials, the resulting effect is very
weak. However, in heavy fermion systems, the Fermi velocity
may be comparable to the speed of sound, v,. In Fig. 2, we
plot the acoustic phonon dispersion for v;/vg = 2/3, 1, 2, 3.
As vg/vp increases, the phonon dispersion and the CM dis-
persion intersect at a finite momentum ¢g., which satisfies
for each mode wr(q.) = vslq.| (' =8Dy, 8&;, §&). Im-
portantly, for vs/vp ~ O(1), the intersection with the 8&; >
modes occurs at energies below the particle-hole continuum.
At that point, the CMs can be resonantly excited by propagat-
ing acoustic waves, leading to resonant amplification of the
AEE both in the longitudinal and in the transverse channels.
The resonance between the eigenmodes and phonons also
leads to the characteristic w-dependence of the response.

Figure 3 shows the linear response of the real and imag-
inary clapping modes (8&, and 8&_) to the acoustic wave,
obtained from Eq. (27). The spectra of |6E+ (w(g))| have sharp
peaks at the resonant frequencies, wr(q,.) = vs|q.|. We note
that the amplitude at resonance of the §&; mode is deter-
mined by the PHA correction, which is the order of 1/(kg&),
and hence two order smaller than the resonance of the 6&_
mode for our choice of kr&y = 100. As v,/vr decreases, the
resonance peak shifts to the higher frequency and approaches
the edge of the continuum of the fermionic excitations. After
crossing that threshold, the finite lifetime of the CMs leads
to the broadening and amplitude reduction of the resonance
peaks. Also note that the modes 3&, » are nearly degenerate
for g&y € [0, 1], and therefore we do not resolve the difference
in the resonance energies in our calculations.

We also find that, as the resonance shifts to shorter wave-
length, the resonance amplitude of the real and imaginary
clapping modes increases. This occurs because the driving
forces of 8&4 are proportional to ¢ through X; or A; in
Eq. (27), and therefore vanish in the long wavelength limit
when the superconducting gap in equilibrium is isotropic.
Therefore as the ratio v;/vr decreases, the crossing point in
Fig. 3 moves to higher ¢, and the resonance amplitude of
|66+ | grows. This growth, of course, is cut off by merging
of the resonance frequency with the continuum at 2| Aq| for

(a) Us/UF:3 0.012 15
o o
|6&+ 1 |68 |

Iméé&,

0&y ((17 W)/cho

(b) vjom=2
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() vefur=1 o1
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= 001 o !
= =
T -002 7o
W -1
o -003 fg
2
3
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w'(q)/|Aeq‘ W(Q)/|Aeq‘

FIG. 3. The w dependence of the real and imaginary clapping
modes (66, and §&_) induced by the acoustic wave with v;/vg =
2/3, 1,2, 3. We set the parameters as 7 =0.17,, a=1, b=
0.5, ¢ =5, and kp&) = 100. The orange arrows indicate resonant
peaks of the corrective mode current.

small values of the v, /v ratio, and hence the values v;/vg >~ 1
provide the optimal range for driving of the CMs by the
acoustic waves.

Finally, in Fig. 4, we plot the frequency-dependent lon-
gitudinal and transverse acoustoelectric conductivities. The
left panels demonstrate that both the QP and the CM (6&E+)
generate the longitudinal ac electric current, while only the
CMs contribute to the transverse conductivity. Reflecting
the resonances between the CMs and the acoustic wave, all
components of x[(j-M also show sharp peaks at the resonant
frequencies. When the sound velocity is comparable to the
Fermi velocity, e.g., due to the large effective mass of elec-
trons, the chiral superconducting fluctuations resonate with
the acoustic wave below the fermionic continuum edge, which
results in the pronounced peak in the @ dependence of the
electric current. This resonance peak dominates the response
in both longitudinal and transverse channels, and therefore can
be detected experimentally.

VI. CONCLUSION

In this paper, we theoretically investigated the AEE in
chiral superconductors, focusing especially on the interplay

134520-7



TAIKI MATSUSHITA et al.

PHYSICAL REVIEW B 105, 134520 (2022)

0.5
() vs/vr =3
= 0

7
°
8
X

/(=

Xyz (q,w)
2
¥
°
8
8

N(ex)v

I{(\\(’/“\J(‘(l.w"‘!

Re[
°
°
8
3
I

-0.8

(d) oy fup =2f30s

— 0.3

2

w(q)/lAeq‘ w(‘l)/‘ACq‘

FIG. 4. The w dependence of the acoustoelectric conductivity.
The left (right) panels correspond to the longitudinal (transverse)
acoustoelectric conductivity, x.x (Xy.). We take the same parameters
as those in Fig. 3. The orange arrows indicate resonant peaks of the
collective mode current.

between the CMs and acoustic waves. Using the quasiclassi-
cal transport theory and incorporating the weak PHA of the
low-energy excitations of normal electrons, we found that the
real/imaginary clapping modes can be driven by propagating
acoustic waves, and are coupled by the PHA factor of order
of Aeq/€r ~ 1/(kg&p). These modes, in turn, drive both the
longitudinal and the transverse electric currents. In the longi-
tudinal current, the CM contribution is additive to that of the
QPs. However, in chiral superconductors, the CMs also drive
the transverse AAEE. This effect is inherent to chiral super-
conductors, and reflects spontaneous breaking of the TRS, and
the chirality degrees of freedom of the Cooper pairs.

For systems where the sound velocity is comparable to
the Fermi velocity, the contribution of the CMs to the AE
is resonantly enhanced when the phonon and the CM ener-
gies coincide. This generates the resonant contributions to
longitudinal and transverse electric currents. The transverse
electric current carried by the clapping modes is reduced
by the PHA factor, compared to the longitudinal current
mediated by Bogoliubov QPs and the imaginary clapping
mode, but the resonance nature allows its experimental
determination.

We stress again that the clapping modes always exist in
any chiral superconductors with orbital angular momentum
[v] > 1, at least in the weak coupling limit. While above
we considered the chiral p-wave superconducting state as a
simple model, our main result is independent of the spin and
orbital stats of Cooper pairs, and thus applicable to other
(non-p-wave) chiral superconductors. For example, in two-
dimensional chiral superconductors, the mass gaps of the
clapping modes are universal and take ﬁ|Aeq| regardless
of the chirality, v, of the chiral order parameters, Acq(k)
(kx + iky)¥ [82].

There have been extensive investigations of the dc
anomalous transport phenomena in chiral superconductors
[57-60,98]. These transport coefficients are affected by the
impurity scattering and the particle-hole anisotropy induced
in the impurity band at energies much below the gap, and may
be made more complex by the presence of nodal QPs. It is
therefore important to emphasize that the resonance acous-
toelectric aresponse occurs at finite frequencies w < 2A. In
this range, the impurities and nodal excitations broaden and
slightly shift the resonance, but do not qualitatively change
our analysis above in clean systems.

For the same reason that we consider the ac signal, Meiss-
ner currents do not screen the field generated by the acoustic
wave, and therefore diamagnetic screening by the condensate
gives small corrections to our results.

The overall magnitude of the effect depends on the details
of the deformation potential induced by the acoustic wave. It
is difficult to estimate it reliably in heavy-fermion supercon-
ductors since the electron-electron correlations renormalize
the electron-phonon coupling significantly. We note that the
ultrasonic attenuation, which relies on the same coupling,
has been measured in a number of such materials, including
UBe;3 and UPt; [99]. Therefore, the experimental detection
of the AAEE is feasible in heavy-fermion chiral superconduc-
tors. Moreover, our calculations predict a resonance behavior
of the ac AE, and, in clean systems with moderate broadening,
we expect the resonance signature to be easily observable.

Consequently, the AAEE is a generic feature of chiral
superconductors, and is expected in a wide range of super-
conducting materials. The AAEE and its resonant behavior
provide moking-gun evidence of chiral superconductivity in
heavy fermion materials and superconducting materials with
small Fermi surfaces, where the PHA is appreciable.
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APPENDIX A: PARTICLE-HOLE ASYMMETRY
CORRECTIONS TO QUASICLASSICAL
TRANSPORT THEORY

1. Quasiclassical transport equation

Here we derive the Keldysh transport equation in the qua-
siclassical limit and the auxiliary equation, which is used to
obtain the leading-order correction to the Green’s functions
and physical quantities due to the PHA. We begin with the
Green’s function in the Wigner representation:

< _ (GR(e.k,x,1) GX(e,k,x,1)

G(G,k,x,t) — < 0 QA(E,k,x,t) 9 (Al)
GX(e,k,x,t) FX(e, k,x,1)

GX(e, k,x,t) = (= — . (A2

G kox.t) (Fx(e,k,x,t) Gx(e,k,x,t)) (42)

These obey the left-hand Gor’kov equation,

(¢t = A 0) @ K6 + 30(k) - VEG — §EC = 1. (A3)
and the corresponding right-hand equation,
1.6 Q (et, — A — V) + %v(k) VG —£5G =1, (A4)

where X = R,A,K and v(k) = Vi&. The Groenewold-
Moyal product is given by A®BX,p) =
S RG=RX2AX p)B(X, p), where we have introduced
abbreviated notation, 0§95 = —0/'0% + V¢ - V5, X = (1, x),
and p = (e, p). Subtracting and adding Eq. (A3) and Eq. (A4),
we obtain

et — A— Vex ‘fzé](g +iv(k) - V%zé =0, (AS)
[€t, — A — Ver, £:Gler —&EG —1=0.  (A6)

We now take the quasiclassical limit, (kp€)~'=0. The
quasiclassial approximation postulates the slow variation of
superconducting order parameters in the space-time (com-
pared to kp and ep scales, respectively) and accounts for
QPs confined to a low-energy shell near the Fermi surface.
Then, the quasiclassical Green’s functions, g, are obtained by
integrating G over a small shell in momentum space near
the Fermi surface as in Eq. (5), and replacing the DOS of
normal electrons to N (&, + €g) >~ N(ep). We finally obtain the
quasiclassical transport equation from Eq. (AS5) as

let, — A —

Vex» &0)le + ivF - V&) = 0. (A7)

Equation (A6) reduces to the auxiliary relation:

o 1 .
/ dEEEG+ 1) = Slet — A~ Bolor (AY

This is used to derive the leading-order correction due to the
PHA, such as Eq. (15).

2. Particle-hole symmetry effect on physical quantities

Using the Green’s function in the quasiclassical limit
and the auxiliary Eq. (A8), we now derive the PHA-driven
corrections to the physical quantities. We first derive the
correction to the quasiclassical Green’s function in Eq. (14).

The PHA appears as the leading-order correction to the DOS
at the Fermi energy, N (& + €g) =~ N(ep) + N'(€g)&, where
N'(ep) = [ON(€)/€]c=,. Substituting this expansion and uti-
lizing the auxiliary relation Eq. (A8), we obtain

a v
He ke = [ a1+ L6) toe krn)
F

a .
>~ g0+ et — A — Vex, L))o+ (A9)
26]:
The second term in Eq. (A9) describes the PHA of the DOS,
a = egN'(eg)/N (ep).
The electric current is defined with the Keldysh component
of the Gor’kov Green’s function as

I== /47‘[1 (2 )2

The Keldysh Green’s function obeys the following relation
[77]:

v(k)GK(e k,x,1).

(A10)

GX(e,x. k1) = -G (—e,x, -k, 1). (A11)

By using this relation, Eq. (A10) is recast into

J— __/ /(2 )2Tr[v(k)GK(e kx,0)].  (Al2)

The standard quasiclassical approximation is effective
when the Fermi energy is sufficiently large, and hence as-
sumes particle-hole symmetry in the QP DOS. The physical
quantltles in this limit are thus computed in the approximation

(sz = [deN(e) = N(er) [ de, where D is the dimension
of the system. The contribution of the PHA is incorporated by
including the leading-order correction to N(eg). Substituting
the expansion of N(€), and utilizing the auxiliary Eq. (AS8),
we obtain the electric current in terms of the quasiclassical
Green’s function (o) as

§k>
€=¢€f

L 1[de e
I= _2/4nifd§k(N(EF)+ de
= —N(ep)/ < Tr[ vptzg(o)(e,kp,x,t)]>

x (Tr[veG¥ (e, k, x, 1)])Es 4y

FS.kg

_N(GF)/ < TI'['UF'L’ [GTZ A vexa g(O)]®+]>

FS. ke
(A13)

In the first line of Eq. (A13), we apply the quasiclassical ap-
proximation and expand the DOS. Then, the auxiliary relation
in Eq. (A8) is used to derive the second line of Eq. (A13).
Using Eq. (14), we finally obtain Eq. (15) as

—N(ep)/ < veTr rz(gz)+g(l))]>

(A14)
FS kr

APPENDIX B: DERIVATION OF KELDYSH
RESPONSE FUNCTION

We next derive the nonequilibrium Keldysh Green’s func-
tion by the linear response to the deformation potential. We
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denote the equilibrium quantities as Xeq (X = g(»), A) and the
linear deviation from equilibrium as 6% (x = g, A).

1. Equilibrium Green’s function

In the absence of external perturbations, the system is
translationally invariant, and the equilibrium quasiclassical
Green’s function, g(0)eq, Obeys the homogeneous Eilenberger
equation,

[e%; — Acg. Z0)eal = O, (B1)
subject to g%o)eq —m2. The solutions are given by

€T, — A
A _p =% —4
gﬁJ)eq T TDRAGE) (B2)

€
(O)eq (gfo)eq gﬁ))eq) tanh (ﬁ) =a(e)r, + B(€)Ay:
(B3)

where DR (¢) = D**(e) = v/ qu — (e +i07)% (0* > 0) and

. €
a(e) = —€B(e) = —2ming(e) tanh (ﬁ)’ (B4)

with the spectral function n,(¢€):

le]

€2 — A,

Here, ®(x) is the Heaviside function.
Substituting g()eq into Eq. (14), one obtains the leading-
order correction from the PHA as

ng(e) = O(e* — AL). (B5)

eq

K

a K —K K
8ieq = 2_@[268(0@ — Aeqke) f0)eq = Al Kr)fGyeq o

(B6)

Note that the equilibrium pair amplitudes in the PHA correc-
tion, f(If)eq and f_(ﬂ()eq, vanishes since the Keldysh propagator in
the. qlllasicllassical limit obeys the .relation, g‘fo)eq + g{f))eq =0.
This implies that the weak PHA in the DOS does not renor-
malize the equilibrium gap function. Hence, in evaluating the
temperature response below, we assume a BCS-like temper-

J

—n w 2iAqu€y
w —n 0
2iAeghy 0 -1
2Aegk, 0 2¢
0 o
o 0
—iAeghy By Acgk -
—Aegh By iDeghyB-

ature dependence of the equilibrium gap function, Aeq(T) =

1.765T; tanh(1.74/T./T — 1) [100].

2. Nonequilibrium Keldysh Green’s function

We now derive the derive the Keldysh response function to
the propagating acoustic wave. The nonequilibrium Green’s
function in the leading order, i.e., the quasiclassical limit,
880), obeys the Eilenberger equation:

[SA + Vex, g(O)eq]o + ivE - V(sg'(()) = 0.
(B7)

[et, — Acqs 823(0)]0 —

It is important to note that, since we are looking at finite
frequencies, we included the dynamical fluctuations of the or-
der parameter, SA, which are determined by self-consistently
solving the gap equation.

Equation (B7) includes the o product of equilibrium and
nonequilibrium quantities, such as A.q 0 8B(t) and 8A(t) o
éeq. These o products can be cast into a more convenient
form by performing the Fourier transformation in x and 7 [83],
which gives for the Keldysh part of Eq. (B7)

€+T.0gy — e-8gy T. — Aog(kr)dg + g Acy (ki)

(0) (e2)+gf (1)

+ Vexo (g

=(0)

8(0seq
=0, (BS)
380, =
n=vr-q.

The frequency shift, € - e =€+ arises from
the finite frequency of the acoustic mode in v, (x, t). We also
introduced a small imaginary part, ® — @ + i0", to obtain
the causal response function.

For solving Eq. (BS8), it is convenient to introduce the
following quantities:

88(nt = 88(n) £ (). (B9)

(€4) = 8geq (€-)) — 138

(0)eq 2(0)

where we introduced

(Sgﬁ))(e kg, q, w),

shorthand  notation,

SA = 8A(kg,q, w), and

w+i0T
2 b

K K —K
8f e = 8F ) £ 85 () (B10)
SAL = 8A £ 8A*. (B11)
Using these quantities, Eq. (B8) becomes
—2Acgki\ (885
0 380+
2e 816+
el ‘Sf(lé)—
_iAequ\y:BJr Aeqié)rIBJr 0
_Aequ,B— iAeqk)',B— 2Uex0 — 0’ (BIZ)
0 oy 8A+
@ 0 SA_
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with k = kg /kg. We now obtain the nonequilibrium Keldysh Green’s function in the quasiclassical limit,

38y

5800+ 1
51 | T @ =i — )+ 4n
8-
(e’ —n?) w(de —n?) 20 Aeq ek — inky) 21 AeqRieky — nky)
y w(4e? — n?) n(4e* —n* —4A2) 20Aeq (2€k, — inky) —20Aeq(2iek, — nky)
—20Aeq €k + inky) —2wAeq 26k, + inky) n(4€> —n> — 4A§qk§) 2¢(w? — ;72) + 4iA2 k.k,
—20 Aeq ik, + nky) —20Aeq (2icky, + nky) 2e(w? — n?) — 4iA2 kck, n(4e? —n? — 4A§qk})
0 o —iAeqhy By Acgk B+ 0
o = 0 —BkiBo iBegkB | [ 2ve0 | B13)
—iAegky By AegkxB- 0 oy SA4
_AeqlgxﬂJr iAeqleyﬁf o 0 SA-

where oy = a(ey) £ a(e_), B+ = B(e+) £ B(e—). We also need the frequency integral of the nonequilibrium Keldysh Green’s
function to compute the order parameter fluctuation and the electric current. The integrated Keldysh Green’s functions are given

by

881((())_ 2+ ( 7 )()\ - 1) (wz,’nz)()L -1 lnAeqlgy)_: _nAeqlzx)_:
/ de | 8¢5, ( ) (1 — (752)0— 1D i A eqhyk —WAeghih
N K - a = . N w2_,]2_4A§ lgf— . ~
2mi i f(lg)+ Acghyh i® A cghyh -y - S —21?%!@/@? i
fo- Acghih oA egheh 2iA2 ik —y - AN
0
?ZX" (B14)
+
SA_
The y function in Eq. (B14) is defined as
“ de € de € w\*
y=[] —p.=2 —— tamh(—)+o0(=2). (B15)
—e 4mi 1Aegl €2 — A2 2T €

where €. is the frequency cutoff associated with pairing
interaction. For o < €., the y-function reduces to the equi-

librium gap equation, £ ~ W, where we consider the
e

p-wave pairing interaction, V (kg, kg) = Vpairfc k. The gap
equation has a logarithmic divergence on €, [101]. To regular-
ize the ultraviolet divergence in the gap equation, we utilize
the fact that the cutoff energy, €., and the pairing interaction,
Vpair» are related to a measurable quantity, i.e., the bulk transi-
tion temperature, T, through linearized gap equation:

y 1 (1.1360)
o~ =In .

27 N(er)Vpar T,
The A function in Eq. (B14) is the generalized Tsuneto
function,
A= ALK

(B16)

/ 2 tanh (55) |: n* — 2we,
o 2 e (4ei — 1) (@? — 1) + 4> A2,
n? — 2we_

B17)

|

TEE oD@ -+ 4n? A

€q

(

which characterizes the phase stiffness of the condensate
[102]. In the long-wavelength limit (n — 0) and the zero-
temperature limit, the A function reduces to the Tsuneto

function,
sin~! (x) . _ o
Ma) = ifx = sag <1
- 1n(x+Vx2 + fx=-2 1
2X'\/.X2 '\/ 1’ - Z‘Aeql :
(B18)

Note that the Tsuneto function has an imaginary part when
w/2|Aeql > 1. This imaginary part describes intrinsic damp-
ing due to breaking of Cooper pairs into two Bogoliubov QPs
(see Fig. 5).

Substituting Eq. (B14) into Eq. (14), we straightforwardly
obtain the PHA part of the nonequilibrium Keldysh Green’s

function:
a A oA
8ng1)+ = TF[Z(G‘SgI((O)— + Aequfsf(lé)— - ’AEqk}'ﬁlé)+)
+ Aeq(ked Ay — iky8A_)B4 ], (B19)
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880, =

[2eag‘(<o)+ — Qex0 0l

+ Aeq(zky5A+ —kSAB], (B20)

580 = pmlodsl, — 28kadely,. — 08 o
— 2AcgkBivexo]. (B21)

5FK = ;TF[wa £K = 2ingh 885, — 5A @
— 2iAeghyB1vexo - (B22)

J

/ de de
2mi g(l)f

de ¢ a de ¢ A de ¢ A
/\%(S‘f(l)7 = El:a)/‘ %8f(0)+ —ZIAeqky/ %6g(0)+ _41Aeqkyyvex0 .

The ¢ function in Eq. (B23) is defined as

n* —4A?)

In contrast with the equilibrium Green’s function, the PHA
in the DOS affects the pair amplitudes in the nonequilibrium
Keldysh Green’s function. As seen later, the PHA correction
to the pair amplitude drastically changes the linear coupling
between the acoustic wave and CMs. To evaluate the order
parameter fluctuation and the electric current, it is necessary
to integrate the PHA correction to the nonequilibrium Keldysh
Green’s function. Speciﬁcally, i 2‘16 SgKl)_ directly modifies

the electric current, and f 70 f(1) . affects the order parame-
ter fluctuation. Using Eq. (B13) we obtain

r A d
[‘”"Aeq(kx5A+—iky5A)— / Z—E.vexom} (B23)
€F i
a de  x A de | ¢ R
= 2—@[&)/ %Bf‘(o)— - 2Aequ/ %Sg(o)_;r - 4Aequyvex()}, (B24)
(B25)

/ tanh ) |:<2a)eJ2r - 6+(4ei +o? -
|Acg] / — A2 (4ei — 1) (@* — n?) +4A2 7

The ¢ function also exhibits a logarithmic divergence on €.,
and thus the cutoff frequency is necessary to regularize the
integral. Note that the second term in Eq. (B23) is even in the
momentum and does not modify the electric current. There-
fore, the contribution to the current from the terms that reflect
the PHA is due to the order parameter fluctuations.

3. Anomalous acoustoelectric effect induced by clapping modes

We here derive the expression of the electric current with
the use of the obtained Keldysh response function. Substitut-
ing the Keldysh response function from Eqs. (B14) and (B23)

O =~ N W »h OO N © ©

1
-—

1 2
w/|Aeq|

FIG. 5. The frequency dependence of the Tsuneto function in the
limit of the long-wavelength and zero temperature.

20e% +e_(4€2 + w* — n? —4A?
a)@2 €_(4ez +w° —1n )) (B26)
(de2 — n?)(w? — n?) +4A%0?

(

into Eq. (15), we obtain the electric current as the sum of two
contributions:

J=Jop +JcMm, (B27)

1 4wn
Jop = ZN(EF) VF g (A = Dvexo ok (B28)

1 — .
Jom = ZN(eF)(anAeqk(iky8A+ —ksAl))

FS. kg

- 8—N(eF><anAeqqo(ﬂ€x8A+ — ky8 A))ps -
€F

(B29)

The first term, Jqp, represents the electric current carried
by the Bogoliubov QPs, while the second term, Jcy, is the
electric current carried by the CMs, §A 4.

As discussed in the main text, we consider the acoustic
wave propagating along the x direction, ¢ = (g, 0), and ex-
press the order parameter fluctuations, §Ay, via the CMs
using Egs. (2)-(4):

kpS AL = [6D4 + 86 ke + i[8D_ — 86_1ky,  (B30)

keSA_ = [8D_ + 8&_Jk; + i[8D, — 8&, ]k,

Substituting this into Eq. (B29), we obtain the acoustoelectric
conductivity tensor, which is also decomposed into the contri-
butions from the Bogoliubov QPs ( XQP) and CMs ( X,(,:M)

(B31)

Xij = Xij + Xij s (B32)
where
. 2
;S(P _ lN(GF)UF(XO + Xl)’ (B33)
4w
X =0, (B34)
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iN(ep)viA - — $D_ - — &
chM:_w[()\o-i-M) + (A +A) ]
8 Vex0 Vex0
iaN (ep)v2A 8§D,
_&[(ﬁl)l"“ﬁz) +(900+<P1) }
166F Vex0 Vex0
iN(ep)VEAeq [ —
8 2e €F Vex0
(B35)
N(ep)viA - - 8&4 86—
AM = — R G — ) - —(<P0 — )
’ 8 Vex0 2e €F Vex0
(B36)

J

Here we introduced the moments of the Tsuneto function,
T = (R =R D) g, and X =((R =KD" 5 =1) ¢
as well as moments of - functlon <p,; =
(k2 — 123)"¢>FS 4, In the third line of Eq. (B33), we
neglected the ‘contribution of the phase mode, (§D_),
since the long-range Coulomb interaction shifts the frequency
of this mode to the plasmon energy, above the pair-breaking
continuum > 2|A¢| (the Anderson-Higgs mechanism).
In the second equality of Eq. (B35), we also neglected the
Higgs mode(§D. ), since its energy lies above the threshold
energy, 2|Agq|. Also, as shown in Appendix C, the induced
Higgs mode is the order of §D /vexo ~ O(T./€r), and thus
its contribution is the second order in the PHA.

This yields the expressions in Eqgs. (23)—(26) in the main
text.

FS,kF
the

APPENDIX C: DERIVATION OF THE MATRIX GAP EQ. (27) FOR THE ORDER PARAMETER FLUCTUATIONS

In this Appendix, we derive the matrix Eq. (27) for the order parameter fluctuations. We begin with the gap equations for the

linear response of the Keldysh pair amplitudes,

SA(kg) = N(GF)/

5A* (ke) = N(er) f

where V (kg, ki)

- (V (ki k)8 £ (¢, kg))ps kg (ChH

V(kF,ki:)5f (€, kp))rs . » (C2)

= Vpairl} & is the p-wave pairing interaction. The Keldysh pair amplitudes are decomposed into the Green’s

function in the quasiclassical limit and the PHA correction as § fX = § f(lé) +4 f(I,(). Using Egs. (B14), (B24), and (B25), we recast

Eq. (C1) and (C2) into

a1+ 22) |-t + (1

N(GF )Vpair 2 €F

ay , a , 4?
— Ak 0 — —Ak )] ————
er ¢ F)Ue 0 2er ¢ F){ 0)2—77 (x

SA*(k | P
w1
N(GF)Vpair 2 €F

2

a *
- —A (k)vexo — ZGFA (k;:){_

wa * /' \T .
- 2—) {wAeq(kF))»vexo + (7/ +

—()» — Dvexo + 0A(A* (k)8 A (ki) — Alkg)SA* (ki)

w* — 772 — 2A§q_ , e ,
+ fk)8A(kF) eq(k Y ASA* (kF)}

— Dvexo + @A (A*(kp)S A k) — Akg)SA* (k;))} > , (C3)
A/Fs k;
w? —n* — Zqu_ -
A)M*(ki:) — A% (k) RS A k)

D . (C4)
FS.k;

Let us consider the p-wave order parameter fluctuation, §A(kp) = 8 AH)(I%X + ilgy) + 6 A(,)(IQX — ilgy). Multiplying (k, + ilgy)
with Egs. (C4) and (C5) and performing momentum integral with kg, we then obtain

aA(i) = 1 % i wd INT o — nz _Zqu_ ’ N2 R A KL
N Vo — 2<(kx¢zky)[<1 + 26F){ o Aeq (ki) hvexo + (¥ + 5 X )SAUL) — Acq(kp) RS A* (K}
a , 40? ) /
_ —A(kp)vexo S Akp) ————5 (G — Dvexo + oA (A* (k)8 Alky) — Alkr)8 A* (k) . (C5)
* ot =’ FS.K}
—SATi) 1 % i wa % L/ \NT w2 - 772 - Zqu_ * 1,/ x 1/ \2T ’
N = 2\ & F k) (1 - 7}:) WAL K)o + (v + - X )SA% (i) — AL kiR AKE)
ay * 1,/ 4-61)2 , , .y
— gA (ki) Vexo — e S A" (kp)| - (A — D)vexo + @A(A*(kp)S Aky) — Alkp)8 A*(kp)) (C6)
FS k)
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We consider the acoustic wave propagation along the x direction, ¢ = (¢, 0). By using A, = ((12)% — /23)"X>Fs ke and X, =

((k2 kz)” wz_nz (A — 1)) and performing the momentum integral, Egs. (C5) and (C6) are reduced to the linear equations for
(SA(i) and SA(;t)’
aw — a _
[(1 n ?)meqxo = - Xo)]vexo - (1 n 2—)[?{8A(+) +BSAC) — AL (0B AL, + 1iSAT)]
F F
y = — aw
— _Ae 0)()»03@7 + )»158,) + _)/SA(JF), (C7)
2 261:

aw — a — —
[-(1 - ?>wAeq/\0 + (- Xo)]vexo = (1 _ 2—)[3{8A(+) +BSAL, — A2 (S A ) + 118A )]
F F

T e w(AOSZ) + 28E- )— y(SA(H, (C8)

w —
[(1 n 2—F>wAqu1 — —Xl]vexo - (1 n 2—>[B(SA(+) +ASAC — Aeq(xlfm;;) + (2% — X)8AL )]

- —Ag 0 8D_ + 1188, — 20,8A7) + y(SA( ¥ (C9)
aw — a _ _ aw * 2 _
(1 E)a)AeqM EXI]U"XO =(1-5 - ) [Bsag, +AsAL, Aeq(x15A<+)+(2,\2 70)8AC)]
a _ — —_
_ Equw(x,aD_ +A8EL + 208A ) — yzSA( . (C10)

where we have used Eq. (B16) and introduced abbreviations
a) — ZAZ 1)2 2

qT 9 - =
A= 0 — == + A1), (C11)
2 4
2 2
w —2A _ U2q2 — —
(&
B= 9% — =0 + M) (C12)
2 4
We subtract and add Eqgs. (C7) and (C8), and Eqs. (C9) and (C10) to obtain the matrix equation,
M(q. ®)3D(q, ») = vex, (C13)
where the vectors of the order parameter fluctuations and the driving force are given by
3D, ‘";%O(wAeq)VO + 2Aeq(y —Xo))
§&E AVex0 3.
L e B N L (C14)
587 2(J‘)Aeq&OUeXO
- ZwAeqklvexo
respectively, and the matrix M(q, ) is
M(q, w)
W?—4A2 — 2 a2 (ho+A. W?—4A2, — 0262 (0 ) +A: *—4 2 (oA, ?—4 2% (g 42
2Acq o — U4 (10%1) ZAE(, n — U (ZI‘F)LZ) Za: [ A o _ g ()XH’)LI) + y] gg: [ 2A 2y — Y (Z]‘F)LZ)]
24N — 22y +7 2h0—4A2 7 22 (Fio+ 7 o [0 —4A% = 22 Gy +7 o [0 —4AY 22 (Ro-+7
_ @ S ahy — Viq <ZI+)‘Z) @ Ao h a2 Vg (ZO‘FM) geF[“’ . 19 — Veq ():‘I-Mz)] ;EF[”’ - )\0 _ U4 ();0+)\I) +)/]
= aw o? 4Ae 3 q* Gho+A aw o 4A 2G% (M 41 o7 2g% (o4 w7 2% (kg 41y
2€F[ q)\‘ %4 (40+A1) + }/] 2€F[ > )Ll Vg (41+ z)] 7)\0 Vg (40+ 1) 7)\] _ %q (41+ )
2_AAN2 2T T 2 AAN2 2 2 5 — 202 (7143 27 _AA2 (G 27 4T
%[w ;Acq)\l v (Z.Hz)} %[w ;Acq 7o — U4 ():‘quM) T y} LT, - 1qu(zl+xz) %o 4Ach(m ) ulg (a‘ﬂ.)

(C15)

As discussed in the main text, the energy of the phase mode is pushed up to the plasmon energy, which is much larger than
any other energy scale in superconductors. The difference of the energy scale allows us to neglect the phase mode in the matrix
Eq. (C13). We finally obtain Eq. (27) as

o’ 4qux _ vig*(ho+r1) ’1’2*4A§qx _ vig* (i +22) ﬂ[w2*4A§qX _ U]Z:qz(xl""XZ)]
4 2 1 4 2er 2 1 4 8D,
@’ —4A% + vEg? (hi+2) @ ho—4A%h i (oth) aw —4A3 9P Ooth)
7 M T T T 3 s — TR 4y || 964
ﬂ[“’z—‘m?qx _ vﬁqzdlﬁz)] ﬂ[‘“z—‘m?qx _ %Gt ] wz*o—Meq(Ao—*z) _ B Coth) 86—
2er 2 1 2 2er 2 0 7 4 2 7
‘“;%0 (Q)Aeqko + 2Aeq(7/ — Xo))
AVey 3
= ?“(a)Aeq)Ll — 2AeqX1) . (C16)

Za)Aele Vex0
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